Merge branch 'net-add-preliminary-netdev-refcount-tracking'
[linux-block.git] / include / linux / skbuff.h
CommitLineData
2874c5fd 1/* SPDX-License-Identifier: GPL-2.0-or-later */
1da177e4
LT
2/*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
1da177e4
LT
8 */
9
10#ifndef _LINUX_SKBUFF_H
11#define _LINUX_SKBUFF_H
12
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/compiler.h>
15#include <linux/time.h>
187f1882 16#include <linux/bug.h>
8842d285 17#include <linux/bvec.h>
1da177e4 18#include <linux/cache.h>
56b17425 19#include <linux/rbtree.h>
51f3d02b 20#include <linux/socket.h>
c1d1b437 21#include <linux/refcount.h>
1da177e4 22
60063497 23#include <linux/atomic.h>
1da177e4
LT
24#include <asm/types.h>
25#include <linux/spinlock.h>
1da177e4 26#include <linux/net.h>
3fc7e8a6 27#include <linux/textsearch.h>
1da177e4 28#include <net/checksum.h>
a80958f4 29#include <linux/rcupdate.h>
b7aa0bf7 30#include <linux/hrtimer.h>
131ea667 31#include <linux/dma-mapping.h>
c8f44aff 32#include <linux/netdev_features.h>
363ec392 33#include <linux/sched.h>
e6017571 34#include <linux/sched/clock.h>
1bd758eb 35#include <net/flow_dissector.h>
a60e3cc7 36#include <linux/splice.h>
72b31f72 37#include <linux/in6.h>
8b10cab6 38#include <linux/if_packet.h>
f35f8219 39#include <linux/llist.h>
f70ea018 40#include <net/flow.h>
6a5bcd84 41#include <net/page_pool.h>
261db6c2
JS
42#if IS_ENABLED(CONFIG_NF_CONNTRACK)
43#include <linux/netfilter/nf_conntrack_common.h>
44#endif
1da177e4 45
7a6ae71b
TH
46/* The interface for checksum offload between the stack and networking drivers
47 * is as follows...
48 *
49 * A. IP checksum related features
50 *
51 * Drivers advertise checksum offload capabilities in the features of a device.
db1f00fb
DC
52 * From the stack's point of view these are capabilities offered by the driver.
53 * A driver typically only advertises features that it is capable of offloading
7a6ae71b
TH
54 * to its device.
55 *
56 * The checksum related features are:
57 *
58 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
59 * IP (one's complement) checksum for any combination
60 * of protocols or protocol layering. The checksum is
61 * computed and set in a packet per the CHECKSUM_PARTIAL
62 * interface (see below).
63 *
64 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
65 * TCP or UDP packets over IPv4. These are specifically
66 * unencapsulated packets of the form IPv4|TCP or
67 * IPv4|UDP where the Protocol field in the IPv4 header
db1f00fb 68 * is TCP or UDP. The IPv4 header may contain IP options.
7a6ae71b
TH
69 * This feature cannot be set in features for a device
70 * with NETIF_F_HW_CSUM also set. This feature is being
71 * DEPRECATED (see below).
72 *
73 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
74 * TCP or UDP packets over IPv6. These are specifically
75 * unencapsulated packets of the form IPv6|TCP or
645f0897 76 * IPv6|UDP where the Next Header field in the IPv6
7a6ae71b
TH
77 * header is either TCP or UDP. IPv6 extension headers
78 * are not supported with this feature. This feature
79 * cannot be set in features for a device with
80 * NETIF_F_HW_CSUM also set. This feature is being
81 * DEPRECATED (see below).
82 *
83 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
db1f00fb 84 * This flag is only used to disable the RX checksum
7a6ae71b
TH
85 * feature for a device. The stack will accept receive
86 * checksum indication in packets received on a device
87 * regardless of whether NETIF_F_RXCSUM is set.
88 *
89 * B. Checksumming of received packets by device. Indication of checksum
db1f00fb 90 * verification is set in skb->ip_summed. Possible values are:
78ea85f1
DB
91 *
92 * CHECKSUM_NONE:
93 *
7a6ae71b 94 * Device did not checksum this packet e.g. due to lack of capabilities.
78ea85f1
DB
95 * The packet contains full (though not verified) checksum in packet but
96 * not in skb->csum. Thus, skb->csum is undefined in this case.
97 *
98 * CHECKSUM_UNNECESSARY:
99 *
100 * The hardware you're dealing with doesn't calculate the full checksum
101 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
77cffe23
TH
102 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
103 * if their checksums are okay. skb->csum is still undefined in this case
7a6ae71b
TH
104 * though. A driver or device must never modify the checksum field in the
105 * packet even if checksum is verified.
77cffe23
TH
106 *
107 * CHECKSUM_UNNECESSARY is applicable to following protocols:
108 * TCP: IPv6 and IPv4.
109 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
110 * zero UDP checksum for either IPv4 or IPv6, the networking stack
111 * may perform further validation in this case.
112 * GRE: only if the checksum is present in the header.
113 * SCTP: indicates the CRC in SCTP header has been validated.
b4759dcd 114 * FCOE: indicates the CRC in FC frame has been validated.
77cffe23
TH
115 *
116 * skb->csum_level indicates the number of consecutive checksums found in
117 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
118 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
119 * and a device is able to verify the checksums for UDP (possibly zero),
db1f00fb 120 * GRE (checksum flag is set) and TCP, skb->csum_level would be set to
77cffe23 121 * two. If the device were only able to verify the UDP checksum and not
db1f00fb 122 * GRE, either because it doesn't support GRE checksum or because GRE
77cffe23
TH
123 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
124 * not considered in this case).
78ea85f1
DB
125 *
126 * CHECKSUM_COMPLETE:
127 *
128 * This is the most generic way. The device supplied checksum of the _whole_
db1f00fb 129 * packet as seen by netif_rx() and fills in skb->csum. This means the
78ea85f1
DB
130 * hardware doesn't need to parse L3/L4 headers to implement this.
131 *
b4759dcd
DC
132 * Notes:
133 * - Even if device supports only some protocols, but is able to produce
134 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
135 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
78ea85f1
DB
136 *
137 * CHECKSUM_PARTIAL:
138 *
6edec0e6
TH
139 * A checksum is set up to be offloaded to a device as described in the
140 * output description for CHECKSUM_PARTIAL. This may occur on a packet
78ea85f1 141 * received directly from another Linux OS, e.g., a virtualized Linux kernel
6edec0e6
TH
142 * on the same host, or it may be set in the input path in GRO or remote
143 * checksum offload. For the purposes of checksum verification, the checksum
144 * referred to by skb->csum_start + skb->csum_offset and any preceding
145 * checksums in the packet are considered verified. Any checksums in the
146 * packet that are after the checksum being offloaded are not considered to
147 * be verified.
78ea85f1 148 *
7a6ae71b
TH
149 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
150 * in the skb->ip_summed for a packet. Values are:
78ea85f1
DB
151 *
152 * CHECKSUM_PARTIAL:
153 *
7a6ae71b 154 * The driver is required to checksum the packet as seen by hard_start_xmit()
78ea85f1 155 * from skb->csum_start up to the end, and to record/write the checksum at
7a6ae71b
TH
156 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
157 * csum_start and csum_offset values are valid values given the length and
db1f00fb
DC
158 * offset of the packet, but it should not attempt to validate that the
159 * checksum refers to a legitimate transport layer checksum -- it is the
7a6ae71b
TH
160 * purview of the stack to validate that csum_start and csum_offset are set
161 * correctly.
162 *
163 * When the stack requests checksum offload for a packet, the driver MUST
164 * ensure that the checksum is set correctly. A driver can either offload the
165 * checksum calculation to the device, or call skb_checksum_help (in the case
166 * that the device does not support offload for a particular checksum).
167 *
168 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
169 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
43c26a1a
DC
170 * checksum offload capability.
171 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
172 * on network device checksumming capabilities: if a packet does not match
173 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
174 * csum_not_inet, see item D.) is called to resolve the checksum.
78ea85f1 175 *
7a6ae71b 176 * CHECKSUM_NONE:
78ea85f1 177 *
7a6ae71b
TH
178 * The skb was already checksummed by the protocol, or a checksum is not
179 * required.
78ea85f1
DB
180 *
181 * CHECKSUM_UNNECESSARY:
182 *
db1f00fb 183 * This has the same meaning as CHECKSUM_NONE for checksum offload on
7a6ae71b 184 * output.
78ea85f1 185 *
7a6ae71b
TH
186 * CHECKSUM_COMPLETE:
187 * Not used in checksum output. If a driver observes a packet with this value
db1f00fb 188 * set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
7a6ae71b
TH
189 *
190 * D. Non-IP checksum (CRC) offloads
191 *
192 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
193 * offloading the SCTP CRC in a packet. To perform this offload the stack
db1f00fb 194 * will set csum_start and csum_offset accordingly, set ip_summed to
dba00306
DC
195 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
196 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
197 * A driver that supports both IP checksum offload and SCTP CRC32c offload
198 * must verify which offload is configured for a packet by testing the
199 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
200 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
7a6ae71b
TH
201 *
202 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
203 * offloading the FCOE CRC in a packet. To perform this offload the stack
204 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
db1f00fb
DC
205 * accordingly. Note that there is no indication in the skbuff that the
206 * CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
7a6ae71b 207 * both IP checksum offload and FCOE CRC offload must verify which offload
db1f00fb 208 * is configured for a packet, presumably by inspecting packet headers.
7a6ae71b
TH
209 *
210 * E. Checksumming on output with GSO.
211 *
212 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
213 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
214 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
215 * part of the GSO operation is implied. If a checksum is being offloaded
db1f00fb
DC
216 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
217 * csum_offset are set to refer to the outermost checksum being offloaded
218 * (two offloaded checksums are possible with UDP encapsulation).
78ea85f1
DB
219 */
220
60476372 221/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
222#define CHECKSUM_NONE 0
223#define CHECKSUM_UNNECESSARY 1
224#define CHECKSUM_COMPLETE 2
225#define CHECKSUM_PARTIAL 3
1da177e4 226
77cffe23
TH
227/* Maximum value in skb->csum_level */
228#define SKB_MAX_CSUM_LEVEL 3
229
0bec8c88 230#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
fc910a27 231#define SKB_WITH_OVERHEAD(X) \
deea84b0 232 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
233#define SKB_MAX_ORDER(X, ORDER) \
234 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
235#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
236#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
237
87fb4b7b
ED
238/* return minimum truesize of one skb containing X bytes of data */
239#define SKB_TRUESIZE(X) ((X) + \
240 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
241 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
242
7999096f 243struct ahash_request;
1da177e4 244struct net_device;
716ea3a7 245struct scatterlist;
9c55e01c 246struct pipe_inode_info;
a8f820aa 247struct iov_iter;
fd11a83d 248struct napi_struct;
d58e468b
PP
249struct bpf_prog;
250union bpf_attr;
df5042f4 251struct skb_ext;
1da177e4 252
34666d46 253#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4 254struct nf_bridge_info {
3eaf4025
FW
255 enum {
256 BRNF_PROTO_UNCHANGED,
257 BRNF_PROTO_8021Q,
258 BRNF_PROTO_PPPOE
7fb48c5b 259 } orig_proto:8;
72b1e5e4
FW
260 u8 pkt_otherhost:1;
261 u8 in_prerouting:1;
262 u8 bridged_dnat:1;
411ffb4f 263 __u16 frag_max_size;
bf1ac5ca 264 struct net_device *physindev;
63cdbc06
FW
265
266 /* always valid & non-NULL from FORWARD on, for physdev match */
267 struct net_device *physoutdev;
7fb48c5b 268 union {
72b1e5e4 269 /* prerouting: detect dnat in orig/reply direction */
72b31f72
BT
270 __be32 ipv4_daddr;
271 struct in6_addr ipv6_daddr;
72b1e5e4
FW
272
273 /* after prerouting + nat detected: store original source
274 * mac since neigh resolution overwrites it, only used while
275 * skb is out in neigh layer.
276 */
277 char neigh_header[8];
72b31f72 278 };
1da177e4
LT
279};
280#endif
281
95a7233c
PB
282#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
283/* Chain in tc_skb_ext will be used to share the tc chain with
284 * ovs recirc_id. It will be set to the current chain by tc
285 * and read by ovs to recirc_id.
286 */
287struct tc_skb_ext {
288 __u32 chain;
038ebb1a 289 __u16 mru;
d29334c1 290 bool post_ct;
95a7233c
PB
291};
292#endif
293
1da177e4
LT
294struct sk_buff_head {
295 /* These two members must be first. */
296 struct sk_buff *next;
297 struct sk_buff *prev;
298
299 __u32 qlen;
300 spinlock_t lock;
301};
302
303struct sk_buff;
304
9d4dde52
IC
305/* To allow 64K frame to be packed as single skb without frag_list we
306 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
307 * buffers which do not start on a page boundary.
308 *
309 * Since GRO uses frags we allocate at least 16 regardless of page
310 * size.
a715dea3 311 */
9d4dde52 312#if (65536/PAGE_SIZE + 1) < 16
eec00954 313#define MAX_SKB_FRAGS 16UL
a715dea3 314#else
9d4dde52 315#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 316#endif
5f74f82e 317extern int sysctl_max_skb_frags;
1da177e4 318
3953c46c
MRL
319/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
320 * segment using its current segmentation instead.
321 */
322#define GSO_BY_FRAGS 0xFFFF
323
8842d285 324typedef struct bio_vec skb_frag_t;
1da177e4 325
161e6137 326/**
7240b60c 327 * skb_frag_size() - Returns the size of a skb fragment
161e6137
PT
328 * @frag: skb fragment
329 */
9e903e08
ED
330static inline unsigned int skb_frag_size(const skb_frag_t *frag)
331{
b8b576a1 332 return frag->bv_len;
9e903e08
ED
333}
334
161e6137 335/**
7240b60c 336 * skb_frag_size_set() - Sets the size of a skb fragment
161e6137
PT
337 * @frag: skb fragment
338 * @size: size of fragment
339 */
9e903e08
ED
340static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
341{
b8b576a1 342 frag->bv_len = size;
9e903e08
ED
343}
344
161e6137 345/**
7240b60c 346 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
161e6137
PT
347 * @frag: skb fragment
348 * @delta: value to add
349 */
9e903e08
ED
350static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
351{
b8b576a1 352 frag->bv_len += delta;
9e903e08
ED
353}
354
161e6137 355/**
7240b60c 356 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
161e6137
PT
357 * @frag: skb fragment
358 * @delta: value to subtract
359 */
9e903e08
ED
360static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
361{
b8b576a1 362 frag->bv_len -= delta;
9e903e08
ED
363}
364
161e6137
PT
365/**
366 * skb_frag_must_loop - Test if %p is a high memory page
367 * @p: fragment's page
368 */
c613c209
WB
369static inline bool skb_frag_must_loop(struct page *p)
370{
371#if defined(CONFIG_HIGHMEM)
29766bcf 372 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
c613c209
WB
373 return true;
374#endif
375 return false;
376}
377
378/**
379 * skb_frag_foreach_page - loop over pages in a fragment
380 *
381 * @f: skb frag to operate on
1dfa5bd3 382 * @f_off: offset from start of f->bv_page
c613c209
WB
383 * @f_len: length from f_off to loop over
384 * @p: (temp var) current page
385 * @p_off: (temp var) offset from start of current page,
386 * non-zero only on first page.
387 * @p_len: (temp var) length in current page,
388 * < PAGE_SIZE only on first and last page.
389 * @copied: (temp var) length so far, excluding current p_len.
390 *
391 * A fragment can hold a compound page, in which case per-page
392 * operations, notably kmap_atomic, must be called for each
393 * regular page.
394 */
395#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
396 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
397 p_off = (f_off) & (PAGE_SIZE - 1), \
398 p_len = skb_frag_must_loop(p) ? \
399 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
400 copied = 0; \
401 copied < f_len; \
402 copied += p_len, p++, p_off = 0, \
403 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
404
ac45f602
PO
405#define HAVE_HW_TIME_STAMP
406
407/**
d3a21be8 408 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
409 * @hwtstamp: hardware time stamp transformed into duration
410 * since arbitrary point in time
ac45f602
PO
411 *
412 * Software time stamps generated by ktime_get_real() are stored in
4d276eb6 413 * skb->tstamp.
ac45f602
PO
414 *
415 * hwtstamps can only be compared against other hwtstamps from
416 * the same device.
417 *
418 * This structure is attached to packets as part of the
419 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
420 */
421struct skb_shared_hwtstamps {
422 ktime_t hwtstamp;
ac45f602
PO
423};
424
2244d07b
OH
425/* Definitions for tx_flags in struct skb_shared_info */
426enum {
427 /* generate hardware time stamp */
428 SKBTX_HW_TSTAMP = 1 << 0,
429
e7fd2885 430 /* generate software time stamp when queueing packet to NIC */
2244d07b
OH
431 SKBTX_SW_TSTAMP = 1 << 1,
432
433 /* device driver is going to provide hardware time stamp */
434 SKBTX_IN_PROGRESS = 1 << 2,
435
6e3e939f 436 /* generate wifi status information (where possible) */
62b1a8ab 437 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4 438
e7fd2885
WB
439 /* generate software time stamp when entering packet scheduling */
440 SKBTX_SCHED_TSTAMP = 1 << 6,
a6686f2f
SM
441};
442
e1c8a607 443#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
0a2cf20c 444 SKBTX_SCHED_TSTAMP)
f24b9be5
WB
445#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
446
06b4feb3
JL
447/* Definitions for flags in struct skb_shared_info */
448enum {
449 /* use zcopy routines */
450 SKBFL_ZEROCOPY_ENABLE = BIT(0),
451
452 /* This indicates at least one fragment might be overwritten
453 * (as in vmsplice(), sendfile() ...)
454 * If we need to compute a TX checksum, we'll need to copy
455 * all frags to avoid possible bad checksum
456 */
457 SKBFL_SHARED_FRAG = BIT(1),
9b65b17d
TA
458
459 /* segment contains only zerocopy data and should not be
460 * charged to the kernel memory.
461 */
462 SKBFL_PURE_ZEROCOPY = BIT(2),
06b4feb3
JL
463};
464
465#define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
9b65b17d 466#define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY)
06b4feb3 467
a6686f2f
SM
468/*
469 * The callback notifies userspace to release buffers when skb DMA is done in
470 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
471 * The zerocopy_success argument is true if zero copy transmit occurred,
472 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
473 * The ctx field is used to track device context.
474 * The desc field is used to track userspace buffer index.
a6686f2f
SM
475 */
476struct ubuf_info {
36177832
JL
477 void (*callback)(struct sk_buff *, struct ubuf_info *,
478 bool zerocopy_success);
4ab6c99d
WB
479 union {
480 struct {
481 unsigned long desc;
482 void *ctx;
483 };
484 struct {
485 u32 id;
486 u16 len;
487 u16 zerocopy:1;
488 u32 bytelen;
489 };
490 };
c1d1b437 491 refcount_t refcnt;
04c2d33e 492 u8 flags;
a91dbff5
WB
493
494 struct mmpin {
495 struct user_struct *user;
496 unsigned int num_pg;
497 } mmp;
ac45f602
PO
498};
499
52267790
WB
500#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
501
6f89dbce
SV
502int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
503void mm_unaccount_pinned_pages(struct mmpin *mmp);
504
8c793822
JL
505struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size);
506struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
507 struct ubuf_info *uarg);
52267790 508
8c793822 509void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
52267790 510
8c793822
JL
511void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
512 bool success);
52267790 513
b5947e5d 514int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
52267790
WB
515int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
516 struct msghdr *msg, int len,
517 struct ubuf_info *uarg);
518
1da177e4
LT
519/* This data is invariant across clones and lives at
520 * the end of the header data, ie. at skb->end.
521 */
522struct skb_shared_info {
06b4feb3 523 __u8 flags;
de8f3a83
DB
524 __u8 meta_len;
525 __u8 nr_frags;
9f42f126 526 __u8 tx_flags;
7967168c
HX
527 unsigned short gso_size;
528 /* Warning: this field is not always filled in (UFO)! */
529 unsigned short gso_segs;
1da177e4 530 struct sk_buff *frag_list;
ac45f602 531 struct skb_shared_hwtstamps hwtstamps;
7f564528 532 unsigned int gso_type;
09c2d251 533 u32 tskey;
ec7d2f2c
ED
534
535 /*
536 * Warning : all fields before dataref are cleared in __alloc_skb()
537 */
538 atomic_t dataref;
539
69e3c75f
JB
540 /* Intermediate layers must ensure that destructor_arg
541 * remains valid until skb destructor */
542 void * destructor_arg;
a6686f2f 543
fed66381
ED
544 /* must be last field, see pskb_expand_head() */
545 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
546};
547
548/* We divide dataref into two halves. The higher 16 bits hold references
549 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
550 * the entire skb->data. A clone of a headerless skb holds the length of
551 * the header in skb->hdr_len.
1da177e4
LT
552 *
553 * All users must obey the rule that the skb->data reference count must be
554 * greater than or equal to the payload reference count.
555 *
556 * Holding a reference to the payload part means that the user does not
557 * care about modifications to the header part of skb->data.
558 */
559#define SKB_DATAREF_SHIFT 16
560#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
561
d179cd12
DM
562
563enum {
c8753d55
VS
564 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
565 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
566 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
d179cd12
DM
567};
568
7967168c
HX
569enum {
570 SKB_GSO_TCPV4 = 1 << 0,
576a30eb
HX
571
572 /* This indicates the skb is from an untrusted source. */
d9d30adf 573 SKB_GSO_DODGY = 1 << 1,
b0da8537
MC
574
575 /* This indicates the tcp segment has CWR set. */
d9d30adf 576 SKB_GSO_TCP_ECN = 1 << 2,
f83ef8c0 577
d9d30adf 578 SKB_GSO_TCP_FIXEDID = 1 << 3,
01d5b2fc 579
d9d30adf 580 SKB_GSO_TCPV6 = 1 << 4,
68c33163 581
d9d30adf 582 SKB_GSO_FCOE = 1 << 5,
73136267 583
d9d30adf 584 SKB_GSO_GRE = 1 << 6,
0d89d203 585
d9d30adf 586 SKB_GSO_GRE_CSUM = 1 << 7,
cb32f511 587
d9d30adf 588 SKB_GSO_IPXIP4 = 1 << 8,
61c1db7f 589
d9d30adf 590 SKB_GSO_IPXIP6 = 1 << 9,
0f4f4ffa 591
d9d30adf 592 SKB_GSO_UDP_TUNNEL = 1 << 10,
4749c09c 593
d9d30adf 594 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
cbc53e08 595
d9d30adf 596 SKB_GSO_PARTIAL = 1 << 12,
802ab55a 597
d9d30adf 598 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
90017acc 599
d9d30adf 600 SKB_GSO_SCTP = 1 << 14,
c7ef8f0c 601
d9d30adf 602 SKB_GSO_ESP = 1 << 15,
0c19f846
WB
603
604 SKB_GSO_UDP = 1 << 16,
ee80d1eb
WB
605
606 SKB_GSO_UDP_L4 = 1 << 17,
3b335832
SK
607
608 SKB_GSO_FRAGLIST = 1 << 18,
7967168c
HX
609};
610
2e07fa9c
ACM
611#if BITS_PER_LONG > 32
612#define NET_SKBUFF_DATA_USES_OFFSET 1
613#endif
614
615#ifdef NET_SKBUFF_DATA_USES_OFFSET
616typedef unsigned int sk_buff_data_t;
617#else
618typedef unsigned char *sk_buff_data_t;
619#endif
620
161e6137 621/**
1da177e4
LT
622 * struct sk_buff - socket buffer
623 * @next: Next buffer in list
624 * @prev: Previous buffer in list
363ec392 625 * @tstamp: Time we arrived/left
d2f273f0
RD
626 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
627 * for retransmit timer
56b17425 628 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
d2f273f0 629 * @list: queue head
df6160de 630 * @ll_node: anchor in an llist (eg socket defer_list)
d84e0bd7 631 * @sk: Socket we are owned by
d2f273f0
RD
632 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
633 * fragmentation management
1da177e4 634 * @dev: Device we arrived on/are leaving by
d2f273f0 635 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
d84e0bd7 636 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 637 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 638 * @sp: the security path, used for xfrm
1da177e4
LT
639 * @len: Length of actual data
640 * @data_len: Data length
641 * @mac_len: Length of link layer header
334a8132 642 * @hdr_len: writable header length of cloned skb
663ead3b
HX
643 * @csum: Checksum (must include start/offset pair)
644 * @csum_start: Offset from skb->head where checksumming should start
645 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 646 * @priority: Packet queueing priority
60ff7467 647 * @ignore_df: allow local fragmentation
1da177e4 648 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 649 * @ip_summed: Driver fed us an IP checksum
1da177e4
LT
650 * @nohdr: Payload reference only, must not modify header
651 * @pkt_type: Packet class
c83c2486 652 * @fclone: skbuff clone status
c83c2486 653 * @ipvs_property: skbuff is owned by ipvs
d2f273f0
RD
654 * @inner_protocol_type: whether the inner protocol is
655 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
656 * @remcsum_offload: remote checksum offload is enabled
875e8939
IS
657 * @offload_fwd_mark: Packet was L2-forwarded in hardware
658 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
e7246e12 659 * @tc_skip_classify: do not classify packet. set by IFB device
8dc07fdb 660 * @tc_at_ingress: used within tc_classify to distinguish in/egress
2c64605b
PNA
661 * @redirected: packet was redirected by packet classifier
662 * @from_ingress: packet was redirected from the ingress path
42df6e1d 663 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
31729363
RD
664 * @peeked: this packet has been seen already, so stats have been
665 * done for it, don't do them again
ba9dda3a 666 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
667 * @protocol: Packet protocol from driver
668 * @destructor: Destruct function
e2080072 669 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
6ed6e1c7 670 * @_sk_redir: socket redirection information for skmsg
a9e419dc 671 * @_nfct: Associated connection, if any (with nfctinfo bits)
1da177e4 672 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 673 * @skb_iif: ifindex of device we arrived on
1da177e4 674 * @tc_index: Traffic control index
61b905da 675 * @hash: the packet hash
d84e0bd7 676 * @queue_mapping: Queue mapping for multiqueue devices
d2f273f0
RD
677 * @head_frag: skb was allocated from page fragments,
678 * not allocated by kmalloc() or vmalloc().
8b700862 679 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
6a5bcd84
IA
680 * @pp_recycle: mark the packet for recycling instead of freeing (implies
681 * page_pool support on driver)
df5042f4 682 * @active_extensions: active extensions (skb_ext_id types)
553a5672 683 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 684 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 685 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 686 * ports.
a3b18ddb 687 * @sw_hash: indicates hash was computed in software stack
6e3e939f
JB
688 * @wifi_acked_valid: wifi_acked was set
689 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 690 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
d2f273f0
RD
691 * @encapsulation: indicates the inner headers in the skbuff are valid
692 * @encap_hdr_csum: software checksum is needed
693 * @csum_valid: checksum is already valid
dba00306 694 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
d2f273f0
RD
695 * @csum_complete_sw: checksum was completed by software
696 * @csum_level: indicates the number of consecutive checksums found in
697 * the packet minus one that have been verified as
698 * CHECKSUM_UNNECESSARY (max 3)
4ff06203 699 * @dst_pending_confirm: need to confirm neighbour
a48d189e 700 * @decrypted: Decrypted SKB
5fc88f93 701 * @slow_gro: state present at GRO time, slower prepare step required
161e6137 702 * @napi_id: id of the NAPI struct this skb came from
d2f273f0 703 * @sender_cpu: (aka @napi_id) source CPU in XPS
984bc16c 704 * @secmark: security marking
d84e0bd7 705 * @mark: Generic packet mark
d2f273f0
RD
706 * @reserved_tailroom: (aka @mark) number of bytes of free space available
707 * at the tail of an sk_buff
708 * @vlan_present: VLAN tag is present
86a9bad3 709 * @vlan_proto: vlan encapsulation protocol
6aa895b0 710 * @vlan_tci: vlan tag control information
0d89d203 711 * @inner_protocol: Protocol (encapsulation)
d2f273f0
RD
712 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
713 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
6a674e9c
JG
714 * @inner_transport_header: Inner transport layer header (encapsulation)
715 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 716 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
717 * @transport_header: Transport layer header
718 * @network_header: Network layer header
719 * @mac_header: Link layer header
fa69ee5a 720 * @kcov_handle: KCOV remote handle for remote coverage collection
d84e0bd7
DB
721 * @tail: Tail pointer
722 * @end: End pointer
723 * @head: Head of buffer
724 * @data: Data head pointer
725 * @truesize: Buffer size
726 * @users: User count - see {datagram,tcp}.c
df5042f4 727 * @extensions: allocated extensions, valid if active_extensions is nonzero
1da177e4
LT
728 */
729
730struct sk_buff {
363ec392 731 union {
56b17425
ED
732 struct {
733 /* These two members must be first. */
734 struct sk_buff *next;
735 struct sk_buff *prev;
736
737 union {
bffa72cf
ED
738 struct net_device *dev;
739 /* Some protocols might use this space to store information,
740 * while device pointer would be NULL.
741 * UDP receive path is one user.
742 */
743 unsigned long dev_scratch;
56b17425
ED
744 };
745 };
fa0f5273 746 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
d4546c25 747 struct list_head list;
f35f8219 748 struct llist_node ll_node;
363ec392 749 };
fa0f5273
PO
750
751 union {
752 struct sock *sk;
753 int ip_defrag_offset;
754 };
1da177e4 755
c84d9490 756 union {
bffa72cf 757 ktime_t tstamp;
d3edd06e 758 u64 skb_mstamp_ns; /* earliest departure time */
c84d9490 759 };
1da177e4
LT
760 /*
761 * This is the control buffer. It is free to use for every
762 * layer. Please put your private variables there. If you
763 * want to keep them across layers you have to do a skb_clone()
764 * first. This is owned by whoever has the skb queued ATM.
765 */
da3f5cf1 766 char cb[48] __aligned(8);
1da177e4 767
e2080072
ED
768 union {
769 struct {
770 unsigned long _skb_refdst;
771 void (*destructor)(struct sk_buff *skb);
772 };
773 struct list_head tcp_tsorted_anchor;
e3526bb9
CW
774#ifdef CONFIG_NET_SOCK_MSG
775 unsigned long _sk_redir;
776#endif
e2080072
ED
777 };
778
b1937227 779#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 780 unsigned long _nfct;
da3f5cf1 781#endif
1da177e4 782 unsigned int len,
334a8132
PM
783 data_len;
784 __u16 mac_len,
785 hdr_len;
b1937227
ED
786
787 /* Following fields are _not_ copied in __copy_skb_header()
788 * Note that queue_mapping is here mostly to fill a hole.
789 */
b1937227 790 __u16 queue_mapping;
36bbef52
DB
791
792/* if you move cloned around you also must adapt those constants */
793#ifdef __BIG_ENDIAN_BITFIELD
794#define CLONED_MASK (1 << 7)
795#else
796#define CLONED_MASK 1
797#endif
fba84957 798#define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset)
36bbef52 799
d2f273f0 800 /* private: */
36bbef52 801 __u8 __cloned_offset[0];
d2f273f0 802 /* public: */
b1937227 803 __u8 cloned:1,
6869c4d8 804 nohdr:1,
b84f4cc9 805 fclone:2,
a59322be 806 peeked:1,
b1937227 807 head_frag:1,
6a5bcd84
IA
808 pfmemalloc:1,
809 pp_recycle:1; /* page_pool recycle indicator */
df5042f4
FW
810#ifdef CONFIG_SKB_EXTENSIONS
811 __u8 active_extensions;
812#endif
6a5bcd84 813
03f61041 814 /* Fields enclosed in headers group are copied
b1937227
ED
815 * using a single memcpy() in __copy_skb_header()
816 */
03f61041 817 struct_group(headers,
4031ae6e 818
d2f273f0 819 /* private: */
233577a2 820 __u8 __pkt_type_offset[0];
d2f273f0 821 /* public: */
fba84957 822 __u8 pkt_type:3; /* see PKT_TYPE_MAX */
b1937227 823 __u8 ignore_df:1;
b1937227
ED
824 __u8 nf_trace:1;
825 __u8 ip_summed:2;
3853b584 826 __u8 ooo_okay:1;
8b700862 827
61b905da 828 __u8 l4_hash:1;
a3b18ddb 829 __u8 sw_hash:1;
6e3e939f
JB
830 __u8 wifi_acked_valid:1;
831 __u8 wifi_acked:1;
3bdc0eba 832 __u8 no_fcs:1;
77cffe23 833 /* Indicates the inner headers are valid in the skbuff. */
6a674e9c 834 __u8 encapsulation:1;
7e2b10c1 835 __u8 encap_hdr_csum:1;
5d0c2b95 836 __u8 csum_valid:1;
8b700862 837
d2f273f0 838 /* private: */
0c4b2d37 839 __u8 __pkt_vlan_present_offset[0];
d2f273f0 840 /* public: */
fba84957 841 __u8 vlan_present:1; /* See PKT_VLAN_PRESENT_BIT */
7e3cead5 842 __u8 csum_complete_sw:1;
b1937227 843 __u8 csum_level:2;
dba00306 844 __u8 csum_not_inet:1;
4ff06203 845 __u8 dst_pending_confirm:1;
b1937227
ED
846#ifdef CONFIG_IPV6_NDISC_NODETYPE
847 __u8 ndisc_nodetype:2;
848#endif
8b700862 849
0c4b2d37 850 __u8 ipvs_property:1;
8bce6d7d 851 __u8 inner_protocol_type:1;
e585f236 852 __u8 remcsum_offload:1;
6bc506b4
IS
853#ifdef CONFIG_NET_SWITCHDEV
854 __u8 offload_fwd_mark:1;
875e8939 855 __u8 offload_l3_fwd_mark:1;
6bc506b4 856#endif
e7246e12
WB
857#ifdef CONFIG_NET_CLS_ACT
858 __u8 tc_skip_classify:1;
8dc07fdb 859 __u8 tc_at_ingress:1;
2c64605b 860#endif
2c64605b 861 __u8 redirected:1;
11941f8a 862#ifdef CONFIG_NET_REDIRECT
2c64605b 863 __u8 from_ingress:1;
e7246e12 864#endif
42df6e1d
LW
865#ifdef CONFIG_NETFILTER_SKIP_EGRESS
866 __u8 nf_skip_egress:1;
867#endif
a48d189e
SB
868#ifdef CONFIG_TLS_DEVICE
869 __u8 decrypted:1;
870#endif
5fc88f93 871 __u8 slow_gro:1;
b1937227
ED
872
873#ifdef CONFIG_NET_SCHED
874 __u16 tc_index; /* traffic control index */
b1937227 875#endif
fe55f6d5 876
b1937227
ED
877 union {
878 __wsum csum;
879 struct {
880 __u16 csum_start;
881 __u16 csum_offset;
882 };
883 };
884 __u32 priority;
885 int skb_iif;
886 __u32 hash;
887 __be16 vlan_proto;
888 __u16 vlan_tci;
2bd82484
ED
889#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
890 union {
891 unsigned int napi_id;
892 unsigned int sender_cpu;
893 };
97fc2f08 894#endif
984bc16c 895#ifdef CONFIG_NETWORK_SECMARK
6bc506b4 896 __u32 secmark;
0c4f691f 897#endif
0c4f691f 898
3b885787
NH
899 union {
900 __u32 mark;
16fad69c 901 __u32 reserved_tailroom;
3b885787 902 };
1da177e4 903
8bce6d7d
TH
904 union {
905 __be16 inner_protocol;
906 __u8 inner_ipproto;
907 };
908
1a37e412
SH
909 __u16 inner_transport_header;
910 __u16 inner_network_header;
911 __u16 inner_mac_header;
b1937227
ED
912
913 __be16 protocol;
1a37e412
SH
914 __u16 transport_header;
915 __u16 network_header;
916 __u16 mac_header;
b1937227 917
fa69ee5a
ME
918#ifdef CONFIG_KCOV
919 u64 kcov_handle;
920#endif
921
03f61041 922 ); /* end headers group */
b1937227 923
1da177e4 924 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 925 sk_buff_data_t tail;
4305b541 926 sk_buff_data_t end;
1da177e4 927 unsigned char *head,
4305b541 928 *data;
27a884dc 929 unsigned int truesize;
63354797 930 refcount_t users;
df5042f4
FW
931
932#ifdef CONFIG_SKB_EXTENSIONS
933 /* only useable after checking ->active_extensions != 0 */
934 struct skb_ext *extensions;
935#endif
1da177e4
LT
936};
937
fba84957
KC
938/* if you move pkt_type around you also must adapt those constants */
939#ifdef __BIG_ENDIAN_BITFIELD
940#define PKT_TYPE_MAX (7 << 5)
941#else
942#define PKT_TYPE_MAX 7
943#endif
944#define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset)
945
946/* if you move pkt_vlan_present around you also must adapt these constants */
947#ifdef __BIG_ENDIAN_BITFIELD
948#define PKT_VLAN_PRESENT_BIT 7
949#else
950#define PKT_VLAN_PRESENT_BIT 0
951#endif
952#define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset)
953
1da177e4
LT
954#ifdef __KERNEL__
955/*
956 * Handling routines are only of interest to the kernel
957 */
1da177e4 958
c93bdd0e
MG
959#define SKB_ALLOC_FCLONE 0x01
960#define SKB_ALLOC_RX 0x02
fd11a83d 961#define SKB_ALLOC_NAPI 0x04
c93bdd0e 962
161e6137
PT
963/**
964 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
965 * @skb: buffer
966 */
c93bdd0e
MG
967static inline bool skb_pfmemalloc(const struct sk_buff *skb)
968{
969 return unlikely(skb->pfmemalloc);
970}
971
7fee226a
ED
972/*
973 * skb might have a dst pointer attached, refcounted or not.
974 * _skb_refdst low order bit is set if refcount was _not_ taken
975 */
976#define SKB_DST_NOREF 1UL
977#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
978
979/**
980 * skb_dst - returns skb dst_entry
981 * @skb: buffer
982 *
983 * Returns skb dst_entry, regardless of reference taken or not.
984 */
adf30907
ED
985static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
986{
161e6137 987 /* If refdst was not refcounted, check we still are in a
7fee226a
ED
988 * rcu_read_lock section
989 */
990 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
991 !rcu_read_lock_held() &&
992 !rcu_read_lock_bh_held());
993 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
994}
995
7fee226a
ED
996/**
997 * skb_dst_set - sets skb dst
998 * @skb: buffer
999 * @dst: dst entry
1000 *
1001 * Sets skb dst, assuming a reference was taken on dst and should
1002 * be released by skb_dst_drop()
1003 */
adf30907
ED
1004static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1005{
8a886b14 1006 skb->slow_gro |= !!dst;
7fee226a
ED
1007 skb->_skb_refdst = (unsigned long)dst;
1008}
1009
932bc4d7
JA
1010/**
1011 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1012 * @skb: buffer
1013 * @dst: dst entry
1014 *
1015 * Sets skb dst, assuming a reference was not taken on dst.
1016 * If dst entry is cached, we do not take reference and dst_release
1017 * will be avoided by refdst_drop. If dst entry is not cached, we take
1018 * reference, so that last dst_release can destroy the dst immediately.
1019 */
1020static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1021{
dbfc4fb7 1022 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
a432934a 1023 skb->slow_gro |= !!dst;
dbfc4fb7 1024 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
932bc4d7 1025}
7fee226a
ED
1026
1027/**
25985edc 1028 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
1029 * @skb: buffer
1030 */
1031static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1032{
1033 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
1034}
1035
161e6137
PT
1036/**
1037 * skb_rtable - Returns the skb &rtable
1038 * @skb: buffer
1039 */
511c3f92
ED
1040static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1041{
adf30907 1042 return (struct rtable *)skb_dst(skb);
511c3f92
ED
1043}
1044
8b10cab6
JHS
1045/* For mangling skb->pkt_type from user space side from applications
1046 * such as nft, tc, etc, we only allow a conservative subset of
1047 * possible pkt_types to be set.
1048*/
1049static inline bool skb_pkt_type_ok(u32 ptype)
1050{
1051 return ptype <= PACKET_OTHERHOST;
1052}
1053
161e6137
PT
1054/**
1055 * skb_napi_id - Returns the skb's NAPI id
1056 * @skb: buffer
1057 */
90b602f8
ML
1058static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1059{
1060#ifdef CONFIG_NET_RX_BUSY_POLL
1061 return skb->napi_id;
1062#else
1063 return 0;
1064#endif
1065}
1066
161e6137
PT
1067/**
1068 * skb_unref - decrement the skb's reference count
1069 * @skb: buffer
1070 *
1071 * Returns true if we can free the skb.
1072 */
3889a803
PA
1073static inline bool skb_unref(struct sk_buff *skb)
1074{
1075 if (unlikely(!skb))
1076 return false;
63354797 1077 if (likely(refcount_read(&skb->users) == 1))
3889a803 1078 smp_rmb();
63354797 1079 else if (likely(!refcount_dec_and_test(&skb->users)))
3889a803
PA
1080 return false;
1081
1082 return true;
1083}
1084
0a463c78 1085void skb_release_head_state(struct sk_buff *skb);
7965bd4d
JP
1086void kfree_skb(struct sk_buff *skb);
1087void kfree_skb_list(struct sk_buff *segs);
6413139d 1088void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
7965bd4d 1089void skb_tx_error(struct sk_buff *skb);
be769db2
HX
1090
1091#ifdef CONFIG_TRACEPOINTS
7965bd4d 1092void consume_skb(struct sk_buff *skb);
be769db2
HX
1093#else
1094static inline void consume_skb(struct sk_buff *skb)
1095{
1096 return kfree_skb(skb);
1097}
1098#endif
1099
ca2c1418 1100void __consume_stateless_skb(struct sk_buff *skb);
7965bd4d 1101void __kfree_skb(struct sk_buff *skb);
d7e8883c 1102extern struct kmem_cache *skbuff_head_cache;
bad43ca8 1103
7965bd4d
JP
1104void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1105bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1106 bool *fragstolen, int *delta_truesize);
bad43ca8 1107
7965bd4d
JP
1108struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1109 int node);
2ea2f62c 1110struct sk_buff *__build_skb(void *data, unsigned int frag_size);
7965bd4d 1111struct sk_buff *build_skb(void *data, unsigned int frag_size);
ba0509b6
JDB
1112struct sk_buff *build_skb_around(struct sk_buff *skb,
1113 void *data, unsigned int frag_size);
161e6137 1114
f450d539
AL
1115struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1116
161e6137
PT
1117/**
1118 * alloc_skb - allocate a network buffer
1119 * @size: size to allocate
1120 * @priority: allocation mask
1121 *
1122 * This function is a convenient wrapper around __alloc_skb().
1123 */
d179cd12 1124static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 1125 gfp_t priority)
d179cd12 1126{
564824b0 1127 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
1128}
1129
2e4e4410
ED
1130struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1131 unsigned long data_len,
1132 int max_page_order,
1133 int *errcode,
1134 gfp_t gfp_mask);
da29e4b4 1135struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
2e4e4410 1136
d0bf4a9e
ED
1137/* Layout of fast clones : [skb1][skb2][fclone_ref] */
1138struct sk_buff_fclones {
1139 struct sk_buff skb1;
1140
1141 struct sk_buff skb2;
1142
2638595a 1143 refcount_t fclone_ref;
d0bf4a9e
ED
1144};
1145
1146/**
1147 * skb_fclone_busy - check if fclone is busy
293de7de 1148 * @sk: socket
d0bf4a9e
ED
1149 * @skb: buffer
1150 *
bda13fed 1151 * Returns true if skb is a fast clone, and its clone is not freed.
39bb5e62
ED
1152 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1153 * so we also check that this didnt happen.
d0bf4a9e 1154 */
39bb5e62
ED
1155static inline bool skb_fclone_busy(const struct sock *sk,
1156 const struct sk_buff *skb)
d0bf4a9e
ED
1157{
1158 const struct sk_buff_fclones *fclones;
1159
1160 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1161
1162 return skb->fclone == SKB_FCLONE_ORIG &&
2638595a 1163 refcount_read(&fclones->fclone_ref) > 1 &&
f4dae54e 1164 READ_ONCE(fclones->skb2.sk) == sk;
d0bf4a9e
ED
1165}
1166
161e6137
PT
1167/**
1168 * alloc_skb_fclone - allocate a network buffer from fclone cache
1169 * @size: size to allocate
1170 * @priority: allocation mask
1171 *
1172 * This function is a convenient wrapper around __alloc_skb().
1173 */
d179cd12 1174static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 1175 gfp_t priority)
d179cd12 1176{
c93bdd0e 1177 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
1178}
1179
7965bd4d 1180struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
b0768a86 1181void skb_headers_offset_update(struct sk_buff *skb, int off);
7965bd4d
JP
1182int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1183struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
08303c18 1184void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
7965bd4d 1185struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
bad93e9d
OP
1186struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1187 gfp_t gfp_mask, bool fclone);
1188static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1189 gfp_t gfp_mask)
1190{
1191 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1192}
7965bd4d
JP
1193
1194int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1195struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1196 unsigned int headroom);
f1260ff1 1197struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
7965bd4d
JP
1198struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1199 int newtailroom, gfp_t priority);
48a1df65
JD
1200int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1201 int offset, int len);
1202int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1203 int offset, int len);
7965bd4d 1204int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
cd0a137a
FF
1205int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1206
1207/**
1208 * skb_pad - zero pad the tail of an skb
1209 * @skb: buffer to pad
1210 * @pad: space to pad
1211 *
1212 * Ensure that a buffer is followed by a padding area that is zero
1213 * filled. Used by network drivers which may DMA or transfer data
1214 * beyond the buffer end onto the wire.
1215 *
1216 * May return error in out of memory cases. The skb is freed on error.
1217 */
1218static inline int skb_pad(struct sk_buff *skb, int pad)
1219{
1220 return __skb_pad(skb, pad, true);
1221}
ead2ceb0 1222#define dev_kfree_skb(a) consume_skb(a)
1da177e4 1223
be12a1fe
HFS
1224int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1225 int offset, size_t size);
1226
d94d9fee 1227struct skb_seq_state {
677e90ed
TG
1228 __u32 lower_offset;
1229 __u32 upper_offset;
1230 __u32 frag_idx;
1231 __u32 stepped_offset;
1232 struct sk_buff *root_skb;
1233 struct sk_buff *cur_skb;
1234 __u8 *frag_data;
97550f6f 1235 __u32 frag_off;
677e90ed
TG
1236};
1237
7965bd4d
JP
1238void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1239 unsigned int to, struct skb_seq_state *st);
1240unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1241 struct skb_seq_state *st);
1242void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 1243
7965bd4d 1244unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
059a2440 1245 unsigned int to, struct ts_config *config);
3fc7e8a6 1246
09323cc4
TH
1247/*
1248 * Packet hash types specify the type of hash in skb_set_hash.
1249 *
1250 * Hash types refer to the protocol layer addresses which are used to
1251 * construct a packet's hash. The hashes are used to differentiate or identify
1252 * flows of the protocol layer for the hash type. Hash types are either
1253 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1254 *
1255 * Properties of hashes:
1256 *
1257 * 1) Two packets in different flows have different hash values
1258 * 2) Two packets in the same flow should have the same hash value
1259 *
1260 * A hash at a higher layer is considered to be more specific. A driver should
1261 * set the most specific hash possible.
1262 *
1263 * A driver cannot indicate a more specific hash than the layer at which a hash
1264 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1265 *
1266 * A driver may indicate a hash level which is less specific than the
1267 * actual layer the hash was computed on. For instance, a hash computed
1268 * at L4 may be considered an L3 hash. This should only be done if the
1269 * driver can't unambiguously determine that the HW computed the hash at
1270 * the higher layer. Note that the "should" in the second property above
1271 * permits this.
1272 */
1273enum pkt_hash_types {
1274 PKT_HASH_TYPE_NONE, /* Undefined type */
1275 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1276 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1277 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1278};
1279
bcc83839 1280static inline void skb_clear_hash(struct sk_buff *skb)
09323cc4 1281{
bcc83839 1282 skb->hash = 0;
a3b18ddb 1283 skb->sw_hash = 0;
bcc83839
TH
1284 skb->l4_hash = 0;
1285}
1286
1287static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1288{
1289 if (!skb->l4_hash)
1290 skb_clear_hash(skb);
1291}
1292
1293static inline void
1294__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1295{
1296 skb->l4_hash = is_l4;
1297 skb->sw_hash = is_sw;
61b905da 1298 skb->hash = hash;
09323cc4
TH
1299}
1300
bcc83839
TH
1301static inline void
1302skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1303{
1304 /* Used by drivers to set hash from HW */
1305 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1306}
1307
1308static inline void
1309__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1310{
1311 __skb_set_hash(skb, hash, true, is_l4);
1312}
1313
e5276937 1314void __skb_get_hash(struct sk_buff *skb);
b917783c 1315u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
e5276937 1316u32 skb_get_poff(const struct sk_buff *skb);
f96533cd 1317u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
72a338bc 1318 const struct flow_keys_basic *keys, int hlen);
e5276937 1319__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
f96533cd 1320 const void *data, int hlen_proto);
e5276937
TH
1321
1322static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1323 int thoff, u8 ip_proto)
1324{
1325 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1326}
1327
1328void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1329 const struct flow_dissector_key *key,
1330 unsigned int key_count);
1331
089b19a9
SF
1332struct bpf_flow_dissector;
1333bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
086f9568 1334 __be16 proto, int nhoff, int hlen, unsigned int flags);
089b19a9 1335
3cbf4ffb
SF
1336bool __skb_flow_dissect(const struct net *net,
1337 const struct sk_buff *skb,
e5276937 1338 struct flow_dissector *flow_dissector,
f96533cd
AL
1339 void *target_container, const void *data,
1340 __be16 proto, int nhoff, int hlen, unsigned int flags);
e5276937
TH
1341
1342static inline bool skb_flow_dissect(const struct sk_buff *skb,
1343 struct flow_dissector *flow_dissector,
cd79a238 1344 void *target_container, unsigned int flags)
e5276937 1345{
3cbf4ffb
SF
1346 return __skb_flow_dissect(NULL, skb, flow_dissector,
1347 target_container, NULL, 0, 0, 0, flags);
e5276937
TH
1348}
1349
1350static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
cd79a238
TH
1351 struct flow_keys *flow,
1352 unsigned int flags)
e5276937
TH
1353{
1354 memset(flow, 0, sizeof(*flow));
3cbf4ffb
SF
1355 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1356 flow, NULL, 0, 0, 0, flags);
e5276937
TH
1357}
1358
72a338bc 1359static inline bool
3cbf4ffb
SF
1360skb_flow_dissect_flow_keys_basic(const struct net *net,
1361 const struct sk_buff *skb,
f96533cd
AL
1362 struct flow_keys_basic *flow,
1363 const void *data, __be16 proto,
1364 int nhoff, int hlen, unsigned int flags)
e5276937
TH
1365{
1366 memset(flow, 0, sizeof(*flow));
3cbf4ffb 1367 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
cd79a238 1368 data, proto, nhoff, hlen, flags);
e5276937
TH
1369}
1370
82828b88
JP
1371void skb_flow_dissect_meta(const struct sk_buff *skb,
1372 struct flow_dissector *flow_dissector,
1373 void *target_container);
1374
75a56758 1375/* Gets a skb connection tracking info, ctinfo map should be a
2ff17117 1376 * map of mapsize to translate enum ip_conntrack_info states
75a56758
PB
1377 * to user states.
1378 */
1379void
1380skb_flow_dissect_ct(const struct sk_buff *skb,
1381 struct flow_dissector *flow_dissector,
1382 void *target_container,
7baf2429 1383 u16 *ctinfo_map, size_t mapsize,
1384 bool post_ct);
62b32379
SH
1385void
1386skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1387 struct flow_dissector *flow_dissector,
1388 void *target_container);
1389
0cb09aff
AL
1390void skb_flow_dissect_hash(const struct sk_buff *skb,
1391 struct flow_dissector *flow_dissector,
1392 void *target_container);
1393
3958afa1 1394static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 1395{
a3b18ddb 1396 if (!skb->l4_hash && !skb->sw_hash)
3958afa1 1397 __skb_get_hash(skb);
bfb564e7 1398
61b905da 1399 return skb->hash;
bfb564e7
KK
1400}
1401
20a17bf6 1402static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
f70ea018 1403{
c6cc1ca7
TH
1404 if (!skb->l4_hash && !skb->sw_hash) {
1405 struct flow_keys keys;
de4c1f8b 1406 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
c6cc1ca7 1407
de4c1f8b 1408 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1409 }
f70ea018
TH
1410
1411 return skb->hash;
1412}
1413
55667441
ED
1414__u32 skb_get_hash_perturb(const struct sk_buff *skb,
1415 const siphash_key_t *perturb);
50fb7992 1416
57bdf7f4
TH
1417static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1418{
61b905da 1419 return skb->hash;
57bdf7f4
TH
1420}
1421
3df7a74e
TH
1422static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1423{
61b905da 1424 to->hash = from->hash;
a3b18ddb 1425 to->sw_hash = from->sw_hash;
61b905da 1426 to->l4_hash = from->l4_hash;
3df7a74e
TH
1427};
1428
41477662
JK
1429static inline void skb_copy_decrypted(struct sk_buff *to,
1430 const struct sk_buff *from)
1431{
1432#ifdef CONFIG_TLS_DEVICE
1433 to->decrypted = from->decrypted;
1434#endif
1435}
1436
4305b541
ACM
1437#ifdef NET_SKBUFF_DATA_USES_OFFSET
1438static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1439{
1440 return skb->head + skb->end;
1441}
ec47ea82
AD
1442
1443static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1444{
1445 return skb->end;
1446}
4305b541
ACM
1447#else
1448static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1449{
1450 return skb->end;
1451}
ec47ea82
AD
1452
1453static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1454{
1455 return skb->end - skb->head;
1456}
4305b541
ACM
1457#endif
1458
1da177e4 1459/* Internal */
4305b541 1460#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 1461
ac45f602
PO
1462static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1463{
1464 return &skb_shinfo(skb)->hwtstamps;
1465}
1466
52267790
WB
1467static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1468{
06b4feb3 1469 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
52267790
WB
1470
1471 return is_zcopy ? skb_uarg(skb) : NULL;
1472}
1473
9b65b17d
TA
1474static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1475{
1476 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1477}
1478
1479static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1480 const struct sk_buff *skb2)
1481{
1482 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1483}
1484
8e044917 1485static inline void net_zcopy_get(struct ubuf_info *uarg)
e76d46cf
JL
1486{
1487 refcount_inc(&uarg->refcnt);
1488}
1489
9ee5e5ad
JL
1490static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1491{
1492 skb_shinfo(skb)->destructor_arg = uarg;
1493 skb_shinfo(skb)->flags |= uarg->flags;
1494}
1495
52900d22
WB
1496static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1497 bool *have_ref)
52267790
WB
1498{
1499 if (skb && uarg && !skb_zcopy(skb)) {
52900d22
WB
1500 if (unlikely(have_ref && *have_ref))
1501 *have_ref = false;
1502 else
8e044917 1503 net_zcopy_get(uarg);
9ee5e5ad 1504 skb_zcopy_init(skb, uarg);
52267790
WB
1505 }
1506}
1507
5cd8d46e
WB
1508static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1509{
1510 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
06b4feb3 1511 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
5cd8d46e
WB
1512}
1513
1514static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1515{
1516 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1517}
1518
1519static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1520{
1521 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1522}
1523
8e044917 1524static inline void net_zcopy_put(struct ubuf_info *uarg)
59776362
JL
1525{
1526 if (uarg)
36177832 1527 uarg->callback(NULL, uarg, true);
59776362
JL
1528}
1529
8e044917 1530static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
236a6b1c
JL
1531{
1532 if (uarg) {
8c793822
JL
1533 if (uarg->callback == msg_zerocopy_callback)
1534 msg_zerocopy_put_abort(uarg, have_uref);
236a6b1c 1535 else if (have_uref)
8e044917 1536 net_zcopy_put(uarg);
236a6b1c
JL
1537 }
1538}
1539
52267790 1540/* Release a reference on a zerocopy structure */
36177832 1541static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
52267790
WB
1542{
1543 struct ubuf_info *uarg = skb_zcopy(skb);
1544
1545 if (uarg) {
36177832
JL
1546 if (!skb_zcopy_is_nouarg(skb))
1547 uarg->callback(skb, uarg, zerocopy_success);
0a4a060b 1548
9b65b17d 1549 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
52267790
WB
1550 }
1551}
1552
a8305bff
DM
1553static inline void skb_mark_not_on_list(struct sk_buff *skb)
1554{
1555 skb->next = NULL;
1556}
1557
dcfea72e 1558/* Iterate through singly-linked GSO fragments of an skb. */
5eee7bd7
JD
1559#define skb_list_walk_safe(first, skb, next_skb) \
1560 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1561 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
dcfea72e 1562
992cba7e
DM
1563static inline void skb_list_del_init(struct sk_buff *skb)
1564{
1565 __list_del_entry(&skb->list);
1566 skb_mark_not_on_list(skb);
1567}
1568
1da177e4
LT
1569/**
1570 * skb_queue_empty - check if a queue is empty
1571 * @list: queue head
1572 *
1573 * Returns true if the queue is empty, false otherwise.
1574 */
1575static inline int skb_queue_empty(const struct sk_buff_head *list)
1576{
fd44b93c 1577 return list->next == (const struct sk_buff *) list;
1da177e4
LT
1578}
1579
d7d16a89
ED
1580/**
1581 * skb_queue_empty_lockless - check if a queue is empty
1582 * @list: queue head
1583 *
1584 * Returns true if the queue is empty, false otherwise.
1585 * This variant can be used in lockless contexts.
1586 */
1587static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1588{
1589 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1590}
1591
1592
fc7ebb21
DM
1593/**
1594 * skb_queue_is_last - check if skb is the last entry in the queue
1595 * @list: queue head
1596 * @skb: buffer
1597 *
1598 * Returns true if @skb is the last buffer on the list.
1599 */
1600static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1601 const struct sk_buff *skb)
1602{
fd44b93c 1603 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
1604}
1605
832d11c5
IJ
1606/**
1607 * skb_queue_is_first - check if skb is the first entry in the queue
1608 * @list: queue head
1609 * @skb: buffer
1610 *
1611 * Returns true if @skb is the first buffer on the list.
1612 */
1613static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1614 const struct sk_buff *skb)
1615{
fd44b93c 1616 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
1617}
1618
249c8b42
DM
1619/**
1620 * skb_queue_next - return the next packet in the queue
1621 * @list: queue head
1622 * @skb: current buffer
1623 *
1624 * Return the next packet in @list after @skb. It is only valid to
1625 * call this if skb_queue_is_last() evaluates to false.
1626 */
1627static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1628 const struct sk_buff *skb)
1629{
1630 /* This BUG_ON may seem severe, but if we just return then we
1631 * are going to dereference garbage.
1632 */
1633 BUG_ON(skb_queue_is_last(list, skb));
1634 return skb->next;
1635}
1636
832d11c5
IJ
1637/**
1638 * skb_queue_prev - return the prev packet in the queue
1639 * @list: queue head
1640 * @skb: current buffer
1641 *
1642 * Return the prev packet in @list before @skb. It is only valid to
1643 * call this if skb_queue_is_first() evaluates to false.
1644 */
1645static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1646 const struct sk_buff *skb)
1647{
1648 /* This BUG_ON may seem severe, but if we just return then we
1649 * are going to dereference garbage.
1650 */
1651 BUG_ON(skb_queue_is_first(list, skb));
1652 return skb->prev;
1653}
1654
1da177e4
LT
1655/**
1656 * skb_get - reference buffer
1657 * @skb: buffer to reference
1658 *
1659 * Makes another reference to a socket buffer and returns a pointer
1660 * to the buffer.
1661 */
1662static inline struct sk_buff *skb_get(struct sk_buff *skb)
1663{
63354797 1664 refcount_inc(&skb->users);
1da177e4
LT
1665 return skb;
1666}
1667
1668/*
f8821f96 1669 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1da177e4
LT
1670 */
1671
1da177e4
LT
1672/**
1673 * skb_cloned - is the buffer a clone
1674 * @skb: buffer to check
1675 *
1676 * Returns true if the buffer was generated with skb_clone() and is
1677 * one of multiple shared copies of the buffer. Cloned buffers are
1678 * shared data so must not be written to under normal circumstances.
1679 */
1680static inline int skb_cloned(const struct sk_buff *skb)
1681{
1682 return skb->cloned &&
1683 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1684}
1685
14bbd6a5
PS
1686static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1687{
d0164adc 1688 might_sleep_if(gfpflags_allow_blocking(pri));
14bbd6a5
PS
1689
1690 if (skb_cloned(skb))
1691 return pskb_expand_head(skb, 0, 0, pri);
1692
1693 return 0;
1694}
1695
c4777efa
ED
1696/* This variant of skb_unclone() makes sure skb->truesize is not changed */
1697static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1698{
1699 might_sleep_if(gfpflags_allow_blocking(pri));
1700
1701 if (skb_cloned(skb)) {
1702 unsigned int save = skb->truesize;
1703 int res;
1704
1705 res = pskb_expand_head(skb, 0, 0, pri);
1706 skb->truesize = save;
1707 return res;
1708 }
1709 return 0;
1710}
1711
1da177e4
LT
1712/**
1713 * skb_header_cloned - is the header a clone
1714 * @skb: buffer to check
1715 *
1716 * Returns true if modifying the header part of the buffer requires
1717 * the data to be copied.
1718 */
1719static inline int skb_header_cloned(const struct sk_buff *skb)
1720{
1721 int dataref;
1722
1723 if (!skb->cloned)
1724 return 0;
1725
1726 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1727 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1728 return dataref != 1;
1729}
1730
9580bf2e
ED
1731static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1732{
1733 might_sleep_if(gfpflags_allow_blocking(pri));
1734
1735 if (skb_header_cloned(skb))
1736 return pskb_expand_head(skb, 0, 0, pri);
1737
1738 return 0;
1739}
1740
f4a775d1
ED
1741/**
1742 * __skb_header_release - release reference to header
1743 * @skb: buffer to operate on
f4a775d1
ED
1744 */
1745static inline void __skb_header_release(struct sk_buff *skb)
1746{
1747 skb->nohdr = 1;
1748 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1749}
1750
1751
1da177e4
LT
1752/**
1753 * skb_shared - is the buffer shared
1754 * @skb: buffer to check
1755 *
1756 * Returns true if more than one person has a reference to this
1757 * buffer.
1758 */
1759static inline int skb_shared(const struct sk_buff *skb)
1760{
63354797 1761 return refcount_read(&skb->users) != 1;
1da177e4
LT
1762}
1763
1764/**
1765 * skb_share_check - check if buffer is shared and if so clone it
1766 * @skb: buffer to check
1767 * @pri: priority for memory allocation
1768 *
1769 * If the buffer is shared the buffer is cloned and the old copy
1770 * drops a reference. A new clone with a single reference is returned.
1771 * If the buffer is not shared the original buffer is returned. When
1772 * being called from interrupt status or with spinlocks held pri must
1773 * be GFP_ATOMIC.
1774 *
1775 * NULL is returned on a memory allocation failure.
1776 */
47061bc4 1777static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4 1778{
d0164adc 1779 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1780 if (skb_shared(skb)) {
1781 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
1782
1783 if (likely(nskb))
1784 consume_skb(skb);
1785 else
1786 kfree_skb(skb);
1da177e4
LT
1787 skb = nskb;
1788 }
1789 return skb;
1790}
1791
1792/*
1793 * Copy shared buffers into a new sk_buff. We effectively do COW on
1794 * packets to handle cases where we have a local reader and forward
1795 * and a couple of other messy ones. The normal one is tcpdumping
1796 * a packet thats being forwarded.
1797 */
1798
1799/**
1800 * skb_unshare - make a copy of a shared buffer
1801 * @skb: buffer to check
1802 * @pri: priority for memory allocation
1803 *
1804 * If the socket buffer is a clone then this function creates a new
1805 * copy of the data, drops a reference count on the old copy and returns
1806 * the new copy with the reference count at 1. If the buffer is not a clone
1807 * the original buffer is returned. When called with a spinlock held or
1808 * from interrupt state @pri must be %GFP_ATOMIC
1809 *
1810 * %NULL is returned on a memory allocation failure.
1811 */
e2bf521d 1812static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 1813 gfp_t pri)
1da177e4 1814{
d0164adc 1815 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1816 if (skb_cloned(skb)) {
1817 struct sk_buff *nskb = skb_copy(skb, pri);
31eff81e
AA
1818
1819 /* Free our shared copy */
1820 if (likely(nskb))
1821 consume_skb(skb);
1822 else
1823 kfree_skb(skb);
1da177e4
LT
1824 skb = nskb;
1825 }
1826 return skb;
1827}
1828
1829/**
1a5778aa 1830 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
1831 * @list_: list to peek at
1832 *
1833 * Peek an &sk_buff. Unlike most other operations you _MUST_
1834 * be careful with this one. A peek leaves the buffer on the
1835 * list and someone else may run off with it. You must hold
1836 * the appropriate locks or have a private queue to do this.
1837 *
1838 * Returns %NULL for an empty list or a pointer to the head element.
1839 * The reference count is not incremented and the reference is therefore
1840 * volatile. Use with caution.
1841 */
05bdd2f1 1842static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 1843{
18d07000
ED
1844 struct sk_buff *skb = list_->next;
1845
1846 if (skb == (struct sk_buff *)list_)
1847 skb = NULL;
1848 return skb;
1da177e4
LT
1849}
1850
8b69bd7d
DM
1851/**
1852 * __skb_peek - peek at the head of a non-empty &sk_buff_head
1853 * @list_: list to peek at
1854 *
1855 * Like skb_peek(), but the caller knows that the list is not empty.
1856 */
1857static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1858{
1859 return list_->next;
1860}
1861
da5ef6e5
PE
1862/**
1863 * skb_peek_next - peek skb following the given one from a queue
1864 * @skb: skb to start from
1865 * @list_: list to peek at
1866 *
1867 * Returns %NULL when the end of the list is met or a pointer to the
1868 * next element. The reference count is not incremented and the
1869 * reference is therefore volatile. Use with caution.
1870 */
1871static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1872 const struct sk_buff_head *list_)
1873{
1874 struct sk_buff *next = skb->next;
18d07000 1875
da5ef6e5
PE
1876 if (next == (struct sk_buff *)list_)
1877 next = NULL;
1878 return next;
1879}
1880
1da177e4 1881/**
1a5778aa 1882 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1883 * @list_: list to peek at
1884 *
1885 * Peek an &sk_buff. Unlike most other operations you _MUST_
1886 * be careful with this one. A peek leaves the buffer on the
1887 * list and someone else may run off with it. You must hold
1888 * the appropriate locks or have a private queue to do this.
1889 *
1890 * Returns %NULL for an empty list or a pointer to the tail element.
1891 * The reference count is not incremented and the reference is therefore
1892 * volatile. Use with caution.
1893 */
05bdd2f1 1894static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1895{
f8cc62ca 1896 struct sk_buff *skb = READ_ONCE(list_->prev);
18d07000
ED
1897
1898 if (skb == (struct sk_buff *)list_)
1899 skb = NULL;
1900 return skb;
1901
1da177e4
LT
1902}
1903
1904/**
1905 * skb_queue_len - get queue length
1906 * @list_: list to measure
1907 *
1908 * Return the length of an &sk_buff queue.
1909 */
1910static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1911{
1912 return list_->qlen;
1913}
1914
86b18aaa
QC
1915/**
1916 * skb_queue_len_lockless - get queue length
1917 * @list_: list to measure
1918 *
1919 * Return the length of an &sk_buff queue.
1920 * This variant can be used in lockless contexts.
1921 */
1922static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1923{
1924 return READ_ONCE(list_->qlen);
1925}
1926
67fed459
DM
1927/**
1928 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1929 * @list: queue to initialize
1930 *
1931 * This initializes only the list and queue length aspects of
1932 * an sk_buff_head object. This allows to initialize the list
1933 * aspects of an sk_buff_head without reinitializing things like
1934 * the spinlock. It can also be used for on-stack sk_buff_head
1935 * objects where the spinlock is known to not be used.
1936 */
1937static inline void __skb_queue_head_init(struct sk_buff_head *list)
1938{
1939 list->prev = list->next = (struct sk_buff *)list;
1940 list->qlen = 0;
1941}
1942
76f10ad0
AV
1943/*
1944 * This function creates a split out lock class for each invocation;
1945 * this is needed for now since a whole lot of users of the skb-queue
1946 * infrastructure in drivers have different locking usage (in hardirq)
1947 * than the networking core (in softirq only). In the long run either the
1948 * network layer or drivers should need annotation to consolidate the
1949 * main types of usage into 3 classes.
1950 */
1da177e4
LT
1951static inline void skb_queue_head_init(struct sk_buff_head *list)
1952{
1953 spin_lock_init(&list->lock);
67fed459 1954 __skb_queue_head_init(list);
1da177e4
LT
1955}
1956
c2ecba71
PE
1957static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1958 struct lock_class_key *class)
1959{
1960 skb_queue_head_init(list);
1961 lockdep_set_class(&list->lock, class);
1962}
1963
1da177e4 1964/*
bf299275 1965 * Insert an sk_buff on a list.
1da177e4
LT
1966 *
1967 * The "__skb_xxxx()" functions are the non-atomic ones that
1968 * can only be called with interrupts disabled.
1969 */
bf299275
GR
1970static inline void __skb_insert(struct sk_buff *newsk,
1971 struct sk_buff *prev, struct sk_buff *next,
1972 struct sk_buff_head *list)
1973{
f8cc62ca
ED
1974 /* See skb_queue_empty_lockless() and skb_peek_tail()
1975 * for the opposite READ_ONCE()
1976 */
d7d16a89
ED
1977 WRITE_ONCE(newsk->next, next);
1978 WRITE_ONCE(newsk->prev, prev);
1979 WRITE_ONCE(next->prev, newsk);
1980 WRITE_ONCE(prev->next, newsk);
04f08eb4 1981 WRITE_ONCE(list->qlen, list->qlen + 1);
bf299275 1982}
1da177e4 1983
67fed459
DM
1984static inline void __skb_queue_splice(const struct sk_buff_head *list,
1985 struct sk_buff *prev,
1986 struct sk_buff *next)
1987{
1988 struct sk_buff *first = list->next;
1989 struct sk_buff *last = list->prev;
1990
d7d16a89
ED
1991 WRITE_ONCE(first->prev, prev);
1992 WRITE_ONCE(prev->next, first);
67fed459 1993
d7d16a89
ED
1994 WRITE_ONCE(last->next, next);
1995 WRITE_ONCE(next->prev, last);
67fed459
DM
1996}
1997
1998/**
1999 * skb_queue_splice - join two skb lists, this is designed for stacks
2000 * @list: the new list to add
2001 * @head: the place to add it in the first list
2002 */
2003static inline void skb_queue_splice(const struct sk_buff_head *list,
2004 struct sk_buff_head *head)
2005{
2006 if (!skb_queue_empty(list)) {
2007 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 2008 head->qlen += list->qlen;
67fed459
DM
2009 }
2010}
2011
2012/**
d9619496 2013 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
2014 * @list: the new list to add
2015 * @head: the place to add it in the first list
2016 *
2017 * The list at @list is reinitialised
2018 */
2019static inline void skb_queue_splice_init(struct sk_buff_head *list,
2020 struct sk_buff_head *head)
2021{
2022 if (!skb_queue_empty(list)) {
2023 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 2024 head->qlen += list->qlen;
67fed459
DM
2025 __skb_queue_head_init(list);
2026 }
2027}
2028
2029/**
2030 * skb_queue_splice_tail - join two skb lists, each list being a queue
2031 * @list: the new list to add
2032 * @head: the place to add it in the first list
2033 */
2034static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2035 struct sk_buff_head *head)
2036{
2037 if (!skb_queue_empty(list)) {
2038 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 2039 head->qlen += list->qlen;
67fed459
DM
2040 }
2041}
2042
2043/**
d9619496 2044 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
2045 * @list: the new list to add
2046 * @head: the place to add it in the first list
2047 *
2048 * Each of the lists is a queue.
2049 * The list at @list is reinitialised
2050 */
2051static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2052 struct sk_buff_head *head)
2053{
2054 if (!skb_queue_empty(list)) {
2055 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 2056 head->qlen += list->qlen;
67fed459
DM
2057 __skb_queue_head_init(list);
2058 }
2059}
2060
1da177e4 2061/**
300ce174 2062 * __skb_queue_after - queue a buffer at the list head
1da177e4 2063 * @list: list to use
300ce174 2064 * @prev: place after this buffer
1da177e4
LT
2065 * @newsk: buffer to queue
2066 *
300ce174 2067 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
2068 * and you must therefore hold required locks before calling it.
2069 *
2070 * A buffer cannot be placed on two lists at the same time.
2071 */
300ce174
SH
2072static inline void __skb_queue_after(struct sk_buff_head *list,
2073 struct sk_buff *prev,
2074 struct sk_buff *newsk)
1da177e4 2075{
bf299275 2076 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
2077}
2078
7965bd4d
JP
2079void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2080 struct sk_buff_head *list);
7de6c033 2081
f5572855
GR
2082static inline void __skb_queue_before(struct sk_buff_head *list,
2083 struct sk_buff *next,
2084 struct sk_buff *newsk)
2085{
2086 __skb_insert(newsk, next->prev, next, list);
2087}
2088
300ce174
SH
2089/**
2090 * __skb_queue_head - queue a buffer at the list head
2091 * @list: list to use
2092 * @newsk: buffer to queue
2093 *
2094 * Queue a buffer at the start of a list. This function takes no locks
2095 * and you must therefore hold required locks before calling it.
2096 *
2097 * A buffer cannot be placed on two lists at the same time.
2098 */
300ce174
SH
2099static inline void __skb_queue_head(struct sk_buff_head *list,
2100 struct sk_buff *newsk)
2101{
2102 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2103}
4ea7b0cf 2104void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174 2105
1da177e4
LT
2106/**
2107 * __skb_queue_tail - queue a buffer at the list tail
2108 * @list: list to use
2109 * @newsk: buffer to queue
2110 *
2111 * Queue a buffer at the end of a list. This function takes no locks
2112 * and you must therefore hold required locks before calling it.
2113 *
2114 * A buffer cannot be placed on two lists at the same time.
2115 */
1da177e4
LT
2116static inline void __skb_queue_tail(struct sk_buff_head *list,
2117 struct sk_buff *newsk)
2118{
f5572855 2119 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4 2120}
4ea7b0cf 2121void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4 2122
1da177e4
LT
2123/*
2124 * remove sk_buff from list. _Must_ be called atomically, and with
2125 * the list known..
2126 */
7965bd4d 2127void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
2128static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2129{
2130 struct sk_buff *next, *prev;
2131
86b18aaa 2132 WRITE_ONCE(list->qlen, list->qlen - 1);
1da177e4
LT
2133 next = skb->next;
2134 prev = skb->prev;
2135 skb->next = skb->prev = NULL;
d7d16a89
ED
2136 WRITE_ONCE(next->prev, prev);
2137 WRITE_ONCE(prev->next, next);
1da177e4
LT
2138}
2139
f525c06d
GR
2140/**
2141 * __skb_dequeue - remove from the head of the queue
2142 * @list: list to dequeue from
2143 *
2144 * Remove the head of the list. This function does not take any locks
2145 * so must be used with appropriate locks held only. The head item is
2146 * returned or %NULL if the list is empty.
2147 */
f525c06d
GR
2148static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2149{
2150 struct sk_buff *skb = skb_peek(list);
2151 if (skb)
2152 __skb_unlink(skb, list);
2153 return skb;
2154}
4ea7b0cf 2155struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1da177e4
LT
2156
2157/**
2158 * __skb_dequeue_tail - remove from the tail of the queue
2159 * @list: list to dequeue from
2160 *
2161 * Remove the tail of the list. This function does not take any locks
2162 * so must be used with appropriate locks held only. The tail item is
2163 * returned or %NULL if the list is empty.
2164 */
1da177e4
LT
2165static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2166{
2167 struct sk_buff *skb = skb_peek_tail(list);
2168 if (skb)
2169 __skb_unlink(skb, list);
2170 return skb;
2171}
4ea7b0cf 2172struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
2173
2174
bdcc0924 2175static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
2176{
2177 return skb->data_len;
2178}
2179
2180static inline unsigned int skb_headlen(const struct sk_buff *skb)
2181{
2182 return skb->len - skb->data_len;
2183}
2184
3ece7826 2185static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1da177e4 2186{
c72d8cda 2187 unsigned int i, len = 0;
1da177e4 2188
c72d8cda 2189 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
9e903e08 2190 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
3ece7826
WB
2191 return len;
2192}
2193
2194static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2195{
2196 return skb_headlen(skb) + __skb_pagelen(skb);
1da177e4
LT
2197}
2198
131ea667
IC
2199/**
2200 * __skb_fill_page_desc - initialise a paged fragment in an skb
2201 * @skb: buffer containing fragment to be initialised
2202 * @i: paged fragment index to initialise
2203 * @page: the page to use for this fragment
2204 * @off: the offset to the data with @page
2205 * @size: the length of the data
2206 *
2207 * Initialises the @i'th fragment of @skb to point to &size bytes at
2208 * offset @off within @page.
2209 *
2210 * Does not take any additional reference on the fragment.
2211 */
2212static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2213 struct page *page, int off, int size)
1da177e4
LT
2214{
2215 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2216
c48a11c7 2217 /*
2f064f34
MH
2218 * Propagate page pfmemalloc to the skb if we can. The problem is
2219 * that not all callers have unique ownership of the page but rely
2220 * on page_is_pfmemalloc doing the right thing(tm).
c48a11c7 2221 */
1dfa5bd3 2222 frag->bv_page = page;
65c84f14 2223 frag->bv_offset = off;
9e903e08 2224 skb_frag_size_set(frag, size);
cca7af38
PE
2225
2226 page = compound_head(page);
2f064f34 2227 if (page_is_pfmemalloc(page))
cca7af38 2228 skb->pfmemalloc = true;
131ea667
IC
2229}
2230
2231/**
2232 * skb_fill_page_desc - initialise a paged fragment in an skb
2233 * @skb: buffer containing fragment to be initialised
2234 * @i: paged fragment index to initialise
2235 * @page: the page to use for this fragment
2236 * @off: the offset to the data with @page
2237 * @size: the length of the data
2238 *
2239 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 2240 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
2241 * addition updates @skb such that @i is the last fragment.
2242 *
2243 * Does not take any additional reference on the fragment.
2244 */
2245static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2246 struct page *page, int off, int size)
2247{
2248 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
2249 skb_shinfo(skb)->nr_frags = i + 1;
2250}
2251
7965bd4d
JP
2252void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2253 int size, unsigned int truesize);
654bed16 2254
f8e617e1
JW
2255void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2256 unsigned int truesize);
2257
1da177e4
LT
2258#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2259
27a884dc
ACM
2260#ifdef NET_SKBUFF_DATA_USES_OFFSET
2261static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2262{
2263 return skb->head + skb->tail;
2264}
2265
2266static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2267{
2268 skb->tail = skb->data - skb->head;
2269}
2270
2271static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2272{
2273 skb_reset_tail_pointer(skb);
2274 skb->tail += offset;
2275}
7cc46190 2276
27a884dc
ACM
2277#else /* NET_SKBUFF_DATA_USES_OFFSET */
2278static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2279{
2280 return skb->tail;
2281}
2282
2283static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2284{
2285 skb->tail = skb->data;
2286}
2287
2288static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2289{
2290 skb->tail = skb->data + offset;
2291}
4305b541 2292
27a884dc
ACM
2293#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2294
1da177e4
LT
2295/*
2296 * Add data to an sk_buff
2297 */
4df864c1
JB
2298void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2299void *skb_put(struct sk_buff *skb, unsigned int len);
2300static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
1da177e4 2301{
4df864c1 2302 void *tmp = skb_tail_pointer(skb);
1da177e4
LT
2303 SKB_LINEAR_ASSERT(skb);
2304 skb->tail += len;
2305 skb->len += len;
2306 return tmp;
2307}
2308
de77b966 2309static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2310{
2311 void *tmp = __skb_put(skb, len);
2312
2313 memset(tmp, 0, len);
2314 return tmp;
2315}
2316
2317static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2318 unsigned int len)
2319{
2320 void *tmp = __skb_put(skb, len);
2321
2322 memcpy(tmp, data, len);
2323 return tmp;
2324}
2325
2326static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2327{
2328 *(u8 *)__skb_put(skb, 1) = val;
2329}
2330
83ad357d 2331static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
e45a79da 2332{
83ad357d 2333 void *tmp = skb_put(skb, len);
e45a79da
JB
2334
2335 memset(tmp, 0, len);
2336
2337 return tmp;
2338}
2339
59ae1d12
JB
2340static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2341 unsigned int len)
2342{
2343 void *tmp = skb_put(skb, len);
2344
2345 memcpy(tmp, data, len);
2346
2347 return tmp;
2348}
2349
634fef61
JB
2350static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2351{
2352 *(u8 *)skb_put(skb, 1) = val;
2353}
2354
d58ff351
JB
2355void *skb_push(struct sk_buff *skb, unsigned int len);
2356static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2357{
2358 skb->data -= len;
2359 skb->len += len;
2360 return skb->data;
2361}
2362
af72868b
JB
2363void *skb_pull(struct sk_buff *skb, unsigned int len);
2364static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2365{
2366 skb->len -= len;
2367 BUG_ON(skb->len < skb->data_len);
2368 return skb->data += len;
2369}
2370
af72868b 2371static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
47d29646
DM
2372{
2373 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2374}
2375
af72868b 2376void *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4 2377
af72868b 2378static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2379{
2380 if (len > skb_headlen(skb) &&
987c402a 2381 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
2382 return NULL;
2383 skb->len -= len;
2384 return skb->data += len;
2385}
2386
af72868b 2387static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2388{
2389 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2390}
2391
b9df4fd7 2392static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2393{
2394 if (likely(len <= skb_headlen(skb)))
b9df4fd7 2395 return true;
1da177e4 2396 if (unlikely(len > skb->len))
b9df4fd7 2397 return false;
987c402a 2398 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
2399}
2400
c8c8b127
ED
2401void skb_condense(struct sk_buff *skb);
2402
1da177e4
LT
2403/**
2404 * skb_headroom - bytes at buffer head
2405 * @skb: buffer to check
2406 *
2407 * Return the number of bytes of free space at the head of an &sk_buff.
2408 */
c2636b4d 2409static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
2410{
2411 return skb->data - skb->head;
2412}
2413
2414/**
2415 * skb_tailroom - bytes at buffer end
2416 * @skb: buffer to check
2417 *
2418 * Return the number of bytes of free space at the tail of an sk_buff
2419 */
2420static inline int skb_tailroom(const struct sk_buff *skb)
2421{
4305b541 2422 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
2423}
2424
a21d4572
ED
2425/**
2426 * skb_availroom - bytes at buffer end
2427 * @skb: buffer to check
2428 *
2429 * Return the number of bytes of free space at the tail of an sk_buff
2430 * allocated by sk_stream_alloc()
2431 */
2432static inline int skb_availroom(const struct sk_buff *skb)
2433{
16fad69c
ED
2434 if (skb_is_nonlinear(skb))
2435 return 0;
2436
2437 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
2438}
2439
1da177e4
LT
2440/**
2441 * skb_reserve - adjust headroom
2442 * @skb: buffer to alter
2443 * @len: bytes to move
2444 *
2445 * Increase the headroom of an empty &sk_buff by reducing the tail
2446 * room. This is only allowed for an empty buffer.
2447 */
8243126c 2448static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
2449{
2450 skb->data += len;
2451 skb->tail += len;
2452}
2453
1837b2e2
BP
2454/**
2455 * skb_tailroom_reserve - adjust reserved_tailroom
2456 * @skb: buffer to alter
2457 * @mtu: maximum amount of headlen permitted
2458 * @needed_tailroom: minimum amount of reserved_tailroom
2459 *
2460 * Set reserved_tailroom so that headlen can be as large as possible but
2461 * not larger than mtu and tailroom cannot be smaller than
2462 * needed_tailroom.
2463 * The required headroom should already have been reserved before using
2464 * this function.
2465 */
2466static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2467 unsigned int needed_tailroom)
2468{
2469 SKB_LINEAR_ASSERT(skb);
2470 if (mtu < skb_tailroom(skb) - needed_tailroom)
2471 /* use at most mtu */
2472 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2473 else
2474 /* use up to all available space */
2475 skb->reserved_tailroom = needed_tailroom;
2476}
2477
8bce6d7d
TH
2478#define ENCAP_TYPE_ETHER 0
2479#define ENCAP_TYPE_IPPROTO 1
2480
2481static inline void skb_set_inner_protocol(struct sk_buff *skb,
2482 __be16 protocol)
2483{
2484 skb->inner_protocol = protocol;
2485 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2486}
2487
2488static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2489 __u8 ipproto)
2490{
2491 skb->inner_ipproto = ipproto;
2492 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2493}
2494
6a674e9c
JG
2495static inline void skb_reset_inner_headers(struct sk_buff *skb)
2496{
aefbd2b3 2497 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
2498 skb->inner_network_header = skb->network_header;
2499 skb->inner_transport_header = skb->transport_header;
2500}
2501
0b5c9db1
JP
2502static inline void skb_reset_mac_len(struct sk_buff *skb)
2503{
2504 skb->mac_len = skb->network_header - skb->mac_header;
2505}
2506
6a674e9c
JG
2507static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2508 *skb)
2509{
2510 return skb->head + skb->inner_transport_header;
2511}
2512
55dc5a9f
TH
2513static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2514{
2515 return skb_inner_transport_header(skb) - skb->data;
2516}
2517
6a674e9c
JG
2518static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2519{
2520 skb->inner_transport_header = skb->data - skb->head;
2521}
2522
2523static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2524 const int offset)
2525{
2526 skb_reset_inner_transport_header(skb);
2527 skb->inner_transport_header += offset;
2528}
2529
2530static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2531{
2532 return skb->head + skb->inner_network_header;
2533}
2534
2535static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2536{
2537 skb->inner_network_header = skb->data - skb->head;
2538}
2539
2540static inline void skb_set_inner_network_header(struct sk_buff *skb,
2541 const int offset)
2542{
2543 skb_reset_inner_network_header(skb);
2544 skb->inner_network_header += offset;
2545}
2546
aefbd2b3
PS
2547static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2548{
2549 return skb->head + skb->inner_mac_header;
2550}
2551
2552static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2553{
2554 skb->inner_mac_header = skb->data - skb->head;
2555}
2556
2557static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2558 const int offset)
2559{
2560 skb_reset_inner_mac_header(skb);
2561 skb->inner_mac_header += offset;
2562}
fda55eca
ED
2563static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2564{
35d04610 2565 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
2566}
2567
9c70220b
ACM
2568static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2569{
2e07fa9c 2570 return skb->head + skb->transport_header;
9c70220b
ACM
2571}
2572
badff6d0
ACM
2573static inline void skb_reset_transport_header(struct sk_buff *skb)
2574{
2e07fa9c 2575 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
2576}
2577
967b05f6
ACM
2578static inline void skb_set_transport_header(struct sk_buff *skb,
2579 const int offset)
2580{
2e07fa9c
ACM
2581 skb_reset_transport_header(skb);
2582 skb->transport_header += offset;
ea2ae17d
ACM
2583}
2584
d56f90a7
ACM
2585static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2586{
2e07fa9c 2587 return skb->head + skb->network_header;
d56f90a7
ACM
2588}
2589
c1d2bbe1
ACM
2590static inline void skb_reset_network_header(struct sk_buff *skb)
2591{
2e07fa9c 2592 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
2593}
2594
c14d2450
ACM
2595static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2596{
2e07fa9c
ACM
2597 skb_reset_network_header(skb);
2598 skb->network_header += offset;
c14d2450
ACM
2599}
2600
2e07fa9c 2601static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 2602{
2e07fa9c 2603 return skb->head + skb->mac_header;
bbe735e4
ACM
2604}
2605
ea6da4fd
AV
2606static inline int skb_mac_offset(const struct sk_buff *skb)
2607{
2608 return skb_mac_header(skb) - skb->data;
2609}
2610
0daf4349
DB
2611static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2612{
2613 return skb->network_header - skb->mac_header;
2614}
2615
2e07fa9c 2616static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 2617{
35d04610 2618 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
2619}
2620
b4ab3141
DB
2621static inline void skb_unset_mac_header(struct sk_buff *skb)
2622{
2623 skb->mac_header = (typeof(skb->mac_header))~0U;
2624}
2625
2e07fa9c
ACM
2626static inline void skb_reset_mac_header(struct sk_buff *skb)
2627{
2628 skb->mac_header = skb->data - skb->head;
2629}
2630
2631static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2632{
2633 skb_reset_mac_header(skb);
2634 skb->mac_header += offset;
2635}
2636
0e3da5bb
TT
2637static inline void skb_pop_mac_header(struct sk_buff *skb)
2638{
2639 skb->mac_header = skb->network_header;
2640}
2641
d2aa125d 2642static inline void skb_probe_transport_header(struct sk_buff *skb)
fbbdb8f0 2643{
72a338bc 2644 struct flow_keys_basic keys;
fbbdb8f0
YX
2645
2646 if (skb_transport_header_was_set(skb))
2647 return;
72a338bc 2648
3cbf4ffb
SF
2649 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2650 NULL, 0, 0, 0, 0))
42aecaa9 2651 skb_set_transport_header(skb, keys.control.thoff);
fbbdb8f0
YX
2652}
2653
03606895
ED
2654static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2655{
2656 if (skb_mac_header_was_set(skb)) {
2657 const unsigned char *old_mac = skb_mac_header(skb);
2658
2659 skb_set_mac_header(skb, -skb->mac_len);
2660 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2661 }
2662}
2663
04fb451e
MM
2664static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2665{
2666 return skb->csum_start - skb_headroom(skb);
2667}
2668
08b64fcc
AD
2669static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2670{
2671 return skb->head + skb->csum_start;
2672}
2673
2e07fa9c
ACM
2674static inline int skb_transport_offset(const struct sk_buff *skb)
2675{
2676 return skb_transport_header(skb) - skb->data;
2677}
2678
2679static inline u32 skb_network_header_len(const struct sk_buff *skb)
2680{
2681 return skb->transport_header - skb->network_header;
2682}
2683
6a674e9c
JG
2684static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2685{
2686 return skb->inner_transport_header - skb->inner_network_header;
2687}
2688
2e07fa9c
ACM
2689static inline int skb_network_offset(const struct sk_buff *skb)
2690{
2691 return skb_network_header(skb) - skb->data;
2692}
48d49d0c 2693
6a674e9c
JG
2694static inline int skb_inner_network_offset(const struct sk_buff *skb)
2695{
2696 return skb_inner_network_header(skb) - skb->data;
2697}
2698
f9599ce1
CG
2699static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2700{
2701 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2702}
2703
1da177e4
LT
2704/*
2705 * CPUs often take a performance hit when accessing unaligned memory
2706 * locations. The actual performance hit varies, it can be small if the
2707 * hardware handles it or large if we have to take an exception and fix it
2708 * in software.
2709 *
2710 * Since an ethernet header is 14 bytes network drivers often end up with
2711 * the IP header at an unaligned offset. The IP header can be aligned by
2712 * shifting the start of the packet by 2 bytes. Drivers should do this
2713 * with:
2714 *
8660c124 2715 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
2716 *
2717 * The downside to this alignment of the IP header is that the DMA is now
2718 * unaligned. On some architectures the cost of an unaligned DMA is high
2719 * and this cost outweighs the gains made by aligning the IP header.
8660c124 2720 *
1da177e4
LT
2721 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2722 * to be overridden.
2723 */
2724#ifndef NET_IP_ALIGN
2725#define NET_IP_ALIGN 2
2726#endif
2727
025be81e
AB
2728/*
2729 * The networking layer reserves some headroom in skb data (via
2730 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2731 * the header has to grow. In the default case, if the header has to grow
d6301d3d 2732 * 32 bytes or less we avoid the reallocation.
025be81e
AB
2733 *
2734 * Unfortunately this headroom changes the DMA alignment of the resulting
2735 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2736 * on some architectures. An architecture can override this value,
2737 * perhaps setting it to a cacheline in size (since that will maintain
2738 * cacheline alignment of the DMA). It must be a power of 2.
2739 *
d6301d3d 2740 * Various parts of the networking layer expect at least 32 bytes of
025be81e 2741 * headroom, you should not reduce this.
5933dd2f
ED
2742 *
2743 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2744 * to reduce average number of cache lines per packet.
645f0897 2745 * get_rps_cpu() for example only access one 64 bytes aligned block :
18e8c134 2746 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
2747 */
2748#ifndef NET_SKB_PAD
5933dd2f 2749#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
2750#endif
2751
7965bd4d 2752int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4 2753
5293efe6 2754static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
1da177e4 2755{
5e1abdc3 2756 if (WARN_ON(skb_is_nonlinear(skb)))
3cc0e873 2757 return;
27a884dc
ACM
2758 skb->len = len;
2759 skb_set_tail_pointer(skb, len);
1da177e4
LT
2760}
2761
5293efe6
DB
2762static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2763{
2764 __skb_set_length(skb, len);
2765}
2766
7965bd4d 2767void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2768
2769static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2770{
3cc0e873
HX
2771 if (skb->data_len)
2772 return ___pskb_trim(skb, len);
2773 __skb_trim(skb, len);
2774 return 0;
1da177e4
LT
2775}
2776
2777static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2778{
2779 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2780}
2781
e9fa4f7b
HX
2782/**
2783 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2784 * @skb: buffer to alter
2785 * @len: new length
2786 *
2787 * This is identical to pskb_trim except that the caller knows that
2788 * the skb is not cloned so we should never get an error due to out-
2789 * of-memory.
2790 */
2791static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2792{
2793 int err = pskb_trim(skb, len);
2794 BUG_ON(err);
2795}
2796
5293efe6
DB
2797static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2798{
2799 unsigned int diff = len - skb->len;
2800
2801 if (skb_tailroom(skb) < diff) {
2802 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2803 GFP_ATOMIC);
2804 if (ret)
2805 return ret;
2806 }
2807 __skb_set_length(skb, len);
2808 return 0;
2809}
2810
1da177e4
LT
2811/**
2812 * skb_orphan - orphan a buffer
2813 * @skb: buffer to orphan
2814 *
2815 * If a buffer currently has an owner then we call the owner's
2816 * destructor function and make the @skb unowned. The buffer continues
2817 * to exist but is no longer charged to its former owner.
2818 */
2819static inline void skb_orphan(struct sk_buff *skb)
2820{
c34a7612 2821 if (skb->destructor) {
1da177e4 2822 skb->destructor(skb);
c34a7612
ED
2823 skb->destructor = NULL;
2824 skb->sk = NULL;
376c7311
ED
2825 } else {
2826 BUG_ON(skb->sk);
c34a7612 2827 }
1da177e4
LT
2828}
2829
a353e0ce
MT
2830/**
2831 * skb_orphan_frags - orphan the frags contained in a buffer
2832 * @skb: buffer to orphan frags from
2833 * @gfp_mask: allocation mask for replacement pages
2834 *
2835 * For each frag in the SKB which needs a destructor (i.e. has an
2836 * owner) create a copy of that frag and release the original
2837 * page by calling the destructor.
2838 */
2839static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2840{
1f8b977a
WB
2841 if (likely(!skb_zcopy(skb)))
2842 return 0;
185ce5c3 2843 if (!skb_zcopy_is_nouarg(skb) &&
8c793822 2844 skb_uarg(skb)->callback == msg_zerocopy_callback)
1f8b977a
WB
2845 return 0;
2846 return skb_copy_ubufs(skb, gfp_mask);
2847}
2848
2849/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2850static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2851{
2852 if (likely(!skb_zcopy(skb)))
a353e0ce
MT
2853 return 0;
2854 return skb_copy_ubufs(skb, gfp_mask);
2855}
2856
1da177e4
LT
2857/**
2858 * __skb_queue_purge - empty a list
2859 * @list: list to empty
2860 *
2861 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2862 * the list and one reference dropped. This function does not take the
2863 * list lock and the caller must hold the relevant locks to use it.
2864 */
1da177e4
LT
2865static inline void __skb_queue_purge(struct sk_buff_head *list)
2866{
2867 struct sk_buff *skb;
2868 while ((skb = __skb_dequeue(list)) != NULL)
2869 kfree_skb(skb);
2870}
4ea7b0cf 2871void skb_queue_purge(struct sk_buff_head *list);
1da177e4 2872
385114de 2873unsigned int skb_rbtree_purge(struct rb_root *root);
9f5afeae 2874
3f6e687d
KH
2875void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2876
2877/**
2878 * netdev_alloc_frag - allocate a page fragment
2879 * @fragsz: fragment size
2880 *
2881 * Allocates a frag from a page for receive buffer.
2882 * Uses GFP_ATOMIC allocations.
2883 */
2884static inline void *netdev_alloc_frag(unsigned int fragsz)
2885{
2886 return __netdev_alloc_frag_align(fragsz, ~0u);
2887}
2888
2889static inline void *netdev_alloc_frag_align(unsigned int fragsz,
2890 unsigned int align)
2891{
2892 WARN_ON_ONCE(!is_power_of_2(align));
2893 return __netdev_alloc_frag_align(fragsz, -align);
2894}
1da177e4 2895
7965bd4d
JP
2896struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2897 gfp_t gfp_mask);
8af27456
CH
2898
2899/**
2900 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2901 * @dev: network device to receive on
2902 * @length: length to allocate
2903 *
2904 * Allocate a new &sk_buff and assign it a usage count of one. The
2905 * buffer has unspecified headroom built in. Users should allocate
2906 * the headroom they think they need without accounting for the
2907 * built in space. The built in space is used for optimisations.
2908 *
2909 * %NULL is returned if there is no free memory. Although this function
2910 * allocates memory it can be called from an interrupt.
2911 */
2912static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 2913 unsigned int length)
8af27456
CH
2914{
2915 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2916}
2917
6f532612
ED
2918/* legacy helper around __netdev_alloc_skb() */
2919static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2920 gfp_t gfp_mask)
2921{
2922 return __netdev_alloc_skb(NULL, length, gfp_mask);
2923}
2924
2925/* legacy helper around netdev_alloc_skb() */
2926static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2927{
2928 return netdev_alloc_skb(NULL, length);
2929}
2930
2931
4915a0de
ED
2932static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2933 unsigned int length, gfp_t gfp)
61321bbd 2934{
4915a0de 2935 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
2936
2937 if (NET_IP_ALIGN && skb)
2938 skb_reserve(skb, NET_IP_ALIGN);
2939 return skb;
2940}
2941
4915a0de
ED
2942static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2943 unsigned int length)
2944{
2945 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2946}
2947
181edb2b
AD
2948static inline void skb_free_frag(void *addr)
2949{
8c2dd3e4 2950 page_frag_free(addr);
181edb2b
AD
2951}
2952
3f6e687d
KH
2953void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2954
2955static inline void *napi_alloc_frag(unsigned int fragsz)
2956{
2957 return __napi_alloc_frag_align(fragsz, ~0u);
2958}
2959
2960static inline void *napi_alloc_frag_align(unsigned int fragsz,
2961 unsigned int align)
2962{
2963 WARN_ON_ONCE(!is_power_of_2(align));
2964 return __napi_alloc_frag_align(fragsz, -align);
2965}
2966
fd11a83d
AD
2967struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2968 unsigned int length, gfp_t gfp_mask);
2969static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2970 unsigned int length)
2971{
2972 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2973}
795bb1c0
JDB
2974void napi_consume_skb(struct sk_buff *skb, int budget);
2975
9243adfc 2976void napi_skb_free_stolen_head(struct sk_buff *skb);
15fad714 2977void __kfree_skb_defer(struct sk_buff *skb);
ffde7328 2978
71dfda58
AD
2979/**
2980 * __dev_alloc_pages - allocate page for network Rx
2981 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2982 * @order: size of the allocation
2983 *
2984 * Allocate a new page.
2985 *
2986 * %NULL is returned if there is no free memory.
2987*/
2988static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2989 unsigned int order)
2990{
2991 /* This piece of code contains several assumptions.
2992 * 1. This is for device Rx, therefor a cold page is preferred.
2993 * 2. The expectation is the user wants a compound page.
2994 * 3. If requesting a order 0 page it will not be compound
2995 * due to the check to see if order has a value in prep_new_page
2996 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2997 * code in gfp_to_alloc_flags that should be enforcing this.
2998 */
453f85d4 2999 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
71dfda58
AD
3000
3001 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3002}
3003
3004static inline struct page *dev_alloc_pages(unsigned int order)
3005{
95829b3a 3006 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
71dfda58
AD
3007}
3008
3009/**
3010 * __dev_alloc_page - allocate a page for network Rx
3011 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3012 *
3013 * Allocate a new page.
3014 *
3015 * %NULL is returned if there is no free memory.
3016 */
3017static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3018{
3019 return __dev_alloc_pages(gfp_mask, 0);
3020}
3021
3022static inline struct page *dev_alloc_page(void)
3023{
95829b3a 3024 return dev_alloc_pages(0);
71dfda58
AD
3025}
3026
bc38f30f
AL
3027/**
3028 * dev_page_is_reusable - check whether a page can be reused for network Rx
3029 * @page: the page to test
3030 *
3031 * A page shouldn't be considered for reusing/recycling if it was allocated
3032 * under memory pressure or at a distant memory node.
3033 *
3034 * Returns false if this page should be returned to page allocator, true
3035 * otherwise.
3036 */
3037static inline bool dev_page_is_reusable(const struct page *page)
3038{
3039 return likely(page_to_nid(page) == numa_mem_id() &&
3040 !page_is_pfmemalloc(page));
3041}
3042
0614002b
MG
3043/**
3044 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3045 * @page: The page that was allocated from skb_alloc_page
3046 * @skb: The skb that may need pfmemalloc set
3047 */
48f971c9
AL
3048static inline void skb_propagate_pfmemalloc(const struct page *page,
3049 struct sk_buff *skb)
0614002b 3050{
2f064f34 3051 if (page_is_pfmemalloc(page))
0614002b
MG
3052 skb->pfmemalloc = true;
3053}
3054
7240b60c
JL
3055/**
3056 * skb_frag_off() - Returns the offset of a skb fragment
3057 * @frag: the paged fragment
3058 */
3059static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3060{
65c84f14 3061 return frag->bv_offset;
7240b60c
JL
3062}
3063
3064/**
3065 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3066 * @frag: skb fragment
3067 * @delta: value to add
3068 */
3069static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3070{
65c84f14 3071 frag->bv_offset += delta;
7240b60c
JL
3072}
3073
3074/**
3075 * skb_frag_off_set() - Sets the offset of a skb fragment
3076 * @frag: skb fragment
3077 * @offset: offset of fragment
3078 */
3079static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3080{
65c84f14 3081 frag->bv_offset = offset;
7240b60c
JL
3082}
3083
3084/**
3085 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3086 * @fragto: skb fragment where offset is set
3087 * @fragfrom: skb fragment offset is copied from
3088 */
3089static inline void skb_frag_off_copy(skb_frag_t *fragto,
3090 const skb_frag_t *fragfrom)
3091{
65c84f14 3092 fragto->bv_offset = fragfrom->bv_offset;
7240b60c
JL
3093}
3094
131ea667 3095/**
e227867f 3096 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
3097 * @frag: the paged fragment
3098 *
3099 * Returns the &struct page associated with @frag.
3100 */
3101static inline struct page *skb_frag_page(const skb_frag_t *frag)
3102{
1dfa5bd3 3103 return frag->bv_page;
131ea667
IC
3104}
3105
3106/**
3107 * __skb_frag_ref - take an addition reference on a paged fragment.
3108 * @frag: the paged fragment
3109 *
3110 * Takes an additional reference on the paged fragment @frag.
3111 */
3112static inline void __skb_frag_ref(skb_frag_t *frag)
3113{
3114 get_page(skb_frag_page(frag));
3115}
3116
3117/**
3118 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3119 * @skb: the buffer
3120 * @f: the fragment offset.
3121 *
3122 * Takes an additional reference on the @f'th paged fragment of @skb.
3123 */
3124static inline void skb_frag_ref(struct sk_buff *skb, int f)
3125{
3126 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3127}
3128
3129/**
3130 * __skb_frag_unref - release a reference on a paged fragment.
3131 * @frag: the paged fragment
c420c989 3132 * @recycle: recycle the page if allocated via page_pool
131ea667 3133 *
c420c989
MC
3134 * Releases a reference on the paged fragment @frag
3135 * or recycles the page via the page_pool API.
131ea667 3136 */
c420c989 3137static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
131ea667 3138{
6a5bcd84
IA
3139 struct page *page = skb_frag_page(frag);
3140
3141#ifdef CONFIG_PAGE_POOL
3142 if (recycle && page_pool_return_skb_page(page))
3143 return;
3144#endif
3145 put_page(page);
131ea667
IC
3146}
3147
3148/**
3149 * skb_frag_unref - release a reference on a paged fragment of an skb.
3150 * @skb: the buffer
3151 * @f: the fragment offset
3152 *
3153 * Releases a reference on the @f'th paged fragment of @skb.
3154 */
3155static inline void skb_frag_unref(struct sk_buff *skb, int f)
3156{
6a5bcd84 3157 __skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
131ea667
IC
3158}
3159
3160/**
3161 * skb_frag_address - gets the address of the data contained in a paged fragment
3162 * @frag: the paged fragment buffer
3163 *
3164 * Returns the address of the data within @frag. The page must already
3165 * be mapped.
3166 */
3167static inline void *skb_frag_address(const skb_frag_t *frag)
3168{
7240b60c 3169 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
131ea667
IC
3170}
3171
3172/**
3173 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3174 * @frag: the paged fragment buffer
3175 *
3176 * Returns the address of the data within @frag. Checks that the page
3177 * is mapped and returns %NULL otherwise.
3178 */
3179static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3180{
3181 void *ptr = page_address(skb_frag_page(frag));
3182 if (unlikely(!ptr))
3183 return NULL;
3184
7240b60c
JL
3185 return ptr + skb_frag_off(frag);
3186}
3187
3188/**
3189 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3190 * @fragto: skb fragment where page is set
3191 * @fragfrom: skb fragment page is copied from
3192 */
3193static inline void skb_frag_page_copy(skb_frag_t *fragto,
3194 const skb_frag_t *fragfrom)
3195{
3196 fragto->bv_page = fragfrom->bv_page;
131ea667
IC
3197}
3198
3199/**
3200 * __skb_frag_set_page - sets the page contained in a paged fragment
3201 * @frag: the paged fragment
3202 * @page: the page to set
3203 *
3204 * Sets the fragment @frag to contain @page.
3205 */
3206static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3207{
1dfa5bd3 3208 frag->bv_page = page;
131ea667
IC
3209}
3210
3211/**
3212 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3213 * @skb: the buffer
3214 * @f: the fragment offset
3215 * @page: the page to set
3216 *
3217 * Sets the @f'th fragment of @skb to contain @page.
3218 */
3219static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3220 struct page *page)
3221{
3222 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3223}
3224
400dfd3a
ED
3225bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3226
131ea667
IC
3227/**
3228 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 3229 * @dev: the device to map the fragment to
131ea667
IC
3230 * @frag: the paged fragment to map
3231 * @offset: the offset within the fragment (starting at the
3232 * fragment's own offset)
3233 * @size: the number of bytes to map
771b00a8 3234 * @dir: the direction of the mapping (``PCI_DMA_*``)
131ea667
IC
3235 *
3236 * Maps the page associated with @frag to @device.
3237 */
3238static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3239 const skb_frag_t *frag,
3240 size_t offset, size_t size,
3241 enum dma_data_direction dir)
3242{
3243 return dma_map_page(dev, skb_frag_page(frag),
7240b60c 3244 skb_frag_off(frag) + offset, size, dir);
131ea667
IC
3245}
3246
117632e6
ED
3247static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3248 gfp_t gfp_mask)
3249{
3250 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3251}
3252
bad93e9d
OP
3253
3254static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3255 gfp_t gfp_mask)
3256{
3257 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3258}
3259
3260
334a8132
PM
3261/**
3262 * skb_clone_writable - is the header of a clone writable
3263 * @skb: buffer to check
3264 * @len: length up to which to write
3265 *
3266 * Returns true if modifying the header part of the cloned buffer
3267 * does not requires the data to be copied.
3268 */
05bdd2f1 3269static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
3270{
3271 return !skb_header_cloned(skb) &&
3272 skb_headroom(skb) + len <= skb->hdr_len;
3273}
3274
3697649f
DB
3275static inline int skb_try_make_writable(struct sk_buff *skb,
3276 unsigned int write_len)
3277{
3278 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3279 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3280}
3281
d9cc2048
HX
3282static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3283 int cloned)
3284{
3285 int delta = 0;
3286
d9cc2048
HX
3287 if (headroom > skb_headroom(skb))
3288 delta = headroom - skb_headroom(skb);
3289
3290 if (delta || cloned)
3291 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3292 GFP_ATOMIC);
3293 return 0;
3294}
3295
1da177e4
LT
3296/**
3297 * skb_cow - copy header of skb when it is required
3298 * @skb: buffer to cow
3299 * @headroom: needed headroom
3300 *
3301 * If the skb passed lacks sufficient headroom or its data part
3302 * is shared, data is reallocated. If reallocation fails, an error
3303 * is returned and original skb is not changed.
3304 *
3305 * The result is skb with writable area skb->head...skb->tail
3306 * and at least @headroom of space at head.
3307 */
3308static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3309{
d9cc2048
HX
3310 return __skb_cow(skb, headroom, skb_cloned(skb));
3311}
1da177e4 3312
d9cc2048
HX
3313/**
3314 * skb_cow_head - skb_cow but only making the head writable
3315 * @skb: buffer to cow
3316 * @headroom: needed headroom
3317 *
3318 * This function is identical to skb_cow except that we replace the
3319 * skb_cloned check by skb_header_cloned. It should be used when
3320 * you only need to push on some header and do not need to modify
3321 * the data.
3322 */
3323static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3324{
3325 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
3326}
3327
3328/**
3329 * skb_padto - pad an skbuff up to a minimal size
3330 * @skb: buffer to pad
3331 * @len: minimal length
3332 *
3333 * Pads up a buffer to ensure the trailing bytes exist and are
3334 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
3335 * is untouched. Otherwise it is extended. Returns zero on
3336 * success. The skb is freed on error.
1da177e4 3337 */
5b057c6b 3338static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
3339{
3340 unsigned int size = skb->len;
3341 if (likely(size >= len))
5b057c6b 3342 return 0;
987c402a 3343 return skb_pad(skb, len - size);
1da177e4
LT
3344}
3345
9c0c1124 3346/**
4ea7b0cf 3347 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
9c0c1124
AD
3348 * @skb: buffer to pad
3349 * @len: minimal length
cd0a137a 3350 * @free_on_error: free buffer on error
9c0c1124
AD
3351 *
3352 * Pads up a buffer to ensure the trailing bytes exist and are
3353 * blanked. If the buffer already contains sufficient data it
3354 * is untouched. Otherwise it is extended. Returns zero on
cd0a137a 3355 * success. The skb is freed on error if @free_on_error is true.
9c0c1124 3356 */
4a009cb0
ED
3357static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3358 unsigned int len,
3359 bool free_on_error)
9c0c1124
AD
3360{
3361 unsigned int size = skb->len;
3362
3363 if (unlikely(size < len)) {
3364 len -= size;
cd0a137a 3365 if (__skb_pad(skb, len, free_on_error))
9c0c1124
AD
3366 return -ENOMEM;
3367 __skb_put(skb, len);
3368 }
3369 return 0;
3370}
3371
cd0a137a
FF
3372/**
3373 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3374 * @skb: buffer to pad
3375 * @len: minimal length
3376 *
3377 * Pads up a buffer to ensure the trailing bytes exist and are
3378 * blanked. If the buffer already contains sufficient data it
3379 * is untouched. Otherwise it is extended. Returns zero on
3380 * success. The skb is freed on error.
3381 */
4a009cb0 3382static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
cd0a137a
FF
3383{
3384 return __skb_put_padto(skb, len, true);
3385}
3386
1da177e4 3387static inline int skb_add_data(struct sk_buff *skb,
af2b040e 3388 struct iov_iter *from, int copy)
1da177e4
LT
3389{
3390 const int off = skb->len;
3391
3392 if (skb->ip_summed == CHECKSUM_NONE) {
af2b040e 3393 __wsum csum = 0;
15e6cb46
AV
3394 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3395 &csum, from)) {
1da177e4
LT
3396 skb->csum = csum_block_add(skb->csum, csum, off);
3397 return 0;
3398 }
15e6cb46 3399 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
1da177e4
LT
3400 return 0;
3401
3402 __skb_trim(skb, off);
3403 return -EFAULT;
3404}
3405
38ba0a65
ED
3406static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3407 const struct page *page, int off)
1da177e4 3408{
1f8b977a
WB
3409 if (skb_zcopy(skb))
3410 return false;
1da177e4 3411 if (i) {
d8e18a51 3412 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 3413
ea2ab693 3414 return page == skb_frag_page(frag) &&
7240b60c 3415 off == skb_frag_off(frag) + skb_frag_size(frag);
1da177e4 3416 }
38ba0a65 3417 return false;
1da177e4
LT
3418}
3419
364c6bad
HX
3420static inline int __skb_linearize(struct sk_buff *skb)
3421{
3422 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3423}
3424
1da177e4
LT
3425/**
3426 * skb_linearize - convert paged skb to linear one
3427 * @skb: buffer to linarize
1da177e4
LT
3428 *
3429 * If there is no free memory -ENOMEM is returned, otherwise zero
3430 * is returned and the old skb data released.
3431 */
364c6bad
HX
3432static inline int skb_linearize(struct sk_buff *skb)
3433{
3434 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3435}
3436
cef401de
ED
3437/**
3438 * skb_has_shared_frag - can any frag be overwritten
3439 * @skb: buffer to test
3440 *
3441 * Return true if the skb has at least one frag that might be modified
3442 * by an external entity (as in vmsplice()/sendfile())
3443 */
3444static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3445{
c9af6db4 3446 return skb_is_nonlinear(skb) &&
06b4feb3 3447 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
cef401de
ED
3448}
3449
364c6bad
HX
3450/**
3451 * skb_linearize_cow - make sure skb is linear and writable
3452 * @skb: buffer to process
3453 *
3454 * If there is no free memory -ENOMEM is returned, otherwise zero
3455 * is returned and the old skb data released.
3456 */
3457static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 3458{
364c6bad
HX
3459 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3460 __skb_linearize(skb) : 0;
1da177e4
LT
3461}
3462
479ffccc
DB
3463static __always_inline void
3464__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3465 unsigned int off)
3466{
3467 if (skb->ip_summed == CHECKSUM_COMPLETE)
3468 skb->csum = csum_block_sub(skb->csum,
3469 csum_partial(start, len, 0), off);
3470 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3471 skb_checksum_start_offset(skb) < 0)
3472 skb->ip_summed = CHECKSUM_NONE;
3473}
3474
1da177e4
LT
3475/**
3476 * skb_postpull_rcsum - update checksum for received skb after pull
3477 * @skb: buffer to update
3478 * @start: start of data before pull
3479 * @len: length of data pulled
3480 *
3481 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
3482 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3483 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4 3484 */
1da177e4 3485static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 3486 const void *start, unsigned int len)
1da177e4 3487{
29c30026
ED
3488 if (skb->ip_summed == CHECKSUM_COMPLETE)
3489 skb->csum = ~csum_partial(start, len, ~skb->csum);
3490 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3491 skb_checksum_start_offset(skb) < 0)
3492 skb->ip_summed = CHECKSUM_NONE;
1da177e4
LT
3493}
3494
479ffccc
DB
3495static __always_inline void
3496__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3497 unsigned int off)
3498{
3499 if (skb->ip_summed == CHECKSUM_COMPLETE)
3500 skb->csum = csum_block_add(skb->csum,
3501 csum_partial(start, len, 0), off);
3502}
cbb042f9 3503
479ffccc
DB
3504/**
3505 * skb_postpush_rcsum - update checksum for received skb after push
3506 * @skb: buffer to update
3507 * @start: start of data after push
3508 * @len: length of data pushed
3509 *
3510 * After doing a push on a received packet, you need to call this to
3511 * update the CHECKSUM_COMPLETE checksum.
3512 */
f8ffad69
DB
3513static inline void skb_postpush_rcsum(struct sk_buff *skb,
3514 const void *start, unsigned int len)
3515{
479ffccc 3516 __skb_postpush_rcsum(skb, start, len, 0);
f8ffad69
DB
3517}
3518
af72868b 3519void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
479ffccc 3520
82a31b92
WC
3521/**
3522 * skb_push_rcsum - push skb and update receive checksum
3523 * @skb: buffer to update
3524 * @len: length of data pulled
3525 *
3526 * This function performs an skb_push on the packet and updates
3527 * the CHECKSUM_COMPLETE checksum. It should be used on
3528 * receive path processing instead of skb_push unless you know
3529 * that the checksum difference is zero (e.g., a valid IP header)
3530 * or you are setting ip_summed to CHECKSUM_NONE.
3531 */
d58ff351 3532static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
82a31b92
WC
3533{
3534 skb_push(skb, len);
3535 skb_postpush_rcsum(skb, skb->data, len);
3536 return skb->data;
3537}
3538
88078d98 3539int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
7ce5a27f
DM
3540/**
3541 * pskb_trim_rcsum - trim received skb and update checksum
3542 * @skb: buffer to trim
3543 * @len: new length
3544 *
3545 * This is exactly the same as pskb_trim except that it ensures the
3546 * checksum of received packets are still valid after the operation.
6c57f045 3547 * It can change skb pointers.
7ce5a27f
DM
3548 */
3549
3550static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3551{
3552 if (likely(len >= skb->len))
3553 return 0;
88078d98 3554 return pskb_trim_rcsum_slow(skb, len);
7ce5a27f
DM
3555}
3556
5293efe6
DB
3557static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3558{
3559 if (skb->ip_summed == CHECKSUM_COMPLETE)
3560 skb->ip_summed = CHECKSUM_NONE;
3561 __skb_trim(skb, len);
3562 return 0;
3563}
3564
3565static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3566{
3567 if (skb->ip_summed == CHECKSUM_COMPLETE)
3568 skb->ip_summed = CHECKSUM_NONE;
3569 return __skb_grow(skb, len);
3570}
3571
18a4c0ea
ED
3572#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3573#define skb_rb_first(root) rb_to_skb(rb_first(root))
3574#define skb_rb_last(root) rb_to_skb(rb_last(root))
3575#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3576#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3577
1da177e4
LT
3578#define skb_queue_walk(queue, skb) \
3579 for (skb = (queue)->next; \
a1e4891f 3580 skb != (struct sk_buff *)(queue); \
1da177e4
LT
3581 skb = skb->next)
3582
46f8914e
JC
3583#define skb_queue_walk_safe(queue, skb, tmp) \
3584 for (skb = (queue)->next, tmp = skb->next; \
3585 skb != (struct sk_buff *)(queue); \
3586 skb = tmp, tmp = skb->next)
3587
1164f52a 3588#define skb_queue_walk_from(queue, skb) \
a1e4891f 3589 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
3590 skb = skb->next)
3591
18a4c0ea
ED
3592#define skb_rbtree_walk(skb, root) \
3593 for (skb = skb_rb_first(root); skb != NULL; \
3594 skb = skb_rb_next(skb))
3595
3596#define skb_rbtree_walk_from(skb) \
3597 for (; skb != NULL; \
3598 skb = skb_rb_next(skb))
3599
3600#define skb_rbtree_walk_from_safe(skb, tmp) \
3601 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3602 skb = tmp)
3603
1164f52a
DM
3604#define skb_queue_walk_from_safe(queue, skb, tmp) \
3605 for (tmp = skb->next; \
3606 skb != (struct sk_buff *)(queue); \
3607 skb = tmp, tmp = skb->next)
3608
300ce174
SH
3609#define skb_queue_reverse_walk(queue, skb) \
3610 for (skb = (queue)->prev; \
a1e4891f 3611 skb != (struct sk_buff *)(queue); \
300ce174
SH
3612 skb = skb->prev)
3613
686a2955
DM
3614#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3615 for (skb = (queue)->prev, tmp = skb->prev; \
3616 skb != (struct sk_buff *)(queue); \
3617 skb = tmp, tmp = skb->prev)
3618
3619#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3620 for (tmp = skb->prev; \
3621 skb != (struct sk_buff *)(queue); \
3622 skb = tmp, tmp = skb->prev)
1da177e4 3623
21dc3301 3624static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
3625{
3626 return skb_shinfo(skb)->frag_list != NULL;
3627}
3628
3629static inline void skb_frag_list_init(struct sk_buff *skb)
3630{
3631 skb_shinfo(skb)->frag_list = NULL;
3632}
3633
ee039871
DM
3634#define skb_walk_frags(skb, iter) \
3635 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3636
ea3793ee 3637
b50b0580
SD
3638int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3639 int *err, long *timeo_p,
ea3793ee 3640 const struct sk_buff *skb);
65101aec
PA
3641struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3642 struct sk_buff_head *queue,
3643 unsigned int flags,
fd69c399 3644 int *off, int *err,
65101aec 3645 struct sk_buff **last);
b50b0580
SD
3646struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3647 struct sk_buff_head *queue,
e427cad6 3648 unsigned int flags, int *off, int *err,
ea3793ee 3649 struct sk_buff **last);
b50b0580
SD
3650struct sk_buff *__skb_recv_datagram(struct sock *sk,
3651 struct sk_buff_head *sk_queue,
e427cad6 3652 unsigned int flags, int *off, int *err);
7965bd4d
JP
3653struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3654 int *err);
a11e1d43
LT
3655__poll_t datagram_poll(struct file *file, struct socket *sock,
3656 struct poll_table_struct *wait);
c0371da6
AV
3657int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3658 struct iov_iter *to, int size);
51f3d02b
DM
3659static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3660 struct msghdr *msg, int size)
3661{
e5a4b0bb 3662 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
227158db 3663}
e5a4b0bb
AV
3664int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3665 struct msghdr *msg);
65d69e25
SG
3666int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3667 struct iov_iter *to, int len,
3668 struct ahash_request *hash);
3a654f97
AV
3669int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3670 struct iov_iter *from, int len);
3a654f97 3671int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
7965bd4d 3672void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
627d2d6b 3673void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3674static inline void skb_free_datagram_locked(struct sock *sk,
3675 struct sk_buff *skb)
3676{
3677 __skb_free_datagram_locked(sk, skb, 0);
3678}
7965bd4d 3679int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
3680int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3681int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3682__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
8d5930df 3683 int len);
a60e3cc7 3684int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
7965bd4d 3685 struct pipe_inode_info *pipe, unsigned int len,
25869262 3686 unsigned int flags);
20bf50de
TH
3687int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3688 int len);
0739cd28 3689int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
7965bd4d 3690void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 3691unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
3692int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3693 int len, int hlen);
7965bd4d
JP
3694void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3695int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3696void skb_scrub_packet(struct sk_buff *skb, bool xnet);
779b7931 3697bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
2b16f048 3698bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
7965bd4d 3699struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3a1296a3
SK
3700struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3701 unsigned int offset);
0d5501c1 3702struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
e2195121 3703int skb_ensure_writable(struct sk_buff *skb, int write_len);
bfca4c52 3704int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
93515d53
JP
3705int skb_vlan_pop(struct sk_buff *skb);
3706int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
19fbcb36
GN
3707int skb_eth_pop(struct sk_buff *skb);
3708int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3709 const unsigned char *src);
fa4e0f88 3710int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
d04ac224 3711 int mac_len, bool ethernet);
040b5cfb
MV
3712int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3713 bool ethernet);
d27cf5c5 3714int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
2a2ea508 3715int skb_mpls_dec_ttl(struct sk_buff *skb);
6fa01ccd
SV
3716struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3717 gfp_t gfp);
20380731 3718
6ce8e9ce
AV
3719static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3720{
3073f070 3721 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
6ce8e9ce
AV
3722}
3723
7eab8d9e
AV
3724static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3725{
e5a4b0bb 3726 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
7eab8d9e
AV
3727}
3728
2817a336
DB
3729struct skb_checksum_ops {
3730 __wsum (*update)(const void *mem, int len, __wsum wsum);
3731 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3732};
3733
9617813d
DC
3734extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3735
2817a336
DB
3736__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3737 __wsum csum, const struct skb_checksum_ops *ops);
3738__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3739 __wsum csum);
3740
1e98a0f0 3741static inline void * __must_check
e3305138
AL
3742__skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3743 const void *data, int hlen, void *buffer)
1da177e4 3744{
d206121f 3745 if (likely(hlen - offset >= len))
e3305138 3746 return (void *)data + offset;
1da177e4 3747
d206121f 3748 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
1da177e4
LT
3749 return NULL;
3750
3751 return buffer;
3752}
3753
1e98a0f0
ED
3754static inline void * __must_check
3755skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
690e36e7
DM
3756{
3757 return __skb_header_pointer(skb, offset, len, skb->data,
3758 skb_headlen(skb), buffer);
3759}
3760
4262e5cc
DB
3761/**
3762 * skb_needs_linearize - check if we need to linearize a given skb
3763 * depending on the given device features.
3764 * @skb: socket buffer to check
3765 * @features: net device features
3766 *
3767 * Returns true if either:
3768 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3769 * 2. skb is fragmented and the device does not support SG.
3770 */
3771static inline bool skb_needs_linearize(struct sk_buff *skb,
3772 netdev_features_t features)
3773{
3774 return skb_is_nonlinear(skb) &&
3775 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3776 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3777}
3778
d626f62b
ACM
3779static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3780 void *to,
3781 const unsigned int len)
3782{
3783 memcpy(to, skb->data, len);
3784}
3785
3786static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3787 const int offset, void *to,
3788 const unsigned int len)
3789{
3790 memcpy(to, skb->data + offset, len);
3791}
3792
27d7ff46
ACM
3793static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3794 const void *from,
3795 const unsigned int len)
3796{
3797 memcpy(skb->data, from, len);
3798}
3799
3800static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3801 const int offset,
3802 const void *from,
3803 const unsigned int len)
3804{
3805 memcpy(skb->data + offset, from, len);
3806}
3807
7965bd4d 3808void skb_init(void);
1da177e4 3809
ac45f602
PO
3810static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3811{
3812 return skb->tstamp;
3813}
3814
a61bbcf2
PM
3815/**
3816 * skb_get_timestamp - get timestamp from a skb
3817 * @skb: skb to get stamp from
13c6ee2a 3818 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
a61bbcf2
PM
3819 *
3820 * Timestamps are stored in the skb as offsets to a base timestamp.
3821 * This function converts the offset back to a struct timeval and stores
3822 * it in stamp.
3823 */
ac45f602 3824static inline void skb_get_timestamp(const struct sk_buff *skb,
13c6ee2a 3825 struct __kernel_old_timeval *stamp)
a61bbcf2 3826{
13c6ee2a 3827 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
a61bbcf2
PM
3828}
3829
887feae3
DD
3830static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3831 struct __kernel_sock_timeval *stamp)
3832{
3833 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3834
3835 stamp->tv_sec = ts.tv_sec;
3836 stamp->tv_usec = ts.tv_nsec / 1000;
3837}
3838
ac45f602 3839static inline void skb_get_timestampns(const struct sk_buff *skb,
df1b4ba9 3840 struct __kernel_old_timespec *stamp)
ac45f602 3841{
df1b4ba9
AB
3842 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3843
3844 stamp->tv_sec = ts.tv_sec;
3845 stamp->tv_nsec = ts.tv_nsec;
ac45f602
PO
3846}
3847
887feae3
DD
3848static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3849 struct __kernel_timespec *stamp)
3850{
3851 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3852
3853 stamp->tv_sec = ts.tv_sec;
3854 stamp->tv_nsec = ts.tv_nsec;
3855}
3856
b7aa0bf7 3857static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 3858{
b7aa0bf7 3859 skb->tstamp = ktime_get_real();
a61bbcf2
PM
3860}
3861
164891aa
SH
3862static inline ktime_t net_timedelta(ktime_t t)
3863{
3864 return ktime_sub(ktime_get_real(), t);
3865}
3866
b9ce204f
IJ
3867static inline ktime_t net_invalid_timestamp(void)
3868{
8b0e1953 3869 return 0;
b9ce204f 3870}
a61bbcf2 3871
de8f3a83
DB
3872static inline u8 skb_metadata_len(const struct sk_buff *skb)
3873{
3874 return skb_shinfo(skb)->meta_len;
3875}
3876
3877static inline void *skb_metadata_end(const struct sk_buff *skb)
3878{
3879 return skb_mac_header(skb);
3880}
3881
3882static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3883 const struct sk_buff *skb_b,
3884 u8 meta_len)
3885{
3886 const void *a = skb_metadata_end(skb_a);
3887 const void *b = skb_metadata_end(skb_b);
3888 /* Using more efficient varaiant than plain call to memcmp(). */
3889#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3890 u64 diffs = 0;
3891
3892 switch (meta_len) {
3893#define __it(x, op) (x -= sizeof(u##op))
3894#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3895 case 32: diffs |= __it_diff(a, b, 64);
df561f66 3896 fallthrough;
de8f3a83 3897 case 24: diffs |= __it_diff(a, b, 64);
df561f66 3898 fallthrough;
de8f3a83 3899 case 16: diffs |= __it_diff(a, b, 64);
df561f66 3900 fallthrough;
de8f3a83
DB
3901 case 8: diffs |= __it_diff(a, b, 64);
3902 break;
3903 case 28: diffs |= __it_diff(a, b, 64);
df561f66 3904 fallthrough;
de8f3a83 3905 case 20: diffs |= __it_diff(a, b, 64);
df561f66 3906 fallthrough;
de8f3a83 3907 case 12: diffs |= __it_diff(a, b, 64);
df561f66 3908 fallthrough;
de8f3a83
DB
3909 case 4: diffs |= __it_diff(a, b, 32);
3910 break;
3911 }
3912 return diffs;
3913#else
3914 return memcmp(a - meta_len, b - meta_len, meta_len);
3915#endif
3916}
3917
3918static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3919 const struct sk_buff *skb_b)
3920{
3921 u8 len_a = skb_metadata_len(skb_a);
3922 u8 len_b = skb_metadata_len(skb_b);
3923
3924 if (!(len_a | len_b))
3925 return false;
3926
3927 return len_a != len_b ?
3928 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3929}
3930
3931static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3932{
3933 skb_shinfo(skb)->meta_len = meta_len;
3934}
3935
3936static inline void skb_metadata_clear(struct sk_buff *skb)
3937{
3938 skb_metadata_set(skb, 0);
3939}
3940
62bccb8c
AD
3941struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3942
c1f19b51
RC
3943#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3944
7965bd4d
JP
3945void skb_clone_tx_timestamp(struct sk_buff *skb);
3946bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
3947
3948#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3949
3950static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3951{
3952}
3953
3954static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3955{
3956 return false;
3957}
3958
3959#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3960
3961/**
3962 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3963 *
da92b194
RC
3964 * PHY drivers may accept clones of transmitted packets for
3965 * timestamping via their phy_driver.txtstamp method. These drivers
7a76a021
BP
3966 * must call this function to return the skb back to the stack with a
3967 * timestamp.
da92b194 3968 *
2ff17117 3969 * @skb: clone of the original outgoing packet
7a76a021 3970 * @hwtstamps: hardware time stamps
c1f19b51
RC
3971 *
3972 */
3973void skb_complete_tx_timestamp(struct sk_buff *skb,
3974 struct skb_shared_hwtstamps *hwtstamps);
3975
e7ed11ee 3976void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
e7fd2885
WB
3977 struct skb_shared_hwtstamps *hwtstamps,
3978 struct sock *sk, int tstype);
3979
ac45f602
PO
3980/**
3981 * skb_tstamp_tx - queue clone of skb with send time stamps
3982 * @orig_skb: the original outgoing packet
3983 * @hwtstamps: hardware time stamps, may be NULL if not available
3984 *
3985 * If the skb has a socket associated, then this function clones the
3986 * skb (thus sharing the actual data and optional structures), stores
3987 * the optional hardware time stamping information (if non NULL) or
3988 * generates a software time stamp (otherwise), then queues the clone
3989 * to the error queue of the socket. Errors are silently ignored.
3990 */
7965bd4d
JP
3991void skb_tstamp_tx(struct sk_buff *orig_skb,
3992 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 3993
4507a715
RC
3994/**
3995 * skb_tx_timestamp() - Driver hook for transmit timestamping
3996 *
3997 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 3998 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 3999 *
73409f3b
DM
4000 * Specifically, one should make absolutely sure that this function is
4001 * called before TX completion of this packet can trigger. Otherwise
4002 * the packet could potentially already be freed.
4003 *
4507a715
RC
4004 * @skb: A socket buffer.
4005 */
4006static inline void skb_tx_timestamp(struct sk_buff *skb)
4007{
c1f19b51 4008 skb_clone_tx_timestamp(skb);
b50a5c70
ML
4009 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4010 skb_tstamp_tx(skb, NULL);
4507a715
RC
4011}
4012
6e3e939f
JB
4013/**
4014 * skb_complete_wifi_ack - deliver skb with wifi status
4015 *
4016 * @skb: the original outgoing packet
4017 * @acked: ack status
4018 *
4019 */
4020void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4021
7965bd4d
JP
4022__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4023__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 4024
60476372
HX
4025static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4026{
6edec0e6
TH
4027 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4028 skb->csum_valid ||
4029 (skb->ip_summed == CHECKSUM_PARTIAL &&
4030 skb_checksum_start_offset(skb) >= 0));
60476372
HX
4031}
4032
fb286bb2
HX
4033/**
4034 * skb_checksum_complete - Calculate checksum of an entire packet
4035 * @skb: packet to process
4036 *
4037 * This function calculates the checksum over the entire packet plus
4038 * the value of skb->csum. The latter can be used to supply the
4039 * checksum of a pseudo header as used by TCP/UDP. It returns the
4040 * checksum.
4041 *
4042 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
4043 * this function can be used to verify that checksum on received
4044 * packets. In that case the function should return zero if the
4045 * checksum is correct. In particular, this function will return zero
4046 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4047 * hardware has already verified the correctness of the checksum.
4048 */
4381ca3c 4049static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 4050{
60476372
HX
4051 return skb_csum_unnecessary(skb) ?
4052 0 : __skb_checksum_complete(skb);
fb286bb2
HX
4053}
4054
77cffe23
TH
4055static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4056{
4057 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4058 if (skb->csum_level == 0)
4059 skb->ip_summed = CHECKSUM_NONE;
4060 else
4061 skb->csum_level--;
4062 }
4063}
4064
4065static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4066{
4067 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4068 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4069 skb->csum_level++;
4070 } else if (skb->ip_summed == CHECKSUM_NONE) {
4071 skb->ip_summed = CHECKSUM_UNNECESSARY;
4072 skb->csum_level = 0;
4073 }
4074}
4075
836e66c2
DB
4076static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4077{
4078 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4079 skb->ip_summed = CHECKSUM_NONE;
4080 skb->csum_level = 0;
4081 }
4082}
4083
76ba0aae
TH
4084/* Check if we need to perform checksum complete validation.
4085 *
4086 * Returns true if checksum complete is needed, false otherwise
4087 * (either checksum is unnecessary or zero checksum is allowed).
4088 */
4089static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4090 bool zero_okay,
4091 __sum16 check)
4092{
5d0c2b95
TH
4093 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4094 skb->csum_valid = 1;
77cffe23 4095 __skb_decr_checksum_unnecessary(skb);
76ba0aae
TH
4096 return false;
4097 }
4098
4099 return true;
4100}
4101
da279887 4102/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
76ba0aae
TH
4103 * in checksum_init.
4104 */
4105#define CHECKSUM_BREAK 76
4106
4e18b9ad
TH
4107/* Unset checksum-complete
4108 *
4109 * Unset checksum complete can be done when packet is being modified
4110 * (uncompressed for instance) and checksum-complete value is
4111 * invalidated.
4112 */
4113static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4114{
4115 if (skb->ip_summed == CHECKSUM_COMPLETE)
4116 skb->ip_summed = CHECKSUM_NONE;
4117}
4118
76ba0aae
TH
4119/* Validate (init) checksum based on checksum complete.
4120 *
4121 * Return values:
4122 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
4123 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4124 * checksum is stored in skb->csum for use in __skb_checksum_complete
4125 * non-zero: value of invalid checksum
4126 *
4127 */
4128static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4129 bool complete,
4130 __wsum psum)
4131{
4132 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4133 if (!csum_fold(csum_add(psum, skb->csum))) {
5d0c2b95 4134 skb->csum_valid = 1;
76ba0aae
TH
4135 return 0;
4136 }
4137 }
4138
4139 skb->csum = psum;
4140
5d0c2b95
TH
4141 if (complete || skb->len <= CHECKSUM_BREAK) {
4142 __sum16 csum;
4143
4144 csum = __skb_checksum_complete(skb);
4145 skb->csum_valid = !csum;
4146 return csum;
4147 }
76ba0aae
TH
4148
4149 return 0;
4150}
4151
4152static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4153{
4154 return 0;
4155}
4156
4157/* Perform checksum validate (init). Note that this is a macro since we only
4158 * want to calculate the pseudo header which is an input function if necessary.
4159 * First we try to validate without any computation (checksum unnecessary) and
4160 * then calculate based on checksum complete calling the function to compute
4161 * pseudo header.
4162 *
4163 * Return values:
4164 * 0: checksum is validated or try to in skb_checksum_complete
4165 * non-zero: value of invalid checksum
4166 */
4167#define __skb_checksum_validate(skb, proto, complete, \
4168 zero_okay, check, compute_pseudo) \
4169({ \
4170 __sum16 __ret = 0; \
5d0c2b95 4171 skb->csum_valid = 0; \
76ba0aae
TH
4172 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4173 __ret = __skb_checksum_validate_complete(skb, \
4174 complete, compute_pseudo(skb, proto)); \
4175 __ret; \
4176})
4177
4178#define skb_checksum_init(skb, proto, compute_pseudo) \
4179 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4180
4181#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4182 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4183
4184#define skb_checksum_validate(skb, proto, compute_pseudo) \
4185 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4186
4187#define skb_checksum_validate_zero_check(skb, proto, check, \
4188 compute_pseudo) \
096a4cfa 4189 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
76ba0aae
TH
4190
4191#define skb_checksum_simple_validate(skb) \
4192 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4193
d96535a1
TH
4194static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4195{
219f1d79 4196 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
d96535a1
TH
4197}
4198
e4aa33ad 4199static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
d96535a1
TH
4200{
4201 skb->csum = ~pseudo;
4202 skb->ip_summed = CHECKSUM_COMPLETE;
4203}
4204
e4aa33ad 4205#define skb_checksum_try_convert(skb, proto, compute_pseudo) \
d96535a1
TH
4206do { \
4207 if (__skb_checksum_convert_check(skb)) \
e4aa33ad 4208 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
d96535a1
TH
4209} while (0)
4210
15e2396d
TH
4211static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4212 u16 start, u16 offset)
4213{
4214 skb->ip_summed = CHECKSUM_PARTIAL;
4215 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4216 skb->csum_offset = offset - start;
4217}
4218
dcdc8994
TH
4219/* Update skbuf and packet to reflect the remote checksum offload operation.
4220 * When called, ptr indicates the starting point for skb->csum when
4221 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4222 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4223 */
4224static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
15e2396d 4225 int start, int offset, bool nopartial)
dcdc8994
TH
4226{
4227 __wsum delta;
4228
15e2396d
TH
4229 if (!nopartial) {
4230 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4231 return;
4232 }
4233
10a2308f 4234 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
dcdc8994
TH
4235 __skb_checksum_complete(skb);
4236 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4237 }
4238
4239 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4240
4241 /* Adjust skb->csum since we changed the packet */
4242 skb->csum = csum_add(skb->csum, delta);
4243}
4244
cb9c6836
FW
4245static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4246{
4247#if IS_ENABLED(CONFIG_NF_CONNTRACK)
261db6c2 4248 return (void *)(skb->_nfct & NFCT_PTRMASK);
cb9c6836
FW
4249#else
4250 return NULL;
4251#endif
4252}
4253
261db6c2 4254static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
1da177e4 4255{
261db6c2
JS
4256#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4257 return skb->_nfct;
4258#else
4259 return 0UL;
4260#endif
1da177e4 4261}
261db6c2
JS
4262
4263static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
1da177e4 4264{
261db6c2 4265#if IS_ENABLED(CONFIG_NF_CONNTRACK)
5fc88f93 4266 skb->slow_gro |= !!nfct;
261db6c2 4267 skb->_nfct = nfct;
2fc72c7b 4268#endif
261db6c2 4269}
df5042f4
FW
4270
4271#ifdef CONFIG_SKB_EXTENSIONS
4272enum skb_ext_id {
4273#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4274 SKB_EXT_BRIDGE_NF,
4165079b
FW
4275#endif
4276#ifdef CONFIG_XFRM
4277 SKB_EXT_SEC_PATH,
95a7233c
PB
4278#endif
4279#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4280 TC_SKB_EXT,
3ee17bc7
MM
4281#endif
4282#if IS_ENABLED(CONFIG_MPTCP)
4283 SKB_EXT_MPTCP,
78476d31
JK
4284#endif
4285#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4286 SKB_EXT_MCTP,
df5042f4
FW
4287#endif
4288 SKB_EXT_NUM, /* must be last */
4289};
4290
4291/**
4292 * struct skb_ext - sk_buff extensions
4293 * @refcnt: 1 on allocation, deallocated on 0
4294 * @offset: offset to add to @data to obtain extension address
4295 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4296 * @data: start of extension data, variable sized
4297 *
4298 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4299 * to use 'u8' types while allowing up to 2kb worth of extension data.
4300 */
4301struct skb_ext {
4302 refcount_t refcnt;
4303 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4304 u8 chunks; /* same */
5c91aa1d 4305 char data[] __aligned(8);
df5042f4
FW
4306};
4307
4930f483 4308struct skb_ext *__skb_ext_alloc(gfp_t flags);
8b69a803
PA
4309void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4310 struct skb_ext *ext);
df5042f4
FW
4311void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4312void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4313void __skb_ext_put(struct skb_ext *ext);
4314
4315static inline void skb_ext_put(struct sk_buff *skb)
4316{
4317 if (skb->active_extensions)
4318 __skb_ext_put(skb->extensions);
4319}
4320
df5042f4
FW
4321static inline void __skb_ext_copy(struct sk_buff *dst,
4322 const struct sk_buff *src)
4323{
4324 dst->active_extensions = src->active_extensions;
4325
4326 if (src->active_extensions) {
4327 struct skb_ext *ext = src->extensions;
4328
4329 refcount_inc(&ext->refcnt);
4330 dst->extensions = ext;
4331 }
4332}
4333
4334static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4335{
4336 skb_ext_put(dst);
4337 __skb_ext_copy(dst, src);
4338}
4339
4340static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4341{
4342 return !!ext->offset[i];
4343}
4344
4345static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4346{
4347 return skb->active_extensions & (1 << id);
4348}
4349
4350static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4351{
4352 if (skb_ext_exist(skb, id))
4353 __skb_ext_del(skb, id);
4354}
4355
4356static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4357{
4358 if (skb_ext_exist(skb, id)) {
4359 struct skb_ext *ext = skb->extensions;
4360
4361 return (void *)ext + (ext->offset[id] << 3);
4362 }
4363
4364 return NULL;
4365}
174e2381
FW
4366
4367static inline void skb_ext_reset(struct sk_buff *skb)
4368{
4369 if (unlikely(skb->active_extensions)) {
4370 __skb_ext_put(skb->extensions);
4371 skb->active_extensions = 0;
4372 }
4373}
677bf08c
FW
4374
4375static inline bool skb_has_extensions(struct sk_buff *skb)
4376{
4377 return unlikely(skb->active_extensions);
4378}
df5042f4
FW
4379#else
4380static inline void skb_ext_put(struct sk_buff *skb) {}
174e2381 4381static inline void skb_ext_reset(struct sk_buff *skb) {}
df5042f4
FW
4382static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4383static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4384static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
677bf08c 4385static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
df5042f4
FW
4386#endif /* CONFIG_SKB_EXTENSIONS */
4387
895b5c9f 4388static inline void nf_reset_ct(struct sk_buff *skb)
a193a4ab 4389{
5f79e0f9 4390#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
4391 nf_conntrack_put(skb_nfct(skb));
4392 skb->_nfct = 0;
2fc72c7b 4393#endif
a193a4ab
PM
4394}
4395
124dff01
PM
4396static inline void nf_reset_trace(struct sk_buff *skb)
4397{
478b360a 4398#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
130549fe
G
4399 skb->nf_trace = 0;
4400#endif
a193a4ab
PM
4401}
4402
2b5ec1a5
YY
4403static inline void ipvs_reset(struct sk_buff *skb)
4404{
4405#if IS_ENABLED(CONFIG_IP_VS)
4406 skb->ipvs_property = 0;
4407#endif
4408}
4409
de8bda1d 4410/* Note: This doesn't put any conntrack info in dst. */
b1937227
ED
4411static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4412 bool copy)
edda553c 4413{
5f79e0f9 4414#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
4415 dst->_nfct = src->_nfct;
4416 nf_conntrack_get(skb_nfct(src));
2fc72c7b 4417#endif
478b360a 4418#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
b1937227
ED
4419 if (copy)
4420 dst->nf_trace = src->nf_trace;
478b360a 4421#endif
edda553c
YK
4422}
4423
e7ac05f3
YK
4424static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4425{
e7ac05f3 4426#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 4427 nf_conntrack_put(skb_nfct(dst));
e7ac05f3 4428#endif
5fc88f93 4429 dst->slow_gro = src->slow_gro;
b1937227 4430 __nf_copy(dst, src, true);
e7ac05f3
YK
4431}
4432
984bc16c
JM
4433#ifdef CONFIG_NETWORK_SECMARK
4434static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4435{
4436 to->secmark = from->secmark;
4437}
4438
4439static inline void skb_init_secmark(struct sk_buff *skb)
4440{
4441 skb->secmark = 0;
4442}
4443#else
4444static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4445{ }
4446
4447static inline void skb_init_secmark(struct sk_buff *skb)
4448{ }
4449#endif
4450
7af8f4ca
FW
4451static inline int secpath_exists(const struct sk_buff *skb)
4452{
4453#ifdef CONFIG_XFRM
4165079b 4454 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
7af8f4ca
FW
4455#else
4456 return 0;
4457#endif
4458}
4459
574f7194
EB
4460static inline bool skb_irq_freeable(const struct sk_buff *skb)
4461{
4462 return !skb->destructor &&
7af8f4ca 4463 !secpath_exists(skb) &&
cb9c6836 4464 !skb_nfct(skb) &&
574f7194
EB
4465 !skb->_skb_refdst &&
4466 !skb_has_frag_list(skb);
4467}
4468
f25f4e44
PWJ
4469static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4470{
f25f4e44 4471 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
4472}
4473
9247744e 4474static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 4475{
4e3ab47a 4476 return skb->queue_mapping;
4e3ab47a
PE
4477}
4478
f25f4e44
PWJ
4479static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4480{
f25f4e44 4481 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
4482}
4483
d5a9e24a
DM
4484static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4485{
4486 skb->queue_mapping = rx_queue + 1;
4487}
4488
9247744e 4489static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
4490{
4491 return skb->queue_mapping - 1;
4492}
4493
9247744e 4494static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 4495{
a02cec21 4496 return skb->queue_mapping != 0;
d5a9e24a
DM
4497}
4498
4ff06203
JA
4499static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4500{
4501 skb->dst_pending_confirm = val;
4502}
4503
4504static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4505{
4506 return skb->dst_pending_confirm != 0;
4507}
4508
2294be0f 4509static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
def8b4fa 4510{
0b3d8e08 4511#ifdef CONFIG_XFRM
4165079b 4512 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
def8b4fa 4513#else
def8b4fa 4514 return NULL;
def8b4fa 4515#endif
0b3d8e08 4516}
def8b4fa 4517
68c33163
PS
4518/* Keeps track of mac header offset relative to skb->head.
4519 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4520 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
4521 * tunnel skb it points to outer mac header.
4522 * Keeps track of level of encapsulation of network headers.
4523 */
68c33163 4524struct skb_gso_cb {
802ab55a
AD
4525 union {
4526 int mac_offset;
4527 int data_offset;
4528 };
3347c960 4529 int encap_level;
76443456 4530 __wsum csum;
7e2b10c1 4531 __u16 csum_start;
68c33163 4532};
a08e7fd9
CZ
4533#define SKB_GSO_CB_OFFSET 32
4534#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
68c33163
PS
4535
4536static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4537{
4538 return (skb_mac_header(inner_skb) - inner_skb->head) -
4539 SKB_GSO_CB(inner_skb)->mac_offset;
4540}
4541
1e2bd517
PS
4542static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4543{
4544 int new_headroom, headroom;
4545 int ret;
4546
4547 headroom = skb_headroom(skb);
4548 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4549 if (ret)
4550 return ret;
4551
4552 new_headroom = skb_headroom(skb);
4553 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4554 return 0;
4555}
4556
08b64fcc
AD
4557static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4558{
4559 /* Do not update partial checksums if remote checksum is enabled. */
4560 if (skb->remcsum_offload)
4561 return;
4562
4563 SKB_GSO_CB(skb)->csum = res;
4564 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4565}
4566
7e2b10c1
TH
4567/* Compute the checksum for a gso segment. First compute the checksum value
4568 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4569 * then add in skb->csum (checksum from csum_start to end of packet).
4570 * skb->csum and csum_start are then updated to reflect the checksum of the
4571 * resultant packet starting from the transport header-- the resultant checksum
4572 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4573 * header.
4574 */
4575static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4576{
76443456
AD
4577 unsigned char *csum_start = skb_transport_header(skb);
4578 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4579 __wsum partial = SKB_GSO_CB(skb)->csum;
7e2b10c1 4580
76443456
AD
4581 SKB_GSO_CB(skb)->csum = res;
4582 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
7e2b10c1 4583
76443456 4584 return csum_fold(csum_partial(csum_start, plen, partial));
7e2b10c1
TH
4585}
4586
bdcc0924 4587static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
4588{
4589 return skb_shinfo(skb)->gso_size;
4590}
4591
36a8f39e 4592/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 4593static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
4594{
4595 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4596}
4597
d02f51cb
DA
4598/* Note: Should be called only if skb_is_gso(skb) is true */
4599static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4600{
4601 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4602}
4603
4c3024de 4604/* Note: Should be called only if skb_is_gso(skb) is true */
b90efd22
WB
4605static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4606{
4c3024de 4607 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
b90efd22
WB
4608}
4609
5293efe6
DB
4610static inline void skb_gso_reset(struct sk_buff *skb)
4611{
4612 skb_shinfo(skb)->gso_size = 0;
4613 skb_shinfo(skb)->gso_segs = 0;
4614 skb_shinfo(skb)->gso_type = 0;
4615}
4616
d02f51cb
DA
4617static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4618 u16 increment)
4619{
4620 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4621 return;
4622 shinfo->gso_size += increment;
4623}
4624
4625static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4626 u16 decrement)
4627{
4628 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4629 return;
4630 shinfo->gso_size -= decrement;
4631}
4632
7965bd4d 4633void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
4634
4635static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4636{
4637 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4638 * wanted then gso_type will be set. */
05bdd2f1
ED
4639 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4640
b78462eb
AD
4641 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4642 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
4643 __skb_warn_lro_forwarding(skb);
4644 return true;
4645 }
4646 return false;
4647}
4648
35fc92a9
HX
4649static inline void skb_forward_csum(struct sk_buff *skb)
4650{
4651 /* Unfortunately we don't support this one. Any brave souls? */
4652 if (skb->ip_summed == CHECKSUM_COMPLETE)
4653 skb->ip_summed = CHECKSUM_NONE;
4654}
4655
bc8acf2c
ED
4656/**
4657 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4658 * @skb: skb to check
4659 *
4660 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4661 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4662 * use this helper, to document places where we make this assertion.
4663 */
05bdd2f1 4664static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
4665{
4666#ifdef DEBUG
4667 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4668#endif
4669}
4670
f35d9d8a 4671bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 4672
ed1f50c3 4673int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
9afd85c9
LL
4674struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4675 unsigned int transport_len,
4676 __sum16(*skb_chkf)(struct sk_buff *skb));
ed1f50c3 4677
3a7c1ee4
AD
4678/**
4679 * skb_head_is_locked - Determine if the skb->head is locked down
4680 * @skb: skb to check
4681 *
4682 * The head on skbs build around a head frag can be removed if they are
4683 * not cloned. This function returns true if the skb head is locked down
4684 * due to either being allocated via kmalloc, or by being a clone with
4685 * multiple references to the head.
4686 */
4687static inline bool skb_head_is_locked(const struct sk_buff *skb)
4688{
4689 return !skb->head_frag || skb_cloned(skb);
4690}
fe6cc55f 4691
179bc67f
EC
4692/* Local Checksum Offload.
4693 * Compute outer checksum based on the assumption that the
4694 * inner checksum will be offloaded later.
d0dcde64 4695 * See Documentation/networking/checksum-offloads.rst for
e8ae7b00 4696 * explanation of how this works.
179bc67f
EC
4697 * Fill in outer checksum adjustment (e.g. with sum of outer
4698 * pseudo-header) before calling.
4699 * Also ensure that inner checksum is in linear data area.
4700 */
4701static inline __wsum lco_csum(struct sk_buff *skb)
4702{
9e74a6da
AD
4703 unsigned char *csum_start = skb_checksum_start(skb);
4704 unsigned char *l4_hdr = skb_transport_header(skb);
4705 __wsum partial;
179bc67f
EC
4706
4707 /* Start with complement of inner checksum adjustment */
9e74a6da
AD
4708 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4709 skb->csum_offset));
4710
179bc67f 4711 /* Add in checksum of our headers (incl. outer checksum
9e74a6da 4712 * adjustment filled in by caller) and return result.
179bc67f 4713 */
9e74a6da 4714 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
179bc67f
EC
4715}
4716
2c64605b
PNA
4717static inline bool skb_is_redirected(const struct sk_buff *skb)
4718{
2c64605b 4719 return skb->redirected;
2c64605b
PNA
4720}
4721
4722static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4723{
2c64605b 4724 skb->redirected = 1;
11941f8a 4725#ifdef CONFIG_NET_REDIRECT
2c64605b
PNA
4726 skb->from_ingress = from_ingress;
4727 if (skb->from_ingress)
4728 skb->tstamp = 0;
4729#endif
4730}
4731
4732static inline void skb_reset_redirect(struct sk_buff *skb)
4733{
2c64605b 4734 skb->redirected = 0;
2c64605b
PNA
4735}
4736
fa821170
XL
4737static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4738{
4739 return skb->csum_not_inet;
4740}
4741
6370cc3b
AN
4742static inline void skb_set_kcov_handle(struct sk_buff *skb,
4743 const u64 kcov_handle)
4744{
fa69ee5a
ME
4745#ifdef CONFIG_KCOV
4746 skb->kcov_handle = kcov_handle;
4747#endif
6370cc3b
AN
4748}
4749
4750static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4751{
fa69ee5a
ME
4752#ifdef CONFIG_KCOV
4753 return skb->kcov_handle;
6370cc3b 4754#else
fa69ee5a
ME
4755 return 0;
4756#endif
4757}
6370cc3b 4758
6a5bcd84 4759#ifdef CONFIG_PAGE_POOL
57f05bc2 4760static inline void skb_mark_for_recycle(struct sk_buff *skb)
6a5bcd84
IA
4761{
4762 skb->pp_recycle = 1;
6a5bcd84
IA
4763}
4764#endif
4765
4766static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
4767{
4768 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
4769 return false;
4770 return page_pool_return_skb_page(virt_to_page(data));
4771}
4772
1da177e4
LT
4773#endif /* __KERNEL__ */
4774#endif /* _LINUX_SKBUFF_H */