net: use skb_sec_path helper in more places
[linux-2.6-block.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
1da177e4
LT
17#include <linux/kernel.h>
18#include <linux/compiler.h>
19#include <linux/time.h>
187f1882 20#include <linux/bug.h>
1da177e4 21#include <linux/cache.h>
56b17425 22#include <linux/rbtree.h>
51f3d02b 23#include <linux/socket.h>
c1d1b437 24#include <linux/refcount.h>
1da177e4 25
60063497 26#include <linux/atomic.h>
1da177e4
LT
27#include <asm/types.h>
28#include <linux/spinlock.h>
1da177e4 29#include <linux/net.h>
3fc7e8a6 30#include <linux/textsearch.h>
1da177e4 31#include <net/checksum.h>
a80958f4 32#include <linux/rcupdate.h>
b7aa0bf7 33#include <linux/hrtimer.h>
131ea667 34#include <linux/dma-mapping.h>
c8f44aff 35#include <linux/netdev_features.h>
363ec392 36#include <linux/sched.h>
e6017571 37#include <linux/sched/clock.h>
1bd758eb 38#include <net/flow_dissector.h>
a60e3cc7 39#include <linux/splice.h>
72b31f72 40#include <linux/in6.h>
8b10cab6 41#include <linux/if_packet.h>
f70ea018 42#include <net/flow.h>
1da177e4 43
7a6ae71b
TH
44/* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver,
51 * a driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv4|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is used only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is in set skb->ip_summed. Possible values are:
78ea85f1
DB
89 *
90 * CHECKSUM_NONE:
91 *
7a6ae71b 92 * Device did not checksum this packet e.g. due to lack of capabilities.
78ea85f1
DB
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
77cffe23
TH
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
7a6ae71b
TH
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
77cffe23
TH
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
b4759dcd 112 * FCOE: indicates the CRC in FC frame has been validated.
77cffe23
TH
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum of because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
78ea85f1
DB
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
b4759dcd
DC
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
78ea85f1
DB
134 *
135 * CHECKSUM_PARTIAL:
136 *
6edec0e6
TH
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
78ea85f1 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
6edec0e6
TH
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
78ea85f1 146 *
7a6ae71b
TH
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
78ea85f1
DB
149 *
150 * CHECKSUM_PARTIAL:
151 *
7a6ae71b 152 * The driver is required to checksum the packet as seen by hard_start_xmit()
78ea85f1 153 * from skb->csum_start up to the end, and to record/write the checksum at
7a6ae71b
TH
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, however they should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum-- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
43c26a1a
DC
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
78ea85f1 173 *
7a6ae71b 174 * CHECKSUM_NONE:
78ea85f1 175 *
7a6ae71b
TH
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
78ea85f1
DB
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
7a6ae71b
TH
181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
182 * output.
78ea85f1 183 *
7a6ae71b
TH
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, if should treat as CHECKSUM_NONE being set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
dba00306
DC
192 * will set set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
7a6ae71b
TH
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note the there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215 * are set to refer to the outermost checksum being offload (two offloaded
216 * checksums are possible with UDP encapsulation).
78ea85f1
DB
217 */
218
60476372 219/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
220#define CHECKSUM_NONE 0
221#define CHECKSUM_UNNECESSARY 1
222#define CHECKSUM_COMPLETE 2
223#define CHECKSUM_PARTIAL 3
1da177e4 224
77cffe23
TH
225/* Maximum value in skb->csum_level */
226#define SKB_MAX_CSUM_LEVEL 3
227
0bec8c88 228#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
fc910a27 229#define SKB_WITH_OVERHEAD(X) \
deea84b0 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
231#define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
233#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
87fb4b7b
ED
236/* return minimum truesize of one skb containing X bytes of data */
237#define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
1da177e4 241struct net_device;
716ea3a7 242struct scatterlist;
9c55e01c 243struct pipe_inode_info;
a8f820aa 244struct iov_iter;
fd11a83d 245struct napi_struct;
d58e468b
PP
246struct bpf_prog;
247union bpf_attr;
df5042f4 248struct skb_ext;
1da177e4 249
5f79e0f9 250#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1da177e4
LT
251struct nf_conntrack {
252 atomic_t use;
1da177e4 253};
5f79e0f9 254#endif
1da177e4 255
34666d46 256#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4 257struct nf_bridge_info {
3eaf4025
FW
258 enum {
259 BRNF_PROTO_UNCHANGED,
260 BRNF_PROTO_8021Q,
261 BRNF_PROTO_PPPOE
7fb48c5b 262 } orig_proto:8;
72b1e5e4
FW
263 u8 pkt_otherhost:1;
264 u8 in_prerouting:1;
265 u8 bridged_dnat:1;
411ffb4f 266 __u16 frag_max_size;
bf1ac5ca 267 struct net_device *physindev;
63cdbc06
FW
268
269 /* always valid & non-NULL from FORWARD on, for physdev match */
270 struct net_device *physoutdev;
7fb48c5b 271 union {
72b1e5e4 272 /* prerouting: detect dnat in orig/reply direction */
72b31f72
BT
273 __be32 ipv4_daddr;
274 struct in6_addr ipv6_daddr;
72b1e5e4
FW
275
276 /* after prerouting + nat detected: store original source
277 * mac since neigh resolution overwrites it, only used while
278 * skb is out in neigh layer.
279 */
280 char neigh_header[8];
72b31f72 281 };
1da177e4
LT
282};
283#endif
284
1da177e4
LT
285struct sk_buff_head {
286 /* These two members must be first. */
287 struct sk_buff *next;
288 struct sk_buff *prev;
289
290 __u32 qlen;
291 spinlock_t lock;
292};
293
294struct sk_buff;
295
9d4dde52
IC
296/* To allow 64K frame to be packed as single skb without frag_list we
297 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
298 * buffers which do not start on a page boundary.
299 *
300 * Since GRO uses frags we allocate at least 16 regardless of page
301 * size.
a715dea3 302 */
9d4dde52 303#if (65536/PAGE_SIZE + 1) < 16
eec00954 304#define MAX_SKB_FRAGS 16UL
a715dea3 305#else
9d4dde52 306#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 307#endif
5f74f82e 308extern int sysctl_max_skb_frags;
1da177e4 309
3953c46c
MRL
310/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
311 * segment using its current segmentation instead.
312 */
313#define GSO_BY_FRAGS 0xFFFF
314
1da177e4
LT
315typedef struct skb_frag_struct skb_frag_t;
316
317struct skb_frag_struct {
a8605c60
IC
318 struct {
319 struct page *p;
320 } page;
cb4dfe56 321#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
a309bb07
DM
322 __u32 page_offset;
323 __u32 size;
cb4dfe56
ED
324#else
325 __u16 page_offset;
326 __u16 size;
327#endif
1da177e4
LT
328};
329
9e903e08
ED
330static inline unsigned int skb_frag_size(const skb_frag_t *frag)
331{
332 return frag->size;
333}
334
335static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
336{
337 frag->size = size;
338}
339
340static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
341{
342 frag->size += delta;
343}
344
345static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
346{
347 frag->size -= delta;
348}
349
c613c209
WB
350static inline bool skb_frag_must_loop(struct page *p)
351{
352#if defined(CONFIG_HIGHMEM)
353 if (PageHighMem(p))
354 return true;
355#endif
356 return false;
357}
358
359/**
360 * skb_frag_foreach_page - loop over pages in a fragment
361 *
362 * @f: skb frag to operate on
363 * @f_off: offset from start of f->page.p
364 * @f_len: length from f_off to loop over
365 * @p: (temp var) current page
366 * @p_off: (temp var) offset from start of current page,
367 * non-zero only on first page.
368 * @p_len: (temp var) length in current page,
369 * < PAGE_SIZE only on first and last page.
370 * @copied: (temp var) length so far, excluding current p_len.
371 *
372 * A fragment can hold a compound page, in which case per-page
373 * operations, notably kmap_atomic, must be called for each
374 * regular page.
375 */
376#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
377 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
378 p_off = (f_off) & (PAGE_SIZE - 1), \
379 p_len = skb_frag_must_loop(p) ? \
380 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
381 copied = 0; \
382 copied < f_len; \
383 copied += p_len, p++, p_off = 0, \
384 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
385
ac45f602
PO
386#define HAVE_HW_TIME_STAMP
387
388/**
d3a21be8 389 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
390 * @hwtstamp: hardware time stamp transformed into duration
391 * since arbitrary point in time
ac45f602
PO
392 *
393 * Software time stamps generated by ktime_get_real() are stored in
4d276eb6 394 * skb->tstamp.
ac45f602
PO
395 *
396 * hwtstamps can only be compared against other hwtstamps from
397 * the same device.
398 *
399 * This structure is attached to packets as part of the
400 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
401 */
402struct skb_shared_hwtstamps {
403 ktime_t hwtstamp;
ac45f602
PO
404};
405
2244d07b
OH
406/* Definitions for tx_flags in struct skb_shared_info */
407enum {
408 /* generate hardware time stamp */
409 SKBTX_HW_TSTAMP = 1 << 0,
410
e7fd2885 411 /* generate software time stamp when queueing packet to NIC */
2244d07b
OH
412 SKBTX_SW_TSTAMP = 1 << 1,
413
414 /* device driver is going to provide hardware time stamp */
415 SKBTX_IN_PROGRESS = 1 << 2,
416
a6686f2f 417 /* device driver supports TX zero-copy buffers */
62b1a8ab 418 SKBTX_DEV_ZEROCOPY = 1 << 3,
6e3e939f
JB
419
420 /* generate wifi status information (where possible) */
62b1a8ab 421 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4
PS
422
423 /* This indicates at least one fragment might be overwritten
424 * (as in vmsplice(), sendfile() ...)
425 * If we need to compute a TX checksum, we'll need to copy
426 * all frags to avoid possible bad checksum
427 */
428 SKBTX_SHARED_FRAG = 1 << 5,
e7fd2885
WB
429
430 /* generate software time stamp when entering packet scheduling */
431 SKBTX_SCHED_TSTAMP = 1 << 6,
a6686f2f
SM
432};
433
52267790 434#define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
e1c8a607 435#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
0a2cf20c 436 SKBTX_SCHED_TSTAMP)
f24b9be5
WB
437#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
438
a6686f2f
SM
439/*
440 * The callback notifies userspace to release buffers when skb DMA is done in
441 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
442 * The zerocopy_success argument is true if zero copy transmit occurred,
443 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
444 * The ctx field is used to track device context.
445 * The desc field is used to track userspace buffer index.
a6686f2f
SM
446 */
447struct ubuf_info {
e19d6763 448 void (*callback)(struct ubuf_info *, bool zerocopy_success);
4ab6c99d
WB
449 union {
450 struct {
451 unsigned long desc;
452 void *ctx;
453 };
454 struct {
455 u32 id;
456 u16 len;
457 u16 zerocopy:1;
458 u32 bytelen;
459 };
460 };
c1d1b437 461 refcount_t refcnt;
a91dbff5
WB
462
463 struct mmpin {
464 struct user_struct *user;
465 unsigned int num_pg;
466 } mmp;
ac45f602
PO
467};
468
52267790
WB
469#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
470
6f89dbce
SV
471int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
472void mm_unaccount_pinned_pages(struct mmpin *mmp);
473
52267790 474struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
4ab6c99d
WB
475struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
476 struct ubuf_info *uarg);
52267790
WB
477
478static inline void sock_zerocopy_get(struct ubuf_info *uarg)
479{
c1d1b437 480 refcount_inc(&uarg->refcnt);
52267790
WB
481}
482
483void sock_zerocopy_put(struct ubuf_info *uarg);
52900d22 484void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
52267790
WB
485
486void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
487
b5947e5d 488int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
52267790
WB
489int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
490 struct msghdr *msg, int len,
491 struct ubuf_info *uarg);
492
1da177e4
LT
493/* This data is invariant across clones and lives at
494 * the end of the header data, ie. at skb->end.
495 */
496struct skb_shared_info {
de8f3a83
DB
497 __u8 __unused;
498 __u8 meta_len;
499 __u8 nr_frags;
9f42f126 500 __u8 tx_flags;
7967168c
HX
501 unsigned short gso_size;
502 /* Warning: this field is not always filled in (UFO)! */
503 unsigned short gso_segs;
1da177e4 504 struct sk_buff *frag_list;
ac45f602 505 struct skb_shared_hwtstamps hwtstamps;
7f564528 506 unsigned int gso_type;
09c2d251 507 u32 tskey;
ec7d2f2c
ED
508
509 /*
510 * Warning : all fields before dataref are cleared in __alloc_skb()
511 */
512 atomic_t dataref;
513
69e3c75f
JB
514 /* Intermediate layers must ensure that destructor_arg
515 * remains valid until skb destructor */
516 void * destructor_arg;
a6686f2f 517
fed66381
ED
518 /* must be last field, see pskb_expand_head() */
519 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
520};
521
522/* We divide dataref into two halves. The higher 16 bits hold references
523 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
524 * the entire skb->data. A clone of a headerless skb holds the length of
525 * the header in skb->hdr_len.
1da177e4
LT
526 *
527 * All users must obey the rule that the skb->data reference count must be
528 * greater than or equal to the payload reference count.
529 *
530 * Holding a reference to the payload part means that the user does not
531 * care about modifications to the header part of skb->data.
532 */
533#define SKB_DATAREF_SHIFT 16
534#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
535
d179cd12
DM
536
537enum {
c8753d55
VS
538 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
539 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
540 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
d179cd12
DM
541};
542
7967168c
HX
543enum {
544 SKB_GSO_TCPV4 = 1 << 0,
576a30eb
HX
545
546 /* This indicates the skb is from an untrusted source. */
d9d30adf 547 SKB_GSO_DODGY = 1 << 1,
b0da8537
MC
548
549 /* This indicates the tcp segment has CWR set. */
d9d30adf 550 SKB_GSO_TCP_ECN = 1 << 2,
f83ef8c0 551
d9d30adf 552 SKB_GSO_TCP_FIXEDID = 1 << 3,
01d5b2fc 553
d9d30adf 554 SKB_GSO_TCPV6 = 1 << 4,
68c33163 555
d9d30adf 556 SKB_GSO_FCOE = 1 << 5,
73136267 557
d9d30adf 558 SKB_GSO_GRE = 1 << 6,
0d89d203 559
d9d30adf 560 SKB_GSO_GRE_CSUM = 1 << 7,
cb32f511 561
d9d30adf 562 SKB_GSO_IPXIP4 = 1 << 8,
61c1db7f 563
d9d30adf 564 SKB_GSO_IPXIP6 = 1 << 9,
0f4f4ffa 565
d9d30adf 566 SKB_GSO_UDP_TUNNEL = 1 << 10,
4749c09c 567
d9d30adf 568 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
cbc53e08 569
d9d30adf 570 SKB_GSO_PARTIAL = 1 << 12,
802ab55a 571
d9d30adf 572 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
90017acc 573
d9d30adf 574 SKB_GSO_SCTP = 1 << 14,
c7ef8f0c 575
d9d30adf 576 SKB_GSO_ESP = 1 << 15,
0c19f846
WB
577
578 SKB_GSO_UDP = 1 << 16,
ee80d1eb
WB
579
580 SKB_GSO_UDP_L4 = 1 << 17,
7967168c
HX
581};
582
2e07fa9c
ACM
583#if BITS_PER_LONG > 32
584#define NET_SKBUFF_DATA_USES_OFFSET 1
585#endif
586
587#ifdef NET_SKBUFF_DATA_USES_OFFSET
588typedef unsigned int sk_buff_data_t;
589#else
590typedef unsigned char *sk_buff_data_t;
591#endif
592
1da177e4
LT
593/**
594 * struct sk_buff - socket buffer
595 * @next: Next buffer in list
596 * @prev: Previous buffer in list
363ec392 597 * @tstamp: Time we arrived/left
56b17425 598 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
d84e0bd7 599 * @sk: Socket we are owned by
1da177e4 600 * @dev: Device we arrived on/are leaving by
d84e0bd7 601 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 602 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 603 * @sp: the security path, used for xfrm
1da177e4
LT
604 * @len: Length of actual data
605 * @data_len: Data length
606 * @mac_len: Length of link layer header
334a8132 607 * @hdr_len: writable header length of cloned skb
663ead3b
HX
608 * @csum: Checksum (must include start/offset pair)
609 * @csum_start: Offset from skb->head where checksumming should start
610 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 611 * @priority: Packet queueing priority
60ff7467 612 * @ignore_df: allow local fragmentation
1da177e4 613 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 614 * @ip_summed: Driver fed us an IP checksum
1da177e4
LT
615 * @nohdr: Payload reference only, must not modify header
616 * @pkt_type: Packet class
c83c2486 617 * @fclone: skbuff clone status
c83c2486 618 * @ipvs_property: skbuff is owned by ipvs
875e8939
IS
619 * @offload_fwd_mark: Packet was L2-forwarded in hardware
620 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
e7246e12 621 * @tc_skip_classify: do not classify packet. set by IFB device
8dc07fdb 622 * @tc_at_ingress: used within tc_classify to distinguish in/egress
bc31c905
WB
623 * @tc_redirected: packet was redirected by a tc action
624 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
31729363
RD
625 * @peeked: this packet has been seen already, so stats have been
626 * done for it, don't do them again
ba9dda3a 627 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
628 * @protocol: Packet protocol from driver
629 * @destructor: Destruct function
e2080072 630 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
a9e419dc 631 * @_nfct: Associated connection, if any (with nfctinfo bits)
1da177e4 632 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 633 * @skb_iif: ifindex of device we arrived on
1da177e4 634 * @tc_index: Traffic control index
61b905da 635 * @hash: the packet hash
d84e0bd7 636 * @queue_mapping: Queue mapping for multiqueue devices
0b725a2c 637 * @xmit_more: More SKBs are pending for this queue
8b700862 638 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
df5042f4 639 * @active_extensions: active extensions (skb_ext_id types)
553a5672 640 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 641 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 642 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 643 * ports.
a3b18ddb 644 * @sw_hash: indicates hash was computed in software stack
6e3e939f
JB
645 * @wifi_acked_valid: wifi_acked was set
646 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 647 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
dba00306 648 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
4ff06203 649 * @dst_pending_confirm: need to confirm neighbour
a48d189e 650 * @decrypted: Decrypted SKB
06021292 651 * @napi_id: id of the NAPI struct this skb came from
984bc16c 652 * @secmark: security marking
d84e0bd7 653 * @mark: Generic packet mark
86a9bad3 654 * @vlan_proto: vlan encapsulation protocol
6aa895b0 655 * @vlan_tci: vlan tag control information
0d89d203 656 * @inner_protocol: Protocol (encapsulation)
6a674e9c
JG
657 * @inner_transport_header: Inner transport layer header (encapsulation)
658 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 659 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
660 * @transport_header: Transport layer header
661 * @network_header: Network layer header
662 * @mac_header: Link layer header
663 * @tail: Tail pointer
664 * @end: End pointer
665 * @head: Head of buffer
666 * @data: Data head pointer
667 * @truesize: Buffer size
668 * @users: User count - see {datagram,tcp}.c
df5042f4 669 * @extensions: allocated extensions, valid if active_extensions is nonzero
1da177e4
LT
670 */
671
672struct sk_buff {
363ec392 673 union {
56b17425
ED
674 struct {
675 /* These two members must be first. */
676 struct sk_buff *next;
677 struct sk_buff *prev;
678
679 union {
bffa72cf
ED
680 struct net_device *dev;
681 /* Some protocols might use this space to store information,
682 * while device pointer would be NULL.
683 * UDP receive path is one user.
684 */
685 unsigned long dev_scratch;
56b17425
ED
686 };
687 };
fa0f5273 688 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
d4546c25 689 struct list_head list;
363ec392 690 };
fa0f5273
PO
691
692 union {
693 struct sock *sk;
694 int ip_defrag_offset;
695 };
1da177e4 696
c84d9490 697 union {
bffa72cf 698 ktime_t tstamp;
d3edd06e 699 u64 skb_mstamp_ns; /* earliest departure time */
c84d9490 700 };
1da177e4
LT
701 /*
702 * This is the control buffer. It is free to use for every
703 * layer. Please put your private variables there. If you
704 * want to keep them across layers you have to do a skb_clone()
705 * first. This is owned by whoever has the skb queued ATM.
706 */
da3f5cf1 707 char cb[48] __aligned(8);
1da177e4 708
e2080072
ED
709 union {
710 struct {
711 unsigned long _skb_refdst;
712 void (*destructor)(struct sk_buff *skb);
713 };
714 struct list_head tcp_tsorted_anchor;
715 };
716
da3f5cf1
FF
717#ifdef CONFIG_XFRM
718 struct sec_path *sp;
b1937227
ED
719#endif
720#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 721 unsigned long _nfct;
da3f5cf1 722#endif
1da177e4 723 unsigned int len,
334a8132
PM
724 data_len;
725 __u16 mac_len,
726 hdr_len;
b1937227
ED
727
728 /* Following fields are _not_ copied in __copy_skb_header()
729 * Note that queue_mapping is here mostly to fill a hole.
730 */
b1937227 731 __u16 queue_mapping;
36bbef52
DB
732
733/* if you move cloned around you also must adapt those constants */
734#ifdef __BIG_ENDIAN_BITFIELD
735#define CLONED_MASK (1 << 7)
736#else
737#define CLONED_MASK 1
738#endif
739#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
740
741 __u8 __cloned_offset[0];
b1937227 742 __u8 cloned:1,
6869c4d8 743 nohdr:1,
b84f4cc9 744 fclone:2,
a59322be 745 peeked:1,
b1937227 746 head_frag:1,
36bbef52 747 xmit_more:1,
8b700862 748 pfmemalloc:1;
df5042f4
FW
749#ifdef CONFIG_SKB_EXTENSIONS
750 __u8 active_extensions;
751#endif
b1937227
ED
752 /* fields enclosed in headers_start/headers_end are copied
753 * using a single memcpy() in __copy_skb_header()
754 */
ebcf34f3 755 /* private: */
b1937227 756 __u32 headers_start[0];
ebcf34f3 757 /* public: */
4031ae6e 758
233577a2
HFS
759/* if you move pkt_type around you also must adapt those constants */
760#ifdef __BIG_ENDIAN_BITFIELD
761#define PKT_TYPE_MAX (7 << 5)
762#else
763#define PKT_TYPE_MAX 7
1da177e4 764#endif
233577a2 765#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
fe55f6d5 766
233577a2 767 __u8 __pkt_type_offset[0];
b1937227 768 __u8 pkt_type:3;
b1937227 769 __u8 ignore_df:1;
b1937227
ED
770 __u8 nf_trace:1;
771 __u8 ip_summed:2;
3853b584 772 __u8 ooo_okay:1;
8b700862 773
61b905da 774 __u8 l4_hash:1;
a3b18ddb 775 __u8 sw_hash:1;
6e3e939f
JB
776 __u8 wifi_acked_valid:1;
777 __u8 wifi_acked:1;
3bdc0eba 778 __u8 no_fcs:1;
77cffe23 779 /* Indicates the inner headers are valid in the skbuff. */
6a674e9c 780 __u8 encapsulation:1;
7e2b10c1 781 __u8 encap_hdr_csum:1;
5d0c2b95 782 __u8 csum_valid:1;
8b700862 783
0c4b2d37
MM
784#ifdef __BIG_ENDIAN_BITFIELD
785#define PKT_VLAN_PRESENT_BIT 7
786#else
787#define PKT_VLAN_PRESENT_BIT 0
788#endif
789#define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset)
790 __u8 __pkt_vlan_present_offset[0];
791 __u8 vlan_present:1;
7e3cead5 792 __u8 csum_complete_sw:1;
b1937227 793 __u8 csum_level:2;
dba00306 794 __u8 csum_not_inet:1;
4ff06203 795 __u8 dst_pending_confirm:1;
b1937227
ED
796#ifdef CONFIG_IPV6_NDISC_NODETYPE
797 __u8 ndisc_nodetype:2;
798#endif
8b700862 799
0c4b2d37 800 __u8 ipvs_property:1;
8bce6d7d 801 __u8 inner_protocol_type:1;
e585f236 802 __u8 remcsum_offload:1;
6bc506b4
IS
803#ifdef CONFIG_NET_SWITCHDEV
804 __u8 offload_fwd_mark:1;
875e8939 805 __u8 offload_l3_fwd_mark:1;
6bc506b4 806#endif
e7246e12
WB
807#ifdef CONFIG_NET_CLS_ACT
808 __u8 tc_skip_classify:1;
8dc07fdb 809 __u8 tc_at_ingress:1;
bc31c905
WB
810 __u8 tc_redirected:1;
811 __u8 tc_from_ingress:1;
e7246e12 812#endif
a48d189e
SB
813#ifdef CONFIG_TLS_DEVICE
814 __u8 decrypted:1;
815#endif
b1937227
ED
816
817#ifdef CONFIG_NET_SCHED
818 __u16 tc_index; /* traffic control index */
b1937227 819#endif
fe55f6d5 820
b1937227
ED
821 union {
822 __wsum csum;
823 struct {
824 __u16 csum_start;
825 __u16 csum_offset;
826 };
827 };
828 __u32 priority;
829 int skb_iif;
830 __u32 hash;
831 __be16 vlan_proto;
832 __u16 vlan_tci;
2bd82484
ED
833#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
834 union {
835 unsigned int napi_id;
836 unsigned int sender_cpu;
837 };
97fc2f08 838#endif
984bc16c 839#ifdef CONFIG_NETWORK_SECMARK
6bc506b4 840 __u32 secmark;
0c4f691f 841#endif
0c4f691f 842
3b885787
NH
843 union {
844 __u32 mark;
16fad69c 845 __u32 reserved_tailroom;
3b885787 846 };
1da177e4 847
8bce6d7d
TH
848 union {
849 __be16 inner_protocol;
850 __u8 inner_ipproto;
851 };
852
1a37e412
SH
853 __u16 inner_transport_header;
854 __u16 inner_network_header;
855 __u16 inner_mac_header;
b1937227
ED
856
857 __be16 protocol;
1a37e412
SH
858 __u16 transport_header;
859 __u16 network_header;
860 __u16 mac_header;
b1937227 861
ebcf34f3 862 /* private: */
b1937227 863 __u32 headers_end[0];
ebcf34f3 864 /* public: */
b1937227 865
1da177e4 866 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 867 sk_buff_data_t tail;
4305b541 868 sk_buff_data_t end;
1da177e4 869 unsigned char *head,
4305b541 870 *data;
27a884dc 871 unsigned int truesize;
63354797 872 refcount_t users;
df5042f4
FW
873
874#ifdef CONFIG_SKB_EXTENSIONS
875 /* only useable after checking ->active_extensions != 0 */
876 struct skb_ext *extensions;
877#endif
1da177e4
LT
878};
879
880#ifdef __KERNEL__
881/*
882 * Handling routines are only of interest to the kernel
883 */
1da177e4 884
c93bdd0e
MG
885#define SKB_ALLOC_FCLONE 0x01
886#define SKB_ALLOC_RX 0x02
fd11a83d 887#define SKB_ALLOC_NAPI 0x04
c93bdd0e
MG
888
889/* Returns true if the skb was allocated from PFMEMALLOC reserves */
890static inline bool skb_pfmemalloc(const struct sk_buff *skb)
891{
892 return unlikely(skb->pfmemalloc);
893}
894
7fee226a
ED
895/*
896 * skb might have a dst pointer attached, refcounted or not.
897 * _skb_refdst low order bit is set if refcount was _not_ taken
898 */
899#define SKB_DST_NOREF 1UL
900#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
901
a9e419dc 902#define SKB_NFCT_PTRMASK ~(7UL)
7fee226a
ED
903/**
904 * skb_dst - returns skb dst_entry
905 * @skb: buffer
906 *
907 * Returns skb dst_entry, regardless of reference taken or not.
908 */
adf30907
ED
909static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
910{
7fee226a
ED
911 /* If refdst was not refcounted, check we still are in a
912 * rcu_read_lock section
913 */
914 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
915 !rcu_read_lock_held() &&
916 !rcu_read_lock_bh_held());
917 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
918}
919
7fee226a
ED
920/**
921 * skb_dst_set - sets skb dst
922 * @skb: buffer
923 * @dst: dst entry
924 *
925 * Sets skb dst, assuming a reference was taken on dst and should
926 * be released by skb_dst_drop()
927 */
adf30907
ED
928static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
929{
7fee226a
ED
930 skb->_skb_refdst = (unsigned long)dst;
931}
932
932bc4d7
JA
933/**
934 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
935 * @skb: buffer
936 * @dst: dst entry
937 *
938 * Sets skb dst, assuming a reference was not taken on dst.
939 * If dst entry is cached, we do not take reference and dst_release
940 * will be avoided by refdst_drop. If dst entry is not cached, we take
941 * reference, so that last dst_release can destroy the dst immediately.
942 */
943static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
944{
dbfc4fb7
HFS
945 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
946 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
932bc4d7 947}
7fee226a
ED
948
949/**
25985edc 950 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
951 * @skb: buffer
952 */
953static inline bool skb_dst_is_noref(const struct sk_buff *skb)
954{
955 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
956}
957
511c3f92
ED
958static inline struct rtable *skb_rtable(const struct sk_buff *skb)
959{
adf30907 960 return (struct rtable *)skb_dst(skb);
511c3f92
ED
961}
962
8b10cab6
JHS
963/* For mangling skb->pkt_type from user space side from applications
964 * such as nft, tc, etc, we only allow a conservative subset of
965 * possible pkt_types to be set.
966*/
967static inline bool skb_pkt_type_ok(u32 ptype)
968{
969 return ptype <= PACKET_OTHERHOST;
970}
971
90b602f8
ML
972static inline unsigned int skb_napi_id(const struct sk_buff *skb)
973{
974#ifdef CONFIG_NET_RX_BUSY_POLL
975 return skb->napi_id;
976#else
977 return 0;
978#endif
979}
980
3889a803
PA
981/* decrement the reference count and return true if we can free the skb */
982static inline bool skb_unref(struct sk_buff *skb)
983{
984 if (unlikely(!skb))
985 return false;
63354797 986 if (likely(refcount_read(&skb->users) == 1))
3889a803 987 smp_rmb();
63354797 988 else if (likely(!refcount_dec_and_test(&skb->users)))
3889a803
PA
989 return false;
990
991 return true;
992}
993
0a463c78 994void skb_release_head_state(struct sk_buff *skb);
7965bd4d
JP
995void kfree_skb(struct sk_buff *skb);
996void kfree_skb_list(struct sk_buff *segs);
997void skb_tx_error(struct sk_buff *skb);
998void consume_skb(struct sk_buff *skb);
ca2c1418 999void __consume_stateless_skb(struct sk_buff *skb);
7965bd4d 1000void __kfree_skb(struct sk_buff *skb);
d7e8883c 1001extern struct kmem_cache *skbuff_head_cache;
bad43ca8 1002
7965bd4d
JP
1003void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1004bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1005 bool *fragstolen, int *delta_truesize);
bad43ca8 1006
7965bd4d
JP
1007struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1008 int node);
2ea2f62c 1009struct sk_buff *__build_skb(void *data, unsigned int frag_size);
7965bd4d 1010struct sk_buff *build_skb(void *data, unsigned int frag_size);
d179cd12 1011static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 1012 gfp_t priority)
d179cd12 1013{
564824b0 1014 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
1015}
1016
2e4e4410
ED
1017struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1018 unsigned long data_len,
1019 int max_page_order,
1020 int *errcode,
1021 gfp_t gfp_mask);
1022
d0bf4a9e
ED
1023/* Layout of fast clones : [skb1][skb2][fclone_ref] */
1024struct sk_buff_fclones {
1025 struct sk_buff skb1;
1026
1027 struct sk_buff skb2;
1028
2638595a 1029 refcount_t fclone_ref;
d0bf4a9e
ED
1030};
1031
1032/**
1033 * skb_fclone_busy - check if fclone is busy
293de7de 1034 * @sk: socket
d0bf4a9e
ED
1035 * @skb: buffer
1036 *
bda13fed 1037 * Returns true if skb is a fast clone, and its clone is not freed.
39bb5e62
ED
1038 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1039 * so we also check that this didnt happen.
d0bf4a9e 1040 */
39bb5e62
ED
1041static inline bool skb_fclone_busy(const struct sock *sk,
1042 const struct sk_buff *skb)
d0bf4a9e
ED
1043{
1044 const struct sk_buff_fclones *fclones;
1045
1046 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1047
1048 return skb->fclone == SKB_FCLONE_ORIG &&
2638595a 1049 refcount_read(&fclones->fclone_ref) > 1 &&
39bb5e62 1050 fclones->skb2.sk == sk;
d0bf4a9e
ED
1051}
1052
d179cd12 1053static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 1054 gfp_t priority)
d179cd12 1055{
c93bdd0e 1056 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
1057}
1058
7965bd4d 1059struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
b0768a86 1060void skb_headers_offset_update(struct sk_buff *skb, int off);
7965bd4d
JP
1061int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1062struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
08303c18 1063void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
7965bd4d 1064struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
bad93e9d
OP
1065struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1066 gfp_t gfp_mask, bool fclone);
1067static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1068 gfp_t gfp_mask)
1069{
1070 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1071}
7965bd4d
JP
1072
1073int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1074struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1075 unsigned int headroom);
1076struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1077 int newtailroom, gfp_t priority);
48a1df65
JD
1078int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1079 int offset, int len);
1080int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1081 int offset, int len);
7965bd4d 1082int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
cd0a137a
FF
1083int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1084
1085/**
1086 * skb_pad - zero pad the tail of an skb
1087 * @skb: buffer to pad
1088 * @pad: space to pad
1089 *
1090 * Ensure that a buffer is followed by a padding area that is zero
1091 * filled. Used by network drivers which may DMA or transfer data
1092 * beyond the buffer end onto the wire.
1093 *
1094 * May return error in out of memory cases. The skb is freed on error.
1095 */
1096static inline int skb_pad(struct sk_buff *skb, int pad)
1097{
1098 return __skb_pad(skb, pad, true);
1099}
ead2ceb0 1100#define dev_kfree_skb(a) consume_skb(a)
1da177e4 1101
be12a1fe
HFS
1102int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1103 int offset, size_t size);
1104
d94d9fee 1105struct skb_seq_state {
677e90ed
TG
1106 __u32 lower_offset;
1107 __u32 upper_offset;
1108 __u32 frag_idx;
1109 __u32 stepped_offset;
1110 struct sk_buff *root_skb;
1111 struct sk_buff *cur_skb;
1112 __u8 *frag_data;
1113};
1114
7965bd4d
JP
1115void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1116 unsigned int to, struct skb_seq_state *st);
1117unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1118 struct skb_seq_state *st);
1119void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 1120
7965bd4d 1121unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
059a2440 1122 unsigned int to, struct ts_config *config);
3fc7e8a6 1123
09323cc4
TH
1124/*
1125 * Packet hash types specify the type of hash in skb_set_hash.
1126 *
1127 * Hash types refer to the protocol layer addresses which are used to
1128 * construct a packet's hash. The hashes are used to differentiate or identify
1129 * flows of the protocol layer for the hash type. Hash types are either
1130 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1131 *
1132 * Properties of hashes:
1133 *
1134 * 1) Two packets in different flows have different hash values
1135 * 2) Two packets in the same flow should have the same hash value
1136 *
1137 * A hash at a higher layer is considered to be more specific. A driver should
1138 * set the most specific hash possible.
1139 *
1140 * A driver cannot indicate a more specific hash than the layer at which a hash
1141 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1142 *
1143 * A driver may indicate a hash level which is less specific than the
1144 * actual layer the hash was computed on. For instance, a hash computed
1145 * at L4 may be considered an L3 hash. This should only be done if the
1146 * driver can't unambiguously determine that the HW computed the hash at
1147 * the higher layer. Note that the "should" in the second property above
1148 * permits this.
1149 */
1150enum pkt_hash_types {
1151 PKT_HASH_TYPE_NONE, /* Undefined type */
1152 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1153 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1154 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1155};
1156
bcc83839 1157static inline void skb_clear_hash(struct sk_buff *skb)
09323cc4 1158{
bcc83839 1159 skb->hash = 0;
a3b18ddb 1160 skb->sw_hash = 0;
bcc83839
TH
1161 skb->l4_hash = 0;
1162}
1163
1164static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1165{
1166 if (!skb->l4_hash)
1167 skb_clear_hash(skb);
1168}
1169
1170static inline void
1171__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1172{
1173 skb->l4_hash = is_l4;
1174 skb->sw_hash = is_sw;
61b905da 1175 skb->hash = hash;
09323cc4
TH
1176}
1177
bcc83839
TH
1178static inline void
1179skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1180{
1181 /* Used by drivers to set hash from HW */
1182 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1183}
1184
1185static inline void
1186__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1187{
1188 __skb_set_hash(skb, hash, true, is_l4);
1189}
1190
e5276937 1191void __skb_get_hash(struct sk_buff *skb);
b917783c 1192u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
e5276937
TH
1193u32 skb_get_poff(const struct sk_buff *skb);
1194u32 __skb_get_poff(const struct sk_buff *skb, void *data,
72a338bc 1195 const struct flow_keys_basic *keys, int hlen);
e5276937
TH
1196__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1197 void *data, int hlen_proto);
1198
1199static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1200 int thoff, u8 ip_proto)
1201{
1202 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1203}
1204
1205void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1206 const struct flow_dissector_key *key,
1207 unsigned int key_count);
1208
2dfd184a 1209#ifdef CONFIG_NET
d58e468b
PP
1210int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1211 struct bpf_prog *prog);
1212
1213int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
2dfd184a
WB
1214#else
1215static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1216 struct bpf_prog *prog)
1217{
1218 return -EOPNOTSUPP;
1219}
1220
1221static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1222{
1223 return -EOPNOTSUPP;
1224}
1225#endif
d58e468b 1226
e5276937
TH
1227bool __skb_flow_dissect(const struct sk_buff *skb,
1228 struct flow_dissector *flow_dissector,
1229 void *target_container,
cd79a238
TH
1230 void *data, __be16 proto, int nhoff, int hlen,
1231 unsigned int flags);
e5276937
TH
1232
1233static inline bool skb_flow_dissect(const struct sk_buff *skb,
1234 struct flow_dissector *flow_dissector,
cd79a238 1235 void *target_container, unsigned int flags)
e5276937
TH
1236{
1237 return __skb_flow_dissect(skb, flow_dissector, target_container,
cd79a238 1238 NULL, 0, 0, 0, flags);
e5276937
TH
1239}
1240
1241static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
cd79a238
TH
1242 struct flow_keys *flow,
1243 unsigned int flags)
e5276937
TH
1244{
1245 memset(flow, 0, sizeof(*flow));
1246 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
cd79a238 1247 NULL, 0, 0, 0, flags);
e5276937
TH
1248}
1249
72a338bc
PA
1250static inline bool
1251skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1252 struct flow_keys_basic *flow, void *data,
1253 __be16 proto, int nhoff, int hlen,
1254 unsigned int flags)
e5276937
TH
1255{
1256 memset(flow, 0, sizeof(*flow));
72a338bc 1257 return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
cd79a238 1258 data, proto, nhoff, hlen, flags);
e5276937
TH
1259}
1260
62b32379
SH
1261void
1262skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1263 struct flow_dissector *flow_dissector,
1264 void *target_container);
1265
3958afa1 1266static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 1267{
a3b18ddb 1268 if (!skb->l4_hash && !skb->sw_hash)
3958afa1 1269 __skb_get_hash(skb);
bfb564e7 1270
61b905da 1271 return skb->hash;
bfb564e7
KK
1272}
1273
20a17bf6 1274static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
f70ea018 1275{
c6cc1ca7
TH
1276 if (!skb->l4_hash && !skb->sw_hash) {
1277 struct flow_keys keys;
de4c1f8b 1278 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
c6cc1ca7 1279
de4c1f8b 1280 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1281 }
f70ea018
TH
1282
1283 return skb->hash;
1284}
1285
50fb7992
TH
1286__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1287
57bdf7f4
TH
1288static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1289{
61b905da 1290 return skb->hash;
57bdf7f4
TH
1291}
1292
3df7a74e
TH
1293static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1294{
61b905da 1295 to->hash = from->hash;
a3b18ddb 1296 to->sw_hash = from->sw_hash;
61b905da 1297 to->l4_hash = from->l4_hash;
3df7a74e
TH
1298};
1299
4305b541
ACM
1300#ifdef NET_SKBUFF_DATA_USES_OFFSET
1301static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1302{
1303 return skb->head + skb->end;
1304}
ec47ea82
AD
1305
1306static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1307{
1308 return skb->end;
1309}
4305b541
ACM
1310#else
1311static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1312{
1313 return skb->end;
1314}
ec47ea82
AD
1315
1316static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1317{
1318 return skb->end - skb->head;
1319}
4305b541
ACM
1320#endif
1321
1da177e4 1322/* Internal */
4305b541 1323#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 1324
ac45f602
PO
1325static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1326{
1327 return &skb_shinfo(skb)->hwtstamps;
1328}
1329
52267790
WB
1330static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1331{
1332 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1333
1334 return is_zcopy ? skb_uarg(skb) : NULL;
1335}
1336
52900d22
WB
1337static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1338 bool *have_ref)
52267790
WB
1339{
1340 if (skb && uarg && !skb_zcopy(skb)) {
52900d22
WB
1341 if (unlikely(have_ref && *have_ref))
1342 *have_ref = false;
1343 else
1344 sock_zerocopy_get(uarg);
52267790
WB
1345 skb_shinfo(skb)->destructor_arg = uarg;
1346 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1347 }
1348}
1349
5cd8d46e
WB
1350static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1351{
1352 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1353 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1354}
1355
1356static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1357{
1358 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1359}
1360
1361static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1362{
1363 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1364}
1365
52267790
WB
1366/* Release a reference on a zerocopy structure */
1367static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1368{
1369 struct ubuf_info *uarg = skb_zcopy(skb);
1370
1371 if (uarg) {
0a4a060b
WB
1372 if (uarg->callback == sock_zerocopy_callback) {
1373 uarg->zerocopy = uarg->zerocopy && zerocopy;
1374 sock_zerocopy_put(uarg);
5cd8d46e 1375 } else if (!skb_zcopy_is_nouarg(skb)) {
0a4a060b
WB
1376 uarg->callback(uarg, zerocopy);
1377 }
1378
52267790
WB
1379 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1380 }
1381}
1382
1383/* Abort a zerocopy operation and revert zckey on error in send syscall */
1384static inline void skb_zcopy_abort(struct sk_buff *skb)
1385{
1386 struct ubuf_info *uarg = skb_zcopy(skb);
1387
1388 if (uarg) {
52900d22 1389 sock_zerocopy_put_abort(uarg, false);
52267790
WB
1390 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1391 }
1392}
1393
a8305bff
DM
1394static inline void skb_mark_not_on_list(struct sk_buff *skb)
1395{
1396 skb->next = NULL;
1397}
1398
992cba7e
DM
1399static inline void skb_list_del_init(struct sk_buff *skb)
1400{
1401 __list_del_entry(&skb->list);
1402 skb_mark_not_on_list(skb);
1403}
1404
1da177e4
LT
1405/**
1406 * skb_queue_empty - check if a queue is empty
1407 * @list: queue head
1408 *
1409 * Returns true if the queue is empty, false otherwise.
1410 */
1411static inline int skb_queue_empty(const struct sk_buff_head *list)
1412{
fd44b93c 1413 return list->next == (const struct sk_buff *) list;
1da177e4
LT
1414}
1415
fc7ebb21
DM
1416/**
1417 * skb_queue_is_last - check if skb is the last entry in the queue
1418 * @list: queue head
1419 * @skb: buffer
1420 *
1421 * Returns true if @skb is the last buffer on the list.
1422 */
1423static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1424 const struct sk_buff *skb)
1425{
fd44b93c 1426 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
1427}
1428
832d11c5
IJ
1429/**
1430 * skb_queue_is_first - check if skb is the first entry in the queue
1431 * @list: queue head
1432 * @skb: buffer
1433 *
1434 * Returns true if @skb is the first buffer on the list.
1435 */
1436static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1437 const struct sk_buff *skb)
1438{
fd44b93c 1439 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
1440}
1441
249c8b42
DM
1442/**
1443 * skb_queue_next - return the next packet in the queue
1444 * @list: queue head
1445 * @skb: current buffer
1446 *
1447 * Return the next packet in @list after @skb. It is only valid to
1448 * call this if skb_queue_is_last() evaluates to false.
1449 */
1450static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1451 const struct sk_buff *skb)
1452{
1453 /* This BUG_ON may seem severe, but if we just return then we
1454 * are going to dereference garbage.
1455 */
1456 BUG_ON(skb_queue_is_last(list, skb));
1457 return skb->next;
1458}
1459
832d11c5
IJ
1460/**
1461 * skb_queue_prev - return the prev packet in the queue
1462 * @list: queue head
1463 * @skb: current buffer
1464 *
1465 * Return the prev packet in @list before @skb. It is only valid to
1466 * call this if skb_queue_is_first() evaluates to false.
1467 */
1468static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1469 const struct sk_buff *skb)
1470{
1471 /* This BUG_ON may seem severe, but if we just return then we
1472 * are going to dereference garbage.
1473 */
1474 BUG_ON(skb_queue_is_first(list, skb));
1475 return skb->prev;
1476}
1477
1da177e4
LT
1478/**
1479 * skb_get - reference buffer
1480 * @skb: buffer to reference
1481 *
1482 * Makes another reference to a socket buffer and returns a pointer
1483 * to the buffer.
1484 */
1485static inline struct sk_buff *skb_get(struct sk_buff *skb)
1486{
63354797 1487 refcount_inc(&skb->users);
1da177e4
LT
1488 return skb;
1489}
1490
1491/*
f8821f96 1492 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1da177e4
LT
1493 */
1494
1da177e4
LT
1495/**
1496 * skb_cloned - is the buffer a clone
1497 * @skb: buffer to check
1498 *
1499 * Returns true if the buffer was generated with skb_clone() and is
1500 * one of multiple shared copies of the buffer. Cloned buffers are
1501 * shared data so must not be written to under normal circumstances.
1502 */
1503static inline int skb_cloned(const struct sk_buff *skb)
1504{
1505 return skb->cloned &&
1506 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1507}
1508
14bbd6a5
PS
1509static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1510{
d0164adc 1511 might_sleep_if(gfpflags_allow_blocking(pri));
14bbd6a5
PS
1512
1513 if (skb_cloned(skb))
1514 return pskb_expand_head(skb, 0, 0, pri);
1515
1516 return 0;
1517}
1518
1da177e4
LT
1519/**
1520 * skb_header_cloned - is the header a clone
1521 * @skb: buffer to check
1522 *
1523 * Returns true if modifying the header part of the buffer requires
1524 * the data to be copied.
1525 */
1526static inline int skb_header_cloned(const struct sk_buff *skb)
1527{
1528 int dataref;
1529
1530 if (!skb->cloned)
1531 return 0;
1532
1533 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1534 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1535 return dataref != 1;
1536}
1537
9580bf2e
ED
1538static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1539{
1540 might_sleep_if(gfpflags_allow_blocking(pri));
1541
1542 if (skb_header_cloned(skb))
1543 return pskb_expand_head(skb, 0, 0, pri);
1544
1545 return 0;
1546}
1547
f4a775d1
ED
1548/**
1549 * __skb_header_release - release reference to header
1550 * @skb: buffer to operate on
f4a775d1
ED
1551 */
1552static inline void __skb_header_release(struct sk_buff *skb)
1553{
1554 skb->nohdr = 1;
1555 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1556}
1557
1558
1da177e4
LT
1559/**
1560 * skb_shared - is the buffer shared
1561 * @skb: buffer to check
1562 *
1563 * Returns true if more than one person has a reference to this
1564 * buffer.
1565 */
1566static inline int skb_shared(const struct sk_buff *skb)
1567{
63354797 1568 return refcount_read(&skb->users) != 1;
1da177e4
LT
1569}
1570
1571/**
1572 * skb_share_check - check if buffer is shared and if so clone it
1573 * @skb: buffer to check
1574 * @pri: priority for memory allocation
1575 *
1576 * If the buffer is shared the buffer is cloned and the old copy
1577 * drops a reference. A new clone with a single reference is returned.
1578 * If the buffer is not shared the original buffer is returned. When
1579 * being called from interrupt status or with spinlocks held pri must
1580 * be GFP_ATOMIC.
1581 *
1582 * NULL is returned on a memory allocation failure.
1583 */
47061bc4 1584static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4 1585{
d0164adc 1586 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1587 if (skb_shared(skb)) {
1588 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
1589
1590 if (likely(nskb))
1591 consume_skb(skb);
1592 else
1593 kfree_skb(skb);
1da177e4
LT
1594 skb = nskb;
1595 }
1596 return skb;
1597}
1598
1599/*
1600 * Copy shared buffers into a new sk_buff. We effectively do COW on
1601 * packets to handle cases where we have a local reader and forward
1602 * and a couple of other messy ones. The normal one is tcpdumping
1603 * a packet thats being forwarded.
1604 */
1605
1606/**
1607 * skb_unshare - make a copy of a shared buffer
1608 * @skb: buffer to check
1609 * @pri: priority for memory allocation
1610 *
1611 * If the socket buffer is a clone then this function creates a new
1612 * copy of the data, drops a reference count on the old copy and returns
1613 * the new copy with the reference count at 1. If the buffer is not a clone
1614 * the original buffer is returned. When called with a spinlock held or
1615 * from interrupt state @pri must be %GFP_ATOMIC
1616 *
1617 * %NULL is returned on a memory allocation failure.
1618 */
e2bf521d 1619static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 1620 gfp_t pri)
1da177e4 1621{
d0164adc 1622 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1623 if (skb_cloned(skb)) {
1624 struct sk_buff *nskb = skb_copy(skb, pri);
31eff81e
AA
1625
1626 /* Free our shared copy */
1627 if (likely(nskb))
1628 consume_skb(skb);
1629 else
1630 kfree_skb(skb);
1da177e4
LT
1631 skb = nskb;
1632 }
1633 return skb;
1634}
1635
1636/**
1a5778aa 1637 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
1638 * @list_: list to peek at
1639 *
1640 * Peek an &sk_buff. Unlike most other operations you _MUST_
1641 * be careful with this one. A peek leaves the buffer on the
1642 * list and someone else may run off with it. You must hold
1643 * the appropriate locks or have a private queue to do this.
1644 *
1645 * Returns %NULL for an empty list or a pointer to the head element.
1646 * The reference count is not incremented and the reference is therefore
1647 * volatile. Use with caution.
1648 */
05bdd2f1 1649static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 1650{
18d07000
ED
1651 struct sk_buff *skb = list_->next;
1652
1653 if (skb == (struct sk_buff *)list_)
1654 skb = NULL;
1655 return skb;
1da177e4
LT
1656}
1657
8b69bd7d
DM
1658/**
1659 * __skb_peek - peek at the head of a non-empty &sk_buff_head
1660 * @list_: list to peek at
1661 *
1662 * Like skb_peek(), but the caller knows that the list is not empty.
1663 */
1664static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1665{
1666 return list_->next;
1667}
1668
da5ef6e5
PE
1669/**
1670 * skb_peek_next - peek skb following the given one from a queue
1671 * @skb: skb to start from
1672 * @list_: list to peek at
1673 *
1674 * Returns %NULL when the end of the list is met or a pointer to the
1675 * next element. The reference count is not incremented and the
1676 * reference is therefore volatile. Use with caution.
1677 */
1678static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1679 const struct sk_buff_head *list_)
1680{
1681 struct sk_buff *next = skb->next;
18d07000 1682
da5ef6e5
PE
1683 if (next == (struct sk_buff *)list_)
1684 next = NULL;
1685 return next;
1686}
1687
1da177e4 1688/**
1a5778aa 1689 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1690 * @list_: list to peek at
1691 *
1692 * Peek an &sk_buff. Unlike most other operations you _MUST_
1693 * be careful with this one. A peek leaves the buffer on the
1694 * list and someone else may run off with it. You must hold
1695 * the appropriate locks or have a private queue to do this.
1696 *
1697 * Returns %NULL for an empty list or a pointer to the tail element.
1698 * The reference count is not incremented and the reference is therefore
1699 * volatile. Use with caution.
1700 */
05bdd2f1 1701static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1702{
18d07000
ED
1703 struct sk_buff *skb = list_->prev;
1704
1705 if (skb == (struct sk_buff *)list_)
1706 skb = NULL;
1707 return skb;
1708
1da177e4
LT
1709}
1710
1711/**
1712 * skb_queue_len - get queue length
1713 * @list_: list to measure
1714 *
1715 * Return the length of an &sk_buff queue.
1716 */
1717static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1718{
1719 return list_->qlen;
1720}
1721
67fed459
DM
1722/**
1723 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1724 * @list: queue to initialize
1725 *
1726 * This initializes only the list and queue length aspects of
1727 * an sk_buff_head object. This allows to initialize the list
1728 * aspects of an sk_buff_head without reinitializing things like
1729 * the spinlock. It can also be used for on-stack sk_buff_head
1730 * objects where the spinlock is known to not be used.
1731 */
1732static inline void __skb_queue_head_init(struct sk_buff_head *list)
1733{
1734 list->prev = list->next = (struct sk_buff *)list;
1735 list->qlen = 0;
1736}
1737
76f10ad0
AV
1738/*
1739 * This function creates a split out lock class for each invocation;
1740 * this is needed for now since a whole lot of users of the skb-queue
1741 * infrastructure in drivers have different locking usage (in hardirq)
1742 * than the networking core (in softirq only). In the long run either the
1743 * network layer or drivers should need annotation to consolidate the
1744 * main types of usage into 3 classes.
1745 */
1da177e4
LT
1746static inline void skb_queue_head_init(struct sk_buff_head *list)
1747{
1748 spin_lock_init(&list->lock);
67fed459 1749 __skb_queue_head_init(list);
1da177e4
LT
1750}
1751
c2ecba71
PE
1752static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1753 struct lock_class_key *class)
1754{
1755 skb_queue_head_init(list);
1756 lockdep_set_class(&list->lock, class);
1757}
1758
1da177e4 1759/*
bf299275 1760 * Insert an sk_buff on a list.
1da177e4
LT
1761 *
1762 * The "__skb_xxxx()" functions are the non-atomic ones that
1763 * can only be called with interrupts disabled.
1764 */
bf299275
GR
1765static inline void __skb_insert(struct sk_buff *newsk,
1766 struct sk_buff *prev, struct sk_buff *next,
1767 struct sk_buff_head *list)
1768{
1769 newsk->next = next;
1770 newsk->prev = prev;
1771 next->prev = prev->next = newsk;
1772 list->qlen++;
1773}
1da177e4 1774
67fed459
DM
1775static inline void __skb_queue_splice(const struct sk_buff_head *list,
1776 struct sk_buff *prev,
1777 struct sk_buff *next)
1778{
1779 struct sk_buff *first = list->next;
1780 struct sk_buff *last = list->prev;
1781
1782 first->prev = prev;
1783 prev->next = first;
1784
1785 last->next = next;
1786 next->prev = last;
1787}
1788
1789/**
1790 * skb_queue_splice - join two skb lists, this is designed for stacks
1791 * @list: the new list to add
1792 * @head: the place to add it in the first list
1793 */
1794static inline void skb_queue_splice(const struct sk_buff_head *list,
1795 struct sk_buff_head *head)
1796{
1797 if (!skb_queue_empty(list)) {
1798 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1799 head->qlen += list->qlen;
67fed459
DM
1800 }
1801}
1802
1803/**
d9619496 1804 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1805 * @list: the new list to add
1806 * @head: the place to add it in the first list
1807 *
1808 * The list at @list is reinitialised
1809 */
1810static inline void skb_queue_splice_init(struct sk_buff_head *list,
1811 struct sk_buff_head *head)
1812{
1813 if (!skb_queue_empty(list)) {
1814 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1815 head->qlen += list->qlen;
67fed459
DM
1816 __skb_queue_head_init(list);
1817 }
1818}
1819
1820/**
1821 * skb_queue_splice_tail - join two skb lists, each list being a queue
1822 * @list: the new list to add
1823 * @head: the place to add it in the first list
1824 */
1825static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1826 struct sk_buff_head *head)
1827{
1828 if (!skb_queue_empty(list)) {
1829 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1830 head->qlen += list->qlen;
67fed459
DM
1831 }
1832}
1833
1834/**
d9619496 1835 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1836 * @list: the new list to add
1837 * @head: the place to add it in the first list
1838 *
1839 * Each of the lists is a queue.
1840 * The list at @list is reinitialised
1841 */
1842static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1843 struct sk_buff_head *head)
1844{
1845 if (!skb_queue_empty(list)) {
1846 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1847 head->qlen += list->qlen;
67fed459
DM
1848 __skb_queue_head_init(list);
1849 }
1850}
1851
1da177e4 1852/**
300ce174 1853 * __skb_queue_after - queue a buffer at the list head
1da177e4 1854 * @list: list to use
300ce174 1855 * @prev: place after this buffer
1da177e4
LT
1856 * @newsk: buffer to queue
1857 *
300ce174 1858 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
1859 * and you must therefore hold required locks before calling it.
1860 *
1861 * A buffer cannot be placed on two lists at the same time.
1862 */
300ce174
SH
1863static inline void __skb_queue_after(struct sk_buff_head *list,
1864 struct sk_buff *prev,
1865 struct sk_buff *newsk)
1da177e4 1866{
bf299275 1867 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
1868}
1869
7965bd4d
JP
1870void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1871 struct sk_buff_head *list);
7de6c033 1872
f5572855
GR
1873static inline void __skb_queue_before(struct sk_buff_head *list,
1874 struct sk_buff *next,
1875 struct sk_buff *newsk)
1876{
1877 __skb_insert(newsk, next->prev, next, list);
1878}
1879
300ce174
SH
1880/**
1881 * __skb_queue_head - queue a buffer at the list head
1882 * @list: list to use
1883 * @newsk: buffer to queue
1884 *
1885 * Queue a buffer at the start of a list. This function takes no locks
1886 * and you must therefore hold required locks before calling it.
1887 *
1888 * A buffer cannot be placed on two lists at the same time.
1889 */
7965bd4d 1890void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174
SH
1891static inline void __skb_queue_head(struct sk_buff_head *list,
1892 struct sk_buff *newsk)
1893{
1894 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1895}
1896
1da177e4
LT
1897/**
1898 * __skb_queue_tail - queue a buffer at the list tail
1899 * @list: list to use
1900 * @newsk: buffer to queue
1901 *
1902 * Queue a buffer at the end of a list. This function takes no locks
1903 * and you must therefore hold required locks before calling it.
1904 *
1905 * A buffer cannot be placed on two lists at the same time.
1906 */
7965bd4d 1907void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4
LT
1908static inline void __skb_queue_tail(struct sk_buff_head *list,
1909 struct sk_buff *newsk)
1910{
f5572855 1911 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4
LT
1912}
1913
1da177e4
LT
1914/*
1915 * remove sk_buff from list. _Must_ be called atomically, and with
1916 * the list known..
1917 */
7965bd4d 1918void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
1919static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1920{
1921 struct sk_buff *next, *prev;
1922
1923 list->qlen--;
1924 next = skb->next;
1925 prev = skb->prev;
1926 skb->next = skb->prev = NULL;
1da177e4
LT
1927 next->prev = prev;
1928 prev->next = next;
1929}
1930
f525c06d
GR
1931/**
1932 * __skb_dequeue - remove from the head of the queue
1933 * @list: list to dequeue from
1934 *
1935 * Remove the head of the list. This function does not take any locks
1936 * so must be used with appropriate locks held only. The head item is
1937 * returned or %NULL if the list is empty.
1938 */
7965bd4d 1939struct sk_buff *skb_dequeue(struct sk_buff_head *list);
f525c06d
GR
1940static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1941{
1942 struct sk_buff *skb = skb_peek(list);
1943 if (skb)
1944 __skb_unlink(skb, list);
1945 return skb;
1946}
1da177e4
LT
1947
1948/**
1949 * __skb_dequeue_tail - remove from the tail of the queue
1950 * @list: list to dequeue from
1951 *
1952 * Remove the tail of the list. This function does not take any locks
1953 * so must be used with appropriate locks held only. The tail item is
1954 * returned or %NULL if the list is empty.
1955 */
7965bd4d 1956struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
1957static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1958{
1959 struct sk_buff *skb = skb_peek_tail(list);
1960 if (skb)
1961 __skb_unlink(skb, list);
1962 return skb;
1963}
1964
1965
bdcc0924 1966static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
1967{
1968 return skb->data_len;
1969}
1970
1971static inline unsigned int skb_headlen(const struct sk_buff *skb)
1972{
1973 return skb->len - skb->data_len;
1974}
1975
3ece7826 1976static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1da177e4 1977{
c72d8cda 1978 unsigned int i, len = 0;
1da177e4 1979
c72d8cda 1980 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
9e903e08 1981 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
3ece7826
WB
1982 return len;
1983}
1984
1985static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1986{
1987 return skb_headlen(skb) + __skb_pagelen(skb);
1da177e4
LT
1988}
1989
131ea667
IC
1990/**
1991 * __skb_fill_page_desc - initialise a paged fragment in an skb
1992 * @skb: buffer containing fragment to be initialised
1993 * @i: paged fragment index to initialise
1994 * @page: the page to use for this fragment
1995 * @off: the offset to the data with @page
1996 * @size: the length of the data
1997 *
1998 * Initialises the @i'th fragment of @skb to point to &size bytes at
1999 * offset @off within @page.
2000 *
2001 * Does not take any additional reference on the fragment.
2002 */
2003static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2004 struct page *page, int off, int size)
1da177e4
LT
2005{
2006 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2007
c48a11c7 2008 /*
2f064f34
MH
2009 * Propagate page pfmemalloc to the skb if we can. The problem is
2010 * that not all callers have unique ownership of the page but rely
2011 * on page_is_pfmemalloc doing the right thing(tm).
c48a11c7 2012 */
a8605c60 2013 frag->page.p = page;
1da177e4 2014 frag->page_offset = off;
9e903e08 2015 skb_frag_size_set(frag, size);
cca7af38
PE
2016
2017 page = compound_head(page);
2f064f34 2018 if (page_is_pfmemalloc(page))
cca7af38 2019 skb->pfmemalloc = true;
131ea667
IC
2020}
2021
2022/**
2023 * skb_fill_page_desc - initialise a paged fragment in an skb
2024 * @skb: buffer containing fragment to be initialised
2025 * @i: paged fragment index to initialise
2026 * @page: the page to use for this fragment
2027 * @off: the offset to the data with @page
2028 * @size: the length of the data
2029 *
2030 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 2031 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
2032 * addition updates @skb such that @i is the last fragment.
2033 *
2034 * Does not take any additional reference on the fragment.
2035 */
2036static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2037 struct page *page, int off, int size)
2038{
2039 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
2040 skb_shinfo(skb)->nr_frags = i + 1;
2041}
2042
7965bd4d
JP
2043void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2044 int size, unsigned int truesize);
654bed16 2045
f8e617e1
JW
2046void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2047 unsigned int truesize);
2048
1da177e4 2049#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
21dc3301 2050#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1da177e4
LT
2051#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2052
27a884dc
ACM
2053#ifdef NET_SKBUFF_DATA_USES_OFFSET
2054static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2055{
2056 return skb->head + skb->tail;
2057}
2058
2059static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2060{
2061 skb->tail = skb->data - skb->head;
2062}
2063
2064static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2065{
2066 skb_reset_tail_pointer(skb);
2067 skb->tail += offset;
2068}
7cc46190 2069
27a884dc
ACM
2070#else /* NET_SKBUFF_DATA_USES_OFFSET */
2071static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2072{
2073 return skb->tail;
2074}
2075
2076static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2077{
2078 skb->tail = skb->data;
2079}
2080
2081static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2082{
2083 skb->tail = skb->data + offset;
2084}
4305b541 2085
27a884dc
ACM
2086#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2087
1da177e4
LT
2088/*
2089 * Add data to an sk_buff
2090 */
4df864c1
JB
2091void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2092void *skb_put(struct sk_buff *skb, unsigned int len);
2093static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
1da177e4 2094{
4df864c1 2095 void *tmp = skb_tail_pointer(skb);
1da177e4
LT
2096 SKB_LINEAR_ASSERT(skb);
2097 skb->tail += len;
2098 skb->len += len;
2099 return tmp;
2100}
2101
de77b966 2102static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2103{
2104 void *tmp = __skb_put(skb, len);
2105
2106 memset(tmp, 0, len);
2107 return tmp;
2108}
2109
2110static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2111 unsigned int len)
2112{
2113 void *tmp = __skb_put(skb, len);
2114
2115 memcpy(tmp, data, len);
2116 return tmp;
2117}
2118
2119static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2120{
2121 *(u8 *)__skb_put(skb, 1) = val;
2122}
2123
83ad357d 2124static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
e45a79da 2125{
83ad357d 2126 void *tmp = skb_put(skb, len);
e45a79da
JB
2127
2128 memset(tmp, 0, len);
2129
2130 return tmp;
2131}
2132
59ae1d12
JB
2133static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2134 unsigned int len)
2135{
2136 void *tmp = skb_put(skb, len);
2137
2138 memcpy(tmp, data, len);
2139
2140 return tmp;
2141}
2142
634fef61
JB
2143static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2144{
2145 *(u8 *)skb_put(skb, 1) = val;
2146}
2147
d58ff351
JB
2148void *skb_push(struct sk_buff *skb, unsigned int len);
2149static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2150{
2151 skb->data -= len;
2152 skb->len += len;
2153 return skb->data;
2154}
2155
af72868b
JB
2156void *skb_pull(struct sk_buff *skb, unsigned int len);
2157static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2158{
2159 skb->len -= len;
2160 BUG_ON(skb->len < skb->data_len);
2161 return skb->data += len;
2162}
2163
af72868b 2164static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
47d29646
DM
2165{
2166 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2167}
2168
af72868b 2169void *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4 2170
af72868b 2171static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2172{
2173 if (len > skb_headlen(skb) &&
987c402a 2174 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
2175 return NULL;
2176 skb->len -= len;
2177 return skb->data += len;
2178}
2179
af72868b 2180static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2181{
2182 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2183}
2184
2185static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2186{
2187 if (likely(len <= skb_headlen(skb)))
2188 return 1;
2189 if (unlikely(len > skb->len))
2190 return 0;
987c402a 2191 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
2192}
2193
c8c8b127
ED
2194void skb_condense(struct sk_buff *skb);
2195
1da177e4
LT
2196/**
2197 * skb_headroom - bytes at buffer head
2198 * @skb: buffer to check
2199 *
2200 * Return the number of bytes of free space at the head of an &sk_buff.
2201 */
c2636b4d 2202static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
2203{
2204 return skb->data - skb->head;
2205}
2206
2207/**
2208 * skb_tailroom - bytes at buffer end
2209 * @skb: buffer to check
2210 *
2211 * Return the number of bytes of free space at the tail of an sk_buff
2212 */
2213static inline int skb_tailroom(const struct sk_buff *skb)
2214{
4305b541 2215 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
2216}
2217
a21d4572
ED
2218/**
2219 * skb_availroom - bytes at buffer end
2220 * @skb: buffer to check
2221 *
2222 * Return the number of bytes of free space at the tail of an sk_buff
2223 * allocated by sk_stream_alloc()
2224 */
2225static inline int skb_availroom(const struct sk_buff *skb)
2226{
16fad69c
ED
2227 if (skb_is_nonlinear(skb))
2228 return 0;
2229
2230 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
2231}
2232
1da177e4
LT
2233/**
2234 * skb_reserve - adjust headroom
2235 * @skb: buffer to alter
2236 * @len: bytes to move
2237 *
2238 * Increase the headroom of an empty &sk_buff by reducing the tail
2239 * room. This is only allowed for an empty buffer.
2240 */
8243126c 2241static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
2242{
2243 skb->data += len;
2244 skb->tail += len;
2245}
2246
1837b2e2
BP
2247/**
2248 * skb_tailroom_reserve - adjust reserved_tailroom
2249 * @skb: buffer to alter
2250 * @mtu: maximum amount of headlen permitted
2251 * @needed_tailroom: minimum amount of reserved_tailroom
2252 *
2253 * Set reserved_tailroom so that headlen can be as large as possible but
2254 * not larger than mtu and tailroom cannot be smaller than
2255 * needed_tailroom.
2256 * The required headroom should already have been reserved before using
2257 * this function.
2258 */
2259static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2260 unsigned int needed_tailroom)
2261{
2262 SKB_LINEAR_ASSERT(skb);
2263 if (mtu < skb_tailroom(skb) - needed_tailroom)
2264 /* use at most mtu */
2265 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2266 else
2267 /* use up to all available space */
2268 skb->reserved_tailroom = needed_tailroom;
2269}
2270
8bce6d7d
TH
2271#define ENCAP_TYPE_ETHER 0
2272#define ENCAP_TYPE_IPPROTO 1
2273
2274static inline void skb_set_inner_protocol(struct sk_buff *skb,
2275 __be16 protocol)
2276{
2277 skb->inner_protocol = protocol;
2278 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2279}
2280
2281static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2282 __u8 ipproto)
2283{
2284 skb->inner_ipproto = ipproto;
2285 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2286}
2287
6a674e9c
JG
2288static inline void skb_reset_inner_headers(struct sk_buff *skb)
2289{
aefbd2b3 2290 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
2291 skb->inner_network_header = skb->network_header;
2292 skb->inner_transport_header = skb->transport_header;
2293}
2294
0b5c9db1
JP
2295static inline void skb_reset_mac_len(struct sk_buff *skb)
2296{
2297 skb->mac_len = skb->network_header - skb->mac_header;
2298}
2299
6a674e9c
JG
2300static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2301 *skb)
2302{
2303 return skb->head + skb->inner_transport_header;
2304}
2305
55dc5a9f
TH
2306static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2307{
2308 return skb_inner_transport_header(skb) - skb->data;
2309}
2310
6a674e9c
JG
2311static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2312{
2313 skb->inner_transport_header = skb->data - skb->head;
2314}
2315
2316static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2317 const int offset)
2318{
2319 skb_reset_inner_transport_header(skb);
2320 skb->inner_transport_header += offset;
2321}
2322
2323static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2324{
2325 return skb->head + skb->inner_network_header;
2326}
2327
2328static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2329{
2330 skb->inner_network_header = skb->data - skb->head;
2331}
2332
2333static inline void skb_set_inner_network_header(struct sk_buff *skb,
2334 const int offset)
2335{
2336 skb_reset_inner_network_header(skb);
2337 skb->inner_network_header += offset;
2338}
2339
aefbd2b3
PS
2340static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2341{
2342 return skb->head + skb->inner_mac_header;
2343}
2344
2345static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2346{
2347 skb->inner_mac_header = skb->data - skb->head;
2348}
2349
2350static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2351 const int offset)
2352{
2353 skb_reset_inner_mac_header(skb);
2354 skb->inner_mac_header += offset;
2355}
fda55eca
ED
2356static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2357{
35d04610 2358 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
2359}
2360
9c70220b
ACM
2361static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2362{
2e07fa9c 2363 return skb->head + skb->transport_header;
9c70220b
ACM
2364}
2365
badff6d0
ACM
2366static inline void skb_reset_transport_header(struct sk_buff *skb)
2367{
2e07fa9c 2368 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
2369}
2370
967b05f6
ACM
2371static inline void skb_set_transport_header(struct sk_buff *skb,
2372 const int offset)
2373{
2e07fa9c
ACM
2374 skb_reset_transport_header(skb);
2375 skb->transport_header += offset;
ea2ae17d
ACM
2376}
2377
d56f90a7
ACM
2378static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2379{
2e07fa9c 2380 return skb->head + skb->network_header;
d56f90a7
ACM
2381}
2382
c1d2bbe1
ACM
2383static inline void skb_reset_network_header(struct sk_buff *skb)
2384{
2e07fa9c 2385 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
2386}
2387
c14d2450
ACM
2388static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2389{
2e07fa9c
ACM
2390 skb_reset_network_header(skb);
2391 skb->network_header += offset;
c14d2450
ACM
2392}
2393
2e07fa9c 2394static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 2395{
2e07fa9c 2396 return skb->head + skb->mac_header;
bbe735e4
ACM
2397}
2398
ea6da4fd
AV
2399static inline int skb_mac_offset(const struct sk_buff *skb)
2400{
2401 return skb_mac_header(skb) - skb->data;
2402}
2403
0daf4349
DB
2404static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2405{
2406 return skb->network_header - skb->mac_header;
2407}
2408
2e07fa9c 2409static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 2410{
35d04610 2411 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
2412}
2413
2414static inline void skb_reset_mac_header(struct sk_buff *skb)
2415{
2416 skb->mac_header = skb->data - skb->head;
2417}
2418
2419static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2420{
2421 skb_reset_mac_header(skb);
2422 skb->mac_header += offset;
2423}
2424
0e3da5bb
TT
2425static inline void skb_pop_mac_header(struct sk_buff *skb)
2426{
2427 skb->mac_header = skb->network_header;
2428}
2429
fbbdb8f0
YX
2430static inline void skb_probe_transport_header(struct sk_buff *skb,
2431 const int offset_hint)
2432{
72a338bc 2433 struct flow_keys_basic keys;
fbbdb8f0
YX
2434
2435 if (skb_transport_header_was_set(skb))
2436 return;
72a338bc 2437
15693fd3 2438 if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
42aecaa9 2439 skb_set_transport_header(skb, keys.control.thoff);
fbbdb8f0
YX
2440 else
2441 skb_set_transport_header(skb, offset_hint);
2442}
2443
03606895
ED
2444static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2445{
2446 if (skb_mac_header_was_set(skb)) {
2447 const unsigned char *old_mac = skb_mac_header(skb);
2448
2449 skb_set_mac_header(skb, -skb->mac_len);
2450 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2451 }
2452}
2453
04fb451e
MM
2454static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2455{
2456 return skb->csum_start - skb_headroom(skb);
2457}
2458
08b64fcc
AD
2459static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2460{
2461 return skb->head + skb->csum_start;
2462}
2463
2e07fa9c
ACM
2464static inline int skb_transport_offset(const struct sk_buff *skb)
2465{
2466 return skb_transport_header(skb) - skb->data;
2467}
2468
2469static inline u32 skb_network_header_len(const struct sk_buff *skb)
2470{
2471 return skb->transport_header - skb->network_header;
2472}
2473
6a674e9c
JG
2474static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2475{
2476 return skb->inner_transport_header - skb->inner_network_header;
2477}
2478
2e07fa9c
ACM
2479static inline int skb_network_offset(const struct sk_buff *skb)
2480{
2481 return skb_network_header(skb) - skb->data;
2482}
48d49d0c 2483
6a674e9c
JG
2484static inline int skb_inner_network_offset(const struct sk_buff *skb)
2485{
2486 return skb_inner_network_header(skb) - skb->data;
2487}
2488
f9599ce1
CG
2489static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2490{
2491 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2492}
2493
1da177e4
LT
2494/*
2495 * CPUs often take a performance hit when accessing unaligned memory
2496 * locations. The actual performance hit varies, it can be small if the
2497 * hardware handles it or large if we have to take an exception and fix it
2498 * in software.
2499 *
2500 * Since an ethernet header is 14 bytes network drivers often end up with
2501 * the IP header at an unaligned offset. The IP header can be aligned by
2502 * shifting the start of the packet by 2 bytes. Drivers should do this
2503 * with:
2504 *
8660c124 2505 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
2506 *
2507 * The downside to this alignment of the IP header is that the DMA is now
2508 * unaligned. On some architectures the cost of an unaligned DMA is high
2509 * and this cost outweighs the gains made by aligning the IP header.
8660c124 2510 *
1da177e4
LT
2511 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2512 * to be overridden.
2513 */
2514#ifndef NET_IP_ALIGN
2515#define NET_IP_ALIGN 2
2516#endif
2517
025be81e
AB
2518/*
2519 * The networking layer reserves some headroom in skb data (via
2520 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2521 * the header has to grow. In the default case, if the header has to grow
d6301d3d 2522 * 32 bytes or less we avoid the reallocation.
025be81e
AB
2523 *
2524 * Unfortunately this headroom changes the DMA alignment of the resulting
2525 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2526 * on some architectures. An architecture can override this value,
2527 * perhaps setting it to a cacheline in size (since that will maintain
2528 * cacheline alignment of the DMA). It must be a power of 2.
2529 *
d6301d3d 2530 * Various parts of the networking layer expect at least 32 bytes of
025be81e 2531 * headroom, you should not reduce this.
5933dd2f
ED
2532 *
2533 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2534 * to reduce average number of cache lines per packet.
2535 * get_rps_cpus() for example only access one 64 bytes aligned block :
18e8c134 2536 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
2537 */
2538#ifndef NET_SKB_PAD
5933dd2f 2539#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
2540#endif
2541
7965bd4d 2542int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4 2543
5293efe6 2544static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
1da177e4 2545{
5e1abdc3 2546 if (WARN_ON(skb_is_nonlinear(skb)))
3cc0e873 2547 return;
27a884dc
ACM
2548 skb->len = len;
2549 skb_set_tail_pointer(skb, len);
1da177e4
LT
2550}
2551
5293efe6
DB
2552static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2553{
2554 __skb_set_length(skb, len);
2555}
2556
7965bd4d 2557void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2558
2559static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2560{
3cc0e873
HX
2561 if (skb->data_len)
2562 return ___pskb_trim(skb, len);
2563 __skb_trim(skb, len);
2564 return 0;
1da177e4
LT
2565}
2566
2567static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2568{
2569 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2570}
2571
e9fa4f7b
HX
2572/**
2573 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2574 * @skb: buffer to alter
2575 * @len: new length
2576 *
2577 * This is identical to pskb_trim except that the caller knows that
2578 * the skb is not cloned so we should never get an error due to out-
2579 * of-memory.
2580 */
2581static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2582{
2583 int err = pskb_trim(skb, len);
2584 BUG_ON(err);
2585}
2586
5293efe6
DB
2587static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2588{
2589 unsigned int diff = len - skb->len;
2590
2591 if (skb_tailroom(skb) < diff) {
2592 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2593 GFP_ATOMIC);
2594 if (ret)
2595 return ret;
2596 }
2597 __skb_set_length(skb, len);
2598 return 0;
2599}
2600
1da177e4
LT
2601/**
2602 * skb_orphan - orphan a buffer
2603 * @skb: buffer to orphan
2604 *
2605 * If a buffer currently has an owner then we call the owner's
2606 * destructor function and make the @skb unowned. The buffer continues
2607 * to exist but is no longer charged to its former owner.
2608 */
2609static inline void skb_orphan(struct sk_buff *skb)
2610{
c34a7612 2611 if (skb->destructor) {
1da177e4 2612 skb->destructor(skb);
c34a7612
ED
2613 skb->destructor = NULL;
2614 skb->sk = NULL;
376c7311
ED
2615 } else {
2616 BUG_ON(skb->sk);
c34a7612 2617 }
1da177e4
LT
2618}
2619
a353e0ce
MT
2620/**
2621 * skb_orphan_frags - orphan the frags contained in a buffer
2622 * @skb: buffer to orphan frags from
2623 * @gfp_mask: allocation mask for replacement pages
2624 *
2625 * For each frag in the SKB which needs a destructor (i.e. has an
2626 * owner) create a copy of that frag and release the original
2627 * page by calling the destructor.
2628 */
2629static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2630{
1f8b977a
WB
2631 if (likely(!skb_zcopy(skb)))
2632 return 0;
2633 if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2634 return 0;
2635 return skb_copy_ubufs(skb, gfp_mask);
2636}
2637
2638/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2639static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2640{
2641 if (likely(!skb_zcopy(skb)))
a353e0ce
MT
2642 return 0;
2643 return skb_copy_ubufs(skb, gfp_mask);
2644}
2645
1da177e4
LT
2646/**
2647 * __skb_queue_purge - empty a list
2648 * @list: list to empty
2649 *
2650 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2651 * the list and one reference dropped. This function does not take the
2652 * list lock and the caller must hold the relevant locks to use it.
2653 */
7965bd4d 2654void skb_queue_purge(struct sk_buff_head *list);
1da177e4
LT
2655static inline void __skb_queue_purge(struct sk_buff_head *list)
2656{
2657 struct sk_buff *skb;
2658 while ((skb = __skb_dequeue(list)) != NULL)
2659 kfree_skb(skb);
2660}
2661
385114de 2662unsigned int skb_rbtree_purge(struct rb_root *root);
9f5afeae 2663
7965bd4d 2664void *netdev_alloc_frag(unsigned int fragsz);
1da177e4 2665
7965bd4d
JP
2666struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2667 gfp_t gfp_mask);
8af27456
CH
2668
2669/**
2670 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2671 * @dev: network device to receive on
2672 * @length: length to allocate
2673 *
2674 * Allocate a new &sk_buff and assign it a usage count of one. The
2675 * buffer has unspecified headroom built in. Users should allocate
2676 * the headroom they think they need without accounting for the
2677 * built in space. The built in space is used for optimisations.
2678 *
2679 * %NULL is returned if there is no free memory. Although this function
2680 * allocates memory it can be called from an interrupt.
2681 */
2682static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 2683 unsigned int length)
8af27456
CH
2684{
2685 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2686}
2687
6f532612
ED
2688/* legacy helper around __netdev_alloc_skb() */
2689static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2690 gfp_t gfp_mask)
2691{
2692 return __netdev_alloc_skb(NULL, length, gfp_mask);
2693}
2694
2695/* legacy helper around netdev_alloc_skb() */
2696static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2697{
2698 return netdev_alloc_skb(NULL, length);
2699}
2700
2701
4915a0de
ED
2702static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2703 unsigned int length, gfp_t gfp)
61321bbd 2704{
4915a0de 2705 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
2706
2707 if (NET_IP_ALIGN && skb)
2708 skb_reserve(skb, NET_IP_ALIGN);
2709 return skb;
2710}
2711
4915a0de
ED
2712static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2713 unsigned int length)
2714{
2715 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2716}
2717
181edb2b
AD
2718static inline void skb_free_frag(void *addr)
2719{
8c2dd3e4 2720 page_frag_free(addr);
181edb2b
AD
2721}
2722
ffde7328 2723void *napi_alloc_frag(unsigned int fragsz);
fd11a83d
AD
2724struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2725 unsigned int length, gfp_t gfp_mask);
2726static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2727 unsigned int length)
2728{
2729 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2730}
795bb1c0
JDB
2731void napi_consume_skb(struct sk_buff *skb, int budget);
2732
2733void __kfree_skb_flush(void);
15fad714 2734void __kfree_skb_defer(struct sk_buff *skb);
ffde7328 2735
71dfda58
AD
2736/**
2737 * __dev_alloc_pages - allocate page for network Rx
2738 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2739 * @order: size of the allocation
2740 *
2741 * Allocate a new page.
2742 *
2743 * %NULL is returned if there is no free memory.
2744*/
2745static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2746 unsigned int order)
2747{
2748 /* This piece of code contains several assumptions.
2749 * 1. This is for device Rx, therefor a cold page is preferred.
2750 * 2. The expectation is the user wants a compound page.
2751 * 3. If requesting a order 0 page it will not be compound
2752 * due to the check to see if order has a value in prep_new_page
2753 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2754 * code in gfp_to_alloc_flags that should be enforcing this.
2755 */
453f85d4 2756 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
71dfda58
AD
2757
2758 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2759}
2760
2761static inline struct page *dev_alloc_pages(unsigned int order)
2762{
95829b3a 2763 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
71dfda58
AD
2764}
2765
2766/**
2767 * __dev_alloc_page - allocate a page for network Rx
2768 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2769 *
2770 * Allocate a new page.
2771 *
2772 * %NULL is returned if there is no free memory.
2773 */
2774static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2775{
2776 return __dev_alloc_pages(gfp_mask, 0);
2777}
2778
2779static inline struct page *dev_alloc_page(void)
2780{
95829b3a 2781 return dev_alloc_pages(0);
71dfda58
AD
2782}
2783
0614002b
MG
2784/**
2785 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2786 * @page: The page that was allocated from skb_alloc_page
2787 * @skb: The skb that may need pfmemalloc set
2788 */
2789static inline void skb_propagate_pfmemalloc(struct page *page,
2790 struct sk_buff *skb)
2791{
2f064f34 2792 if (page_is_pfmemalloc(page))
0614002b
MG
2793 skb->pfmemalloc = true;
2794}
2795
131ea667 2796/**
e227867f 2797 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
2798 * @frag: the paged fragment
2799 *
2800 * Returns the &struct page associated with @frag.
2801 */
2802static inline struct page *skb_frag_page(const skb_frag_t *frag)
2803{
a8605c60 2804 return frag->page.p;
131ea667
IC
2805}
2806
2807/**
2808 * __skb_frag_ref - take an addition reference on a paged fragment.
2809 * @frag: the paged fragment
2810 *
2811 * Takes an additional reference on the paged fragment @frag.
2812 */
2813static inline void __skb_frag_ref(skb_frag_t *frag)
2814{
2815 get_page(skb_frag_page(frag));
2816}
2817
2818/**
2819 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2820 * @skb: the buffer
2821 * @f: the fragment offset.
2822 *
2823 * Takes an additional reference on the @f'th paged fragment of @skb.
2824 */
2825static inline void skb_frag_ref(struct sk_buff *skb, int f)
2826{
2827 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2828}
2829
2830/**
2831 * __skb_frag_unref - release a reference on a paged fragment.
2832 * @frag: the paged fragment
2833 *
2834 * Releases a reference on the paged fragment @frag.
2835 */
2836static inline void __skb_frag_unref(skb_frag_t *frag)
2837{
2838 put_page(skb_frag_page(frag));
2839}
2840
2841/**
2842 * skb_frag_unref - release a reference on a paged fragment of an skb.
2843 * @skb: the buffer
2844 * @f: the fragment offset
2845 *
2846 * Releases a reference on the @f'th paged fragment of @skb.
2847 */
2848static inline void skb_frag_unref(struct sk_buff *skb, int f)
2849{
2850 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2851}
2852
2853/**
2854 * skb_frag_address - gets the address of the data contained in a paged fragment
2855 * @frag: the paged fragment buffer
2856 *
2857 * Returns the address of the data within @frag. The page must already
2858 * be mapped.
2859 */
2860static inline void *skb_frag_address(const skb_frag_t *frag)
2861{
2862 return page_address(skb_frag_page(frag)) + frag->page_offset;
2863}
2864
2865/**
2866 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2867 * @frag: the paged fragment buffer
2868 *
2869 * Returns the address of the data within @frag. Checks that the page
2870 * is mapped and returns %NULL otherwise.
2871 */
2872static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2873{
2874 void *ptr = page_address(skb_frag_page(frag));
2875 if (unlikely(!ptr))
2876 return NULL;
2877
2878 return ptr + frag->page_offset;
2879}
2880
2881/**
2882 * __skb_frag_set_page - sets the page contained in a paged fragment
2883 * @frag: the paged fragment
2884 * @page: the page to set
2885 *
2886 * Sets the fragment @frag to contain @page.
2887 */
2888static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2889{
a8605c60 2890 frag->page.p = page;
131ea667
IC
2891}
2892
2893/**
2894 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2895 * @skb: the buffer
2896 * @f: the fragment offset
2897 * @page: the page to set
2898 *
2899 * Sets the @f'th fragment of @skb to contain @page.
2900 */
2901static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2902 struct page *page)
2903{
2904 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2905}
2906
400dfd3a
ED
2907bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2908
131ea667
IC
2909/**
2910 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 2911 * @dev: the device to map the fragment to
131ea667
IC
2912 * @frag: the paged fragment to map
2913 * @offset: the offset within the fragment (starting at the
2914 * fragment's own offset)
2915 * @size: the number of bytes to map
771b00a8 2916 * @dir: the direction of the mapping (``PCI_DMA_*``)
131ea667
IC
2917 *
2918 * Maps the page associated with @frag to @device.
2919 */
2920static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2921 const skb_frag_t *frag,
2922 size_t offset, size_t size,
2923 enum dma_data_direction dir)
2924{
2925 return dma_map_page(dev, skb_frag_page(frag),
2926 frag->page_offset + offset, size, dir);
2927}
2928
117632e6
ED
2929static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2930 gfp_t gfp_mask)
2931{
2932 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2933}
2934
bad93e9d
OP
2935
2936static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2937 gfp_t gfp_mask)
2938{
2939 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2940}
2941
2942
334a8132
PM
2943/**
2944 * skb_clone_writable - is the header of a clone writable
2945 * @skb: buffer to check
2946 * @len: length up to which to write
2947 *
2948 * Returns true if modifying the header part of the cloned buffer
2949 * does not requires the data to be copied.
2950 */
05bdd2f1 2951static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
2952{
2953 return !skb_header_cloned(skb) &&
2954 skb_headroom(skb) + len <= skb->hdr_len;
2955}
2956
3697649f
DB
2957static inline int skb_try_make_writable(struct sk_buff *skb,
2958 unsigned int write_len)
2959{
2960 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2961 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2962}
2963
d9cc2048
HX
2964static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2965 int cloned)
2966{
2967 int delta = 0;
2968
d9cc2048
HX
2969 if (headroom > skb_headroom(skb))
2970 delta = headroom - skb_headroom(skb);
2971
2972 if (delta || cloned)
2973 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2974 GFP_ATOMIC);
2975 return 0;
2976}
2977
1da177e4
LT
2978/**
2979 * skb_cow - copy header of skb when it is required
2980 * @skb: buffer to cow
2981 * @headroom: needed headroom
2982 *
2983 * If the skb passed lacks sufficient headroom or its data part
2984 * is shared, data is reallocated. If reallocation fails, an error
2985 * is returned and original skb is not changed.
2986 *
2987 * The result is skb with writable area skb->head...skb->tail
2988 * and at least @headroom of space at head.
2989 */
2990static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2991{
d9cc2048
HX
2992 return __skb_cow(skb, headroom, skb_cloned(skb));
2993}
1da177e4 2994
d9cc2048
HX
2995/**
2996 * skb_cow_head - skb_cow but only making the head writable
2997 * @skb: buffer to cow
2998 * @headroom: needed headroom
2999 *
3000 * This function is identical to skb_cow except that we replace the
3001 * skb_cloned check by skb_header_cloned. It should be used when
3002 * you only need to push on some header and do not need to modify
3003 * the data.
3004 */
3005static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3006{
3007 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
3008}
3009
3010/**
3011 * skb_padto - pad an skbuff up to a minimal size
3012 * @skb: buffer to pad
3013 * @len: minimal length
3014 *
3015 * Pads up a buffer to ensure the trailing bytes exist and are
3016 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
3017 * is untouched. Otherwise it is extended. Returns zero on
3018 * success. The skb is freed on error.
1da177e4 3019 */
5b057c6b 3020static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
3021{
3022 unsigned int size = skb->len;
3023 if (likely(size >= len))
5b057c6b 3024 return 0;
987c402a 3025 return skb_pad(skb, len - size);
1da177e4
LT
3026}
3027
9c0c1124
AD
3028/**
3029 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3030 * @skb: buffer to pad
3031 * @len: minimal length
cd0a137a 3032 * @free_on_error: free buffer on error
9c0c1124
AD
3033 *
3034 * Pads up a buffer to ensure the trailing bytes exist and are
3035 * blanked. If the buffer already contains sufficient data it
3036 * is untouched. Otherwise it is extended. Returns zero on
cd0a137a 3037 * success. The skb is freed on error if @free_on_error is true.
9c0c1124 3038 */
cd0a137a
FF
3039static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3040 bool free_on_error)
9c0c1124
AD
3041{
3042 unsigned int size = skb->len;
3043
3044 if (unlikely(size < len)) {
3045 len -= size;
cd0a137a 3046 if (__skb_pad(skb, len, free_on_error))
9c0c1124
AD
3047 return -ENOMEM;
3048 __skb_put(skb, len);
3049 }
3050 return 0;
3051}
3052
cd0a137a
FF
3053/**
3054 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3055 * @skb: buffer to pad
3056 * @len: minimal length
3057 *
3058 * Pads up a buffer to ensure the trailing bytes exist and are
3059 * blanked. If the buffer already contains sufficient data it
3060 * is untouched. Otherwise it is extended. Returns zero on
3061 * success. The skb is freed on error.
3062 */
3063static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3064{
3065 return __skb_put_padto(skb, len, true);
3066}
3067
1da177e4 3068static inline int skb_add_data(struct sk_buff *skb,
af2b040e 3069 struct iov_iter *from, int copy)
1da177e4
LT
3070{
3071 const int off = skb->len;
3072
3073 if (skb->ip_summed == CHECKSUM_NONE) {
af2b040e 3074 __wsum csum = 0;
15e6cb46
AV
3075 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3076 &csum, from)) {
1da177e4
LT
3077 skb->csum = csum_block_add(skb->csum, csum, off);
3078 return 0;
3079 }
15e6cb46 3080 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
1da177e4
LT
3081 return 0;
3082
3083 __skb_trim(skb, off);
3084 return -EFAULT;
3085}
3086
38ba0a65
ED
3087static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3088 const struct page *page, int off)
1da177e4 3089{
1f8b977a
WB
3090 if (skb_zcopy(skb))
3091 return false;
1da177e4 3092 if (i) {
9e903e08 3093 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 3094
ea2ab693 3095 return page == skb_frag_page(frag) &&
9e903e08 3096 off == frag->page_offset + skb_frag_size(frag);
1da177e4 3097 }
38ba0a65 3098 return false;
1da177e4
LT
3099}
3100
364c6bad
HX
3101static inline int __skb_linearize(struct sk_buff *skb)
3102{
3103 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3104}
3105
1da177e4
LT
3106/**
3107 * skb_linearize - convert paged skb to linear one
3108 * @skb: buffer to linarize
1da177e4
LT
3109 *
3110 * If there is no free memory -ENOMEM is returned, otherwise zero
3111 * is returned and the old skb data released.
3112 */
364c6bad
HX
3113static inline int skb_linearize(struct sk_buff *skb)
3114{
3115 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3116}
3117
cef401de
ED
3118/**
3119 * skb_has_shared_frag - can any frag be overwritten
3120 * @skb: buffer to test
3121 *
3122 * Return true if the skb has at least one frag that might be modified
3123 * by an external entity (as in vmsplice()/sendfile())
3124 */
3125static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3126{
c9af6db4
PS
3127 return skb_is_nonlinear(skb) &&
3128 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
cef401de
ED
3129}
3130
364c6bad
HX
3131/**
3132 * skb_linearize_cow - make sure skb is linear and writable
3133 * @skb: buffer to process
3134 *
3135 * If there is no free memory -ENOMEM is returned, otherwise zero
3136 * is returned and the old skb data released.
3137 */
3138static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 3139{
364c6bad
HX
3140 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3141 __skb_linearize(skb) : 0;
1da177e4
LT
3142}
3143
479ffccc
DB
3144static __always_inline void
3145__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3146 unsigned int off)
3147{
3148 if (skb->ip_summed == CHECKSUM_COMPLETE)
3149 skb->csum = csum_block_sub(skb->csum,
3150 csum_partial(start, len, 0), off);
3151 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3152 skb_checksum_start_offset(skb) < 0)
3153 skb->ip_summed = CHECKSUM_NONE;
3154}
3155
1da177e4
LT
3156/**
3157 * skb_postpull_rcsum - update checksum for received skb after pull
3158 * @skb: buffer to update
3159 * @start: start of data before pull
3160 * @len: length of data pulled
3161 *
3162 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
3163 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3164 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4 3165 */
1da177e4 3166static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 3167 const void *start, unsigned int len)
1da177e4 3168{
479ffccc 3169 __skb_postpull_rcsum(skb, start, len, 0);
1da177e4
LT
3170}
3171
479ffccc
DB
3172static __always_inline void
3173__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3174 unsigned int off)
3175{
3176 if (skb->ip_summed == CHECKSUM_COMPLETE)
3177 skb->csum = csum_block_add(skb->csum,
3178 csum_partial(start, len, 0), off);
3179}
cbb042f9 3180
479ffccc
DB
3181/**
3182 * skb_postpush_rcsum - update checksum for received skb after push
3183 * @skb: buffer to update
3184 * @start: start of data after push
3185 * @len: length of data pushed
3186 *
3187 * After doing a push on a received packet, you need to call this to
3188 * update the CHECKSUM_COMPLETE checksum.
3189 */
f8ffad69
DB
3190static inline void skb_postpush_rcsum(struct sk_buff *skb,
3191 const void *start, unsigned int len)
3192{
479ffccc 3193 __skb_postpush_rcsum(skb, start, len, 0);
f8ffad69
DB
3194}
3195
af72868b 3196void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
479ffccc 3197
82a31b92
WC
3198/**
3199 * skb_push_rcsum - push skb and update receive checksum
3200 * @skb: buffer to update
3201 * @len: length of data pulled
3202 *
3203 * This function performs an skb_push on the packet and updates
3204 * the CHECKSUM_COMPLETE checksum. It should be used on
3205 * receive path processing instead of skb_push unless you know
3206 * that the checksum difference is zero (e.g., a valid IP header)
3207 * or you are setting ip_summed to CHECKSUM_NONE.
3208 */
d58ff351 3209static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
82a31b92
WC
3210{
3211 skb_push(skb, len);
3212 skb_postpush_rcsum(skb, skb->data, len);
3213 return skb->data;
3214}
3215
88078d98 3216int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
7ce5a27f
DM
3217/**
3218 * pskb_trim_rcsum - trim received skb and update checksum
3219 * @skb: buffer to trim
3220 * @len: new length
3221 *
3222 * This is exactly the same as pskb_trim except that it ensures the
3223 * checksum of received packets are still valid after the operation.
3224 */
3225
3226static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3227{
3228 if (likely(len >= skb->len))
3229 return 0;
88078d98 3230 return pskb_trim_rcsum_slow(skb, len);
7ce5a27f
DM
3231}
3232
5293efe6
DB
3233static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3234{
3235 if (skb->ip_summed == CHECKSUM_COMPLETE)
3236 skb->ip_summed = CHECKSUM_NONE;
3237 __skb_trim(skb, len);
3238 return 0;
3239}
3240
3241static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3242{
3243 if (skb->ip_summed == CHECKSUM_COMPLETE)
3244 skb->ip_summed = CHECKSUM_NONE;
3245 return __skb_grow(skb, len);
3246}
3247
18a4c0ea
ED
3248#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3249#define skb_rb_first(root) rb_to_skb(rb_first(root))
3250#define skb_rb_last(root) rb_to_skb(rb_last(root))
3251#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3252#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3253
1da177e4
LT
3254#define skb_queue_walk(queue, skb) \
3255 for (skb = (queue)->next; \
a1e4891f 3256 skb != (struct sk_buff *)(queue); \
1da177e4
LT
3257 skb = skb->next)
3258
46f8914e
JC
3259#define skb_queue_walk_safe(queue, skb, tmp) \
3260 for (skb = (queue)->next, tmp = skb->next; \
3261 skb != (struct sk_buff *)(queue); \
3262 skb = tmp, tmp = skb->next)
3263
1164f52a 3264#define skb_queue_walk_from(queue, skb) \
a1e4891f 3265 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
3266 skb = skb->next)
3267
18a4c0ea
ED
3268#define skb_rbtree_walk(skb, root) \
3269 for (skb = skb_rb_first(root); skb != NULL; \
3270 skb = skb_rb_next(skb))
3271
3272#define skb_rbtree_walk_from(skb) \
3273 for (; skb != NULL; \
3274 skb = skb_rb_next(skb))
3275
3276#define skb_rbtree_walk_from_safe(skb, tmp) \
3277 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3278 skb = tmp)
3279
1164f52a
DM
3280#define skb_queue_walk_from_safe(queue, skb, tmp) \
3281 for (tmp = skb->next; \
3282 skb != (struct sk_buff *)(queue); \
3283 skb = tmp, tmp = skb->next)
3284
300ce174
SH
3285#define skb_queue_reverse_walk(queue, skb) \
3286 for (skb = (queue)->prev; \
a1e4891f 3287 skb != (struct sk_buff *)(queue); \
300ce174
SH
3288 skb = skb->prev)
3289
686a2955
DM
3290#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3291 for (skb = (queue)->prev, tmp = skb->prev; \
3292 skb != (struct sk_buff *)(queue); \
3293 skb = tmp, tmp = skb->prev)
3294
3295#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3296 for (tmp = skb->prev; \
3297 skb != (struct sk_buff *)(queue); \
3298 skb = tmp, tmp = skb->prev)
1da177e4 3299
21dc3301 3300static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
3301{
3302 return skb_shinfo(skb)->frag_list != NULL;
3303}
3304
3305static inline void skb_frag_list_init(struct sk_buff *skb)
3306{
3307 skb_shinfo(skb)->frag_list = NULL;
3308}
3309
ee039871
DM
3310#define skb_walk_frags(skb, iter) \
3311 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3312
ea3793ee
RW
3313
3314int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3315 const struct sk_buff *skb);
65101aec
PA
3316struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3317 struct sk_buff_head *queue,
3318 unsigned int flags,
3319 void (*destructor)(struct sock *sk,
3320 struct sk_buff *skb),
3321 int *peeked, int *off, int *err,
3322 struct sk_buff **last);
ea3793ee 3323struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3324 void (*destructor)(struct sock *sk,
3325 struct sk_buff *skb),
ea3793ee
RW
3326 int *peeked, int *off, int *err,
3327 struct sk_buff **last);
7965bd4d 3328struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3329 void (*destructor)(struct sock *sk,
3330 struct sk_buff *skb),
7965bd4d
JP
3331 int *peeked, int *off, int *err);
3332struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3333 int *err);
a11e1d43
LT
3334__poll_t datagram_poll(struct file *file, struct socket *sock,
3335 struct poll_table_struct *wait);
c0371da6
AV
3336int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3337 struct iov_iter *to, int size);
51f3d02b
DM
3338static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3339 struct msghdr *msg, int size)
3340{
e5a4b0bb 3341 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
227158db 3342}
e5a4b0bb
AV
3343int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3344 struct msghdr *msg);
3a654f97
AV
3345int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3346 struct iov_iter *from, int len);
3a654f97 3347int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
7965bd4d 3348void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
627d2d6b 3349void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3350static inline void skb_free_datagram_locked(struct sock *sk,
3351 struct sk_buff *skb)
3352{
3353 __skb_free_datagram_locked(sk, skb, 0);
3354}
7965bd4d 3355int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
3356int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3357int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3358__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3359 int len, __wsum csum);
a60e3cc7 3360int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
7965bd4d 3361 struct pipe_inode_info *pipe, unsigned int len,
25869262 3362 unsigned int flags);
20bf50de
TH
3363int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3364 int len);
7965bd4d 3365void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 3366unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
3367int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3368 int len, int hlen);
7965bd4d
JP
3369void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3370int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3371void skb_scrub_packet(struct sk_buff *skb, bool xnet);
779b7931 3372bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
2b16f048 3373bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
7965bd4d 3374struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
0d5501c1 3375struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
e2195121 3376int skb_ensure_writable(struct sk_buff *skb, int write_len);
bfca4c52 3377int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
93515d53
JP
3378int skb_vlan_pop(struct sk_buff *skb);
3379int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
6fa01ccd
SV
3380struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3381 gfp_t gfp);
20380731 3382
6ce8e9ce
AV
3383static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3384{
3073f070 3385 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
6ce8e9ce
AV
3386}
3387
7eab8d9e
AV
3388static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3389{
e5a4b0bb 3390 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
7eab8d9e
AV
3391}
3392
2817a336
DB
3393struct skb_checksum_ops {
3394 __wsum (*update)(const void *mem, int len, __wsum wsum);
3395 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3396};
3397
9617813d
DC
3398extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3399
2817a336
DB
3400__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3401 __wsum csum, const struct skb_checksum_ops *ops);
3402__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3403 __wsum csum);
3404
1e98a0f0
ED
3405static inline void * __must_check
3406__skb_header_pointer(const struct sk_buff *skb, int offset,
3407 int len, void *data, int hlen, void *buffer)
1da177e4 3408{
55820ee2 3409 if (hlen - offset >= len)
690e36e7 3410 return data + offset;
1da177e4 3411
690e36e7
DM
3412 if (!skb ||
3413 skb_copy_bits(skb, offset, buffer, len) < 0)
1da177e4
LT
3414 return NULL;
3415
3416 return buffer;
3417}
3418
1e98a0f0
ED
3419static inline void * __must_check
3420skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
690e36e7
DM
3421{
3422 return __skb_header_pointer(skb, offset, len, skb->data,
3423 skb_headlen(skb), buffer);
3424}
3425
4262e5cc
DB
3426/**
3427 * skb_needs_linearize - check if we need to linearize a given skb
3428 * depending on the given device features.
3429 * @skb: socket buffer to check
3430 * @features: net device features
3431 *
3432 * Returns true if either:
3433 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3434 * 2. skb is fragmented and the device does not support SG.
3435 */
3436static inline bool skb_needs_linearize(struct sk_buff *skb,
3437 netdev_features_t features)
3438{
3439 return skb_is_nonlinear(skb) &&
3440 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3441 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3442}
3443
d626f62b
ACM
3444static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3445 void *to,
3446 const unsigned int len)
3447{
3448 memcpy(to, skb->data, len);
3449}
3450
3451static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3452 const int offset, void *to,
3453 const unsigned int len)
3454{
3455 memcpy(to, skb->data + offset, len);
3456}
3457
27d7ff46
ACM
3458static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3459 const void *from,
3460 const unsigned int len)
3461{
3462 memcpy(skb->data, from, len);
3463}
3464
3465static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3466 const int offset,
3467 const void *from,
3468 const unsigned int len)
3469{
3470 memcpy(skb->data + offset, from, len);
3471}
3472
7965bd4d 3473void skb_init(void);
1da177e4 3474
ac45f602
PO
3475static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3476{
3477 return skb->tstamp;
3478}
3479
a61bbcf2
PM
3480/**
3481 * skb_get_timestamp - get timestamp from a skb
3482 * @skb: skb to get stamp from
3483 * @stamp: pointer to struct timeval to store stamp in
3484 *
3485 * Timestamps are stored in the skb as offsets to a base timestamp.
3486 * This function converts the offset back to a struct timeval and stores
3487 * it in stamp.
3488 */
ac45f602
PO
3489static inline void skb_get_timestamp(const struct sk_buff *skb,
3490 struct timeval *stamp)
a61bbcf2 3491{
b7aa0bf7 3492 *stamp = ktime_to_timeval(skb->tstamp);
a61bbcf2
PM
3493}
3494
ac45f602
PO
3495static inline void skb_get_timestampns(const struct sk_buff *skb,
3496 struct timespec *stamp)
3497{
3498 *stamp = ktime_to_timespec(skb->tstamp);
3499}
3500
b7aa0bf7 3501static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 3502{
b7aa0bf7 3503 skb->tstamp = ktime_get_real();
a61bbcf2
PM
3504}
3505
164891aa
SH
3506static inline ktime_t net_timedelta(ktime_t t)
3507{
3508 return ktime_sub(ktime_get_real(), t);
3509}
3510
b9ce204f
IJ
3511static inline ktime_t net_invalid_timestamp(void)
3512{
8b0e1953 3513 return 0;
b9ce204f 3514}
a61bbcf2 3515
de8f3a83
DB
3516static inline u8 skb_metadata_len(const struct sk_buff *skb)
3517{
3518 return skb_shinfo(skb)->meta_len;
3519}
3520
3521static inline void *skb_metadata_end(const struct sk_buff *skb)
3522{
3523 return skb_mac_header(skb);
3524}
3525
3526static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3527 const struct sk_buff *skb_b,
3528 u8 meta_len)
3529{
3530 const void *a = skb_metadata_end(skb_a);
3531 const void *b = skb_metadata_end(skb_b);
3532 /* Using more efficient varaiant than plain call to memcmp(). */
3533#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3534 u64 diffs = 0;
3535
3536 switch (meta_len) {
3537#define __it(x, op) (x -= sizeof(u##op))
3538#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3539 case 32: diffs |= __it_diff(a, b, 64);
82385b0d 3540 /* fall through */
de8f3a83 3541 case 24: diffs |= __it_diff(a, b, 64);
82385b0d 3542 /* fall through */
de8f3a83 3543 case 16: diffs |= __it_diff(a, b, 64);
82385b0d 3544 /* fall through */
de8f3a83
DB
3545 case 8: diffs |= __it_diff(a, b, 64);
3546 break;
3547 case 28: diffs |= __it_diff(a, b, 64);
82385b0d 3548 /* fall through */
de8f3a83 3549 case 20: diffs |= __it_diff(a, b, 64);
82385b0d 3550 /* fall through */
de8f3a83 3551 case 12: diffs |= __it_diff(a, b, 64);
82385b0d 3552 /* fall through */
de8f3a83
DB
3553 case 4: diffs |= __it_diff(a, b, 32);
3554 break;
3555 }
3556 return diffs;
3557#else
3558 return memcmp(a - meta_len, b - meta_len, meta_len);
3559#endif
3560}
3561
3562static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3563 const struct sk_buff *skb_b)
3564{
3565 u8 len_a = skb_metadata_len(skb_a);
3566 u8 len_b = skb_metadata_len(skb_b);
3567
3568 if (!(len_a | len_b))
3569 return false;
3570
3571 return len_a != len_b ?
3572 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3573}
3574
3575static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3576{
3577 skb_shinfo(skb)->meta_len = meta_len;
3578}
3579
3580static inline void skb_metadata_clear(struct sk_buff *skb)
3581{
3582 skb_metadata_set(skb, 0);
3583}
3584
62bccb8c
AD
3585struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3586
c1f19b51
RC
3587#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3588
7965bd4d
JP
3589void skb_clone_tx_timestamp(struct sk_buff *skb);
3590bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
3591
3592#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3593
3594static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3595{
3596}
3597
3598static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3599{
3600 return false;
3601}
3602
3603#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3604
3605/**
3606 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3607 *
da92b194
RC
3608 * PHY drivers may accept clones of transmitted packets for
3609 * timestamping via their phy_driver.txtstamp method. These drivers
7a76a021
BP
3610 * must call this function to return the skb back to the stack with a
3611 * timestamp.
da92b194 3612 *
c1f19b51 3613 * @skb: clone of the the original outgoing packet
7a76a021 3614 * @hwtstamps: hardware time stamps
c1f19b51
RC
3615 *
3616 */
3617void skb_complete_tx_timestamp(struct sk_buff *skb,
3618 struct skb_shared_hwtstamps *hwtstamps);
3619
e7fd2885
WB
3620void __skb_tstamp_tx(struct sk_buff *orig_skb,
3621 struct skb_shared_hwtstamps *hwtstamps,
3622 struct sock *sk, int tstype);
3623
ac45f602
PO
3624/**
3625 * skb_tstamp_tx - queue clone of skb with send time stamps
3626 * @orig_skb: the original outgoing packet
3627 * @hwtstamps: hardware time stamps, may be NULL if not available
3628 *
3629 * If the skb has a socket associated, then this function clones the
3630 * skb (thus sharing the actual data and optional structures), stores
3631 * the optional hardware time stamping information (if non NULL) or
3632 * generates a software time stamp (otherwise), then queues the clone
3633 * to the error queue of the socket. Errors are silently ignored.
3634 */
7965bd4d
JP
3635void skb_tstamp_tx(struct sk_buff *orig_skb,
3636 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 3637
4507a715
RC
3638/**
3639 * skb_tx_timestamp() - Driver hook for transmit timestamping
3640 *
3641 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 3642 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 3643 *
73409f3b
DM
3644 * Specifically, one should make absolutely sure that this function is
3645 * called before TX completion of this packet can trigger. Otherwise
3646 * the packet could potentially already be freed.
3647 *
4507a715
RC
3648 * @skb: A socket buffer.
3649 */
3650static inline void skb_tx_timestamp(struct sk_buff *skb)
3651{
c1f19b51 3652 skb_clone_tx_timestamp(skb);
b50a5c70
ML
3653 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3654 skb_tstamp_tx(skb, NULL);
4507a715
RC
3655}
3656
6e3e939f
JB
3657/**
3658 * skb_complete_wifi_ack - deliver skb with wifi status
3659 *
3660 * @skb: the original outgoing packet
3661 * @acked: ack status
3662 *
3663 */
3664void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3665
7965bd4d
JP
3666__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3667__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 3668
60476372
HX
3669static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3670{
6edec0e6
TH
3671 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3672 skb->csum_valid ||
3673 (skb->ip_summed == CHECKSUM_PARTIAL &&
3674 skb_checksum_start_offset(skb) >= 0));
60476372
HX
3675}
3676
fb286bb2
HX
3677/**
3678 * skb_checksum_complete - Calculate checksum of an entire packet
3679 * @skb: packet to process
3680 *
3681 * This function calculates the checksum over the entire packet plus
3682 * the value of skb->csum. The latter can be used to supply the
3683 * checksum of a pseudo header as used by TCP/UDP. It returns the
3684 * checksum.
3685 *
3686 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3687 * this function can be used to verify that checksum on received
3688 * packets. In that case the function should return zero if the
3689 * checksum is correct. In particular, this function will return zero
3690 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3691 * hardware has already verified the correctness of the checksum.
3692 */
4381ca3c 3693static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 3694{
60476372
HX
3695 return skb_csum_unnecessary(skb) ?
3696 0 : __skb_checksum_complete(skb);
fb286bb2
HX
3697}
3698
77cffe23
TH
3699static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3700{
3701 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3702 if (skb->csum_level == 0)
3703 skb->ip_summed = CHECKSUM_NONE;
3704 else
3705 skb->csum_level--;
3706 }
3707}
3708
3709static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3710{
3711 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3712 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3713 skb->csum_level++;
3714 } else if (skb->ip_summed == CHECKSUM_NONE) {
3715 skb->ip_summed = CHECKSUM_UNNECESSARY;
3716 skb->csum_level = 0;
3717 }
3718}
3719
76ba0aae
TH
3720/* Check if we need to perform checksum complete validation.
3721 *
3722 * Returns true if checksum complete is needed, false otherwise
3723 * (either checksum is unnecessary or zero checksum is allowed).
3724 */
3725static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3726 bool zero_okay,
3727 __sum16 check)
3728{
5d0c2b95
TH
3729 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3730 skb->csum_valid = 1;
77cffe23 3731 __skb_decr_checksum_unnecessary(skb);
76ba0aae
TH
3732 return false;
3733 }
3734
3735 return true;
3736}
3737
da279887 3738/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
76ba0aae
TH
3739 * in checksum_init.
3740 */
3741#define CHECKSUM_BREAK 76
3742
4e18b9ad
TH
3743/* Unset checksum-complete
3744 *
3745 * Unset checksum complete can be done when packet is being modified
3746 * (uncompressed for instance) and checksum-complete value is
3747 * invalidated.
3748 */
3749static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3750{
3751 if (skb->ip_summed == CHECKSUM_COMPLETE)
3752 skb->ip_summed = CHECKSUM_NONE;
3753}
3754
76ba0aae
TH
3755/* Validate (init) checksum based on checksum complete.
3756 *
3757 * Return values:
3758 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3759 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3760 * checksum is stored in skb->csum for use in __skb_checksum_complete
3761 * non-zero: value of invalid checksum
3762 *
3763 */
3764static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3765 bool complete,
3766 __wsum psum)
3767{
3768 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3769 if (!csum_fold(csum_add(psum, skb->csum))) {
5d0c2b95 3770 skb->csum_valid = 1;
76ba0aae
TH
3771 return 0;
3772 }
3773 }
3774
3775 skb->csum = psum;
3776
5d0c2b95
TH
3777 if (complete || skb->len <= CHECKSUM_BREAK) {
3778 __sum16 csum;
3779
3780 csum = __skb_checksum_complete(skb);
3781 skb->csum_valid = !csum;
3782 return csum;
3783 }
76ba0aae
TH
3784
3785 return 0;
3786}
3787
3788static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3789{
3790 return 0;
3791}
3792
3793/* Perform checksum validate (init). Note that this is a macro since we only
3794 * want to calculate the pseudo header which is an input function if necessary.
3795 * First we try to validate without any computation (checksum unnecessary) and
3796 * then calculate based on checksum complete calling the function to compute
3797 * pseudo header.
3798 *
3799 * Return values:
3800 * 0: checksum is validated or try to in skb_checksum_complete
3801 * non-zero: value of invalid checksum
3802 */
3803#define __skb_checksum_validate(skb, proto, complete, \
3804 zero_okay, check, compute_pseudo) \
3805({ \
3806 __sum16 __ret = 0; \
5d0c2b95 3807 skb->csum_valid = 0; \
76ba0aae
TH
3808 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3809 __ret = __skb_checksum_validate_complete(skb, \
3810 complete, compute_pseudo(skb, proto)); \
3811 __ret; \
3812})
3813
3814#define skb_checksum_init(skb, proto, compute_pseudo) \
3815 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3816
3817#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3818 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3819
3820#define skb_checksum_validate(skb, proto, compute_pseudo) \
3821 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3822
3823#define skb_checksum_validate_zero_check(skb, proto, check, \
3824 compute_pseudo) \
096a4cfa 3825 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
76ba0aae
TH
3826
3827#define skb_checksum_simple_validate(skb) \
3828 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3829
d96535a1
TH
3830static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3831{
219f1d79 3832 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
d96535a1
TH
3833}
3834
3835static inline void __skb_checksum_convert(struct sk_buff *skb,
3836 __sum16 check, __wsum pseudo)
3837{
3838 skb->csum = ~pseudo;
3839 skb->ip_summed = CHECKSUM_COMPLETE;
3840}
3841
3842#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3843do { \
3844 if (__skb_checksum_convert_check(skb)) \
3845 __skb_checksum_convert(skb, check, \
3846 compute_pseudo(skb, proto)); \
3847} while (0)
3848
15e2396d
TH
3849static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3850 u16 start, u16 offset)
3851{
3852 skb->ip_summed = CHECKSUM_PARTIAL;
3853 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3854 skb->csum_offset = offset - start;
3855}
3856
dcdc8994
TH
3857/* Update skbuf and packet to reflect the remote checksum offload operation.
3858 * When called, ptr indicates the starting point for skb->csum when
3859 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3860 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3861 */
3862static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
15e2396d 3863 int start, int offset, bool nopartial)
dcdc8994
TH
3864{
3865 __wsum delta;
3866
15e2396d
TH
3867 if (!nopartial) {
3868 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3869 return;
3870 }
3871
dcdc8994
TH
3872 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3873 __skb_checksum_complete(skb);
3874 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3875 }
3876
3877 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3878
3879 /* Adjust skb->csum since we changed the packet */
3880 skb->csum = csum_add(skb->csum, delta);
3881}
3882
cb9c6836
FW
3883static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3884{
3885#if IS_ENABLED(CONFIG_NF_CONNTRACK)
a9e419dc 3886 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
cb9c6836
FW
3887#else
3888 return NULL;
3889#endif
3890}
3891
5f79e0f9 3892#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
7965bd4d 3893void nf_conntrack_destroy(struct nf_conntrack *nfct);
1da177e4
LT
3894static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3895{
3896 if (nfct && atomic_dec_and_test(&nfct->use))
de6e05c4 3897 nf_conntrack_destroy(nfct);
1da177e4
LT
3898}
3899static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3900{
3901 if (nfct)
3902 atomic_inc(&nfct->use);
3903}
2fc72c7b 3904#endif
df5042f4
FW
3905
3906#ifdef CONFIG_SKB_EXTENSIONS
3907enum skb_ext_id {
3908#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3909 SKB_EXT_BRIDGE_NF,
3910#endif
3911 SKB_EXT_NUM, /* must be last */
3912};
3913
3914/**
3915 * struct skb_ext - sk_buff extensions
3916 * @refcnt: 1 on allocation, deallocated on 0
3917 * @offset: offset to add to @data to obtain extension address
3918 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
3919 * @data: start of extension data, variable sized
3920 *
3921 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
3922 * to use 'u8' types while allowing up to 2kb worth of extension data.
3923 */
3924struct skb_ext {
3925 refcount_t refcnt;
3926 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
3927 u8 chunks; /* same */
3928 char data[0] __aligned(8);
3929};
3930
3931void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
3932void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
3933void __skb_ext_put(struct skb_ext *ext);
3934
3935static inline void skb_ext_put(struct sk_buff *skb)
3936{
3937 if (skb->active_extensions)
3938 __skb_ext_put(skb->extensions);
3939}
3940
3941static inline void skb_ext_get(struct sk_buff *skb)
3942{
3943 if (skb->active_extensions) {
3944 struct skb_ext *ext = skb->extensions;
3945
3946 if (ext)
3947 refcount_inc(&ext->refcnt);
3948 }
3949}
3950
3951static inline void __skb_ext_copy(struct sk_buff *dst,
3952 const struct sk_buff *src)
3953{
3954 dst->active_extensions = src->active_extensions;
3955
3956 if (src->active_extensions) {
3957 struct skb_ext *ext = src->extensions;
3958
3959 refcount_inc(&ext->refcnt);
3960 dst->extensions = ext;
3961 }
3962}
3963
3964static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
3965{
3966 skb_ext_put(dst);
3967 __skb_ext_copy(dst, src);
3968}
3969
3970static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
3971{
3972 return !!ext->offset[i];
3973}
3974
3975static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
3976{
3977 return skb->active_extensions & (1 << id);
3978}
3979
3980static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
3981{
3982 if (skb_ext_exist(skb, id))
3983 __skb_ext_del(skb, id);
3984}
3985
3986static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
3987{
3988 if (skb_ext_exist(skb, id)) {
3989 struct skb_ext *ext = skb->extensions;
3990
3991 return (void *)ext + (ext->offset[id] << 3);
3992 }
3993
3994 return NULL;
3995}
3996#else
3997static inline void skb_ext_put(struct sk_buff *skb) {}
3998static inline void skb_ext_get(struct sk_buff *skb) {}
3999static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4000static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4001static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4002#endif /* CONFIG_SKB_EXTENSIONS */
4003
a193a4ab
PM
4004static inline void nf_reset(struct sk_buff *skb)
4005{
5f79e0f9 4006#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
4007 nf_conntrack_put(skb_nfct(skb));
4008 skb->_nfct = 0;
2fc72c7b 4009#endif
34666d46 4010#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
de8bda1d 4011 skb_ext_del(skb, SKB_EXT_BRIDGE_NF);
a193a4ab
PM
4012#endif
4013}
4014
124dff01
PM
4015static inline void nf_reset_trace(struct sk_buff *skb)
4016{
478b360a 4017#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
130549fe
G
4018 skb->nf_trace = 0;
4019#endif
a193a4ab
PM
4020}
4021
2b5ec1a5
YY
4022static inline void ipvs_reset(struct sk_buff *skb)
4023{
4024#if IS_ENABLED(CONFIG_IP_VS)
4025 skb->ipvs_property = 0;
4026#endif
4027}
4028
de8bda1d 4029/* Note: This doesn't put any conntrack info in dst. */
b1937227
ED
4030static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4031 bool copy)
edda553c 4032{
5f79e0f9 4033#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
4034 dst->_nfct = src->_nfct;
4035 nf_conntrack_get(skb_nfct(src));
2fc72c7b 4036#endif
478b360a 4037#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
b1937227
ED
4038 if (copy)
4039 dst->nf_trace = src->nf_trace;
478b360a 4040#endif
edda553c
YK
4041}
4042
e7ac05f3
YK
4043static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4044{
e7ac05f3 4045#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 4046 nf_conntrack_put(skb_nfct(dst));
e7ac05f3 4047#endif
b1937227 4048 __nf_copy(dst, src, true);
e7ac05f3
YK
4049}
4050
984bc16c
JM
4051#ifdef CONFIG_NETWORK_SECMARK
4052static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4053{
4054 to->secmark = from->secmark;
4055}
4056
4057static inline void skb_init_secmark(struct sk_buff *skb)
4058{
4059 skb->secmark = 0;
4060}
4061#else
4062static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4063{ }
4064
4065static inline void skb_init_secmark(struct sk_buff *skb)
4066{ }
4067#endif
4068
7af8f4ca
FW
4069static inline int secpath_exists(const struct sk_buff *skb)
4070{
4071#ifdef CONFIG_XFRM
4072 return skb->sp != NULL;
4073#else
4074 return 0;
4075#endif
4076}
4077
574f7194
EB
4078static inline bool skb_irq_freeable(const struct sk_buff *skb)
4079{
4080 return !skb->destructor &&
7af8f4ca 4081 !secpath_exists(skb) &&
cb9c6836 4082 !skb_nfct(skb) &&
574f7194
EB
4083 !skb->_skb_refdst &&
4084 !skb_has_frag_list(skb);
4085}
4086
f25f4e44
PWJ
4087static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4088{
f25f4e44 4089 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
4090}
4091
9247744e 4092static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 4093{
4e3ab47a 4094 return skb->queue_mapping;
4e3ab47a
PE
4095}
4096
f25f4e44
PWJ
4097static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4098{
f25f4e44 4099 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
4100}
4101
d5a9e24a
DM
4102static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4103{
4104 skb->queue_mapping = rx_queue + 1;
4105}
4106
9247744e 4107static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
4108{
4109 return skb->queue_mapping - 1;
4110}
4111
9247744e 4112static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 4113{
a02cec21 4114 return skb->queue_mapping != 0;
d5a9e24a
DM
4115}
4116
4ff06203
JA
4117static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4118{
4119 skb->dst_pending_confirm = val;
4120}
4121
4122static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4123{
4124 return skb->dst_pending_confirm != 0;
4125}
4126
2294be0f 4127static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
def8b4fa 4128{
0b3d8e08 4129#ifdef CONFIG_XFRM
def8b4fa 4130 return skb->sp;
def8b4fa 4131#else
def8b4fa 4132 return NULL;
def8b4fa 4133#endif
0b3d8e08 4134}
def8b4fa 4135
68c33163
PS
4136/* Keeps track of mac header offset relative to skb->head.
4137 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4138 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
4139 * tunnel skb it points to outer mac header.
4140 * Keeps track of level of encapsulation of network headers.
4141 */
68c33163 4142struct skb_gso_cb {
802ab55a
AD
4143 union {
4144 int mac_offset;
4145 int data_offset;
4146 };
3347c960 4147 int encap_level;
76443456 4148 __wsum csum;
7e2b10c1 4149 __u16 csum_start;
68c33163 4150};
9207f9d4
KK
4151#define SKB_SGO_CB_OFFSET 32
4152#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
68c33163
PS
4153
4154static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4155{
4156 return (skb_mac_header(inner_skb) - inner_skb->head) -
4157 SKB_GSO_CB(inner_skb)->mac_offset;
4158}
4159
1e2bd517
PS
4160static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4161{
4162 int new_headroom, headroom;
4163 int ret;
4164
4165 headroom = skb_headroom(skb);
4166 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4167 if (ret)
4168 return ret;
4169
4170 new_headroom = skb_headroom(skb);
4171 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4172 return 0;
4173}
4174
08b64fcc
AD
4175static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4176{
4177 /* Do not update partial checksums if remote checksum is enabled. */
4178 if (skb->remcsum_offload)
4179 return;
4180
4181 SKB_GSO_CB(skb)->csum = res;
4182 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4183}
4184
7e2b10c1
TH
4185/* Compute the checksum for a gso segment. First compute the checksum value
4186 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4187 * then add in skb->csum (checksum from csum_start to end of packet).
4188 * skb->csum and csum_start are then updated to reflect the checksum of the
4189 * resultant packet starting from the transport header-- the resultant checksum
4190 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4191 * header.
4192 */
4193static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4194{
76443456
AD
4195 unsigned char *csum_start = skb_transport_header(skb);
4196 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4197 __wsum partial = SKB_GSO_CB(skb)->csum;
7e2b10c1 4198
76443456
AD
4199 SKB_GSO_CB(skb)->csum = res;
4200 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
7e2b10c1 4201
76443456 4202 return csum_fold(csum_partial(csum_start, plen, partial));
7e2b10c1
TH
4203}
4204
bdcc0924 4205static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
4206{
4207 return skb_shinfo(skb)->gso_size;
4208}
4209
36a8f39e 4210/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 4211static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
4212{
4213 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4214}
4215
d02f51cb
DA
4216/* Note: Should be called only if skb_is_gso(skb) is true */
4217static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4218{
4219 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4220}
4221
5293efe6
DB
4222static inline void skb_gso_reset(struct sk_buff *skb)
4223{
4224 skb_shinfo(skb)->gso_size = 0;
4225 skb_shinfo(skb)->gso_segs = 0;
4226 skb_shinfo(skb)->gso_type = 0;
4227}
4228
d02f51cb
DA
4229static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4230 u16 increment)
4231{
4232 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4233 return;
4234 shinfo->gso_size += increment;
4235}
4236
4237static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4238 u16 decrement)
4239{
4240 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4241 return;
4242 shinfo->gso_size -= decrement;
4243}
4244
7965bd4d 4245void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
4246
4247static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4248{
4249 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4250 * wanted then gso_type will be set. */
05bdd2f1
ED
4251 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4252
b78462eb
AD
4253 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4254 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
4255 __skb_warn_lro_forwarding(skb);
4256 return true;
4257 }
4258 return false;
4259}
4260
35fc92a9
HX
4261static inline void skb_forward_csum(struct sk_buff *skb)
4262{
4263 /* Unfortunately we don't support this one. Any brave souls? */
4264 if (skb->ip_summed == CHECKSUM_COMPLETE)
4265 skb->ip_summed = CHECKSUM_NONE;
4266}
4267
bc8acf2c
ED
4268/**
4269 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4270 * @skb: skb to check
4271 *
4272 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4273 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4274 * use this helper, to document places where we make this assertion.
4275 */
05bdd2f1 4276static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
4277{
4278#ifdef DEBUG
4279 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4280#endif
4281}
4282
f35d9d8a 4283bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 4284
ed1f50c3 4285int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
9afd85c9
LL
4286struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4287 unsigned int transport_len,
4288 __sum16(*skb_chkf)(struct sk_buff *skb));
ed1f50c3 4289
3a7c1ee4
AD
4290/**
4291 * skb_head_is_locked - Determine if the skb->head is locked down
4292 * @skb: skb to check
4293 *
4294 * The head on skbs build around a head frag can be removed if they are
4295 * not cloned. This function returns true if the skb head is locked down
4296 * due to either being allocated via kmalloc, or by being a clone with
4297 * multiple references to the head.
4298 */
4299static inline bool skb_head_is_locked(const struct sk_buff *skb)
4300{
4301 return !skb->head_frag || skb_cloned(skb);
4302}
fe6cc55f 4303
179bc67f
EC
4304/* Local Checksum Offload.
4305 * Compute outer checksum based on the assumption that the
4306 * inner checksum will be offloaded later.
e8ae7b00
EC
4307 * See Documentation/networking/checksum-offloads.txt for
4308 * explanation of how this works.
179bc67f
EC
4309 * Fill in outer checksum adjustment (e.g. with sum of outer
4310 * pseudo-header) before calling.
4311 * Also ensure that inner checksum is in linear data area.
4312 */
4313static inline __wsum lco_csum(struct sk_buff *skb)
4314{
9e74a6da
AD
4315 unsigned char *csum_start = skb_checksum_start(skb);
4316 unsigned char *l4_hdr = skb_transport_header(skb);
4317 __wsum partial;
179bc67f
EC
4318
4319 /* Start with complement of inner checksum adjustment */
9e74a6da
AD
4320 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4321 skb->csum_offset));
4322
179bc67f 4323 /* Add in checksum of our headers (incl. outer checksum
9e74a6da 4324 * adjustment filled in by caller) and return result.
179bc67f 4325 */
9e74a6da 4326 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
179bc67f
EC
4327}
4328
1da177e4
LT
4329#endif /* __KERNEL__ */
4330#endif /* _LINUX_SKBUFF_H */