refcount: Split out refcount_types.h
[linux-2.6-block.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
9983deb2 14#include <linux/irqflags_types.h>
6d5e9d63 15#include <linux/pid_types.h>
1da177e4 16#include <linux/sem.h>
ab602f79 17#include <linux/shm.h>
f80be457 18#include <linux/kmsan_types.h>
d84f3179 19#include <linux/mutex_types.h>
8b7787a5 20#include <linux/plist_types.h>
50d91c76 21#include <linux/hrtimer_types.h>
1da177e4 22#include <linux/seccomp.h>
bea32141 23#include <linux/nodemask_types.h>
b68070e1 24#include <linux/rcupdate.h>
f9d6966b 25#include <linux/refcount_types.h>
a3b6714e 26#include <linux/resource.h>
9745512c 27#include <linux/latencytop.h>
5eca1c10 28#include <linux/sched/prio.h>
9eacb5c7 29#include <linux/sched/types.h>
5eca1c10 30#include <linux/signal_types.h>
55b899aa 31#include <linux/syscall_user_dispatch_types.h>
5eca1c10
IM
32#include <linux/mm_types_task.h>
33#include <linux/task_io_accounting.h>
53d31ba8 34#include <linux/posix-timers_types.h>
d7822b1e 35#include <linux/rseq.h>
f038cc13 36#include <linux/seqlock_types.h>
dfd402a4 37#include <linux/kcsan.h>
102227b9 38#include <linux/rv.h>
e3ff7c60 39#include <linux/livepatch_sched.h>
5fbda3ec 40#include <asm/kmap_size.h>
a3b6714e 41
5eca1c10 42/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 43struct audit_context;
bddd87c7 44struct bio_list;
73c10101 45struct blk_plug;
a10787e6 46struct bpf_local_storage;
c7603cfa 47struct bpf_run_ctx;
3c93a0c0 48struct capture_control;
c7af7877 49struct cfs_rq;
c7af7877
IM
50struct fs_struct;
51struct futex_pi_state;
52struct io_context;
1875dc5b 53struct io_uring_task;
c7af7877 54struct mempolicy;
89076bc3 55struct nameidata;
c7af7877
IM
56struct nsproxy;
57struct perf_event_context;
58struct pid_namespace;
59struct pipe_inode_info;
60struct rcu_node;
61struct reclaim_state;
62struct robust_list_head;
3c93a0c0
QY
63struct root_domain;
64struct rq;
c7af7877 65struct sched_attr;
43ae34cb 66struct seq_file;
c7af7877
IM
67struct sighand_struct;
68struct signal_struct;
69struct task_delay_info;
4cf86d77 70struct task_group;
fd593511 71struct user_event_mm;
1da177e4 72
4a8342d2
LT
73/*
74 * Task state bitmask. NOTE! These bits are also
75 * encoded in fs/proc/array.c: get_task_state().
76 *
48b55837 77 * We have two separate sets of flags: task->__state
4a8342d2
LT
78 * is about runnability, while task->exit_state are
79 * about the task exiting. Confusing, but this way
80 * modifying one set can't modify the other one by
81 * mistake.
82 */
5eca1c10 83
48b55837 84/* Used in tsk->__state: */
9963e444
PZ
85#define TASK_RUNNING 0x00000000
86#define TASK_INTERRUPTIBLE 0x00000001
87#define TASK_UNINTERRUPTIBLE 0x00000002
88#define __TASK_STOPPED 0x00000004
89#define __TASK_TRACED 0x00000008
5eca1c10 90/* Used in tsk->exit_state: */
9963e444
PZ
91#define EXIT_DEAD 0x00000010
92#define EXIT_ZOMBIE 0x00000020
5eca1c10 93#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
48b55837 94/* Used in tsk->__state again: */
9963e444
PZ
95#define TASK_PARKED 0x00000040
96#define TASK_DEAD 0x00000080
97#define TASK_WAKEKILL 0x00000100
98#define TASK_WAKING 0x00000200
99#define TASK_NOLOAD 0x00000400
100#define TASK_NEW 0x00000800
9963e444 101#define TASK_RTLOCK_WAIT 0x00001000
f5d39b02
PZ
102#define TASK_FREEZABLE 0x00002000
103#define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
104#define TASK_FROZEN 0x00008000
105#define TASK_STATE_MAX 0x00010000
5eca1c10 106
f9fc8cad
PZ
107#define TASK_ANY (TASK_STATE_MAX-1)
108
f5d39b02
PZ
109/*
110 * DO NOT ADD ANY NEW USERS !
111 */
112#define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
5eca1c10 113
5eca1c10
IM
114/* Convenience macros for the sake of set_current_state: */
115#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
116#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
2500ad1c 117#define TASK_TRACED __TASK_TRACED
5eca1c10
IM
118
119#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
120
121/* Convenience macros for the sake of wake_up(): */
122#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
123
124/* get_task_state(): */
125#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
126 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
127 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
128 TASK_PARKED)
5eca1c10 129
2f064a59 130#define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
5eca1c10 131
31cae1ea
PZ
132#define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
133#define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
134#define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
5eca1c10 135
b5bf9a90
PZ
136/*
137 * Special states are those that do not use the normal wait-loop pattern. See
138 * the comment with set_special_state().
139 */
140#define is_special_task_state(state) \
1cef1150 141 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 142
85019c16
TG
143#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
144# define debug_normal_state_change(state_value) \
145 do { \
146 WARN_ON_ONCE(is_special_task_state(state_value)); \
147 current->task_state_change = _THIS_IP_; \
8eb23b9f
PZ
148 } while (0)
149
85019c16 150# define debug_special_state_change(state_value) \
b5bf9a90 151 do { \
b5bf9a90 152 WARN_ON_ONCE(!is_special_task_state(state_value)); \
b5bf9a90 153 current->task_state_change = _THIS_IP_; \
b5bf9a90 154 } while (0)
85019c16 155
5f220be2
TG
156# define debug_rtlock_wait_set_state() \
157 do { \
158 current->saved_state_change = current->task_state_change;\
159 current->task_state_change = _THIS_IP_; \
160 } while (0)
161
162# define debug_rtlock_wait_restore_state() \
163 do { \
164 current->task_state_change = current->saved_state_change;\
165 } while (0)
166
8eb23b9f 167#else
85019c16
TG
168# define debug_normal_state_change(cond) do { } while (0)
169# define debug_special_state_change(cond) do { } while (0)
5f220be2
TG
170# define debug_rtlock_wait_set_state() do { } while (0)
171# define debug_rtlock_wait_restore_state() do { } while (0)
85019c16
TG
172#endif
173
498d0c57 174/*
48b55837 175 * set_current_state() includes a barrier so that the write of current->__state
498d0c57
AM
176 * is correctly serialised wrt the caller's subsequent test of whether to
177 * actually sleep:
178 *
a2250238 179 * for (;;) {
498d0c57 180 * set_current_state(TASK_UNINTERRUPTIBLE);
58877d34
PZ
181 * if (CONDITION)
182 * break;
a2250238
PZ
183 *
184 * schedule();
185 * }
186 * __set_current_state(TASK_RUNNING);
187 *
188 * If the caller does not need such serialisation (because, for instance, the
58877d34 189 * CONDITION test and condition change and wakeup are under the same lock) then
a2250238
PZ
190 * use __set_current_state().
191 *
192 * The above is typically ordered against the wakeup, which does:
193 *
58877d34 194 * CONDITION = 1;
b5bf9a90 195 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 196 *
58877d34 197 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
48b55837 198 * accessing p->__state.
a2250238 199 *
48b55837 200 * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
a2250238
PZ
201 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
202 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 203 *
b5bf9a90 204 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 205 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
206 * a problem either because that will result in one extra go around the loop
207 * and our @cond test will save the day.
498d0c57 208 *
a2250238 209 * Also see the comments of try_to_wake_up().
498d0c57 210 */
b5bf9a90 211#define __set_current_state(state_value) \
85019c16
TG
212 do { \
213 debug_normal_state_change((state_value)); \
214 WRITE_ONCE(current->__state, (state_value)); \
215 } while (0)
b5bf9a90
PZ
216
217#define set_current_state(state_value) \
85019c16
TG
218 do { \
219 debug_normal_state_change((state_value)); \
220 smp_store_mb(current->__state, (state_value)); \
221 } while (0)
b5bf9a90
PZ
222
223/*
224 * set_special_state() should be used for those states when the blocking task
225 * can not use the regular condition based wait-loop. In that case we must
85019c16
TG
226 * serialize against wakeups such that any possible in-flight TASK_RUNNING
227 * stores will not collide with our state change.
b5bf9a90
PZ
228 */
229#define set_special_state(state_value) \
230 do { \
231 unsigned long flags; /* may shadow */ \
85019c16 232 \
b5bf9a90 233 raw_spin_lock_irqsave(&current->pi_lock, flags); \
85019c16 234 debug_special_state_change((state_value)); \
2f064a59 235 WRITE_ONCE(current->__state, (state_value)); \
b5bf9a90
PZ
236 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
237 } while (0)
238
5f220be2
TG
239/*
240 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
241 *
242 * RT's spin/rwlock substitutions are state preserving. The state of the
243 * task when blocking on the lock is saved in task_struct::saved_state and
244 * restored after the lock has been acquired. These operations are
245 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
246 * lock related wakeups while the task is blocked on the lock are
247 * redirected to operate on task_struct::saved_state to ensure that these
248 * are not dropped. On restore task_struct::saved_state is set to
249 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
250 *
251 * The lock operation looks like this:
252 *
253 * current_save_and_set_rtlock_wait_state();
254 * for (;;) {
255 * if (try_lock())
256 * break;
257 * raw_spin_unlock_irq(&lock->wait_lock);
258 * schedule_rtlock();
259 * raw_spin_lock_irq(&lock->wait_lock);
260 * set_current_state(TASK_RTLOCK_WAIT);
261 * }
262 * current_restore_rtlock_saved_state();
263 */
264#define current_save_and_set_rtlock_wait_state() \
265 do { \
266 lockdep_assert_irqs_disabled(); \
267 raw_spin_lock(&current->pi_lock); \
268 current->saved_state = current->__state; \
269 debug_rtlock_wait_set_state(); \
270 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
271 raw_spin_unlock(&current->pi_lock); \
272 } while (0);
273
274#define current_restore_rtlock_saved_state() \
275 do { \
276 lockdep_assert_irqs_disabled(); \
277 raw_spin_lock(&current->pi_lock); \
278 debug_rtlock_wait_restore_state(); \
279 WRITE_ONCE(current->__state, current->saved_state); \
280 current->saved_state = TASK_RUNNING; \
281 raw_spin_unlock(&current->pi_lock); \
282 } while (0);
8eb23b9f 283
2f064a59 284#define get_current_state() READ_ONCE(current->__state)
d6c23bb3 285
3087c61e
YS
286/*
287 * Define the task command name length as enum, then it can be visible to
288 * BPF programs.
289 */
290enum {
291 TASK_COMM_LEN = 16,
292};
1da177e4 293
1da177e4
LT
294extern void scheduler_tick(void);
295
5eca1c10
IM
296#define MAX_SCHEDULE_TIMEOUT LONG_MAX
297
298extern long schedule_timeout(long timeout);
299extern long schedule_timeout_interruptible(long timeout);
300extern long schedule_timeout_killable(long timeout);
301extern long schedule_timeout_uninterruptible(long timeout);
302extern long schedule_timeout_idle(long timeout);
1da177e4 303asmlinkage void schedule(void);
c5491ea7 304extern void schedule_preempt_disabled(void);
19c95f26 305asmlinkage void preempt_schedule_irq(void);
6991436c
TG
306#ifdef CONFIG_PREEMPT_RT
307 extern void schedule_rtlock(void);
308#endif
1da177e4 309
10ab5643
TH
310extern int __must_check io_schedule_prepare(void);
311extern void io_schedule_finish(int token);
9cff8ade 312extern long io_schedule_timeout(long timeout);
10ab5643 313extern void io_schedule(void);
9cff8ade 314
d37f761d 315/**
0ba42a59 316 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
317 * @utime: time spent in user mode
318 * @stime: time spent in system mode
9d7fb042 319 * @lock: protects the above two fields
d37f761d 320 *
9d7fb042
PZ
321 * Stores previous user/system time values such that we can guarantee
322 * monotonicity.
d37f761d 323 */
9d7fb042
PZ
324struct prev_cputime {
325#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
326 u64 utime;
327 u64 stime;
328 raw_spinlock_t lock;
9d7fb042 329#endif
d37f761d
FW
330};
331
bac5b6b6
FW
332enum vtime_state {
333 /* Task is sleeping or running in a CPU with VTIME inactive: */
334 VTIME_INACTIVE = 0,
14faf6fc
FW
335 /* Task is idle */
336 VTIME_IDLE,
bac5b6b6
FW
337 /* Task runs in kernelspace in a CPU with VTIME active: */
338 VTIME_SYS,
14faf6fc
FW
339 /* Task runs in userspace in a CPU with VTIME active: */
340 VTIME_USER,
e6d5bf3e
FW
341 /* Task runs as guests in a CPU with VTIME active: */
342 VTIME_GUEST,
bac5b6b6
FW
343};
344
345struct vtime {
346 seqcount_t seqcount;
347 unsigned long long starttime;
348 enum vtime_state state;
802f4a82 349 unsigned int cpu;
2a42eb95
WL
350 u64 utime;
351 u64 stime;
352 u64 gtime;
bac5b6b6
FW
353};
354
69842cba
PB
355/*
356 * Utilization clamp constraints.
357 * @UCLAMP_MIN: Minimum utilization
358 * @UCLAMP_MAX: Maximum utilization
359 * @UCLAMP_CNT: Utilization clamp constraints count
360 */
361enum uclamp_id {
362 UCLAMP_MIN = 0,
363 UCLAMP_MAX,
364 UCLAMP_CNT
365};
366
f9a25f77
MP
367#ifdef CONFIG_SMP
368extern struct root_domain def_root_domain;
369extern struct mutex sched_domains_mutex;
370#endif
371
d844fe65
KK
372struct sched_param {
373 int sched_priority;
374};
375
1da177e4 376struct sched_info {
7f5f8e8d 377#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
378 /* Cumulative counters: */
379
380 /* # of times we have run on this CPU: */
381 unsigned long pcount;
382
383 /* Time spent waiting on a runqueue: */
384 unsigned long long run_delay;
385
386 /* Timestamps: */
387
388 /* When did we last run on a CPU? */
389 unsigned long long last_arrival;
390
391 /* When were we last queued to run? */
392 unsigned long long last_queued;
1da177e4 393
f6db8347 394#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 395};
1da177e4 396
6ecdd749
YD
397/*
398 * Integer metrics need fixed point arithmetic, e.g., sched/fair
399 * has a few: load, load_avg, util_avg, freq, and capacity.
400 *
401 * We define a basic fixed point arithmetic range, and then formalize
402 * all these metrics based on that basic range.
403 */
5eca1c10
IM
404# define SCHED_FIXEDPOINT_SHIFT 10
405# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 406
69842cba
PB
407/* Increase resolution of cpu_capacity calculations */
408# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
409# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
410
20b8a59f 411struct load_weight {
5eca1c10
IM
412 unsigned long weight;
413 u32 inv_weight;
20b8a59f
IM
414};
415
7f65ea42
PB
416/**
417 * struct util_est - Estimation utilization of FAIR tasks
418 * @enqueued: instantaneous estimated utilization of a task/cpu
419 * @ewma: the Exponential Weighted Moving Average (EWMA)
420 * utilization of a task
421 *
422 * Support data structure to track an Exponential Weighted Moving Average
423 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
424 * average each time a task completes an activation. Sample's weight is chosen
425 * so that the EWMA will be relatively insensitive to transient changes to the
426 * task's workload.
427 *
428 * The enqueued attribute has a slightly different meaning for tasks and cpus:
429 * - task: the task's util_avg at last task dequeue time
430 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
431 * Thus, the util_est.enqueued of a task represents the contribution on the
432 * estimated utilization of the CPU where that task is currently enqueued.
433 *
434 * Only for tasks we track a moving average of the past instantaneous
435 * estimated utilization. This allows to absorb sporadic drops in utilization
436 * of an otherwise almost periodic task.
68d7a190
DE
437 *
438 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
439 * updates. When a task is dequeued, its util_est should not be updated if its
440 * util_avg has not been updated in the meantime.
441 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
442 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
443 * for a task) it is safe to use MSB.
7f65ea42
PB
444 */
445struct util_est {
446 unsigned int enqueued;
447 unsigned int ewma;
448#define UTIL_EST_WEIGHT_SHIFT 2
68d7a190 449#define UTIL_AVG_UNCHANGED 0x80000000
317d359d 450} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 451
9d89c257 452/*
9f683953 453 * The load/runnable/util_avg accumulates an infinite geometric series
0dacee1b 454 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
7b595334
YD
455 *
456 * [load_avg definition]
457 *
458 * load_avg = runnable% * scale_load_down(load)
459 *
9f683953
VG
460 * [runnable_avg definition]
461 *
462 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
7b595334 463 *
7b595334
YD
464 * [util_avg definition]
465 *
466 * util_avg = running% * SCHED_CAPACITY_SCALE
467 *
9f683953
VG
468 * where runnable% is the time ratio that a sched_entity is runnable and
469 * running% the time ratio that a sched_entity is running.
470 *
471 * For cfs_rq, they are the aggregated values of all runnable and blocked
472 * sched_entities.
7b595334 473 *
c1b7b8d4 474 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
9f683953
VG
475 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
476 * for computing those signals (see update_rq_clock_pelt())
7b595334 477 *
23127296
VG
478 * N.B., the above ratios (runnable% and running%) themselves are in the
479 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
480 * to as large a range as necessary. This is for example reflected by
481 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
482 *
483 * [Overflow issue]
484 *
485 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
486 * with the highest load (=88761), always runnable on a single cfs_rq,
487 * and should not overflow as the number already hits PID_MAX_LIMIT.
488 *
489 * For all other cases (including 32-bit kernels), struct load_weight's
490 * weight will overflow first before we do, because:
491 *
492 * Max(load_avg) <= Max(load.weight)
493 *
494 * Then it is the load_weight's responsibility to consider overflow
495 * issues.
9d89c257 496 */
9d85f21c 497struct sched_avg {
5eca1c10
IM
498 u64 last_update_time;
499 u64 load_sum;
9f683953 500 u64 runnable_sum;
5eca1c10
IM
501 u32 util_sum;
502 u32 period_contrib;
503 unsigned long load_avg;
9f683953 504 unsigned long runnable_avg;
5eca1c10 505 unsigned long util_avg;
7f65ea42 506 struct util_est util_est;
317d359d 507} ____cacheline_aligned;
9d85f21c 508
41acab88 509struct sched_statistics {
7f5f8e8d 510#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
511 u64 wait_start;
512 u64 wait_max;
513 u64 wait_count;
514 u64 wait_sum;
515 u64 iowait_count;
516 u64 iowait_sum;
517
518 u64 sleep_start;
519 u64 sleep_max;
520 s64 sum_sleep_runtime;
521
522 u64 block_start;
523 u64 block_max;
847fc0cd
YS
524 s64 sum_block_runtime;
525
5eca1c10
IM
526 u64 exec_max;
527 u64 slice_max;
528
529 u64 nr_migrations_cold;
530 u64 nr_failed_migrations_affine;
531 u64 nr_failed_migrations_running;
532 u64 nr_failed_migrations_hot;
533 u64 nr_forced_migrations;
534
535 u64 nr_wakeups;
536 u64 nr_wakeups_sync;
537 u64 nr_wakeups_migrate;
538 u64 nr_wakeups_local;
539 u64 nr_wakeups_remote;
540 u64 nr_wakeups_affine;
541 u64 nr_wakeups_affine_attempts;
542 u64 nr_wakeups_passive;
543 u64 nr_wakeups_idle;
4feee7d1
JD
544
545#ifdef CONFIG_SCHED_CORE
546 u64 core_forceidle_sum;
41acab88 547#endif
4feee7d1 548#endif /* CONFIG_SCHEDSTATS */
ceeadb83 549} ____cacheline_aligned;
41acab88
LDM
550
551struct sched_entity {
5eca1c10
IM
552 /* For load-balancing: */
553 struct load_weight load;
554 struct rb_node run_node;
147f3efa
PZ
555 u64 deadline;
556 u64 min_deadline;
557
5eca1c10
IM
558 struct list_head group_node;
559 unsigned int on_rq;
41acab88 560
5eca1c10
IM
561 u64 exec_start;
562 u64 sum_exec_runtime;
5eca1c10 563 u64 prev_sum_exec_runtime;
86bfbb7c
PZ
564 u64 vruntime;
565 s64 vlag;
147f3efa 566 u64 slice;
41acab88 567
5eca1c10 568 u64 nr_migrations;
41acab88 569
20b8a59f 570#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
571 int depth;
572 struct sched_entity *parent;
20b8a59f 573 /* rq on which this entity is (to be) queued: */
5eca1c10 574 struct cfs_rq *cfs_rq;
20b8a59f 575 /* rq "owned" by this entity/group: */
5eca1c10 576 struct cfs_rq *my_q;
9f683953
VG
577 /* cached value of my_q->h_nr_running */
578 unsigned long runnable_weight;
20b8a59f 579#endif
8bd75c77 580
141965c7 581#ifdef CONFIG_SMP
5a107804
JO
582 /*
583 * Per entity load average tracking.
584 *
585 * Put into separate cache line so it does not
586 * collide with read-mostly values above.
587 */
317d359d 588 struct sched_avg avg;
9d85f21c 589#endif
20b8a59f 590};
70b97a7f 591
fa717060 592struct sched_rt_entity {
5eca1c10
IM
593 struct list_head run_list;
594 unsigned long timeout;
595 unsigned long watchdog_stamp;
596 unsigned int time_slice;
597 unsigned short on_rq;
598 unsigned short on_list;
599
600 struct sched_rt_entity *back;
052f1dc7 601#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 602 struct sched_rt_entity *parent;
6f505b16 603 /* rq on which this entity is (to be) queued: */
5eca1c10 604 struct rt_rq *rt_rq;
6f505b16 605 /* rq "owned" by this entity/group: */
5eca1c10 606 struct rt_rq *my_q;
6f505b16 607#endif
3859a271 608} __randomize_layout;
fa717060 609
aab03e05 610struct sched_dl_entity {
5eca1c10 611 struct rb_node rb_node;
aab03e05
DF
612
613 /*
614 * Original scheduling parameters. Copied here from sched_attr
4027d080 615 * during sched_setattr(), they will remain the same until
616 * the next sched_setattr().
aab03e05 617 */
5eca1c10
IM
618 u64 dl_runtime; /* Maximum runtime for each instance */
619 u64 dl_deadline; /* Relative deadline of each instance */
620 u64 dl_period; /* Separation of two instances (period) */
54d6d303 621 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 622 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
623
624 /*
625 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 626 * they are continuously updated during task execution. Note that
aab03e05
DF
627 * the remaining runtime could be < 0 in case we are in overrun.
628 */
5eca1c10
IM
629 s64 runtime; /* Remaining runtime for this instance */
630 u64 deadline; /* Absolute deadline for this instance */
631 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
632
633 /*
634 * Some bool flags:
635 *
636 * @dl_throttled tells if we exhausted the runtime. If so, the
637 * task has to wait for a replenishment to be performed at the
638 * next firing of dl_timer.
639 *
5eca1c10 640 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 641 * all its available runtime during the last job.
209a0cbd
LA
642 *
643 * @dl_non_contending tells if the task is inactive while still
644 * contributing to the active utilization. In other words, it
645 * indicates if the inactive timer has been armed and its handler
646 * has not been executed yet. This flag is useful to avoid race
647 * conditions between the inactive timer handler and the wakeup
648 * code.
34be3930
JL
649 *
650 * @dl_overrun tells if the task asked to be informed about runtime
651 * overruns.
aab03e05 652 */
aa5222e9 653 unsigned int dl_throttled : 1;
aa5222e9
DC
654 unsigned int dl_yielded : 1;
655 unsigned int dl_non_contending : 1;
34be3930 656 unsigned int dl_overrun : 1;
aab03e05
DF
657
658 /*
659 * Bandwidth enforcement timer. Each -deadline task has its
660 * own bandwidth to be enforced, thus we need one timer per task.
661 */
5eca1c10 662 struct hrtimer dl_timer;
209a0cbd
LA
663
664 /*
665 * Inactive timer, responsible for decreasing the active utilization
666 * at the "0-lag time". When a -deadline task blocks, it contributes
667 * to GRUB's active utilization until the "0-lag time", hence a
668 * timer is needed to decrease the active utilization at the correct
669 * time.
670 */
671 struct hrtimer inactive_timer;
2279f540
JL
672
673#ifdef CONFIG_RT_MUTEXES
674 /*
675 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
676 * pi_se points to the donor, otherwise points to the dl_se it belongs
677 * to (the original one/itself).
678 */
679 struct sched_dl_entity *pi_se;
680#endif
aab03e05 681};
8bd75c77 682
69842cba
PB
683#ifdef CONFIG_UCLAMP_TASK
684/* Number of utilization clamp buckets (shorter alias) */
685#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
686
687/*
688 * Utilization clamp for a scheduling entity
689 * @value: clamp value "assigned" to a se
690 * @bucket_id: bucket index corresponding to the "assigned" value
e8f14172 691 * @active: the se is currently refcounted in a rq's bucket
a509a7cd 692 * @user_defined: the requested clamp value comes from user-space
69842cba
PB
693 *
694 * The bucket_id is the index of the clamp bucket matching the clamp value
695 * which is pre-computed and stored to avoid expensive integer divisions from
696 * the fast path.
e8f14172
PB
697 *
698 * The active bit is set whenever a task has got an "effective" value assigned,
699 * which can be different from the clamp value "requested" from user-space.
700 * This allows to know a task is refcounted in the rq's bucket corresponding
701 * to the "effective" bucket_id.
a509a7cd
PB
702 *
703 * The user_defined bit is set whenever a task has got a task-specific clamp
704 * value requested from userspace, i.e. the system defaults apply to this task
705 * just as a restriction. This allows to relax default clamps when a less
706 * restrictive task-specific value has been requested, thus allowing to
707 * implement a "nice" semantic. For example, a task running with a 20%
708 * default boost can still drop its own boosting to 0%.
69842cba
PB
709 */
710struct uclamp_se {
711 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
712 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
e8f14172 713 unsigned int active : 1;
a509a7cd 714 unsigned int user_defined : 1;
69842cba
PB
715};
716#endif /* CONFIG_UCLAMP_TASK */
717
1d082fd0
PM
718union rcu_special {
719 struct {
5eca1c10
IM
720 u8 blocked;
721 u8 need_qs;
05f41571 722 u8 exp_hint; /* Hint for performance. */
276c4104 723 u8 need_mb; /* Readers need smp_mb(). */
8203d6d0 724 } b; /* Bits. */
05f41571 725 u32 s; /* Set of bits. */
1d082fd0 726};
86848966 727
8dc85d54
PZ
728enum perf_event_task_context {
729 perf_invalid_context = -1,
730 perf_hw_context = 0,
89a1e187 731 perf_sw_context,
8dc85d54
PZ
732 perf_nr_task_contexts,
733};
734
eb61baf6
IM
735struct wake_q_node {
736 struct wake_q_node *next;
737};
738
5fbda3ec
TG
739struct kmap_ctrl {
740#ifdef CONFIG_KMAP_LOCAL
741 int idx;
742 pte_t pteval[KM_MAX_IDX];
743#endif
744};
745
1da177e4 746struct task_struct {
c65eacbe
AL
747#ifdef CONFIG_THREAD_INFO_IN_TASK
748 /*
749 * For reasons of header soup (see current_thread_info()), this
750 * must be the first element of task_struct.
751 */
5eca1c10 752 struct thread_info thread_info;
c65eacbe 753#endif
2f064a59 754 unsigned int __state;
29e48ce8 755
5f220be2
TG
756 /* saved state for "spinlock sleepers" */
757 unsigned int saved_state;
5f220be2 758
29e48ce8
KC
759 /*
760 * This begins the randomizable portion of task_struct. Only
761 * scheduling-critical items should be added above here.
762 */
763 randomized_struct_fields_start
764
5eca1c10 765 void *stack;
ec1d2819 766 refcount_t usage;
5eca1c10
IM
767 /* Per task flags (PF_*), defined further below: */
768 unsigned int flags;
769 unsigned int ptrace;
1da177e4 770
2dd73a4f 771#ifdef CONFIG_SMP
5eca1c10 772 int on_cpu;
8c4890d1 773 struct __call_single_node wake_entry;
5eca1c10
IM
774 unsigned int wakee_flips;
775 unsigned long wakee_flip_decay_ts;
776 struct task_struct *last_wakee;
ac66f547 777
32e839dd
MG
778 /*
779 * recent_used_cpu is initially set as the last CPU used by a task
780 * that wakes affine another task. Waker/wakee relationships can
781 * push tasks around a CPU where each wakeup moves to the next one.
782 * Tracking a recently used CPU allows a quick search for a recently
783 * used CPU that may be idle.
784 */
785 int recent_used_cpu;
5eca1c10 786 int wake_cpu;
2dd73a4f 787#endif
5eca1c10
IM
788 int on_rq;
789
790 int prio;
791 int static_prio;
792 int normal_prio;
793 unsigned int rt_priority;
50e645a8 794
5eca1c10
IM
795 struct sched_entity se;
796 struct sched_rt_entity rt;
8a311c74 797 struct sched_dl_entity dl;
804bccba 798 const struct sched_class *sched_class;
8a311c74
PZ
799
800#ifdef CONFIG_SCHED_CORE
801 struct rb_node core_node;
802 unsigned long core_cookie;
d2dfa17b 803 unsigned int core_occupation;
8a311c74
PZ
804#endif
805
8323f26c 806#ifdef CONFIG_CGROUP_SCHED
5eca1c10 807 struct task_group *sched_task_group;
8323f26c 808#endif
1da177e4 809
69842cba 810#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
811 /*
812 * Clamp values requested for a scheduling entity.
813 * Must be updated with task_rq_lock() held.
814 */
e8f14172 815 struct uclamp_se uclamp_req[UCLAMP_CNT];
13685c4a
QY
816 /*
817 * Effective clamp values used for a scheduling entity.
818 * Must be updated with task_rq_lock() held.
819 */
69842cba
PB
820 struct uclamp_se uclamp[UCLAMP_CNT];
821#endif
822
ceeadb83
YS
823 struct sched_statistics stats;
824
e107be36 825#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
826 /* List of struct preempt_notifier: */
827 struct hlist_head preempt_notifiers;
e107be36
AK
828#endif
829
6c5c9341 830#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 831 unsigned int btrace_seq;
6c5c9341 832#endif
1da177e4 833
5eca1c10
IM
834 unsigned int policy;
835 int nr_cpus_allowed;
3bd37062 836 const cpumask_t *cpus_ptr;
b90ca8ba 837 cpumask_t *user_cpus_ptr;
3bd37062 838 cpumask_t cpus_mask;
6d337eab 839 void *migration_pending;
74d862b6 840#ifdef CONFIG_SMP
a7c81556 841 unsigned short migration_disabled;
af449901 842#endif
a7c81556 843 unsigned short migration_flags;
1da177e4 844
a57eb940 845#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
846 int rcu_read_lock_nesting;
847 union rcu_special rcu_read_unlock_special;
848 struct list_head rcu_node_entry;
849 struct rcu_node *rcu_blocked_node;
28f6569a 850#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 851
8315f422 852#ifdef CONFIG_TASKS_RCU
5eca1c10 853 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
854 u8 rcu_tasks_holdout;
855 u8 rcu_tasks_idx;
5eca1c10 856 int rcu_tasks_idle_cpu;
ccdd29ff 857 struct list_head rcu_tasks_holdout_list;
8315f422 858#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 859
d5f177d3
PM
860#ifdef CONFIG_TASKS_TRACE_RCU
861 int trc_reader_nesting;
862 int trc_ipi_to_cpu;
276c4104 863 union rcu_special trc_reader_special;
d5f177d3 864 struct list_head trc_holdout_list;
434c9eef
PM
865 struct list_head trc_blkd_node;
866 int trc_blkd_cpu;
d5f177d3
PM
867#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
868
5eca1c10 869 struct sched_info sched_info;
1da177e4 870
5eca1c10 871 struct list_head tasks;
806c09a7 872#ifdef CONFIG_SMP
5eca1c10
IM
873 struct plist_node pushable_tasks;
874 struct rb_node pushable_dl_tasks;
806c09a7 875#endif
1da177e4 876
5eca1c10
IM
877 struct mm_struct *mm;
878 struct mm_struct *active_mm;
2b69987b 879 struct address_space *faults_disabled_mapping;
314ff785 880
5eca1c10
IM
881 int exit_state;
882 int exit_code;
883 int exit_signal;
884 /* The signal sent when the parent dies: */
885 int pdeath_signal;
886 /* JOBCTL_*, siglock protected: */
887 unsigned long jobctl;
888
889 /* Used for emulating ABI behavior of previous Linux versions: */
890 unsigned int personality;
891
892 /* Scheduler bits, serialized by scheduler locks: */
893 unsigned sched_reset_on_fork:1;
894 unsigned sched_contributes_to_load:1;
895 unsigned sched_migrated:1;
eb414681 896
5eca1c10
IM
897 /* Force alignment to the next boundary: */
898 unsigned :0;
899
900 /* Unserialized, strictly 'current' */
901
f97bb527
PZ
902 /*
903 * This field must not be in the scheduler word above due to wakelist
904 * queueing no longer being serialized by p->on_cpu. However:
905 *
906 * p->XXX = X; ttwu()
907 * schedule() if (p->on_rq && ..) // false
908 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
909 * deactivate_task() ttwu_queue_wakelist())
910 * p->on_rq = 0; p->sched_remote_wakeup = Y;
911 *
912 * guarantees all stores of 'current' are visible before
913 * ->sched_remote_wakeup gets used, so it can be in this word.
914 */
915 unsigned sched_remote_wakeup:1;
6b596e62
PZ
916#ifdef CONFIG_RT_MUTEXES
917 unsigned sched_rt_mutex:1;
918#endif
f97bb527 919
5eca1c10
IM
920 /* Bit to tell LSMs we're in execve(): */
921 unsigned in_execve:1;
922 unsigned in_iowait:1;
923#ifndef TIF_RESTORE_SIGMASK
924 unsigned restore_sigmask:1;
7e781418 925#endif
626ebc41 926#ifdef CONFIG_MEMCG
29ef680a 927 unsigned in_user_fault:1;
127424c8 928#endif
ec1c86b2
YZ
929#ifdef CONFIG_LRU_GEN
930 /* whether the LRU algorithm may apply to this access */
931 unsigned in_lru_fault:1;
932#endif
ff303e66 933#ifdef CONFIG_COMPAT_BRK
5eca1c10 934 unsigned brk_randomized:1;
ff303e66 935#endif
77f88796
TH
936#ifdef CONFIG_CGROUPS
937 /* disallow userland-initiated cgroup migration */
938 unsigned no_cgroup_migration:1;
76f969e8
RG
939 /* task is frozen/stopped (used by the cgroup freezer) */
940 unsigned frozen:1;
77f88796 941#endif
d09d8df3 942#ifdef CONFIG_BLK_CGROUP
d09d8df3
JB
943 unsigned use_memdelay:1;
944#endif
1066d1b6
YS
945#ifdef CONFIG_PSI
946 /* Stalled due to lack of memory */
947 unsigned in_memstall:1;
948#endif
8e9b16c4
ST
949#ifdef CONFIG_PAGE_OWNER
950 /* Used by page_owner=on to detect recursion in page tracking. */
951 unsigned in_page_owner:1;
952#endif
b542e383
TG
953#ifdef CONFIG_EVENTFD
954 /* Recursion prevention for eventfd_signal() */
9f0deaa1 955 unsigned in_eventfd:1;
b542e383 956#endif
a3d29e82
PZ
957#ifdef CONFIG_IOMMU_SVA
958 unsigned pasid_activated:1;
959#endif
b041b525
TL
960#ifdef CONFIG_CPU_SUP_INTEL
961 unsigned reported_split_lock:1;
962#endif
aa1cf99b
YY
963#ifdef CONFIG_TASK_DELAY_ACCT
964 /* delay due to memory thrashing */
965 unsigned in_thrashing:1;
966#endif
6f185c29 967
5eca1c10 968 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 969
5eca1c10 970 struct restart_block restart_block;
f56141e3 971
5eca1c10
IM
972 pid_t pid;
973 pid_t tgid;
0a425405 974
050e9baa 975#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
976 /* Canary value for the -fstack-protector GCC feature: */
977 unsigned long stack_canary;
1314562a 978#endif
4d1d61a6 979 /*
5eca1c10 980 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 981 * older sibling, respectively. (p->father can be replaced with
f470021a 982 * p->real_parent->pid)
1da177e4 983 */
5eca1c10
IM
984
985 /* Real parent process: */
986 struct task_struct __rcu *real_parent;
987
988 /* Recipient of SIGCHLD, wait4() reports: */
989 struct task_struct __rcu *parent;
990
1da177e4 991 /*
5eca1c10 992 * Children/sibling form the list of natural children:
1da177e4 993 */
5eca1c10
IM
994 struct list_head children;
995 struct list_head sibling;
996 struct task_struct *group_leader;
1da177e4 997
f470021a 998 /*
5eca1c10
IM
999 * 'ptraced' is the list of tasks this task is using ptrace() on.
1000 *
f470021a 1001 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 1002 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 1003 */
5eca1c10
IM
1004 struct list_head ptraced;
1005 struct list_head ptrace_entry;
f470021a 1006
1da177e4 1007 /* PID/PID hash table linkage. */
2c470475
EB
1008 struct pid *thread_pid;
1009 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
1010 struct list_head thread_node;
1011
1012 struct completion *vfork_done;
1da177e4 1013
5eca1c10
IM
1014 /* CLONE_CHILD_SETTID: */
1015 int __user *set_child_tid;
1da177e4 1016
5eca1c10
IM
1017 /* CLONE_CHILD_CLEARTID: */
1018 int __user *clear_child_tid;
1019
e32cf5df
EB
1020 /* PF_KTHREAD | PF_IO_WORKER */
1021 void *worker_private;
3bfe6106 1022
5eca1c10
IM
1023 u64 utime;
1024 u64 stime;
40565b5a 1025#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
1026 u64 utimescaled;
1027 u64 stimescaled;
40565b5a 1028#endif
5eca1c10
IM
1029 u64 gtime;
1030 struct prev_cputime prev_cputime;
6a61671b 1031#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 1032 struct vtime vtime;
d99ca3b9 1033#endif
d027d45d
FW
1034
1035#ifdef CONFIG_NO_HZ_FULL
5eca1c10 1036 atomic_t tick_dep_mask;
d027d45d 1037#endif
5eca1c10
IM
1038 /* Context switch counts: */
1039 unsigned long nvcsw;
1040 unsigned long nivcsw;
1041
1042 /* Monotonic time in nsecs: */
1043 u64 start_time;
1044
1045 /* Boot based time in nsecs: */
cf25e24d 1046 u64 start_boottime;
5eca1c10
IM
1047
1048 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1049 unsigned long min_flt;
1050 unsigned long maj_flt;
1da177e4 1051
2b69942f
TG
1052 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1053 struct posix_cputimers posix_cputimers;
1da177e4 1054
1fb497dd
TG
1055#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1056 struct posix_cputimers_work posix_cputimers_work;
1057#endif
1058
5eca1c10
IM
1059 /* Process credentials: */
1060
1061 /* Tracer's credentials at attach: */
1062 const struct cred __rcu *ptracer_cred;
1063
1064 /* Objective and real subjective task credentials (COW): */
1065 const struct cred __rcu *real_cred;
1066
1067 /* Effective (overridable) subjective task credentials (COW): */
1068 const struct cred __rcu *cred;
1069
7743c48e
DH
1070#ifdef CONFIG_KEYS
1071 /* Cached requested key. */
1072 struct key *cached_requested_key;
1073#endif
1074
5eca1c10
IM
1075 /*
1076 * executable name, excluding path.
1077 *
1078 * - normally initialized setup_new_exec()
1079 * - access it with [gs]et_task_comm()
1080 * - lock it with task_lock()
1081 */
1082 char comm[TASK_COMM_LEN];
1083
1084 struct nameidata *nameidata;
1085
3d5b6fcc 1086#ifdef CONFIG_SYSVIPC
5eca1c10
IM
1087 struct sysv_sem sysvsem;
1088 struct sysv_shm sysvshm;
3d5b6fcc 1089#endif
e162b39a 1090#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 1091 unsigned long last_switch_count;
a2e51445 1092 unsigned long last_switch_time;
82a1fcb9 1093#endif
5eca1c10
IM
1094 /* Filesystem information: */
1095 struct fs_struct *fs;
1096
1097 /* Open file information: */
1098 struct files_struct *files;
1099
0f212204
JA
1100#ifdef CONFIG_IO_URING
1101 struct io_uring_task *io_uring;
1102#endif
1103
5eca1c10
IM
1104 /* Namespaces: */
1105 struct nsproxy *nsproxy;
1106
1107 /* Signal handlers: */
1108 struct signal_struct *signal;
913292c9 1109 struct sighand_struct __rcu *sighand;
5eca1c10
IM
1110 sigset_t blocked;
1111 sigset_t real_blocked;
1112 /* Restored if set_restore_sigmask() was used: */
1113 sigset_t saved_sigmask;
1114 struct sigpending pending;
1115 unsigned long sas_ss_sp;
1116 size_t sas_ss_size;
1117 unsigned int sas_ss_flags;
1118
1119 struct callback_head *task_works;
1120
4b7d248b 1121#ifdef CONFIG_AUDIT
bfef93a5 1122#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
1123 struct audit_context *audit_context;
1124#endif
5eca1c10
IM
1125 kuid_t loginuid;
1126 unsigned int sessionid;
bfef93a5 1127#endif
5eca1c10 1128 struct seccomp seccomp;
1446e1df 1129 struct syscall_user_dispatch syscall_dispatch;
5eca1c10
IM
1130
1131 /* Thread group tracking: */
d1e7fd64
EB
1132 u64 parent_exec_id;
1133 u64 self_exec_id;
1da177e4 1134
5eca1c10
IM
1135 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1136 spinlock_t alloc_lock;
1da177e4 1137
b29739f9 1138 /* Protection of the PI data structures: */
5eca1c10 1139 raw_spinlock_t pi_lock;
b29739f9 1140
5eca1c10 1141 struct wake_q_node wake_q;
76751049 1142
23f78d4a 1143#ifdef CONFIG_RT_MUTEXES
5eca1c10 1144 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 1145 struct rb_root_cached pi_waiters;
e96a7705
XP
1146 /* Updated under owner's pi_lock and rq lock */
1147 struct task_struct *pi_top_task;
5eca1c10
IM
1148 /* Deadlock detection and priority inheritance handling: */
1149 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1150#endif
1151
408894ee 1152#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
1153 /* Mutex deadlock detection: */
1154 struct mutex_waiter *blocked_on;
408894ee 1155#endif
5eca1c10 1156
312364f3
DV
1157#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1158 int non_block_count;
1159#endif
1160
de30a2b3 1161#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c 1162 struct irqtrace_events irqtrace;
de8f5e4f 1163 unsigned int hardirq_threaded;
c86e9b98 1164 u64 hardirq_chain_key;
5eca1c10
IM
1165 int softirqs_enabled;
1166 int softirq_context;
40db1739 1167 int irq_config;
de30a2b3 1168#endif
728b478d
TG
1169#ifdef CONFIG_PREEMPT_RT
1170 int softirq_disable_cnt;
1171#endif
5eca1c10 1172
fbb9ce95 1173#ifdef CONFIG_LOCKDEP
5eca1c10
IM
1174# define MAX_LOCK_DEPTH 48UL
1175 u64 curr_chain_key;
1176 int lockdep_depth;
1177 unsigned int lockdep_recursion;
1178 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 1179#endif
5eca1c10 1180
5cf53f3c 1181#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
5eca1c10 1182 unsigned int in_ubsan;
c6d30853 1183#endif
408894ee 1184
5eca1c10
IM
1185 /* Journalling filesystem info: */
1186 void *journal_info;
1da177e4 1187
5eca1c10
IM
1188 /* Stacked block device info: */
1189 struct bio_list *bio_list;
d89d8796 1190
5eca1c10
IM
1191 /* Stack plugging: */
1192 struct blk_plug *plug;
73c10101 1193
5eca1c10
IM
1194 /* VM state: */
1195 struct reclaim_state *reclaim_state;
1196
5eca1c10 1197 struct io_context *io_context;
1da177e4 1198
5e1f0f09
MG
1199#ifdef CONFIG_COMPACTION
1200 struct capture_control *capture_control;
1201#endif
5eca1c10
IM
1202 /* Ptrace state: */
1203 unsigned long ptrace_message;
ae7795bc 1204 kernel_siginfo_t *last_siginfo;
1da177e4 1205
5eca1c10 1206 struct task_io_accounting ioac;
eb414681
JW
1207#ifdef CONFIG_PSI
1208 /* Pressure stall state */
1209 unsigned int psi_flags;
1210#endif
5eca1c10
IM
1211#ifdef CONFIG_TASK_XACCT
1212 /* Accumulated RSS usage: */
1213 u64 acct_rss_mem1;
1214 /* Accumulated virtual memory usage: */
1215 u64 acct_vm_mem1;
1216 /* stime + utime since last update: */
1217 u64 acct_timexpd;
1da177e4
LT
1218#endif
1219#ifdef CONFIG_CPUSETS
5eca1c10
IM
1220 /* Protected by ->alloc_lock: */
1221 nodemask_t mems_allowed;
3b03706f 1222 /* Sequence number to catch updates: */
b7505861 1223 seqcount_spinlock_t mems_allowed_seq;
5eca1c10
IM
1224 int cpuset_mem_spread_rotor;
1225 int cpuset_slab_spread_rotor;
1da177e4 1226#endif
ddbcc7e8 1227#ifdef CONFIG_CGROUPS
5eca1c10
IM
1228 /* Control Group info protected by css_set_lock: */
1229 struct css_set __rcu *cgroups;
1230 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1231 struct list_head cg_list;
ddbcc7e8 1232#endif
e6d42931 1233#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 1234 u32 closid;
d6aaba61 1235 u32 rmid;
e02737d5 1236#endif
42b2dd0a 1237#ifdef CONFIG_FUTEX
5eca1c10 1238 struct robust_list_head __user *robust_list;
34f192c6
IM
1239#ifdef CONFIG_COMPAT
1240 struct compat_robust_list_head __user *compat_robust_list;
1241#endif
5eca1c10
IM
1242 struct list_head pi_state_list;
1243 struct futex_pi_state *pi_state_cache;
3f186d97 1244 struct mutex futex_exit_mutex;
3d4775df 1245 unsigned int futex_state;
c7aceaba 1246#endif
cdd6c482 1247#ifdef CONFIG_PERF_EVENTS
bd275681 1248 struct perf_event_context *perf_event_ctxp;
5eca1c10
IM
1249 struct mutex perf_event_mutex;
1250 struct list_head perf_event_list;
a63eaf34 1251#endif
8f47b187 1252#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1253 unsigned long preempt_disable_ip;
8f47b187 1254#endif
c7aceaba 1255#ifdef CONFIG_NUMA
5eca1c10
IM
1256 /* Protected by alloc_lock: */
1257 struct mempolicy *mempolicy;
45816682 1258 short il_prev;
5eca1c10 1259 short pref_node_fork;
42b2dd0a 1260#endif
cbee9f88 1261#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1262 int numa_scan_seq;
1263 unsigned int numa_scan_period;
1264 unsigned int numa_scan_period_max;
1265 int numa_preferred_nid;
1266 unsigned long numa_migrate_retry;
1267 /* Migration stamp: */
1268 u64 node_stamp;
1269 u64 last_task_numa_placement;
1270 u64 last_sum_exec_runtime;
1271 struct callback_head numa_work;
1272
cb361d8c
JH
1273 /*
1274 * This pointer is only modified for current in syscall and
1275 * pagefault context (and for tasks being destroyed), so it can be read
1276 * from any of the following contexts:
1277 * - RCU read-side critical section
1278 * - current->numa_group from everywhere
1279 * - task's runqueue locked, task not running
1280 */
1281 struct numa_group __rcu *numa_group;
8c8a743c 1282
745d6147 1283 /*
44dba3d5
IM
1284 * numa_faults is an array split into four regions:
1285 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1286 * in this precise order.
1287 *
1288 * faults_memory: Exponential decaying average of faults on a per-node
1289 * basis. Scheduling placement decisions are made based on these
1290 * counts. The values remain static for the duration of a PTE scan.
1291 * faults_cpu: Track the nodes the process was running on when a NUMA
1292 * hinting fault was incurred.
1293 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1294 * during the current scan window. When the scan completes, the counts
1295 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1296 */
5eca1c10
IM
1297 unsigned long *numa_faults;
1298 unsigned long total_numa_faults;
745d6147 1299
04bb2f94
RR
1300 /*
1301 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1302 * scan window were remote/local or failed to migrate. The task scan
1303 * period is adapted based on the locality of the faults with different
1304 * weights depending on whether they were shared or private faults
04bb2f94 1305 */
5eca1c10 1306 unsigned long numa_faults_locality[3];
04bb2f94 1307
5eca1c10 1308 unsigned long numa_pages_migrated;
cbee9f88
PZ
1309#endif /* CONFIG_NUMA_BALANCING */
1310
d7822b1e
MD
1311#ifdef CONFIG_RSEQ
1312 struct rseq __user *rseq;
ee3e3ac0 1313 u32 rseq_len;
d7822b1e
MD
1314 u32 rseq_sig;
1315 /*
1316 * RmW on rseq_event_mask must be performed atomically
1317 * with respect to preemption.
1318 */
1319 unsigned long rseq_event_mask;
1320#endif
1321
af7f588d
MD
1322#ifdef CONFIG_SCHED_MM_CID
1323 int mm_cid; /* Current cid in mm */
223baf9d
MD
1324 int last_mm_cid; /* Most recent cid in mm */
1325 int migrate_from_cpu;
af7f588d 1326 int mm_cid_active; /* Whether cid bitmap is active */
223baf9d 1327 struct callback_head cid_work;
af7f588d
MD
1328#endif
1329
5eca1c10 1330 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1331
5eca1c10
IM
1332 /* Cache last used pipe for splice(): */
1333 struct pipe_inode_info *splice_pipe;
5640f768 1334
5eca1c10 1335 struct page_frag task_frag;
5640f768 1336
47913d4e
IM
1337#ifdef CONFIG_TASK_DELAY_ACCT
1338 struct task_delay_info *delays;
f4f154fd 1339#endif
47913d4e 1340
f4f154fd 1341#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1342 int make_it_fail;
9049f2f6 1343 unsigned int fail_nth;
ca74e92b 1344#endif
9d823e8f 1345 /*
5eca1c10
IM
1346 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1347 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1348 */
5eca1c10
IM
1349 int nr_dirtied;
1350 int nr_dirtied_pause;
1351 /* Start of a write-and-pause period: */
1352 unsigned long dirty_paused_when;
9d823e8f 1353
9745512c 1354#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1355 int latency_record_count;
1356 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1357#endif
6976675d 1358 /*
5eca1c10 1359 * Time slack values; these are used to round up poll() and
6976675d
AV
1360 * select() etc timeout values. These are in nanoseconds.
1361 */
5eca1c10
IM
1362 u64 timer_slack_ns;
1363 u64 default_timer_slack_ns;
f8d570a4 1364
d73b4936 1365#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
5eca1c10 1366 unsigned int kasan_depth;
0b24becc 1367#endif
92c209ac 1368
dfd402a4
ME
1369#ifdef CONFIG_KCSAN
1370 struct kcsan_ctx kcsan_ctx;
92c209ac
ME
1371#ifdef CONFIG_TRACE_IRQFLAGS
1372 struct irqtrace_events kcsan_save_irqtrace;
1373#endif
69562e49
ME
1374#ifdef CONFIG_KCSAN_WEAK_MEMORY
1375 int kcsan_stack_depth;
1376#endif
dfd402a4 1377#endif
5eca1c10 1378
f80be457
AP
1379#ifdef CONFIG_KMSAN
1380 struct kmsan_ctx kmsan_ctx;
1381#endif
1382
393824f6
PA
1383#if IS_ENABLED(CONFIG_KUNIT)
1384 struct kunit *kunit_test;
1385#endif
1386
fb52607a 1387#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1388 /* Index of current stored address in ret_stack: */
1389 int curr_ret_stack;
39eb456d 1390 int curr_ret_depth;
5eca1c10
IM
1391
1392 /* Stack of return addresses for return function tracing: */
1393 struct ftrace_ret_stack *ret_stack;
1394
1395 /* Timestamp for last schedule: */
1396 unsigned long long ftrace_timestamp;
1397
f201ae23
FW
1398 /*
1399 * Number of functions that haven't been traced
5eca1c10 1400 * because of depth overrun:
f201ae23 1401 */
5eca1c10
IM
1402 atomic_t trace_overrun;
1403
1404 /* Pause tracing: */
1405 atomic_t tracing_graph_pause;
f201ae23 1406#endif
5eca1c10 1407
ea4e2bc4 1408#ifdef CONFIG_TRACING
5eca1c10
IM
1409 /* Bitmask and counter of trace recursion: */
1410 unsigned long trace_recursion;
261842b7 1411#endif /* CONFIG_TRACING */
5eca1c10 1412
5c9a8750 1413#ifdef CONFIG_KCOV
eec028c9
AK
1414 /* See kernel/kcov.c for more details. */
1415
5eca1c10 1416 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1417 unsigned int kcov_mode;
5eca1c10
IM
1418
1419 /* Size of the kcov_area: */
1420 unsigned int kcov_size;
1421
1422 /* Buffer for coverage collection: */
1423 void *kcov_area;
1424
1425 /* KCOV descriptor wired with this task or NULL: */
1426 struct kcov *kcov;
eec028c9
AK
1427
1428 /* KCOV common handle for remote coverage collection: */
1429 u64 kcov_handle;
1430
1431 /* KCOV sequence number: */
1432 int kcov_sequence;
5ff3b30a
AK
1433
1434 /* Collect coverage from softirq context: */
1435 unsigned int kcov_softirq;
5c9a8750 1436#endif
5eca1c10 1437
6f185c29 1438#ifdef CONFIG_MEMCG
5eca1c10
IM
1439 struct mem_cgroup *memcg_in_oom;
1440 gfp_t memcg_oom_gfp_mask;
1441 int memcg_oom_order;
b23afb93 1442
5eca1c10
IM
1443 /* Number of pages to reclaim on returning to userland: */
1444 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1445
1446 /* Used by memcontrol for targeted memcg charge: */
1447 struct mem_cgroup *active_memcg;
569b846d 1448#endif
5eca1c10 1449
1aacbd35
RG
1450#ifdef CONFIG_MEMCG_KMEM
1451 struct obj_cgroup *objcg;
1452#endif
1453
d09d8df3 1454#ifdef CONFIG_BLK_CGROUP
f05837ed 1455 struct gendisk *throttle_disk;
d09d8df3
JB
1456#endif
1457
0326f5a9 1458#ifdef CONFIG_UPROBES
5eca1c10 1459 struct uprobe_task *utask;
0326f5a9 1460#endif
cafe5635 1461#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1462 unsigned int sequential_io;
1463 unsigned int sequential_io_avg;
cafe5635 1464#endif
5fbda3ec 1465 struct kmap_ctrl kmap_ctrl;
8eb23b9f 1466#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1467 unsigned long task_state_change;
5f220be2
TG
1468# ifdef CONFIG_PREEMPT_RT
1469 unsigned long saved_state_change;
1470# endif
8eb23b9f 1471#endif
22df776a
DV
1472 struct rcu_head rcu;
1473 refcount_t rcu_users;
5eca1c10 1474 int pagefault_disabled;
03049269 1475#ifdef CONFIG_MMU
5eca1c10 1476 struct task_struct *oom_reaper_list;
e4a38402 1477 struct timer_list oom_reaper_timer;
03049269 1478#endif
ba14a194 1479#ifdef CONFIG_VMAP_STACK
5eca1c10 1480 struct vm_struct *stack_vm_area;
ba14a194 1481#endif
68f24b08 1482#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1483 /* A live task holds one reference: */
f0b89d39 1484 refcount_t stack_refcount;
d83a7cb3
JP
1485#endif
1486#ifdef CONFIG_LIVEPATCH
1487 int patch_state;
0302e28d 1488#endif
e4e55b47
TH
1489#ifdef CONFIG_SECURITY
1490 /* Used by LSM modules for access restriction: */
1491 void *security;
68f24b08 1492#endif
a10787e6
SL
1493#ifdef CONFIG_BPF_SYSCALL
1494 /* Used by BPF task local storage */
1495 struct bpf_local_storage __rcu *bpf_storage;
c7603cfa
AN
1496 /* Used for BPF run context */
1497 struct bpf_run_ctx *bpf_ctx;
a10787e6 1498#endif
29e48ce8 1499
afaef01c
AP
1500#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1501 unsigned long lowest_stack;
c8d12627 1502 unsigned long prev_lowest_stack;
afaef01c
AP
1503#endif
1504
5567d11c 1505#ifdef CONFIG_X86_MCE
c0ab7ffc
TL
1506 void __user *mce_vaddr;
1507 __u64 mce_kflags;
5567d11c 1508 u64 mce_addr;
17fae129
TL
1509 __u64 mce_ripv : 1,
1510 mce_whole_page : 1,
1511 __mce_reserved : 62;
5567d11c 1512 struct callback_head mce_kill_me;
81065b35 1513 int mce_count;
5567d11c
PZ
1514#endif
1515
d741bf41
PZ
1516#ifdef CONFIG_KRETPROBES
1517 struct llist_head kretprobe_instances;
1518#endif
54ecbe6f
MH
1519#ifdef CONFIG_RETHOOK
1520 struct llist_head rethooks;
1521#endif
d741bf41 1522
58e106e7
BS
1523#ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1524 /*
1525 * If L1D flush is supported on mm context switch
1526 * then we use this callback head to queue kill work
1527 * to kill tasks that are not running on SMT disabled
1528 * cores
1529 */
1530 struct callback_head l1d_flush_kill;
1531#endif
1532
102227b9
DBO
1533#ifdef CONFIG_RV
1534 /*
1535 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1536 * If we find justification for more monitors, we can think
1537 * about adding more or developing a dynamic method. So far,
1538 * none of these are justified.
1539 */
1540 union rv_task_monitor rv[RV_PER_TASK_MONITORS];
1541#endif
1542
fd593511
BB
1543#ifdef CONFIG_USER_EVENTS
1544 struct user_event_mm *user_event_mm;
1545#endif
1546
29e48ce8
KC
1547 /*
1548 * New fields for task_struct should be added above here, so that
1549 * they are included in the randomized portion of task_struct.
1550 */
1551 randomized_struct_fields_end
1552
5eca1c10
IM
1553 /* CPU-specific state of this task: */
1554 struct thread_struct thread;
1555
1556 /*
1557 * WARNING: on x86, 'thread_struct' contains a variable-sized
1558 * structure. It *MUST* be at the end of 'task_struct'.
1559 *
1560 * Do not put anything below here!
1561 */
1da177e4
LT
1562};
1563
06eb6184
PZ
1564#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1565#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1566
fa2c3254
VS
1567static inline unsigned int __task_state_index(unsigned int tsk_state,
1568 unsigned int tsk_exit_state)
20435d84 1569{
fa2c3254 1570 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
20435d84 1571
06eb6184
PZ
1572 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1573
0d6b3528 1574 if ((tsk_state & TASK_IDLE) == TASK_IDLE)
06eb6184
PZ
1575 state = TASK_REPORT_IDLE;
1576
25795ef6
VS
1577 /*
1578 * We're lying here, but rather than expose a completely new task state
1579 * to userspace, we can make this appear as if the task has gone through
1580 * a regular rt_mutex_lock() call.
1581 */
0d6b3528 1582 if (tsk_state & TASK_RTLOCK_WAIT)
25795ef6
VS
1583 state = TASK_UNINTERRUPTIBLE;
1584
1593baab
PZ
1585 return fls(state);
1586}
1587
fa2c3254
VS
1588static inline unsigned int task_state_index(struct task_struct *tsk)
1589{
1590 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1591}
1592
1d48b080 1593static inline char task_index_to_char(unsigned int state)
1593baab 1594{
8ef9925b 1595 static const char state_char[] = "RSDTtXZPI";
1593baab 1596
06eb6184 1597 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1598
1593baab
PZ
1599 return state_char[state];
1600}
1601
1602static inline char task_state_to_char(struct task_struct *tsk)
1603{
1d48b080 1604 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1605}
1606
9ec52099
CLG
1607extern struct pid *cad_pid;
1608
1da177e4
LT
1609/*
1610 * Per process flags
1611 */
01ccf592 1612#define PF_VCPU 0x00000001 /* I'm a virtual CPU */
5eca1c10
IM
1613#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1614#define PF_EXITING 0x00000004 /* Getting shut down */
92307383 1615#define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
01ccf592 1616#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
5eca1c10
IM
1617#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1618#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1619#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1620#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1621#define PF_DUMPCORE 0x00000200 /* Dumped core */
1622#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1623#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1624#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1625#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
54e6842d 1626#define PF_USER_WORKER 0x00004000 /* Kernel thread cloned from userspace thread */
5eca1c10 1627#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
fb04563d 1628#define PF__HOLE__00010000 0x00010000
7dea19f9
MH
1629#define PF_KSWAPD 0x00020000 /* I am kswapd */
1630#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1631#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
a37b0715
N
1632#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1633 * I am cleaning dirty pages from some other bdi. */
5eca1c10
IM
1634#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1635#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
fb04563d
PZ
1636#define PF__HOLE__00800000 0x00800000
1637#define PF__HOLE__01000000 0x01000000
1638#define PF__HOLE__02000000 0x02000000
3bd37062 1639#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1640#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1a08ae36 1641#define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
fb04563d
PZ
1642#define PF__HOLE__20000000 0x20000000
1643#define PF__HOLE__40000000 0x40000000
5eca1c10 1644#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1645
1646/*
1647 * Only the _current_ task can read/write to tsk->flags, but other
1648 * tasks can access tsk->flags in readonly mode for example
1649 * with tsk_used_math (like during threaded core dumping).
1650 * There is however an exception to this rule during ptrace
1651 * or during fork: the ptracer task is allowed to write to the
1652 * child->flags of its traced child (same goes for fork, the parent
1653 * can write to the child->flags), because we're guaranteed the
1654 * child is not running and in turn not changing child->flags
1655 * at the same time the parent does it.
1656 */
5eca1c10
IM
1657#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1658#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1659#define clear_used_math() clear_stopped_child_used_math(current)
1660#define set_used_math() set_stopped_child_used_math(current)
1661
1da177e4
LT
1662#define conditional_stopped_child_used_math(condition, child) \
1663 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1664
1665#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1666
1da177e4
LT
1667#define copy_to_stopped_child_used_math(child) \
1668 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1669
1da177e4 1670/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1671#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1672#define used_math() tsk_used_math(current)
1da177e4 1673
83d40a61 1674static __always_inline bool is_percpu_thread(void)
62ec05dd
TG
1675{
1676#ifdef CONFIG_SMP
1677 return (current->flags & PF_NO_SETAFFINITY) &&
1678 (current->nr_cpus_allowed == 1);
1679#else
1680 return true;
1681#endif
1682}
1683
1d4457f9 1684/* Per-process atomic flags. */
5eca1c10
IM
1685#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1686#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1687#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1688#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1689#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1690#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1691#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1692#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1693
e0e5070b
ZL
1694#define TASK_PFA_TEST(name, func) \
1695 static inline bool task_##func(struct task_struct *p) \
1696 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1697
e0e5070b
ZL
1698#define TASK_PFA_SET(name, func) \
1699 static inline void task_set_##func(struct task_struct *p) \
1700 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1701
e0e5070b
ZL
1702#define TASK_PFA_CLEAR(name, func) \
1703 static inline void task_clear_##func(struct task_struct *p) \
1704 { clear_bit(PFA_##name, &p->atomic_flags); }
1705
1706TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1707TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1708
2ad654bc
ZL
1709TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1710TASK_PFA_SET(SPREAD_PAGE, spread_page)
1711TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1712
1713TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1714TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1715TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1716
356e4bff
TG
1717TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1718TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1719TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1720
71368af9
WL
1721TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1722TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1723TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1724
356e4bff
TG
1725TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1726TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1727
9137bb27
TG
1728TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1729TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1730TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1731
1732TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1733TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1734
5eca1c10 1735static inline void
717a94b5 1736current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1737{
717a94b5
N
1738 current->flags &= ~flags;
1739 current->flags |= orig_flags & flags;
907aed48
MG
1740}
1741
5eca1c10 1742extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
2ef269ef 1743extern int task_can_attach(struct task_struct *p);
85989106
DE
1744extern int dl_bw_alloc(int cpu, u64 dl_bw);
1745extern void dl_bw_free(int cpu, u64 dl_bw);
1da177e4 1746#ifdef CONFIG_SMP
ae894083
CS
1747
1748/* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
5eca1c10 1749extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
ae894083
CS
1750
1751/**
1752 * set_cpus_allowed_ptr - set CPU affinity mask of a task
1753 * @p: the task
1754 * @new_mask: CPU affinity mask
1755 *
1756 * Return: zero if successful, or a negative error code
1757 */
5eca1c10 1758extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
b90ca8ba
WD
1759extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1760extern void release_user_cpus_ptr(struct task_struct *p);
234b8ab6 1761extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
07ec77a1
WD
1762extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1763extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1da177e4 1764#else
5eca1c10 1765static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1766{
1767}
5eca1c10 1768static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1769{
96f874e2 1770 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1771 return -EINVAL;
1772 return 0;
1773}
b90ca8ba
WD
1774static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1775{
1776 if (src->user_cpus_ptr)
1777 return -EINVAL;
1778 return 0;
1779}
1780static inline void release_user_cpus_ptr(struct task_struct *p)
1781{
1782 WARN_ON(p->user_cpus_ptr);
1783}
234b8ab6
WD
1784
1785static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1786{
1787 return 0;
1788}
1da177e4 1789#endif
e0ad9556 1790
fa93384f 1791extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1792extern void set_user_nice(struct task_struct *p, long nice);
1793extern int task_prio(const struct task_struct *p);
5eca1c10 1794
d0ea0268
DY
1795/**
1796 * task_nice - return the nice value of a given task.
1797 * @p: the task in question.
1798 *
1799 * Return: The nice value [ -20 ... 0 ... 19 ].
1800 */
1801static inline int task_nice(const struct task_struct *p)
1802{
1803 return PRIO_TO_NICE((p)->static_prio);
1804}
5eca1c10 1805
36c8b586
IM
1806extern int can_nice(const struct task_struct *p, const int nice);
1807extern int task_curr(const struct task_struct *p);
1da177e4 1808extern int idle_cpu(int cpu);
943d355d 1809extern int available_idle_cpu(int cpu);
5eca1c10
IM
1810extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1811extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
8b700983
PZ
1812extern void sched_set_fifo(struct task_struct *p);
1813extern void sched_set_fifo_low(struct task_struct *p);
1814extern void sched_set_normal(struct task_struct *p, int nice);
5eca1c10 1815extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1816extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1817extern struct task_struct *idle_task(int cpu);
5eca1c10 1818
c4f30608
PM
1819/**
1820 * is_idle_task - is the specified task an idle task?
fa757281 1821 * @p: the task in question.
e69f6186
YB
1822 *
1823 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1824 */
c94a88f3 1825static __always_inline bool is_idle_task(const struct task_struct *p)
c4f30608 1826{
c1de45ca 1827 return !!(p->flags & PF_IDLE);
c4f30608 1828}
5eca1c10 1829
36c8b586 1830extern struct task_struct *curr_task(int cpu);
a458ae2e 1831extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1832
1833void yield(void);
1834
1da177e4 1835union thread_union {
0500871f
DH
1836#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1837 struct task_struct task;
1838#endif
c65eacbe 1839#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1840 struct thread_info thread_info;
c65eacbe 1841#endif
1da177e4
LT
1842 unsigned long stack[THREAD_SIZE/sizeof(long)];
1843};
1844
0500871f
DH
1845#ifndef CONFIG_THREAD_INFO_IN_TASK
1846extern struct thread_info init_thread_info;
1847#endif
1848
1849extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1850
f3ac6067 1851#ifdef CONFIG_THREAD_INFO_IN_TASK
bcf9033e 1852# define task_thread_info(task) (&(task)->thread_info)
f3ac6067
IM
1853#elif !defined(__HAVE_THREAD_FUNCTIONS)
1854# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1855#endif
1856
198fe21b
PE
1857/*
1858 * find a task by one of its numerical ids
1859 *
198fe21b
PE
1860 * find_task_by_pid_ns():
1861 * finds a task by its pid in the specified namespace
228ebcbe
PE
1862 * find_task_by_vpid():
1863 * finds a task by its virtual pid
198fe21b 1864 *
e49859e7 1865 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1866 */
1867
228ebcbe 1868extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1869extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1870
2ee08260
MR
1871/*
1872 * find a task by its virtual pid and get the task struct
1873 */
1874extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1875
b3c97528
HH
1876extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1877extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1878extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1879
1da177e4 1880#ifdef CONFIG_SMP
5eca1c10 1881extern void kick_process(struct task_struct *tsk);
1da177e4 1882#else
5eca1c10 1883static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1884#endif
1da177e4 1885
82b89778 1886extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1887
82b89778
AH
1888static inline void set_task_comm(struct task_struct *tsk, const char *from)
1889{
1890 __set_task_comm(tsk, from, false);
1891}
5eca1c10 1892
3756f640
AB
1893extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1894#define get_task_comm(buf, tsk) ({ \
1895 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1896 __get_task_comm(buf, sizeof(buf), tsk); \
1897})
1da177e4
LT
1898
1899#ifdef CONFIG_SMP
2a0a24eb
TG
1900static __always_inline void scheduler_ipi(void)
1901{
1902 /*
1903 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1904 * TIF_NEED_RESCHED remotely (for the first time) will also send
1905 * this IPI.
1906 */
1907 preempt_fold_need_resched();
1908}
1da177e4 1909#else
184748cc 1910static inline void scheduler_ipi(void) { }
1da177e4
LT
1911#endif
1912
d5e15866
PZ
1913extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1914
5eca1c10
IM
1915/*
1916 * Set thread flags in other task's structures.
1917 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1918 */
1919static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1920{
a1261f54 1921 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1922}
1923
1924static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1925{
a1261f54 1926 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1927}
1928
93ee37c2
DM
1929static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1930 bool value)
1931{
1932 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1933}
1934
1da177e4
LT
1935static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1936{
a1261f54 1937 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1938}
1939
1940static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1941{
a1261f54 1942 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1943}
1944
1945static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1946{
a1261f54 1947 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1948}
1949
1950static inline void set_tsk_need_resched(struct task_struct *tsk)
1951{
1952 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1953}
1954
1955static inline void clear_tsk_need_resched(struct task_struct *tsk)
1956{
1957 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1958}
1959
8ae121ac
GH
1960static inline int test_tsk_need_resched(struct task_struct *tsk)
1961{
1962 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1963}
1964
1da177e4
LT
1965/*
1966 * cond_resched() and cond_resched_lock(): latency reduction via
1967 * explicit rescheduling in places that are safe. The return
1968 * value indicates whether a reschedule was done in fact.
1969 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 1970 */
b965f1dd
PZI
1971#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
1972extern int __cond_resched(void);
1973
99cf983c 1974#if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
b965f1dd 1975
e3ff7c60
JP
1976void sched_dynamic_klp_enable(void);
1977void sched_dynamic_klp_disable(void);
1978
b965f1dd
PZI
1979DECLARE_STATIC_CALL(cond_resched, __cond_resched);
1980
1981static __always_inline int _cond_resched(void)
1982{
ef72661e 1983 return static_call_mod(cond_resched)();
b965f1dd
PZI
1984}
1985
99cf983c 1986#elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
e3ff7c60 1987
99cf983c
MR
1988extern int dynamic_cond_resched(void);
1989
1990static __always_inline int _cond_resched(void)
1991{
1992 return dynamic_cond_resched();
1993}
1994
e3ff7c60 1995#else /* !CONFIG_PREEMPTION */
b965f1dd
PZI
1996
1997static inline int _cond_resched(void)
1998{
e3ff7c60 1999 klp_sched_try_switch();
b965f1dd
PZI
2000 return __cond_resched();
2001}
2002
e3ff7c60 2003#endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
b965f1dd 2004
e3ff7c60 2005#else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
b965f1dd 2006
e3ff7c60
JP
2007static inline int _cond_resched(void)
2008{
2009 klp_sched_try_switch();
2010 return 0;
2011}
b965f1dd 2012
e3ff7c60 2013#endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
6f80bd98 2014
613afbf8 2015#define cond_resched() ({ \
874f670e 2016 __might_resched(__FILE__, __LINE__, 0); \
613afbf8
FW
2017 _cond_resched(); \
2018})
6f80bd98 2019
613afbf8 2020extern int __cond_resched_lock(spinlock_t *lock);
f3d4b4b1
BG
2021extern int __cond_resched_rwlock_read(rwlock_t *lock);
2022extern int __cond_resched_rwlock_write(rwlock_t *lock);
613afbf8 2023
50e081b9
TG
2024#define MIGHT_RESCHED_RCU_SHIFT 8
2025#define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2026
3e9cc688
TG
2027#ifndef CONFIG_PREEMPT_RT
2028/*
2029 * Non RT kernels have an elevated preempt count due to the held lock,
2030 * but are not allowed to be inside a RCU read side critical section
2031 */
2032# define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2033#else
2034/*
2035 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2036 * cond_resched*lock() has to take that into account because it checks for
2037 * preempt_count() and rcu_preempt_depth().
2038 */
2039# define PREEMPT_LOCK_RESCHED_OFFSETS \
2040 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2041#endif
2042
2043#define cond_resched_lock(lock) ({ \
2044 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2045 __cond_resched_lock(lock); \
613afbf8
FW
2046})
2047
3e9cc688
TG
2048#define cond_resched_rwlock_read(lock) ({ \
2049 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2050 __cond_resched_rwlock_read(lock); \
f3d4b4b1
BG
2051})
2052
3e9cc688
TG
2053#define cond_resched_rwlock_write(lock) ({ \
2054 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2055 __cond_resched_rwlock_write(lock); \
f3d4b4b1
BG
2056})
2057
f6f3c437
SH
2058static inline void cond_resched_rcu(void)
2059{
2060#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2061 rcu_read_unlock();
2062 cond_resched();
2063 rcu_read_lock();
2064#endif
2065}
2066
cfe43f47
VS
2067#ifdef CONFIG_PREEMPT_DYNAMIC
2068
2069extern bool preempt_model_none(void);
2070extern bool preempt_model_voluntary(void);
2071extern bool preempt_model_full(void);
2072
2073#else
2074
2075static inline bool preempt_model_none(void)
2076{
2077 return IS_ENABLED(CONFIG_PREEMPT_NONE);
2078}
2079static inline bool preempt_model_voluntary(void)
2080{
2081 return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2082}
2083static inline bool preempt_model_full(void)
2084{
2085 return IS_ENABLED(CONFIG_PREEMPT);
2086}
2087
2088#endif
2089
2090static inline bool preempt_model_rt(void)
2091{
2092 return IS_ENABLED(CONFIG_PREEMPT_RT);
2093}
2094
2095/*
2096 * Does the preemption model allow non-cooperative preemption?
2097 *
2098 * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2099 * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2100 * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2101 * PREEMPT_NONE model.
2102 */
2103static inline bool preempt_model_preemptible(void)
2104{
2105 return preempt_model_full() || preempt_model_rt();
2106}
2107
75f93fed
PZ
2108static __always_inline bool need_resched(void)
2109{
2110 return unlikely(tif_need_resched());
2111}
2112
1da177e4
LT
2113/*
2114 * Wrappers for p->thread_info->cpu access. No-op on UP.
2115 */
2116#ifdef CONFIG_SMP
2117
2118static inline unsigned int task_cpu(const struct task_struct *p)
2119{
c546951d 2120 return READ_ONCE(task_thread_info(p)->cpu);
1da177e4
LT
2121}
2122
c65cc870 2123extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
2124
2125#else
2126
2127static inline unsigned int task_cpu(const struct task_struct *p)
2128{
2129 return 0;
2130}
2131
2132static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2133{
2134}
2135
2136#endif /* CONFIG_SMP */
2137
a1dfb631 2138extern bool sched_task_on_rq(struct task_struct *p);
42a20f86 2139extern unsigned long get_wchan(struct task_struct *p);
e386b672 2140extern struct task_struct *cpu_curr_snapshot(int cpu);
a1dfb631 2141
72375a88
KO
2142#include <linux/spinlock.h>
2143
d9345c65
PX
2144/*
2145 * In order to reduce various lock holder preemption latencies provide an
2146 * interface to see if a vCPU is currently running or not.
2147 *
2148 * This allows us to terminate optimistic spin loops and block, analogous to
2149 * the native optimistic spin heuristic of testing if the lock owner task is
2150 * running or not.
2151 */
2152#ifndef vcpu_is_preempted
42fd8baa
QC
2153static inline bool vcpu_is_preempted(int cpu)
2154{
2155 return false;
2156}
d9345c65
PX
2157#endif
2158
96f874e2
RR
2159extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2160extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 2161
82455257
DH
2162#ifndef TASK_SIZE_OF
2163#define TASK_SIZE_OF(tsk) TASK_SIZE
2164#endif
2165
a5418be9 2166#ifdef CONFIG_SMP
c0bed69d
KW
2167static inline bool owner_on_cpu(struct task_struct *owner)
2168{
2169 /*
2170 * As lock holder preemption issue, we both skip spinning if
2171 * task is not on cpu or its cpu is preempted
2172 */
4cf75fd4 2173 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
c0bed69d
KW
2174}
2175
a5418be9 2176/* Returns effective CPU energy utilization, as seen by the scheduler */
bb447999 2177unsigned long sched_cpu_util(int cpu);
a5418be9
VK
2178#endif /* CONFIG_SMP */
2179
d7822b1e
MD
2180#ifdef CONFIG_RSEQ
2181
2182/*
2183 * Map the event mask on the user-space ABI enum rseq_cs_flags
2184 * for direct mask checks.
2185 */
2186enum rseq_event_mask_bits {
2187 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2188 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2189 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2190};
2191
2192enum rseq_event_mask {
2193 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2194 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2195 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2196};
2197
2198static inline void rseq_set_notify_resume(struct task_struct *t)
2199{
2200 if (t->rseq)
2201 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2202}
2203
784e0300 2204void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 2205
784e0300
WD
2206static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2207 struct pt_regs *regs)
d7822b1e
MD
2208{
2209 if (current->rseq)
784e0300 2210 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2211}
2212
784e0300
WD
2213static inline void rseq_signal_deliver(struct ksignal *ksig,
2214 struct pt_regs *regs)
d7822b1e
MD
2215{
2216 preempt_disable();
2217 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2218 preempt_enable();
784e0300 2219 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2220}
2221
2222/* rseq_preempt() requires preemption to be disabled. */
2223static inline void rseq_preempt(struct task_struct *t)
2224{
2225 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2226 rseq_set_notify_resume(t);
2227}
2228
2229/* rseq_migrate() requires preemption to be disabled. */
2230static inline void rseq_migrate(struct task_struct *t)
2231{
2232 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2233 rseq_set_notify_resume(t);
2234}
2235
2236/*
2237 * If parent process has a registered restartable sequences area, the
463f550f 2238 * child inherits. Unregister rseq for a clone with CLONE_VM set.
d7822b1e
MD
2239 */
2240static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2241{
463f550f 2242 if (clone_flags & CLONE_VM) {
d7822b1e 2243 t->rseq = NULL;
ee3e3ac0 2244 t->rseq_len = 0;
d7822b1e
MD
2245 t->rseq_sig = 0;
2246 t->rseq_event_mask = 0;
2247 } else {
2248 t->rseq = current->rseq;
ee3e3ac0 2249 t->rseq_len = current->rseq_len;
d7822b1e
MD
2250 t->rseq_sig = current->rseq_sig;
2251 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
2252 }
2253}
2254
2255static inline void rseq_execve(struct task_struct *t)
2256{
2257 t->rseq = NULL;
ee3e3ac0 2258 t->rseq_len = 0;
d7822b1e
MD
2259 t->rseq_sig = 0;
2260 t->rseq_event_mask = 0;
2261}
2262
2263#else
2264
2265static inline void rseq_set_notify_resume(struct task_struct *t)
2266{
2267}
784e0300
WD
2268static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2269 struct pt_regs *regs)
d7822b1e
MD
2270{
2271}
784e0300
WD
2272static inline void rseq_signal_deliver(struct ksignal *ksig,
2273 struct pt_regs *regs)
d7822b1e
MD
2274{
2275}
2276static inline void rseq_preempt(struct task_struct *t)
2277{
2278}
2279static inline void rseq_migrate(struct task_struct *t)
2280{
2281}
2282static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2283{
2284}
2285static inline void rseq_execve(struct task_struct *t)
2286{
2287}
2288
2289#endif
2290
2291#ifdef CONFIG_DEBUG_RSEQ
2292
2293void rseq_syscall(struct pt_regs *regs);
2294
2295#else
2296
2297static inline void rseq_syscall(struct pt_regs *regs)
2298{
2299}
2300
2301#endif
2302
6e33cad0
PZ
2303#ifdef CONFIG_SCHED_CORE
2304extern void sched_core_free(struct task_struct *tsk);
85dd3f61 2305extern void sched_core_fork(struct task_struct *p);
7ac592aa
CH
2306extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2307 unsigned long uaddr);
548796e2 2308extern int sched_core_idle_cpu(int cpu);
6e33cad0
PZ
2309#else
2310static inline void sched_core_free(struct task_struct *tsk) { }
85dd3f61 2311static inline void sched_core_fork(struct task_struct *p) { }
548796e2 2312static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
6e33cad0
PZ
2313#endif
2314
d664e399
TG
2315extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2316
1da177e4 2317#endif