sched/fair: Decay task PELT values during wakeup migration
[linux-block.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/mutex.h>
18#include <linux/plist.h>
19#include <linux/hrtimer.h>
0584df9c 20#include <linux/irqflags.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
ec1d2819 24#include <linux/refcount.h>
a3b6714e 25#include <linux/resource.h>
9745512c 26#include <linux/latencytop.h>
5eca1c10 27#include <linux/sched/prio.h>
9eacb5c7 28#include <linux/sched/types.h>
5eca1c10 29#include <linux/signal_types.h>
1446e1df 30#include <linux/syscall_user_dispatch.h>
5eca1c10
IM
31#include <linux/mm_types_task.h>
32#include <linux/task_io_accounting.h>
2b69942f 33#include <linux/posix-timers.h>
d7822b1e 34#include <linux/rseq.h>
0cd39f46 35#include <linux/seqlock.h>
dfd402a4 36#include <linux/kcsan.h>
5fbda3ec 37#include <asm/kmap_size.h>
a3b6714e 38
5eca1c10 39/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 40struct audit_context;
c7af7877 41struct backing_dev_info;
bddd87c7 42struct bio_list;
73c10101 43struct blk_plug;
a10787e6 44struct bpf_local_storage;
c7603cfa 45struct bpf_run_ctx;
3c93a0c0 46struct capture_control;
c7af7877 47struct cfs_rq;
c7af7877
IM
48struct fs_struct;
49struct futex_pi_state;
50struct io_context;
1875dc5b 51struct io_uring_task;
c7af7877 52struct mempolicy;
89076bc3 53struct nameidata;
c7af7877
IM
54struct nsproxy;
55struct perf_event_context;
56struct pid_namespace;
57struct pipe_inode_info;
58struct rcu_node;
59struct reclaim_state;
60struct robust_list_head;
3c93a0c0
QY
61struct root_domain;
62struct rq;
c7af7877
IM
63struct sched_attr;
64struct sched_param;
43ae34cb 65struct seq_file;
c7af7877
IM
66struct sighand_struct;
67struct signal_struct;
68struct task_delay_info;
4cf86d77 69struct task_group;
1da177e4 70
4a8342d2
LT
71/*
72 * Task state bitmask. NOTE! These bits are also
73 * encoded in fs/proc/array.c: get_task_state().
74 *
75 * We have two separate sets of flags: task->state
76 * is about runnability, while task->exit_state are
77 * about the task exiting. Confusing, but this way
78 * modifying one set can't modify the other one by
79 * mistake.
80 */
5eca1c10
IM
81
82/* Used in tsk->state: */
92c4bc9f
PZ
83#define TASK_RUNNING 0x0000
84#define TASK_INTERRUPTIBLE 0x0001
85#define TASK_UNINTERRUPTIBLE 0x0002
86#define __TASK_STOPPED 0x0004
87#define __TASK_TRACED 0x0008
5eca1c10 88/* Used in tsk->exit_state: */
92c4bc9f
PZ
89#define EXIT_DEAD 0x0010
90#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
91#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
92/* Used in tsk->state again: */
8ef9925b
PZ
93#define TASK_PARKED 0x0040
94#define TASK_DEAD 0x0080
95#define TASK_WAKEKILL 0x0100
96#define TASK_WAKING 0x0200
92c4bc9f
PZ
97#define TASK_NOLOAD 0x0400
98#define TASK_NEW 0x0800
cd781d0c
TG
99/* RT specific auxilliary flag to mark RT lock waiters */
100#define TASK_RTLOCK_WAIT 0x1000
101#define TASK_STATE_MAX 0x2000
5eca1c10 102
5eca1c10
IM
103/* Convenience macros for the sake of set_current_state: */
104#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
105#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
2500ad1c 106#define TASK_TRACED __TASK_TRACED
5eca1c10
IM
107
108#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
109
110/* Convenience macros for the sake of wake_up(): */
111#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
112
113/* get_task_state(): */
114#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
115 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
116 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
117 TASK_PARKED)
5eca1c10 118
2f064a59 119#define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
5eca1c10 120
31cae1ea
PZ
121#define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
122#define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
123#define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
5eca1c10 124
b5bf9a90
PZ
125/*
126 * Special states are those that do not use the normal wait-loop pattern. See
127 * the comment with set_special_state().
128 */
129#define is_special_task_state(state) \
1cef1150 130 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 131
85019c16
TG
132#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
133# define debug_normal_state_change(state_value) \
134 do { \
135 WARN_ON_ONCE(is_special_task_state(state_value)); \
136 current->task_state_change = _THIS_IP_; \
8eb23b9f
PZ
137 } while (0)
138
85019c16 139# define debug_special_state_change(state_value) \
b5bf9a90 140 do { \
b5bf9a90 141 WARN_ON_ONCE(!is_special_task_state(state_value)); \
b5bf9a90 142 current->task_state_change = _THIS_IP_; \
b5bf9a90 143 } while (0)
85019c16 144
5f220be2
TG
145# define debug_rtlock_wait_set_state() \
146 do { \
147 current->saved_state_change = current->task_state_change;\
148 current->task_state_change = _THIS_IP_; \
149 } while (0)
150
151# define debug_rtlock_wait_restore_state() \
152 do { \
153 current->task_state_change = current->saved_state_change;\
154 } while (0)
155
8eb23b9f 156#else
85019c16
TG
157# define debug_normal_state_change(cond) do { } while (0)
158# define debug_special_state_change(cond) do { } while (0)
5f220be2
TG
159# define debug_rtlock_wait_set_state() do { } while (0)
160# define debug_rtlock_wait_restore_state() do { } while (0)
85019c16
TG
161#endif
162
498d0c57
AM
163/*
164 * set_current_state() includes a barrier so that the write of current->state
165 * is correctly serialised wrt the caller's subsequent test of whether to
166 * actually sleep:
167 *
a2250238 168 * for (;;) {
498d0c57 169 * set_current_state(TASK_UNINTERRUPTIBLE);
58877d34
PZ
170 * if (CONDITION)
171 * break;
a2250238
PZ
172 *
173 * schedule();
174 * }
175 * __set_current_state(TASK_RUNNING);
176 *
177 * If the caller does not need such serialisation (because, for instance, the
58877d34 178 * CONDITION test and condition change and wakeup are under the same lock) then
a2250238
PZ
179 * use __set_current_state().
180 *
181 * The above is typically ordered against the wakeup, which does:
182 *
58877d34 183 * CONDITION = 1;
b5bf9a90 184 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 185 *
58877d34
PZ
186 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
187 * accessing p->state.
a2250238
PZ
188 *
189 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
190 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
191 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 192 *
b5bf9a90 193 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 194 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
195 * a problem either because that will result in one extra go around the loop
196 * and our @cond test will save the day.
498d0c57 197 *
a2250238 198 * Also see the comments of try_to_wake_up().
498d0c57 199 */
b5bf9a90 200#define __set_current_state(state_value) \
85019c16
TG
201 do { \
202 debug_normal_state_change((state_value)); \
203 WRITE_ONCE(current->__state, (state_value)); \
204 } while (0)
b5bf9a90
PZ
205
206#define set_current_state(state_value) \
85019c16
TG
207 do { \
208 debug_normal_state_change((state_value)); \
209 smp_store_mb(current->__state, (state_value)); \
210 } while (0)
b5bf9a90
PZ
211
212/*
213 * set_special_state() should be used for those states when the blocking task
214 * can not use the regular condition based wait-loop. In that case we must
85019c16
TG
215 * serialize against wakeups such that any possible in-flight TASK_RUNNING
216 * stores will not collide with our state change.
b5bf9a90
PZ
217 */
218#define set_special_state(state_value) \
219 do { \
220 unsigned long flags; /* may shadow */ \
85019c16 221 \
b5bf9a90 222 raw_spin_lock_irqsave(&current->pi_lock, flags); \
85019c16 223 debug_special_state_change((state_value)); \
2f064a59 224 WRITE_ONCE(current->__state, (state_value)); \
b5bf9a90
PZ
225 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
226 } while (0)
227
5f220be2
TG
228/*
229 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
230 *
231 * RT's spin/rwlock substitutions are state preserving. The state of the
232 * task when blocking on the lock is saved in task_struct::saved_state and
233 * restored after the lock has been acquired. These operations are
234 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
235 * lock related wakeups while the task is blocked on the lock are
236 * redirected to operate on task_struct::saved_state to ensure that these
237 * are not dropped. On restore task_struct::saved_state is set to
238 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
239 *
240 * The lock operation looks like this:
241 *
242 * current_save_and_set_rtlock_wait_state();
243 * for (;;) {
244 * if (try_lock())
245 * break;
246 * raw_spin_unlock_irq(&lock->wait_lock);
247 * schedule_rtlock();
248 * raw_spin_lock_irq(&lock->wait_lock);
249 * set_current_state(TASK_RTLOCK_WAIT);
250 * }
251 * current_restore_rtlock_saved_state();
252 */
253#define current_save_and_set_rtlock_wait_state() \
254 do { \
255 lockdep_assert_irqs_disabled(); \
256 raw_spin_lock(&current->pi_lock); \
257 current->saved_state = current->__state; \
258 debug_rtlock_wait_set_state(); \
259 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
260 raw_spin_unlock(&current->pi_lock); \
261 } while (0);
262
263#define current_restore_rtlock_saved_state() \
264 do { \
265 lockdep_assert_irqs_disabled(); \
266 raw_spin_lock(&current->pi_lock); \
267 debug_rtlock_wait_restore_state(); \
268 WRITE_ONCE(current->__state, current->saved_state); \
269 current->saved_state = TASK_RUNNING; \
270 raw_spin_unlock(&current->pi_lock); \
271 } while (0);
8eb23b9f 272
2f064a59 273#define get_current_state() READ_ONCE(current->__state)
d6c23bb3 274
3087c61e
YS
275/*
276 * Define the task command name length as enum, then it can be visible to
277 * BPF programs.
278 */
279enum {
280 TASK_COMM_LEN = 16,
281};
1da177e4 282
1da177e4
LT
283extern void scheduler_tick(void);
284
5eca1c10
IM
285#define MAX_SCHEDULE_TIMEOUT LONG_MAX
286
287extern long schedule_timeout(long timeout);
288extern long schedule_timeout_interruptible(long timeout);
289extern long schedule_timeout_killable(long timeout);
290extern long schedule_timeout_uninterruptible(long timeout);
291extern long schedule_timeout_idle(long timeout);
1da177e4 292asmlinkage void schedule(void);
c5491ea7 293extern void schedule_preempt_disabled(void);
19c95f26 294asmlinkage void preempt_schedule_irq(void);
6991436c
TG
295#ifdef CONFIG_PREEMPT_RT
296 extern void schedule_rtlock(void);
297#endif
1da177e4 298
10ab5643
TH
299extern int __must_check io_schedule_prepare(void);
300extern void io_schedule_finish(int token);
9cff8ade 301extern long io_schedule_timeout(long timeout);
10ab5643 302extern void io_schedule(void);
9cff8ade 303
d37f761d 304/**
0ba42a59 305 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
306 * @utime: time spent in user mode
307 * @stime: time spent in system mode
9d7fb042 308 * @lock: protects the above two fields
d37f761d 309 *
9d7fb042
PZ
310 * Stores previous user/system time values such that we can guarantee
311 * monotonicity.
d37f761d 312 */
9d7fb042
PZ
313struct prev_cputime {
314#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
315 u64 utime;
316 u64 stime;
317 raw_spinlock_t lock;
9d7fb042 318#endif
d37f761d
FW
319};
320
bac5b6b6
FW
321enum vtime_state {
322 /* Task is sleeping or running in a CPU with VTIME inactive: */
323 VTIME_INACTIVE = 0,
14faf6fc
FW
324 /* Task is idle */
325 VTIME_IDLE,
bac5b6b6
FW
326 /* Task runs in kernelspace in a CPU with VTIME active: */
327 VTIME_SYS,
14faf6fc
FW
328 /* Task runs in userspace in a CPU with VTIME active: */
329 VTIME_USER,
e6d5bf3e
FW
330 /* Task runs as guests in a CPU with VTIME active: */
331 VTIME_GUEST,
bac5b6b6
FW
332};
333
334struct vtime {
335 seqcount_t seqcount;
336 unsigned long long starttime;
337 enum vtime_state state;
802f4a82 338 unsigned int cpu;
2a42eb95
WL
339 u64 utime;
340 u64 stime;
341 u64 gtime;
bac5b6b6
FW
342};
343
69842cba
PB
344/*
345 * Utilization clamp constraints.
346 * @UCLAMP_MIN: Minimum utilization
347 * @UCLAMP_MAX: Maximum utilization
348 * @UCLAMP_CNT: Utilization clamp constraints count
349 */
350enum uclamp_id {
351 UCLAMP_MIN = 0,
352 UCLAMP_MAX,
353 UCLAMP_CNT
354};
355
f9a25f77
MP
356#ifdef CONFIG_SMP
357extern struct root_domain def_root_domain;
358extern struct mutex sched_domains_mutex;
359#endif
360
1da177e4 361struct sched_info {
7f5f8e8d 362#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
363 /* Cumulative counters: */
364
365 /* # of times we have run on this CPU: */
366 unsigned long pcount;
367
368 /* Time spent waiting on a runqueue: */
369 unsigned long long run_delay;
370
371 /* Timestamps: */
372
373 /* When did we last run on a CPU? */
374 unsigned long long last_arrival;
375
376 /* When were we last queued to run? */
377 unsigned long long last_queued;
1da177e4 378
f6db8347 379#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 380};
1da177e4 381
6ecdd749
YD
382/*
383 * Integer metrics need fixed point arithmetic, e.g., sched/fair
384 * has a few: load, load_avg, util_avg, freq, and capacity.
385 *
386 * We define a basic fixed point arithmetic range, and then formalize
387 * all these metrics based on that basic range.
388 */
5eca1c10
IM
389# define SCHED_FIXEDPOINT_SHIFT 10
390# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 391
69842cba
PB
392/* Increase resolution of cpu_capacity calculations */
393# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
394# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
395
20b8a59f 396struct load_weight {
5eca1c10
IM
397 unsigned long weight;
398 u32 inv_weight;
20b8a59f
IM
399};
400
7f65ea42
PB
401/**
402 * struct util_est - Estimation utilization of FAIR tasks
403 * @enqueued: instantaneous estimated utilization of a task/cpu
404 * @ewma: the Exponential Weighted Moving Average (EWMA)
405 * utilization of a task
406 *
407 * Support data structure to track an Exponential Weighted Moving Average
408 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
409 * average each time a task completes an activation. Sample's weight is chosen
410 * so that the EWMA will be relatively insensitive to transient changes to the
411 * task's workload.
412 *
413 * The enqueued attribute has a slightly different meaning for tasks and cpus:
414 * - task: the task's util_avg at last task dequeue time
415 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
416 * Thus, the util_est.enqueued of a task represents the contribution on the
417 * estimated utilization of the CPU where that task is currently enqueued.
418 *
419 * Only for tasks we track a moving average of the past instantaneous
420 * estimated utilization. This allows to absorb sporadic drops in utilization
421 * of an otherwise almost periodic task.
68d7a190
DE
422 *
423 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
424 * updates. When a task is dequeued, its util_est should not be updated if its
425 * util_avg has not been updated in the meantime.
426 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
427 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
428 * for a task) it is safe to use MSB.
7f65ea42
PB
429 */
430struct util_est {
431 unsigned int enqueued;
432 unsigned int ewma;
433#define UTIL_EST_WEIGHT_SHIFT 2
68d7a190 434#define UTIL_AVG_UNCHANGED 0x80000000
317d359d 435} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 436
9d89c257 437/*
9f683953 438 * The load/runnable/util_avg accumulates an infinite geometric series
0dacee1b 439 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
7b595334
YD
440 *
441 * [load_avg definition]
442 *
443 * load_avg = runnable% * scale_load_down(load)
444 *
9f683953
VG
445 * [runnable_avg definition]
446 *
447 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
7b595334 448 *
7b595334
YD
449 * [util_avg definition]
450 *
451 * util_avg = running% * SCHED_CAPACITY_SCALE
452 *
9f683953
VG
453 * where runnable% is the time ratio that a sched_entity is runnable and
454 * running% the time ratio that a sched_entity is running.
455 *
456 * For cfs_rq, they are the aggregated values of all runnable and blocked
457 * sched_entities.
7b595334 458 *
c1b7b8d4 459 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
9f683953
VG
460 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
461 * for computing those signals (see update_rq_clock_pelt())
7b595334 462 *
23127296
VG
463 * N.B., the above ratios (runnable% and running%) themselves are in the
464 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
465 * to as large a range as necessary. This is for example reflected by
466 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
467 *
468 * [Overflow issue]
469 *
470 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
471 * with the highest load (=88761), always runnable on a single cfs_rq,
472 * and should not overflow as the number already hits PID_MAX_LIMIT.
473 *
474 * For all other cases (including 32-bit kernels), struct load_weight's
475 * weight will overflow first before we do, because:
476 *
477 * Max(load_avg) <= Max(load.weight)
478 *
479 * Then it is the load_weight's responsibility to consider overflow
480 * issues.
9d89c257 481 */
9d85f21c 482struct sched_avg {
5eca1c10
IM
483 u64 last_update_time;
484 u64 load_sum;
9f683953 485 u64 runnable_sum;
5eca1c10
IM
486 u32 util_sum;
487 u32 period_contrib;
488 unsigned long load_avg;
9f683953 489 unsigned long runnable_avg;
5eca1c10 490 unsigned long util_avg;
7f65ea42 491 struct util_est util_est;
317d359d 492} ____cacheline_aligned;
9d85f21c 493
41acab88 494struct sched_statistics {
7f5f8e8d 495#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
496 u64 wait_start;
497 u64 wait_max;
498 u64 wait_count;
499 u64 wait_sum;
500 u64 iowait_count;
501 u64 iowait_sum;
502
503 u64 sleep_start;
504 u64 sleep_max;
505 s64 sum_sleep_runtime;
506
507 u64 block_start;
508 u64 block_max;
847fc0cd
YS
509 s64 sum_block_runtime;
510
5eca1c10
IM
511 u64 exec_max;
512 u64 slice_max;
513
514 u64 nr_migrations_cold;
515 u64 nr_failed_migrations_affine;
516 u64 nr_failed_migrations_running;
517 u64 nr_failed_migrations_hot;
518 u64 nr_forced_migrations;
519
520 u64 nr_wakeups;
521 u64 nr_wakeups_sync;
522 u64 nr_wakeups_migrate;
523 u64 nr_wakeups_local;
524 u64 nr_wakeups_remote;
525 u64 nr_wakeups_affine;
526 u64 nr_wakeups_affine_attempts;
527 u64 nr_wakeups_passive;
528 u64 nr_wakeups_idle;
4feee7d1
JD
529
530#ifdef CONFIG_SCHED_CORE
531 u64 core_forceidle_sum;
41acab88 532#endif
4feee7d1 533#endif /* CONFIG_SCHEDSTATS */
ceeadb83 534} ____cacheline_aligned;
41acab88
LDM
535
536struct sched_entity {
5eca1c10
IM
537 /* For load-balancing: */
538 struct load_weight load;
539 struct rb_node run_node;
540 struct list_head group_node;
541 unsigned int on_rq;
41acab88 542
5eca1c10
IM
543 u64 exec_start;
544 u64 sum_exec_runtime;
545 u64 vruntime;
546 u64 prev_sum_exec_runtime;
41acab88 547
5eca1c10 548 u64 nr_migrations;
41acab88 549
20b8a59f 550#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
551 int depth;
552 struct sched_entity *parent;
20b8a59f 553 /* rq on which this entity is (to be) queued: */
5eca1c10 554 struct cfs_rq *cfs_rq;
20b8a59f 555 /* rq "owned" by this entity/group: */
5eca1c10 556 struct cfs_rq *my_q;
9f683953
VG
557 /* cached value of my_q->h_nr_running */
558 unsigned long runnable_weight;
20b8a59f 559#endif
8bd75c77 560
141965c7 561#ifdef CONFIG_SMP
5a107804
JO
562 /*
563 * Per entity load average tracking.
564 *
565 * Put into separate cache line so it does not
566 * collide with read-mostly values above.
567 */
317d359d 568 struct sched_avg avg;
9d85f21c 569#endif
20b8a59f 570};
70b97a7f 571
fa717060 572struct sched_rt_entity {
5eca1c10
IM
573 struct list_head run_list;
574 unsigned long timeout;
575 unsigned long watchdog_stamp;
576 unsigned int time_slice;
577 unsigned short on_rq;
578 unsigned short on_list;
579
580 struct sched_rt_entity *back;
052f1dc7 581#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 582 struct sched_rt_entity *parent;
6f505b16 583 /* rq on which this entity is (to be) queued: */
5eca1c10 584 struct rt_rq *rt_rq;
6f505b16 585 /* rq "owned" by this entity/group: */
5eca1c10 586 struct rt_rq *my_q;
6f505b16 587#endif
3859a271 588} __randomize_layout;
fa717060 589
aab03e05 590struct sched_dl_entity {
5eca1c10 591 struct rb_node rb_node;
aab03e05
DF
592
593 /*
594 * Original scheduling parameters. Copied here from sched_attr
4027d080 595 * during sched_setattr(), they will remain the same until
596 * the next sched_setattr().
aab03e05 597 */
5eca1c10
IM
598 u64 dl_runtime; /* Maximum runtime for each instance */
599 u64 dl_deadline; /* Relative deadline of each instance */
600 u64 dl_period; /* Separation of two instances (period) */
54d6d303 601 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 602 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
603
604 /*
605 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 606 * they are continuously updated during task execution. Note that
aab03e05
DF
607 * the remaining runtime could be < 0 in case we are in overrun.
608 */
5eca1c10
IM
609 s64 runtime; /* Remaining runtime for this instance */
610 u64 deadline; /* Absolute deadline for this instance */
611 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
612
613 /*
614 * Some bool flags:
615 *
616 * @dl_throttled tells if we exhausted the runtime. If so, the
617 * task has to wait for a replenishment to be performed at the
618 * next firing of dl_timer.
619 *
5eca1c10 620 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 621 * all its available runtime during the last job.
209a0cbd
LA
622 *
623 * @dl_non_contending tells if the task is inactive while still
624 * contributing to the active utilization. In other words, it
625 * indicates if the inactive timer has been armed and its handler
626 * has not been executed yet. This flag is useful to avoid race
627 * conditions between the inactive timer handler and the wakeup
628 * code.
34be3930
JL
629 *
630 * @dl_overrun tells if the task asked to be informed about runtime
631 * overruns.
aab03e05 632 */
aa5222e9 633 unsigned int dl_throttled : 1;
aa5222e9
DC
634 unsigned int dl_yielded : 1;
635 unsigned int dl_non_contending : 1;
34be3930 636 unsigned int dl_overrun : 1;
aab03e05
DF
637
638 /*
639 * Bandwidth enforcement timer. Each -deadline task has its
640 * own bandwidth to be enforced, thus we need one timer per task.
641 */
5eca1c10 642 struct hrtimer dl_timer;
209a0cbd
LA
643
644 /*
645 * Inactive timer, responsible for decreasing the active utilization
646 * at the "0-lag time". When a -deadline task blocks, it contributes
647 * to GRUB's active utilization until the "0-lag time", hence a
648 * timer is needed to decrease the active utilization at the correct
649 * time.
650 */
651 struct hrtimer inactive_timer;
2279f540
JL
652
653#ifdef CONFIG_RT_MUTEXES
654 /*
655 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
656 * pi_se points to the donor, otherwise points to the dl_se it belongs
657 * to (the original one/itself).
658 */
659 struct sched_dl_entity *pi_se;
660#endif
aab03e05 661};
8bd75c77 662
69842cba
PB
663#ifdef CONFIG_UCLAMP_TASK
664/* Number of utilization clamp buckets (shorter alias) */
665#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
666
667/*
668 * Utilization clamp for a scheduling entity
669 * @value: clamp value "assigned" to a se
670 * @bucket_id: bucket index corresponding to the "assigned" value
e8f14172 671 * @active: the se is currently refcounted in a rq's bucket
a509a7cd 672 * @user_defined: the requested clamp value comes from user-space
69842cba
PB
673 *
674 * The bucket_id is the index of the clamp bucket matching the clamp value
675 * which is pre-computed and stored to avoid expensive integer divisions from
676 * the fast path.
e8f14172
PB
677 *
678 * The active bit is set whenever a task has got an "effective" value assigned,
679 * which can be different from the clamp value "requested" from user-space.
680 * This allows to know a task is refcounted in the rq's bucket corresponding
681 * to the "effective" bucket_id.
a509a7cd
PB
682 *
683 * The user_defined bit is set whenever a task has got a task-specific clamp
684 * value requested from userspace, i.e. the system defaults apply to this task
685 * just as a restriction. This allows to relax default clamps when a less
686 * restrictive task-specific value has been requested, thus allowing to
687 * implement a "nice" semantic. For example, a task running with a 20%
688 * default boost can still drop its own boosting to 0%.
69842cba
PB
689 */
690struct uclamp_se {
691 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
692 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
e8f14172 693 unsigned int active : 1;
a509a7cd 694 unsigned int user_defined : 1;
69842cba
PB
695};
696#endif /* CONFIG_UCLAMP_TASK */
697
1d082fd0
PM
698union rcu_special {
699 struct {
5eca1c10
IM
700 u8 blocked;
701 u8 need_qs;
05f41571 702 u8 exp_hint; /* Hint for performance. */
276c4104 703 u8 need_mb; /* Readers need smp_mb(). */
8203d6d0 704 } b; /* Bits. */
05f41571 705 u32 s; /* Set of bits. */
1d082fd0 706};
86848966 707
8dc85d54
PZ
708enum perf_event_task_context {
709 perf_invalid_context = -1,
710 perf_hw_context = 0,
89a1e187 711 perf_sw_context,
8dc85d54
PZ
712 perf_nr_task_contexts,
713};
714
eb61baf6
IM
715struct wake_q_node {
716 struct wake_q_node *next;
717};
718
5fbda3ec
TG
719struct kmap_ctrl {
720#ifdef CONFIG_KMAP_LOCAL
721 int idx;
722 pte_t pteval[KM_MAX_IDX];
723#endif
724};
725
1da177e4 726struct task_struct {
c65eacbe
AL
727#ifdef CONFIG_THREAD_INFO_IN_TASK
728 /*
729 * For reasons of header soup (see current_thread_info()), this
730 * must be the first element of task_struct.
731 */
5eca1c10 732 struct thread_info thread_info;
c65eacbe 733#endif
2f064a59 734 unsigned int __state;
29e48ce8 735
5f220be2
TG
736#ifdef CONFIG_PREEMPT_RT
737 /* saved state for "spinlock sleepers" */
738 unsigned int saved_state;
739#endif
740
29e48ce8
KC
741 /*
742 * This begins the randomizable portion of task_struct. Only
743 * scheduling-critical items should be added above here.
744 */
745 randomized_struct_fields_start
746
5eca1c10 747 void *stack;
ec1d2819 748 refcount_t usage;
5eca1c10
IM
749 /* Per task flags (PF_*), defined further below: */
750 unsigned int flags;
751 unsigned int ptrace;
1da177e4 752
2dd73a4f 753#ifdef CONFIG_SMP
5eca1c10 754 int on_cpu;
8c4890d1 755 struct __call_single_node wake_entry;
5eca1c10
IM
756 unsigned int wakee_flips;
757 unsigned long wakee_flip_decay_ts;
758 struct task_struct *last_wakee;
ac66f547 759
32e839dd
MG
760 /*
761 * recent_used_cpu is initially set as the last CPU used by a task
762 * that wakes affine another task. Waker/wakee relationships can
763 * push tasks around a CPU where each wakeup moves to the next one.
764 * Tracking a recently used CPU allows a quick search for a recently
765 * used CPU that may be idle.
766 */
767 int recent_used_cpu;
5eca1c10 768 int wake_cpu;
2dd73a4f 769#endif
5eca1c10
IM
770 int on_rq;
771
772 int prio;
773 int static_prio;
774 int normal_prio;
775 unsigned int rt_priority;
50e645a8 776
5eca1c10
IM
777 struct sched_entity se;
778 struct sched_rt_entity rt;
8a311c74 779 struct sched_dl_entity dl;
804bccba 780 const struct sched_class *sched_class;
8a311c74
PZ
781
782#ifdef CONFIG_SCHED_CORE
783 struct rb_node core_node;
784 unsigned long core_cookie;
d2dfa17b 785 unsigned int core_occupation;
8a311c74
PZ
786#endif
787
8323f26c 788#ifdef CONFIG_CGROUP_SCHED
5eca1c10 789 struct task_group *sched_task_group;
8323f26c 790#endif
1da177e4 791
69842cba 792#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
793 /*
794 * Clamp values requested for a scheduling entity.
795 * Must be updated with task_rq_lock() held.
796 */
e8f14172 797 struct uclamp_se uclamp_req[UCLAMP_CNT];
13685c4a
QY
798 /*
799 * Effective clamp values used for a scheduling entity.
800 * Must be updated with task_rq_lock() held.
801 */
69842cba
PB
802 struct uclamp_se uclamp[UCLAMP_CNT];
803#endif
804
ceeadb83
YS
805 struct sched_statistics stats;
806
e107be36 807#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
808 /* List of struct preempt_notifier: */
809 struct hlist_head preempt_notifiers;
e107be36
AK
810#endif
811
6c5c9341 812#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 813 unsigned int btrace_seq;
6c5c9341 814#endif
1da177e4 815
5eca1c10
IM
816 unsigned int policy;
817 int nr_cpus_allowed;
3bd37062 818 const cpumask_t *cpus_ptr;
b90ca8ba 819 cpumask_t *user_cpus_ptr;
3bd37062 820 cpumask_t cpus_mask;
6d337eab 821 void *migration_pending;
74d862b6 822#ifdef CONFIG_SMP
a7c81556 823 unsigned short migration_disabled;
af449901 824#endif
a7c81556 825 unsigned short migration_flags;
1da177e4 826
a57eb940 827#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
828 int rcu_read_lock_nesting;
829 union rcu_special rcu_read_unlock_special;
830 struct list_head rcu_node_entry;
831 struct rcu_node *rcu_blocked_node;
28f6569a 832#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 833
8315f422 834#ifdef CONFIG_TASKS_RCU
5eca1c10 835 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
836 u8 rcu_tasks_holdout;
837 u8 rcu_tasks_idx;
5eca1c10 838 int rcu_tasks_idle_cpu;
ccdd29ff 839 struct list_head rcu_tasks_holdout_list;
8315f422 840#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 841
d5f177d3
PM
842#ifdef CONFIG_TASKS_TRACE_RCU
843 int trc_reader_nesting;
844 int trc_ipi_to_cpu;
276c4104 845 union rcu_special trc_reader_special;
d5f177d3
PM
846 bool trc_reader_checked;
847 struct list_head trc_holdout_list;
848#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
849
5eca1c10 850 struct sched_info sched_info;
1da177e4 851
5eca1c10 852 struct list_head tasks;
806c09a7 853#ifdef CONFIG_SMP
5eca1c10
IM
854 struct plist_node pushable_tasks;
855 struct rb_node pushable_dl_tasks;
806c09a7 856#endif
1da177e4 857
5eca1c10
IM
858 struct mm_struct *mm;
859 struct mm_struct *active_mm;
314ff785
IM
860
861 /* Per-thread vma caching: */
5eca1c10 862 struct vmacache vmacache;
314ff785 863
5eca1c10
IM
864#ifdef SPLIT_RSS_COUNTING
865 struct task_rss_stat rss_stat;
34e55232 866#endif
5eca1c10
IM
867 int exit_state;
868 int exit_code;
869 int exit_signal;
870 /* The signal sent when the parent dies: */
871 int pdeath_signal;
872 /* JOBCTL_*, siglock protected: */
873 unsigned long jobctl;
874
875 /* Used for emulating ABI behavior of previous Linux versions: */
876 unsigned int personality;
877
878 /* Scheduler bits, serialized by scheduler locks: */
879 unsigned sched_reset_on_fork:1;
880 unsigned sched_contributes_to_load:1;
881 unsigned sched_migrated:1;
eb414681
JW
882#ifdef CONFIG_PSI
883 unsigned sched_psi_wake_requeue:1;
884#endif
885
5eca1c10
IM
886 /* Force alignment to the next boundary: */
887 unsigned :0;
888
889 /* Unserialized, strictly 'current' */
890
f97bb527
PZ
891 /*
892 * This field must not be in the scheduler word above due to wakelist
893 * queueing no longer being serialized by p->on_cpu. However:
894 *
895 * p->XXX = X; ttwu()
896 * schedule() if (p->on_rq && ..) // false
897 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
898 * deactivate_task() ttwu_queue_wakelist())
899 * p->on_rq = 0; p->sched_remote_wakeup = Y;
900 *
901 * guarantees all stores of 'current' are visible before
902 * ->sched_remote_wakeup gets used, so it can be in this word.
903 */
904 unsigned sched_remote_wakeup:1;
905
5eca1c10
IM
906 /* Bit to tell LSMs we're in execve(): */
907 unsigned in_execve:1;
908 unsigned in_iowait:1;
909#ifndef TIF_RESTORE_SIGMASK
910 unsigned restore_sigmask:1;
7e781418 911#endif
626ebc41 912#ifdef CONFIG_MEMCG
29ef680a 913 unsigned in_user_fault:1;
127424c8 914#endif
ff303e66 915#ifdef CONFIG_COMPAT_BRK
5eca1c10 916 unsigned brk_randomized:1;
ff303e66 917#endif
77f88796
TH
918#ifdef CONFIG_CGROUPS
919 /* disallow userland-initiated cgroup migration */
920 unsigned no_cgroup_migration:1;
76f969e8
RG
921 /* task is frozen/stopped (used by the cgroup freezer) */
922 unsigned frozen:1;
77f88796 923#endif
d09d8df3 924#ifdef CONFIG_BLK_CGROUP
d09d8df3
JB
925 unsigned use_memdelay:1;
926#endif
1066d1b6
YS
927#ifdef CONFIG_PSI
928 /* Stalled due to lack of memory */
929 unsigned in_memstall:1;
930#endif
8e9b16c4
ST
931#ifdef CONFIG_PAGE_OWNER
932 /* Used by page_owner=on to detect recursion in page tracking. */
933 unsigned in_page_owner:1;
934#endif
b542e383
TG
935#ifdef CONFIG_EVENTFD
936 /* Recursion prevention for eventfd_signal() */
937 unsigned in_eventfd_signal:1;
938#endif
a3d29e82
PZ
939#ifdef CONFIG_IOMMU_SVA
940 unsigned pasid_activated:1;
941#endif
b041b525
TL
942#ifdef CONFIG_CPU_SUP_INTEL
943 unsigned reported_split_lock:1;
944#endif
6f185c29 945
5eca1c10 946 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 947
5eca1c10 948 struct restart_block restart_block;
f56141e3 949
5eca1c10
IM
950 pid_t pid;
951 pid_t tgid;
0a425405 952
050e9baa 953#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
954 /* Canary value for the -fstack-protector GCC feature: */
955 unsigned long stack_canary;
1314562a 956#endif
4d1d61a6 957 /*
5eca1c10 958 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 959 * older sibling, respectively. (p->father can be replaced with
f470021a 960 * p->real_parent->pid)
1da177e4 961 */
5eca1c10
IM
962
963 /* Real parent process: */
964 struct task_struct __rcu *real_parent;
965
966 /* Recipient of SIGCHLD, wait4() reports: */
967 struct task_struct __rcu *parent;
968
1da177e4 969 /*
5eca1c10 970 * Children/sibling form the list of natural children:
1da177e4 971 */
5eca1c10
IM
972 struct list_head children;
973 struct list_head sibling;
974 struct task_struct *group_leader;
1da177e4 975
f470021a 976 /*
5eca1c10
IM
977 * 'ptraced' is the list of tasks this task is using ptrace() on.
978 *
f470021a 979 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 980 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 981 */
5eca1c10
IM
982 struct list_head ptraced;
983 struct list_head ptrace_entry;
f470021a 984
1da177e4 985 /* PID/PID hash table linkage. */
2c470475
EB
986 struct pid *thread_pid;
987 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
988 struct list_head thread_group;
989 struct list_head thread_node;
990
991 struct completion *vfork_done;
1da177e4 992
5eca1c10
IM
993 /* CLONE_CHILD_SETTID: */
994 int __user *set_child_tid;
1da177e4 995
5eca1c10
IM
996 /* CLONE_CHILD_CLEARTID: */
997 int __user *clear_child_tid;
998
e32cf5df
EB
999 /* PF_KTHREAD | PF_IO_WORKER */
1000 void *worker_private;
3bfe6106 1001
5eca1c10
IM
1002 u64 utime;
1003 u64 stime;
40565b5a 1004#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
1005 u64 utimescaled;
1006 u64 stimescaled;
40565b5a 1007#endif
5eca1c10
IM
1008 u64 gtime;
1009 struct prev_cputime prev_cputime;
6a61671b 1010#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 1011 struct vtime vtime;
d99ca3b9 1012#endif
d027d45d
FW
1013
1014#ifdef CONFIG_NO_HZ_FULL
5eca1c10 1015 atomic_t tick_dep_mask;
d027d45d 1016#endif
5eca1c10
IM
1017 /* Context switch counts: */
1018 unsigned long nvcsw;
1019 unsigned long nivcsw;
1020
1021 /* Monotonic time in nsecs: */
1022 u64 start_time;
1023
1024 /* Boot based time in nsecs: */
cf25e24d 1025 u64 start_boottime;
5eca1c10
IM
1026
1027 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1028 unsigned long min_flt;
1029 unsigned long maj_flt;
1da177e4 1030
2b69942f
TG
1031 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1032 struct posix_cputimers posix_cputimers;
1da177e4 1033
1fb497dd
TG
1034#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1035 struct posix_cputimers_work posix_cputimers_work;
1036#endif
1037
5eca1c10
IM
1038 /* Process credentials: */
1039
1040 /* Tracer's credentials at attach: */
1041 const struct cred __rcu *ptracer_cred;
1042
1043 /* Objective and real subjective task credentials (COW): */
1044 const struct cred __rcu *real_cred;
1045
1046 /* Effective (overridable) subjective task credentials (COW): */
1047 const struct cred __rcu *cred;
1048
7743c48e
DH
1049#ifdef CONFIG_KEYS
1050 /* Cached requested key. */
1051 struct key *cached_requested_key;
1052#endif
1053
5eca1c10
IM
1054 /*
1055 * executable name, excluding path.
1056 *
1057 * - normally initialized setup_new_exec()
1058 * - access it with [gs]et_task_comm()
1059 * - lock it with task_lock()
1060 */
1061 char comm[TASK_COMM_LEN];
1062
1063 struct nameidata *nameidata;
1064
3d5b6fcc 1065#ifdef CONFIG_SYSVIPC
5eca1c10
IM
1066 struct sysv_sem sysvsem;
1067 struct sysv_shm sysvshm;
3d5b6fcc 1068#endif
e162b39a 1069#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 1070 unsigned long last_switch_count;
a2e51445 1071 unsigned long last_switch_time;
82a1fcb9 1072#endif
5eca1c10
IM
1073 /* Filesystem information: */
1074 struct fs_struct *fs;
1075
1076 /* Open file information: */
1077 struct files_struct *files;
1078
0f212204
JA
1079#ifdef CONFIG_IO_URING
1080 struct io_uring_task *io_uring;
1081#endif
1082
5eca1c10
IM
1083 /* Namespaces: */
1084 struct nsproxy *nsproxy;
1085
1086 /* Signal handlers: */
1087 struct signal_struct *signal;
913292c9 1088 struct sighand_struct __rcu *sighand;
5eca1c10
IM
1089 sigset_t blocked;
1090 sigset_t real_blocked;
1091 /* Restored if set_restore_sigmask() was used: */
1092 sigset_t saved_sigmask;
1093 struct sigpending pending;
1094 unsigned long sas_ss_sp;
1095 size_t sas_ss_size;
1096 unsigned int sas_ss_flags;
1097
1098 struct callback_head *task_works;
1099
4b7d248b 1100#ifdef CONFIG_AUDIT
bfef93a5 1101#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
1102 struct audit_context *audit_context;
1103#endif
5eca1c10
IM
1104 kuid_t loginuid;
1105 unsigned int sessionid;
bfef93a5 1106#endif
5eca1c10 1107 struct seccomp seccomp;
1446e1df 1108 struct syscall_user_dispatch syscall_dispatch;
5eca1c10
IM
1109
1110 /* Thread group tracking: */
d1e7fd64
EB
1111 u64 parent_exec_id;
1112 u64 self_exec_id;
1da177e4 1113
5eca1c10
IM
1114 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1115 spinlock_t alloc_lock;
1da177e4 1116
b29739f9 1117 /* Protection of the PI data structures: */
5eca1c10 1118 raw_spinlock_t pi_lock;
b29739f9 1119
5eca1c10 1120 struct wake_q_node wake_q;
76751049 1121
23f78d4a 1122#ifdef CONFIG_RT_MUTEXES
5eca1c10 1123 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 1124 struct rb_root_cached pi_waiters;
e96a7705
XP
1125 /* Updated under owner's pi_lock and rq lock */
1126 struct task_struct *pi_top_task;
5eca1c10
IM
1127 /* Deadlock detection and priority inheritance handling: */
1128 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1129#endif
1130
408894ee 1131#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
1132 /* Mutex deadlock detection: */
1133 struct mutex_waiter *blocked_on;
408894ee 1134#endif
5eca1c10 1135
312364f3
DV
1136#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1137 int non_block_count;
1138#endif
1139
de30a2b3 1140#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c 1141 struct irqtrace_events irqtrace;
de8f5e4f 1142 unsigned int hardirq_threaded;
c86e9b98 1143 u64 hardirq_chain_key;
5eca1c10
IM
1144 int softirqs_enabled;
1145 int softirq_context;
40db1739 1146 int irq_config;
de30a2b3 1147#endif
728b478d
TG
1148#ifdef CONFIG_PREEMPT_RT
1149 int softirq_disable_cnt;
1150#endif
5eca1c10 1151
fbb9ce95 1152#ifdef CONFIG_LOCKDEP
5eca1c10
IM
1153# define MAX_LOCK_DEPTH 48UL
1154 u64 curr_chain_key;
1155 int lockdep_depth;
1156 unsigned int lockdep_recursion;
1157 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 1158#endif
5eca1c10 1159
5cf53f3c 1160#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
5eca1c10 1161 unsigned int in_ubsan;
c6d30853 1162#endif
408894ee 1163
5eca1c10
IM
1164 /* Journalling filesystem info: */
1165 void *journal_info;
1da177e4 1166
5eca1c10
IM
1167 /* Stacked block device info: */
1168 struct bio_list *bio_list;
d89d8796 1169
5eca1c10
IM
1170 /* Stack plugging: */
1171 struct blk_plug *plug;
73c10101 1172
5eca1c10
IM
1173 /* VM state: */
1174 struct reclaim_state *reclaim_state;
1175
1176 struct backing_dev_info *backing_dev_info;
1da177e4 1177
5eca1c10 1178 struct io_context *io_context;
1da177e4 1179
5e1f0f09
MG
1180#ifdef CONFIG_COMPACTION
1181 struct capture_control *capture_control;
1182#endif
5eca1c10
IM
1183 /* Ptrace state: */
1184 unsigned long ptrace_message;
ae7795bc 1185 kernel_siginfo_t *last_siginfo;
1da177e4 1186
5eca1c10 1187 struct task_io_accounting ioac;
eb414681
JW
1188#ifdef CONFIG_PSI
1189 /* Pressure stall state */
1190 unsigned int psi_flags;
1191#endif
5eca1c10
IM
1192#ifdef CONFIG_TASK_XACCT
1193 /* Accumulated RSS usage: */
1194 u64 acct_rss_mem1;
1195 /* Accumulated virtual memory usage: */
1196 u64 acct_vm_mem1;
1197 /* stime + utime since last update: */
1198 u64 acct_timexpd;
1da177e4
LT
1199#endif
1200#ifdef CONFIG_CPUSETS
5eca1c10
IM
1201 /* Protected by ->alloc_lock: */
1202 nodemask_t mems_allowed;
3b03706f 1203 /* Sequence number to catch updates: */
b7505861 1204 seqcount_spinlock_t mems_allowed_seq;
5eca1c10
IM
1205 int cpuset_mem_spread_rotor;
1206 int cpuset_slab_spread_rotor;
1da177e4 1207#endif
ddbcc7e8 1208#ifdef CONFIG_CGROUPS
5eca1c10
IM
1209 /* Control Group info protected by css_set_lock: */
1210 struct css_set __rcu *cgroups;
1211 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1212 struct list_head cg_list;
ddbcc7e8 1213#endif
e6d42931 1214#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 1215 u32 closid;
d6aaba61 1216 u32 rmid;
e02737d5 1217#endif
42b2dd0a 1218#ifdef CONFIG_FUTEX
5eca1c10 1219 struct robust_list_head __user *robust_list;
34f192c6
IM
1220#ifdef CONFIG_COMPAT
1221 struct compat_robust_list_head __user *compat_robust_list;
1222#endif
5eca1c10
IM
1223 struct list_head pi_state_list;
1224 struct futex_pi_state *pi_state_cache;
3f186d97 1225 struct mutex futex_exit_mutex;
3d4775df 1226 unsigned int futex_state;
c7aceaba 1227#endif
cdd6c482 1228#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
1229 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1230 struct mutex perf_event_mutex;
1231 struct list_head perf_event_list;
a63eaf34 1232#endif
8f47b187 1233#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1234 unsigned long preempt_disable_ip;
8f47b187 1235#endif
c7aceaba 1236#ifdef CONFIG_NUMA
5eca1c10
IM
1237 /* Protected by alloc_lock: */
1238 struct mempolicy *mempolicy;
45816682 1239 short il_prev;
5eca1c10 1240 short pref_node_fork;
42b2dd0a 1241#endif
cbee9f88 1242#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1243 int numa_scan_seq;
1244 unsigned int numa_scan_period;
1245 unsigned int numa_scan_period_max;
1246 int numa_preferred_nid;
1247 unsigned long numa_migrate_retry;
1248 /* Migration stamp: */
1249 u64 node_stamp;
1250 u64 last_task_numa_placement;
1251 u64 last_sum_exec_runtime;
1252 struct callback_head numa_work;
1253
cb361d8c
JH
1254 /*
1255 * This pointer is only modified for current in syscall and
1256 * pagefault context (and for tasks being destroyed), so it can be read
1257 * from any of the following contexts:
1258 * - RCU read-side critical section
1259 * - current->numa_group from everywhere
1260 * - task's runqueue locked, task not running
1261 */
1262 struct numa_group __rcu *numa_group;
8c8a743c 1263
745d6147 1264 /*
44dba3d5
IM
1265 * numa_faults is an array split into four regions:
1266 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1267 * in this precise order.
1268 *
1269 * faults_memory: Exponential decaying average of faults on a per-node
1270 * basis. Scheduling placement decisions are made based on these
1271 * counts. The values remain static for the duration of a PTE scan.
1272 * faults_cpu: Track the nodes the process was running on when a NUMA
1273 * hinting fault was incurred.
1274 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1275 * during the current scan window. When the scan completes, the counts
1276 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1277 */
5eca1c10
IM
1278 unsigned long *numa_faults;
1279 unsigned long total_numa_faults;
745d6147 1280
04bb2f94
RR
1281 /*
1282 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1283 * scan window were remote/local or failed to migrate. The task scan
1284 * period is adapted based on the locality of the faults with different
1285 * weights depending on whether they were shared or private faults
04bb2f94 1286 */
5eca1c10 1287 unsigned long numa_faults_locality[3];
04bb2f94 1288
5eca1c10 1289 unsigned long numa_pages_migrated;
cbee9f88
PZ
1290#endif /* CONFIG_NUMA_BALANCING */
1291
d7822b1e
MD
1292#ifdef CONFIG_RSEQ
1293 struct rseq __user *rseq;
d7822b1e
MD
1294 u32 rseq_sig;
1295 /*
1296 * RmW on rseq_event_mask must be performed atomically
1297 * with respect to preemption.
1298 */
1299 unsigned long rseq_event_mask;
1300#endif
1301
5eca1c10 1302 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1303
3fbd7ee2
EB
1304 union {
1305 refcount_t rcu_users;
1306 struct rcu_head rcu;
1307 };
b92ce558 1308
5eca1c10
IM
1309 /* Cache last used pipe for splice(): */
1310 struct pipe_inode_info *splice_pipe;
5640f768 1311
5eca1c10 1312 struct page_frag task_frag;
5640f768 1313
47913d4e
IM
1314#ifdef CONFIG_TASK_DELAY_ACCT
1315 struct task_delay_info *delays;
f4f154fd 1316#endif
47913d4e 1317
f4f154fd 1318#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1319 int make_it_fail;
9049f2f6 1320 unsigned int fail_nth;
ca74e92b 1321#endif
9d823e8f 1322 /*
5eca1c10
IM
1323 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1324 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1325 */
5eca1c10
IM
1326 int nr_dirtied;
1327 int nr_dirtied_pause;
1328 /* Start of a write-and-pause period: */
1329 unsigned long dirty_paused_when;
9d823e8f 1330
9745512c 1331#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1332 int latency_record_count;
1333 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1334#endif
6976675d 1335 /*
5eca1c10 1336 * Time slack values; these are used to round up poll() and
6976675d
AV
1337 * select() etc timeout values. These are in nanoseconds.
1338 */
5eca1c10
IM
1339 u64 timer_slack_ns;
1340 u64 default_timer_slack_ns;
f8d570a4 1341
d73b4936 1342#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
5eca1c10 1343 unsigned int kasan_depth;
0b24becc 1344#endif
92c209ac 1345
dfd402a4
ME
1346#ifdef CONFIG_KCSAN
1347 struct kcsan_ctx kcsan_ctx;
92c209ac
ME
1348#ifdef CONFIG_TRACE_IRQFLAGS
1349 struct irqtrace_events kcsan_save_irqtrace;
1350#endif
69562e49
ME
1351#ifdef CONFIG_KCSAN_WEAK_MEMORY
1352 int kcsan_stack_depth;
1353#endif
dfd402a4 1354#endif
5eca1c10 1355
393824f6
PA
1356#if IS_ENABLED(CONFIG_KUNIT)
1357 struct kunit *kunit_test;
1358#endif
1359
fb52607a 1360#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1361 /* Index of current stored address in ret_stack: */
1362 int curr_ret_stack;
39eb456d 1363 int curr_ret_depth;
5eca1c10
IM
1364
1365 /* Stack of return addresses for return function tracing: */
1366 struct ftrace_ret_stack *ret_stack;
1367
1368 /* Timestamp for last schedule: */
1369 unsigned long long ftrace_timestamp;
1370
f201ae23
FW
1371 /*
1372 * Number of functions that haven't been traced
5eca1c10 1373 * because of depth overrun:
f201ae23 1374 */
5eca1c10
IM
1375 atomic_t trace_overrun;
1376
1377 /* Pause tracing: */
1378 atomic_t tracing_graph_pause;
f201ae23 1379#endif
5eca1c10 1380
ea4e2bc4 1381#ifdef CONFIG_TRACING
5eca1c10
IM
1382 /* State flags for use by tracers: */
1383 unsigned long trace;
1384
1385 /* Bitmask and counter of trace recursion: */
1386 unsigned long trace_recursion;
261842b7 1387#endif /* CONFIG_TRACING */
5eca1c10 1388
5c9a8750 1389#ifdef CONFIG_KCOV
eec028c9
AK
1390 /* See kernel/kcov.c for more details. */
1391
5eca1c10 1392 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1393 unsigned int kcov_mode;
5eca1c10
IM
1394
1395 /* Size of the kcov_area: */
1396 unsigned int kcov_size;
1397
1398 /* Buffer for coverage collection: */
1399 void *kcov_area;
1400
1401 /* KCOV descriptor wired with this task or NULL: */
1402 struct kcov *kcov;
eec028c9
AK
1403
1404 /* KCOV common handle for remote coverage collection: */
1405 u64 kcov_handle;
1406
1407 /* KCOV sequence number: */
1408 int kcov_sequence;
5ff3b30a
AK
1409
1410 /* Collect coverage from softirq context: */
1411 unsigned int kcov_softirq;
5c9a8750 1412#endif
5eca1c10 1413
6f185c29 1414#ifdef CONFIG_MEMCG
5eca1c10
IM
1415 struct mem_cgroup *memcg_in_oom;
1416 gfp_t memcg_oom_gfp_mask;
1417 int memcg_oom_order;
b23afb93 1418
5eca1c10
IM
1419 /* Number of pages to reclaim on returning to userland: */
1420 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1421
1422 /* Used by memcontrol for targeted memcg charge: */
1423 struct mem_cgroup *active_memcg;
569b846d 1424#endif
5eca1c10 1425
d09d8df3
JB
1426#ifdef CONFIG_BLK_CGROUP
1427 struct request_queue *throttle_queue;
1428#endif
1429
0326f5a9 1430#ifdef CONFIG_UPROBES
5eca1c10 1431 struct uprobe_task *utask;
0326f5a9 1432#endif
cafe5635 1433#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1434 unsigned int sequential_io;
1435 unsigned int sequential_io_avg;
cafe5635 1436#endif
5fbda3ec 1437 struct kmap_ctrl kmap_ctrl;
8eb23b9f 1438#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1439 unsigned long task_state_change;
5f220be2
TG
1440# ifdef CONFIG_PREEMPT_RT
1441 unsigned long saved_state_change;
1442# endif
8eb23b9f 1443#endif
5eca1c10 1444 int pagefault_disabled;
03049269 1445#ifdef CONFIG_MMU
5eca1c10 1446 struct task_struct *oom_reaper_list;
e4a38402 1447 struct timer_list oom_reaper_timer;
03049269 1448#endif
ba14a194 1449#ifdef CONFIG_VMAP_STACK
5eca1c10 1450 struct vm_struct *stack_vm_area;
ba14a194 1451#endif
68f24b08 1452#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1453 /* A live task holds one reference: */
f0b89d39 1454 refcount_t stack_refcount;
d83a7cb3
JP
1455#endif
1456#ifdef CONFIG_LIVEPATCH
1457 int patch_state;
0302e28d 1458#endif
e4e55b47
TH
1459#ifdef CONFIG_SECURITY
1460 /* Used by LSM modules for access restriction: */
1461 void *security;
68f24b08 1462#endif
a10787e6
SL
1463#ifdef CONFIG_BPF_SYSCALL
1464 /* Used by BPF task local storage */
1465 struct bpf_local_storage __rcu *bpf_storage;
c7603cfa
AN
1466 /* Used for BPF run context */
1467 struct bpf_run_ctx *bpf_ctx;
a10787e6 1468#endif
29e48ce8 1469
afaef01c
AP
1470#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1471 unsigned long lowest_stack;
c8d12627 1472 unsigned long prev_lowest_stack;
afaef01c
AP
1473#endif
1474
5567d11c 1475#ifdef CONFIG_X86_MCE
c0ab7ffc
TL
1476 void __user *mce_vaddr;
1477 __u64 mce_kflags;
5567d11c 1478 u64 mce_addr;
17fae129
TL
1479 __u64 mce_ripv : 1,
1480 mce_whole_page : 1,
1481 __mce_reserved : 62;
5567d11c 1482 struct callback_head mce_kill_me;
81065b35 1483 int mce_count;
5567d11c
PZ
1484#endif
1485
d741bf41
PZ
1486#ifdef CONFIG_KRETPROBES
1487 struct llist_head kretprobe_instances;
1488#endif
54ecbe6f
MH
1489#ifdef CONFIG_RETHOOK
1490 struct llist_head rethooks;
1491#endif
d741bf41 1492
58e106e7
BS
1493#ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1494 /*
1495 * If L1D flush is supported on mm context switch
1496 * then we use this callback head to queue kill work
1497 * to kill tasks that are not running on SMT disabled
1498 * cores
1499 */
1500 struct callback_head l1d_flush_kill;
1501#endif
1502
29e48ce8
KC
1503 /*
1504 * New fields for task_struct should be added above here, so that
1505 * they are included in the randomized portion of task_struct.
1506 */
1507 randomized_struct_fields_end
1508
5eca1c10
IM
1509 /* CPU-specific state of this task: */
1510 struct thread_struct thread;
1511
1512 /*
1513 * WARNING: on x86, 'thread_struct' contains a variable-sized
1514 * structure. It *MUST* be at the end of 'task_struct'.
1515 *
1516 * Do not put anything below here!
1517 */
1da177e4
LT
1518};
1519
e868171a 1520static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1521{
2c470475 1522 return task->thread_pid;
22c935f4
EB
1523}
1524
7af57294
PE
1525/*
1526 * the helpers to get the task's different pids as they are seen
1527 * from various namespaces
1528 *
1529 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1530 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1531 * current.
7af57294
PE
1532 * task_xid_nr_ns() : id seen from the ns specified;
1533 *
7af57294
PE
1534 * see also pid_nr() etc in include/linux/pid.h
1535 */
5eca1c10 1536pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1537
e868171a 1538static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1539{
1540 return tsk->pid;
1541}
1542
5eca1c10 1543static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1544{
1545 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1546}
7af57294
PE
1547
1548static inline pid_t task_pid_vnr(struct task_struct *tsk)
1549{
52ee2dfd 1550 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1551}
1552
1553
e868171a 1554static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1555{
1556 return tsk->tgid;
1557}
1558
5eca1c10
IM
1559/**
1560 * pid_alive - check that a task structure is not stale
1561 * @p: Task structure to be checked.
1562 *
1563 * Test if a process is not yet dead (at most zombie state)
1564 * If pid_alive fails, then pointers within the task structure
1565 * can be stale and must not be dereferenced.
1566 *
1567 * Return: 1 if the process is alive. 0 otherwise.
1568 */
1569static inline int pid_alive(const struct task_struct *p)
1570{
2c470475 1571 return p->thread_pid != NULL;
5eca1c10 1572}
7af57294 1573
5eca1c10 1574static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1575{
52ee2dfd 1576 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1577}
1578
7af57294
PE
1579static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1580{
52ee2dfd 1581 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1582}
1583
1584
5eca1c10 1585static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1586{
52ee2dfd 1587 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1588}
1589
7af57294
PE
1590static inline pid_t task_session_vnr(struct task_struct *tsk)
1591{
52ee2dfd 1592 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1593}
1594
dd1c1f2f
ON
1595static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1596{
6883f81a 1597 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1598}
1599
1600static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1601{
6883f81a 1602 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1603}
1604
1605static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1606{
1607 pid_t pid = 0;
1608
1609 rcu_read_lock();
1610 if (pid_alive(tsk))
1611 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1612 rcu_read_unlock();
1613
1614 return pid;
1615}
1616
1617static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1618{
1619 return task_ppid_nr_ns(tsk, &init_pid_ns);
1620}
1621
5eca1c10 1622/* Obsolete, do not use: */
1b0f7ffd
ON
1623static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1624{
1625 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1626}
7af57294 1627
06eb6184
PZ
1628#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1629#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1630
fa2c3254
VS
1631static inline unsigned int __task_state_index(unsigned int tsk_state,
1632 unsigned int tsk_exit_state)
20435d84 1633{
fa2c3254 1634 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
20435d84 1635
06eb6184
PZ
1636 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1637
06eb6184
PZ
1638 if (tsk_state == TASK_IDLE)
1639 state = TASK_REPORT_IDLE;
1640
25795ef6
VS
1641 /*
1642 * We're lying here, but rather than expose a completely new task state
1643 * to userspace, we can make this appear as if the task has gone through
1644 * a regular rt_mutex_lock() call.
1645 */
1646 if (tsk_state == TASK_RTLOCK_WAIT)
1647 state = TASK_UNINTERRUPTIBLE;
1648
1593baab
PZ
1649 return fls(state);
1650}
1651
fa2c3254
VS
1652static inline unsigned int task_state_index(struct task_struct *tsk)
1653{
1654 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1655}
1656
1d48b080 1657static inline char task_index_to_char(unsigned int state)
1593baab 1658{
8ef9925b 1659 static const char state_char[] = "RSDTtXZPI";
1593baab 1660
06eb6184 1661 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1662
1593baab
PZ
1663 return state_char[state];
1664}
1665
1666static inline char task_state_to_char(struct task_struct *tsk)
1667{
1d48b080 1668 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1669}
1670
f400e198 1671/**
570f5241
SS
1672 * is_global_init - check if a task structure is init. Since init
1673 * is free to have sub-threads we need to check tgid.
3260259f
H
1674 * @tsk: Task structure to be checked.
1675 *
1676 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1677 *
1678 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1679 */
e868171a 1680static inline int is_global_init(struct task_struct *tsk)
b461cc03 1681{
570f5241 1682 return task_tgid_nr(tsk) == 1;
b461cc03 1683}
b460cbc5 1684
9ec52099
CLG
1685extern struct pid *cad_pid;
1686
1da177e4
LT
1687/*
1688 * Per process flags
1689 */
01ccf592 1690#define PF_VCPU 0x00000001 /* I'm a virtual CPU */
5eca1c10
IM
1691#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1692#define PF_EXITING 0x00000004 /* Getting shut down */
92307383 1693#define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
01ccf592 1694#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
5eca1c10
IM
1695#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1696#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1697#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1698#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1699#define PF_DUMPCORE 0x00000200 /* Dumped core */
1700#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1701#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1702#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1703#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
5eca1c10
IM
1704#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1705#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1706#define PF_KSWAPD 0x00020000 /* I am kswapd */
1707#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1708#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
a37b0715
N
1709#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1710 * I am cleaning dirty pages from some other bdi. */
5eca1c10
IM
1711#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1712#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
3bd37062 1713#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1714#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1a08ae36 1715#define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
5eca1c10
IM
1716#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1717#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1718
1719/*
1720 * Only the _current_ task can read/write to tsk->flags, but other
1721 * tasks can access tsk->flags in readonly mode for example
1722 * with tsk_used_math (like during threaded core dumping).
1723 * There is however an exception to this rule during ptrace
1724 * or during fork: the ptracer task is allowed to write to the
1725 * child->flags of its traced child (same goes for fork, the parent
1726 * can write to the child->flags), because we're guaranteed the
1727 * child is not running and in turn not changing child->flags
1728 * at the same time the parent does it.
1729 */
5eca1c10
IM
1730#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1731#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1732#define clear_used_math() clear_stopped_child_used_math(current)
1733#define set_used_math() set_stopped_child_used_math(current)
1734
1da177e4
LT
1735#define conditional_stopped_child_used_math(condition, child) \
1736 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1737
1738#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1739
1da177e4
LT
1740#define copy_to_stopped_child_used_math(child) \
1741 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1742
1da177e4 1743/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1744#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1745#define used_math() tsk_used_math(current)
1da177e4 1746
83d40a61 1747static __always_inline bool is_percpu_thread(void)
62ec05dd
TG
1748{
1749#ifdef CONFIG_SMP
1750 return (current->flags & PF_NO_SETAFFINITY) &&
1751 (current->nr_cpus_allowed == 1);
1752#else
1753 return true;
1754#endif
1755}
1756
1d4457f9 1757/* Per-process atomic flags. */
5eca1c10
IM
1758#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1759#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1760#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1761#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1762#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1763#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1764#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1765#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1766
e0e5070b
ZL
1767#define TASK_PFA_TEST(name, func) \
1768 static inline bool task_##func(struct task_struct *p) \
1769 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1770
e0e5070b
ZL
1771#define TASK_PFA_SET(name, func) \
1772 static inline void task_set_##func(struct task_struct *p) \
1773 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1774
e0e5070b
ZL
1775#define TASK_PFA_CLEAR(name, func) \
1776 static inline void task_clear_##func(struct task_struct *p) \
1777 { clear_bit(PFA_##name, &p->atomic_flags); }
1778
1779TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1780TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1781
2ad654bc
ZL
1782TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1783TASK_PFA_SET(SPREAD_PAGE, spread_page)
1784TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1785
1786TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1787TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1788TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1789
356e4bff
TG
1790TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1791TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1792TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1793
71368af9
WL
1794TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1795TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1796TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1797
356e4bff
TG
1798TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1799TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1800
9137bb27
TG
1801TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1802TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1803TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1804
1805TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1806TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1807
5eca1c10 1808static inline void
717a94b5 1809current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1810{
717a94b5
N
1811 current->flags &= ~flags;
1812 current->flags |= orig_flags & flags;
907aed48
MG
1813}
1814
5eca1c10
IM
1815extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1816extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1817#ifdef CONFIG_SMP
5eca1c10
IM
1818extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1819extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
b90ca8ba
WD
1820extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1821extern void release_user_cpus_ptr(struct task_struct *p);
234b8ab6 1822extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
07ec77a1
WD
1823extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1824extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1da177e4 1825#else
5eca1c10 1826static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1827{
1828}
5eca1c10 1829static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1830{
96f874e2 1831 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1832 return -EINVAL;
1833 return 0;
1834}
b90ca8ba
WD
1835static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1836{
1837 if (src->user_cpus_ptr)
1838 return -EINVAL;
1839 return 0;
1840}
1841static inline void release_user_cpus_ptr(struct task_struct *p)
1842{
1843 WARN_ON(p->user_cpus_ptr);
1844}
234b8ab6
WD
1845
1846static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1847{
1848 return 0;
1849}
1da177e4 1850#endif
e0ad9556 1851
fa93384f 1852extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1853extern void set_user_nice(struct task_struct *p, long nice);
1854extern int task_prio(const struct task_struct *p);
5eca1c10 1855
d0ea0268
DY
1856/**
1857 * task_nice - return the nice value of a given task.
1858 * @p: the task in question.
1859 *
1860 * Return: The nice value [ -20 ... 0 ... 19 ].
1861 */
1862static inline int task_nice(const struct task_struct *p)
1863{
1864 return PRIO_TO_NICE((p)->static_prio);
1865}
5eca1c10 1866
36c8b586
IM
1867extern int can_nice(const struct task_struct *p, const int nice);
1868extern int task_curr(const struct task_struct *p);
1da177e4 1869extern int idle_cpu(int cpu);
943d355d 1870extern int available_idle_cpu(int cpu);
5eca1c10
IM
1871extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1872extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
8b700983
PZ
1873extern void sched_set_fifo(struct task_struct *p);
1874extern void sched_set_fifo_low(struct task_struct *p);
1875extern void sched_set_normal(struct task_struct *p, int nice);
5eca1c10 1876extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1877extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1878extern struct task_struct *idle_task(int cpu);
5eca1c10 1879
c4f30608
PM
1880/**
1881 * is_idle_task - is the specified task an idle task?
fa757281 1882 * @p: the task in question.
e69f6186
YB
1883 *
1884 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1885 */
c94a88f3 1886static __always_inline bool is_idle_task(const struct task_struct *p)
c4f30608 1887{
c1de45ca 1888 return !!(p->flags & PF_IDLE);
c4f30608 1889}
5eca1c10 1890
36c8b586 1891extern struct task_struct *curr_task(int cpu);
a458ae2e 1892extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1893
1894void yield(void);
1895
1da177e4 1896union thread_union {
0500871f
DH
1897#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1898 struct task_struct task;
1899#endif
c65eacbe 1900#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1901 struct thread_info thread_info;
c65eacbe 1902#endif
1da177e4
LT
1903 unsigned long stack[THREAD_SIZE/sizeof(long)];
1904};
1905
0500871f
DH
1906#ifndef CONFIG_THREAD_INFO_IN_TASK
1907extern struct thread_info init_thread_info;
1908#endif
1909
1910extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1911
f3ac6067 1912#ifdef CONFIG_THREAD_INFO_IN_TASK
bcf9033e 1913# define task_thread_info(task) (&(task)->thread_info)
f3ac6067
IM
1914#elif !defined(__HAVE_THREAD_FUNCTIONS)
1915# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1916#endif
1917
198fe21b
PE
1918/*
1919 * find a task by one of its numerical ids
1920 *
198fe21b
PE
1921 * find_task_by_pid_ns():
1922 * finds a task by its pid in the specified namespace
228ebcbe
PE
1923 * find_task_by_vpid():
1924 * finds a task by its virtual pid
198fe21b 1925 *
e49859e7 1926 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1927 */
1928
228ebcbe 1929extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1930extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1931
2ee08260
MR
1932/*
1933 * find a task by its virtual pid and get the task struct
1934 */
1935extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1936
b3c97528
HH
1937extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1938extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1939extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1940
1da177e4 1941#ifdef CONFIG_SMP
5eca1c10 1942extern void kick_process(struct task_struct *tsk);
1da177e4 1943#else
5eca1c10 1944static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1945#endif
1da177e4 1946
82b89778 1947extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1948
82b89778
AH
1949static inline void set_task_comm(struct task_struct *tsk, const char *from)
1950{
1951 __set_task_comm(tsk, from, false);
1952}
5eca1c10 1953
3756f640
AB
1954extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1955#define get_task_comm(buf, tsk) ({ \
1956 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1957 __get_task_comm(buf, sizeof(buf), tsk); \
1958})
1da177e4
LT
1959
1960#ifdef CONFIG_SMP
2a0a24eb
TG
1961static __always_inline void scheduler_ipi(void)
1962{
1963 /*
1964 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1965 * TIF_NEED_RESCHED remotely (for the first time) will also send
1966 * this IPI.
1967 */
1968 preempt_fold_need_resched();
1969}
2f064a59 1970extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1da177e4 1971#else
184748cc 1972static inline void scheduler_ipi(void) { }
2f064a59 1973static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
85ba2d86
RM
1974{
1975 return 1;
1976}
1da177e4
LT
1977#endif
1978
5eca1c10
IM
1979/*
1980 * Set thread flags in other task's structures.
1981 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1982 */
1983static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1984{
a1261f54 1985 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1986}
1987
1988static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1989{
a1261f54 1990 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1991}
1992
93ee37c2
DM
1993static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1994 bool value)
1995{
1996 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1997}
1998
1da177e4
LT
1999static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2000{
a1261f54 2001 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2002}
2003
2004static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2005{
a1261f54 2006 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2007}
2008
2009static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2010{
a1261f54 2011 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2012}
2013
2014static inline void set_tsk_need_resched(struct task_struct *tsk)
2015{
2016 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2017}
2018
2019static inline void clear_tsk_need_resched(struct task_struct *tsk)
2020{
2021 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2022}
2023
8ae121ac
GH
2024static inline int test_tsk_need_resched(struct task_struct *tsk)
2025{
2026 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2027}
2028
1da177e4
LT
2029/*
2030 * cond_resched() and cond_resched_lock(): latency reduction via
2031 * explicit rescheduling in places that are safe. The return
2032 * value indicates whether a reschedule was done in fact.
2033 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 2034 */
b965f1dd
PZI
2035#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2036extern int __cond_resched(void);
2037
99cf983c 2038#if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
b965f1dd
PZI
2039
2040DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2041
2042static __always_inline int _cond_resched(void)
2043{
ef72661e 2044 return static_call_mod(cond_resched)();
b965f1dd
PZI
2045}
2046
99cf983c
MR
2047#elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2048extern int dynamic_cond_resched(void);
2049
2050static __always_inline int _cond_resched(void)
2051{
2052 return dynamic_cond_resched();
2053}
2054
35a773a0 2055#else
b965f1dd
PZI
2056
2057static inline int _cond_resched(void)
2058{
2059 return __cond_resched();
2060}
2061
2062#endif /* CONFIG_PREEMPT_DYNAMIC */
2063
2064#else
2065
35a773a0 2066static inline int _cond_resched(void) { return 0; }
b965f1dd
PZI
2067
2068#endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
6f80bd98 2069
613afbf8 2070#define cond_resched() ({ \
874f670e 2071 __might_resched(__FILE__, __LINE__, 0); \
613afbf8
FW
2072 _cond_resched(); \
2073})
6f80bd98 2074
613afbf8 2075extern int __cond_resched_lock(spinlock_t *lock);
f3d4b4b1
BG
2076extern int __cond_resched_rwlock_read(rwlock_t *lock);
2077extern int __cond_resched_rwlock_write(rwlock_t *lock);
613afbf8 2078
50e081b9
TG
2079#define MIGHT_RESCHED_RCU_SHIFT 8
2080#define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2081
3e9cc688
TG
2082#ifndef CONFIG_PREEMPT_RT
2083/*
2084 * Non RT kernels have an elevated preempt count due to the held lock,
2085 * but are not allowed to be inside a RCU read side critical section
2086 */
2087# define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2088#else
2089/*
2090 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2091 * cond_resched*lock() has to take that into account because it checks for
2092 * preempt_count() and rcu_preempt_depth().
2093 */
2094# define PREEMPT_LOCK_RESCHED_OFFSETS \
2095 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2096#endif
2097
2098#define cond_resched_lock(lock) ({ \
2099 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2100 __cond_resched_lock(lock); \
613afbf8
FW
2101})
2102
3e9cc688
TG
2103#define cond_resched_rwlock_read(lock) ({ \
2104 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2105 __cond_resched_rwlock_read(lock); \
f3d4b4b1
BG
2106})
2107
3e9cc688
TG
2108#define cond_resched_rwlock_write(lock) ({ \
2109 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2110 __cond_resched_rwlock_write(lock); \
f3d4b4b1
BG
2111})
2112
f6f3c437
SH
2113static inline void cond_resched_rcu(void)
2114{
2115#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2116 rcu_read_unlock();
2117 cond_resched();
2118 rcu_read_lock();
2119#endif
2120}
2121
cfe43f47
VS
2122#ifdef CONFIG_PREEMPT_DYNAMIC
2123
2124extern bool preempt_model_none(void);
2125extern bool preempt_model_voluntary(void);
2126extern bool preempt_model_full(void);
2127
2128#else
2129
2130static inline bool preempt_model_none(void)
2131{
2132 return IS_ENABLED(CONFIG_PREEMPT_NONE);
2133}
2134static inline bool preempt_model_voluntary(void)
2135{
2136 return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2137}
2138static inline bool preempt_model_full(void)
2139{
2140 return IS_ENABLED(CONFIG_PREEMPT);
2141}
2142
2143#endif
2144
2145static inline bool preempt_model_rt(void)
2146{
2147 return IS_ENABLED(CONFIG_PREEMPT_RT);
2148}
2149
2150/*
2151 * Does the preemption model allow non-cooperative preemption?
2152 *
2153 * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2154 * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2155 * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2156 * PREEMPT_NONE model.
2157 */
2158static inline bool preempt_model_preemptible(void)
2159{
2160 return preempt_model_full() || preempt_model_rt();
2161}
2162
1da177e4
LT
2163/*
2164 * Does a critical section need to be broken due to another
c1a280b6 2165 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
95c354fe 2166 * but a general need for low latency)
1da177e4 2167 */
95c354fe 2168static inline int spin_needbreak(spinlock_t *lock)
1da177e4 2169{
c1a280b6 2170#ifdef CONFIG_PREEMPTION
95c354fe
NP
2171 return spin_is_contended(lock);
2172#else
1da177e4 2173 return 0;
95c354fe 2174#endif
1da177e4
LT
2175}
2176
a09a689a
BG
2177/*
2178 * Check if a rwlock is contended.
2179 * Returns non-zero if there is another task waiting on the rwlock.
2180 * Returns zero if the lock is not contended or the system / underlying
2181 * rwlock implementation does not support contention detection.
2182 * Technically does not depend on CONFIG_PREEMPTION, but a general need
2183 * for low latency.
2184 */
2185static inline int rwlock_needbreak(rwlock_t *lock)
2186{
2187#ifdef CONFIG_PREEMPTION
2188 return rwlock_is_contended(lock);
2189#else
2190 return 0;
2191#endif
2192}
2193
75f93fed
PZ
2194static __always_inline bool need_resched(void)
2195{
2196 return unlikely(tif_need_resched());
2197}
2198
1da177e4
LT
2199/*
2200 * Wrappers for p->thread_info->cpu access. No-op on UP.
2201 */
2202#ifdef CONFIG_SMP
2203
2204static inline unsigned int task_cpu(const struct task_struct *p)
2205{
c546951d 2206 return READ_ONCE(task_thread_info(p)->cpu);
1da177e4
LT
2207}
2208
c65cc870 2209extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
2210
2211#else
2212
2213static inline unsigned int task_cpu(const struct task_struct *p)
2214{
2215 return 0;
2216}
2217
2218static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2219{
2220}
2221
2222#endif /* CONFIG_SMP */
2223
a1dfb631 2224extern bool sched_task_on_rq(struct task_struct *p);
42a20f86 2225extern unsigned long get_wchan(struct task_struct *p);
a1dfb631 2226
d9345c65
PX
2227/*
2228 * In order to reduce various lock holder preemption latencies provide an
2229 * interface to see if a vCPU is currently running or not.
2230 *
2231 * This allows us to terminate optimistic spin loops and block, analogous to
2232 * the native optimistic spin heuristic of testing if the lock owner task is
2233 * running or not.
2234 */
2235#ifndef vcpu_is_preempted
42fd8baa
QC
2236static inline bool vcpu_is_preempted(int cpu)
2237{
2238 return false;
2239}
d9345c65
PX
2240#endif
2241
96f874e2
RR
2242extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2243extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 2244
82455257
DH
2245#ifndef TASK_SIZE_OF
2246#define TASK_SIZE_OF(tsk) TASK_SIZE
2247#endif
2248
a5418be9 2249#ifdef CONFIG_SMP
c0bed69d
KW
2250static inline bool owner_on_cpu(struct task_struct *owner)
2251{
2252 /*
2253 * As lock holder preemption issue, we both skip spinning if
2254 * task is not on cpu or its cpu is preempted
2255 */
4cf75fd4 2256 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
c0bed69d
KW
2257}
2258
a5418be9
VK
2259/* Returns effective CPU energy utilization, as seen by the scheduler */
2260unsigned long sched_cpu_util(int cpu, unsigned long max);
2261#endif /* CONFIG_SMP */
2262
d7822b1e
MD
2263#ifdef CONFIG_RSEQ
2264
2265/*
2266 * Map the event mask on the user-space ABI enum rseq_cs_flags
2267 * for direct mask checks.
2268 */
2269enum rseq_event_mask_bits {
2270 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2271 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2272 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2273};
2274
2275enum rseq_event_mask {
2276 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2277 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2278 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2279};
2280
2281static inline void rseq_set_notify_resume(struct task_struct *t)
2282{
2283 if (t->rseq)
2284 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2285}
2286
784e0300 2287void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 2288
784e0300
WD
2289static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2290 struct pt_regs *regs)
d7822b1e
MD
2291{
2292 if (current->rseq)
784e0300 2293 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2294}
2295
784e0300
WD
2296static inline void rseq_signal_deliver(struct ksignal *ksig,
2297 struct pt_regs *regs)
d7822b1e
MD
2298{
2299 preempt_disable();
2300 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2301 preempt_enable();
784e0300 2302 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2303}
2304
2305/* rseq_preempt() requires preemption to be disabled. */
2306static inline void rseq_preempt(struct task_struct *t)
2307{
2308 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2309 rseq_set_notify_resume(t);
2310}
2311
2312/* rseq_migrate() requires preemption to be disabled. */
2313static inline void rseq_migrate(struct task_struct *t)
2314{
2315 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2316 rseq_set_notify_resume(t);
2317}
2318
2319/*
2320 * If parent process has a registered restartable sequences area, the
463f550f 2321 * child inherits. Unregister rseq for a clone with CLONE_VM set.
d7822b1e
MD
2322 */
2323static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2324{
463f550f 2325 if (clone_flags & CLONE_VM) {
d7822b1e 2326 t->rseq = NULL;
d7822b1e
MD
2327 t->rseq_sig = 0;
2328 t->rseq_event_mask = 0;
2329 } else {
2330 t->rseq = current->rseq;
d7822b1e
MD
2331 t->rseq_sig = current->rseq_sig;
2332 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
2333 }
2334}
2335
2336static inline void rseq_execve(struct task_struct *t)
2337{
2338 t->rseq = NULL;
d7822b1e
MD
2339 t->rseq_sig = 0;
2340 t->rseq_event_mask = 0;
2341}
2342
2343#else
2344
2345static inline void rseq_set_notify_resume(struct task_struct *t)
2346{
2347}
784e0300
WD
2348static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2349 struct pt_regs *regs)
d7822b1e
MD
2350{
2351}
784e0300
WD
2352static inline void rseq_signal_deliver(struct ksignal *ksig,
2353 struct pt_regs *regs)
d7822b1e
MD
2354{
2355}
2356static inline void rseq_preempt(struct task_struct *t)
2357{
2358}
2359static inline void rseq_migrate(struct task_struct *t)
2360{
2361}
2362static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2363{
2364}
2365static inline void rseq_execve(struct task_struct *t)
2366{
2367}
2368
2369#endif
2370
2371#ifdef CONFIG_DEBUG_RSEQ
2372
2373void rseq_syscall(struct pt_regs *regs);
2374
2375#else
2376
2377static inline void rseq_syscall(struct pt_regs *regs)
2378{
2379}
2380
2381#endif
2382
6e33cad0
PZ
2383#ifdef CONFIG_SCHED_CORE
2384extern void sched_core_free(struct task_struct *tsk);
85dd3f61 2385extern void sched_core_fork(struct task_struct *p);
7ac592aa
CH
2386extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2387 unsigned long uaddr);
6e33cad0
PZ
2388#else
2389static inline void sched_core_free(struct task_struct *tsk) { }
85dd3f61 2390static inline void sched_core_fork(struct task_struct *p) { }
6e33cad0
PZ
2391#endif
2392
d664e399
TG
2393extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2394
1da177e4 2395#endif