Merge tag 'pm-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[linux-2.6-block.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
43#include <linux/seccomp.h>
e56d0903 44#include <linux/rcupdate.h>
05725f7e 45#include <linux/rculist.h>
23f78d4a 46#include <linux/rtmutex.h>
1da177e4 47
a3b6714e
DW
48#include <linux/time.h>
49#include <linux/param.h>
50#include <linux/resource.h>
51#include <linux/timer.h>
52#include <linux/hrtimer.h>
5c9a8750 53#include <linux/kcov.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
7d7efec3 61#include <linux/cgroup-defs.h>
a3b6714e
DW
62
63#include <asm/processor.h>
36d57ac4 64
d50dde5a
DF
65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67/*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
aab03e05
DF
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
110 */
111struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127};
128
c87e2837 129struct futex_pi_state;
286100a6 130struct robust_list_head;
bddd87c7 131struct bio_list;
5ad4e53b 132struct fs_struct;
cdd6c482 133struct perf_event_context;
73c10101 134struct blk_plug;
c4ad8f98 135struct filename;
89076bc3 136struct nameidata;
1da177e4 137
615d6e87
DB
138#define VMACACHE_BITS 2
139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
1da177e4
LT
142/*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152extern unsigned long avenrun[]; /* Load averages */
2d02494f 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
154
155#define FSHIFT 11 /* nr of bits of precision */
156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159#define EXP_5 2014 /* 1/exp(5sec/5min) */
160#define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162#define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167extern unsigned long total_forks;
168extern int nr_threads;
1da177e4
LT
169DECLARE_PER_CPU(unsigned long, process_counts);
170extern int nr_processes(void);
171extern unsigned long nr_running(void);
2ee507c4 172extern bool single_task_running(void);
1da177e4 173extern unsigned long nr_iowait(void);
8c215bd3 174extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 176
0f004f5a 177extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
178
179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
1f41906a
FW
180extern void cpu_load_update_nohz_start(void);
181extern void cpu_load_update_nohz_stop(void);
3289bdb4 182#else
1f41906a
FW
183static inline void cpu_load_update_nohz_start(void) { }
184static inline void cpu_load_update_nohz_stop(void) { }
3289bdb4 185#endif
1da177e4 186
b637a328
PM
187extern void dump_cpu_task(int cpu);
188
43ae34cb
IM
189struct seq_file;
190struct cfs_rq;
4cf86d77 191struct task_group;
43ae34cb
IM
192#ifdef CONFIG_SCHED_DEBUG
193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 195#endif
1da177e4 196
4a8342d2
LT
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
1da177e4
LT
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
4a8342d2 212/* in tsk->exit_state */
ad86622b
ON
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
abd50b39 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 216/* in tsk->state again */
af927232 217#define TASK_DEAD 64
f021a3c2 218#define TASK_WAKEKILL 128
e9c84311 219#define TASK_WAKING 256
f2530dc7 220#define TASK_PARKED 512
80ed87c8
PZ
221#define TASK_NOLOAD 1024
222#define TASK_STATE_MAX 2048
f021a3c2 223
80ed87c8 224#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
73342151 225
e1781538
PZ
226extern char ___assert_task_state[1 - 2*!!(
227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
228
229/* Convenience macros for the sake of set_task_state */
230#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
232#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 233
80ed87c8
PZ
234#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235
92a1f4bc
MW
236/* Convenience macros for the sake of wake_up */
237#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 238#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
239
240/* get_task_state() */
241#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 244
f021a3c2
MW
245#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 247#define task_is_stopped_or_traced(task) \
f021a3c2 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 249#define task_contributes_to_load(task) \
e3c8ca83 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
251 (task->flags & PF_FROZEN) == 0 && \
252 (task->state & TASK_NOLOAD) == 0)
1da177e4 253
8eb23b9f
PZ
254#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255
256#define __set_task_state(tsk, state_value) \
257 do { \
258 (tsk)->task_state_change = _THIS_IP_; \
259 (tsk)->state = (state_value); \
260 } while (0)
261#define set_task_state(tsk, state_value) \
262 do { \
263 (tsk)->task_state_change = _THIS_IP_; \
b92b8b35 264 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
265 } while (0)
266
267/*
268 * set_current_state() includes a barrier so that the write of current->state
269 * is correctly serialised wrt the caller's subsequent test of whether to
270 * actually sleep:
271 *
272 * set_current_state(TASK_UNINTERRUPTIBLE);
273 * if (do_i_need_to_sleep())
274 * schedule();
275 *
276 * If the caller does not need such serialisation then use __set_current_state()
277 */
278#define __set_current_state(state_value) \
279 do { \
280 current->task_state_change = _THIS_IP_; \
281 current->state = (state_value); \
282 } while (0)
283#define set_current_state(state_value) \
284 do { \
285 current->task_state_change = _THIS_IP_; \
b92b8b35 286 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
287 } while (0)
288
289#else
290
1da177e4
LT
291#define __set_task_state(tsk, state_value) \
292 do { (tsk)->state = (state_value); } while (0)
293#define set_task_state(tsk, state_value) \
b92b8b35 294 smp_store_mb((tsk)->state, (state_value))
1da177e4 295
498d0c57
AM
296/*
297 * set_current_state() includes a barrier so that the write of current->state
298 * is correctly serialised wrt the caller's subsequent test of whether to
299 * actually sleep:
300 *
301 * set_current_state(TASK_UNINTERRUPTIBLE);
302 * if (do_i_need_to_sleep())
303 * schedule();
304 *
305 * If the caller does not need such serialisation then use __set_current_state()
306 */
8eb23b9f 307#define __set_current_state(state_value) \
1da177e4 308 do { current->state = (state_value); } while (0)
8eb23b9f 309#define set_current_state(state_value) \
b92b8b35 310 smp_store_mb(current->state, (state_value))
1da177e4 311
8eb23b9f
PZ
312#endif
313
1da177e4
LT
314/* Task command name length */
315#define TASK_COMM_LEN 16
316
1da177e4
LT
317#include <linux/spinlock.h>
318
319/*
320 * This serializes "schedule()" and also protects
321 * the run-queue from deletions/modifications (but
322 * _adding_ to the beginning of the run-queue has
323 * a separate lock).
324 */
325extern rwlock_t tasklist_lock;
326extern spinlock_t mmlist_lock;
327
36c8b586 328struct task_struct;
1da177e4 329
db1466b3
PM
330#ifdef CONFIG_PROVE_RCU
331extern int lockdep_tasklist_lock_is_held(void);
332#endif /* #ifdef CONFIG_PROVE_RCU */
333
1da177e4
LT
334extern void sched_init(void);
335extern void sched_init_smp(void);
2d07b255 336extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 337extern void init_idle(struct task_struct *idle, int cpu);
1df21055 338extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 339
3fa0818b
RR
340extern cpumask_var_t cpu_isolated_map;
341
89f19f04 342extern int runqueue_is_locked(int cpu);
017730c1 343
3451d024 344#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 345extern void nohz_balance_enter_idle(int cpu);
69e1e811 346extern void set_cpu_sd_state_idle(void);
bc7a34b8 347extern int get_nohz_timer_target(void);
46cb4b7c 348#else
c1cc017c 349static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 350static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 351#endif
1da177e4 352
e59e2ae2 353/*
39bc89fd 354 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
355 */
356extern void show_state_filter(unsigned long state_filter);
357
358static inline void show_state(void)
359{
39bc89fd 360 show_state_filter(0);
e59e2ae2
IM
361}
362
1da177e4
LT
363extern void show_regs(struct pt_regs *);
364
365/*
366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367 * task), SP is the stack pointer of the first frame that should be shown in the back
368 * trace (or NULL if the entire call-chain of the task should be shown).
369 */
370extern void show_stack(struct task_struct *task, unsigned long *sp);
371
1da177e4
LT
372extern void cpu_init (void);
373extern void trap_init(void);
374extern void update_process_times(int user);
375extern void scheduler_tick(void);
9cf7243d 376extern int sched_cpu_starting(unsigned int cpu);
40190a78
TG
377extern int sched_cpu_activate(unsigned int cpu);
378extern int sched_cpu_deactivate(unsigned int cpu);
1da177e4 379
f2785ddb
TG
380#ifdef CONFIG_HOTPLUG_CPU
381extern int sched_cpu_dying(unsigned int cpu);
382#else
383# define sched_cpu_dying NULL
384#endif
1da177e4 385
82a1fcb9
IM
386extern void sched_show_task(struct task_struct *p);
387
19cc36c0 388#ifdef CONFIG_LOCKUP_DETECTOR
03e0d461 389extern void touch_softlockup_watchdog_sched(void);
8446f1d3 390extern void touch_softlockup_watchdog(void);
d6ad3e28 391extern void touch_softlockup_watchdog_sync(void);
04c9167f 392extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
393extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
394 void __user *buffer,
395 size_t *lenp, loff_t *ppos);
9c44bc03 396extern unsigned int softlockup_panic;
ac1f5912 397extern unsigned int hardlockup_panic;
004417a6 398void lockup_detector_init(void);
8446f1d3 399#else
03e0d461
TH
400static inline void touch_softlockup_watchdog_sched(void)
401{
402}
8446f1d3
IM
403static inline void touch_softlockup_watchdog(void)
404{
405}
d6ad3e28
JW
406static inline void touch_softlockup_watchdog_sync(void)
407{
408}
04c9167f
JF
409static inline void touch_all_softlockup_watchdogs(void)
410{
411}
004417a6
PZ
412static inline void lockup_detector_init(void)
413{
414}
8446f1d3
IM
415#endif
416
8b414521
MT
417#ifdef CONFIG_DETECT_HUNG_TASK
418void reset_hung_task_detector(void);
419#else
420static inline void reset_hung_task_detector(void)
421{
422}
423#endif
424
1da177e4
LT
425/* Attach to any functions which should be ignored in wchan output. */
426#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
427
428/* Linker adds these: start and end of __sched functions */
429extern char __sched_text_start[], __sched_text_end[];
430
1da177e4
LT
431/* Is this address in the __sched functions? */
432extern int in_sched_functions(unsigned long addr);
433
434#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 435extern signed long schedule_timeout(signed long timeout);
64ed93a2 436extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 437extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 438extern signed long schedule_timeout_uninterruptible(signed long timeout);
69b27baf 439extern signed long schedule_timeout_idle(signed long timeout);
1da177e4 440asmlinkage void schedule(void);
c5491ea7 441extern void schedule_preempt_disabled(void);
1da177e4 442
9cff8ade
N
443extern long io_schedule_timeout(long timeout);
444
445static inline void io_schedule(void)
446{
447 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
448}
449
ab516013 450struct nsproxy;
acce292c 451struct user_namespace;
1da177e4 452
efc1a3b1
DH
453#ifdef CONFIG_MMU
454extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
455extern unsigned long
456arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
457 unsigned long, unsigned long);
458extern unsigned long
459arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
460 unsigned long len, unsigned long pgoff,
461 unsigned long flags);
efc1a3b1
DH
462#else
463static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
464#endif
1da177e4 465
d049f74f
KC
466#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
467#define SUID_DUMP_USER 1 /* Dump as user of process */
468#define SUID_DUMP_ROOT 2 /* Dump as root */
469
6c5d5238 470/* mm flags */
f8af4da3 471
7288e118 472/* for SUID_DUMP_* above */
3cb4a0bb 473#define MMF_DUMPABLE_BITS 2
f8af4da3 474#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 475
942be387
ON
476extern void set_dumpable(struct mm_struct *mm, int value);
477/*
478 * This returns the actual value of the suid_dumpable flag. For things
479 * that are using this for checking for privilege transitions, it must
480 * test against SUID_DUMP_USER rather than treating it as a boolean
481 * value.
482 */
483static inline int __get_dumpable(unsigned long mm_flags)
484{
485 return mm_flags & MMF_DUMPABLE_MASK;
486}
487
488static inline int get_dumpable(struct mm_struct *mm)
489{
490 return __get_dumpable(mm->flags);
491}
492
3cb4a0bb
KH
493/* coredump filter bits */
494#define MMF_DUMP_ANON_PRIVATE 2
495#define MMF_DUMP_ANON_SHARED 3
496#define MMF_DUMP_MAPPED_PRIVATE 4
497#define MMF_DUMP_MAPPED_SHARED 5
82df3973 498#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
499#define MMF_DUMP_HUGETLB_PRIVATE 7
500#define MMF_DUMP_HUGETLB_SHARED 8
5037835c
RZ
501#define MMF_DUMP_DAX_PRIVATE 9
502#define MMF_DUMP_DAX_SHARED 10
f8af4da3 503
3cb4a0bb 504#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
5037835c 505#define MMF_DUMP_FILTER_BITS 9
3cb4a0bb
KH
506#define MMF_DUMP_FILTER_MASK \
507 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
508#define MMF_DUMP_FILTER_DEFAULT \
e575f111 509 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
510 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
511
512#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
513# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
514#else
515# define MMF_DUMP_MASK_DEFAULT_ELF 0
516#endif
f8af4da3
HD
517 /* leave room for more dump flags */
518#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 519#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 520#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 521
9f68f672
ON
522#define MMF_HAS_UPROBES 19 /* has uprobes */
523#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
f8ac4ec9 524
f8af4da3 525#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 526
1da177e4
LT
527struct sighand_struct {
528 atomic_t count;
529 struct k_sigaction action[_NSIG];
530 spinlock_t siglock;
b8fceee1 531 wait_queue_head_t signalfd_wqh;
1da177e4
LT
532};
533
0e464814 534struct pacct_struct {
f6ec29a4
KK
535 int ac_flag;
536 long ac_exitcode;
0e464814 537 unsigned long ac_mem;
77787bfb
KK
538 cputime_t ac_utime, ac_stime;
539 unsigned long ac_minflt, ac_majflt;
0e464814
KK
540};
541
42c4ab41
SG
542struct cpu_itimer {
543 cputime_t expires;
544 cputime_t incr;
8356b5f9
SG
545 u32 error;
546 u32 incr_error;
42c4ab41
SG
547};
548
d37f761d 549/**
9d7fb042 550 * struct prev_cputime - snaphsot of system and user cputime
d37f761d
FW
551 * @utime: time spent in user mode
552 * @stime: time spent in system mode
9d7fb042 553 * @lock: protects the above two fields
d37f761d 554 *
9d7fb042
PZ
555 * Stores previous user/system time values such that we can guarantee
556 * monotonicity.
d37f761d 557 */
9d7fb042
PZ
558struct prev_cputime {
559#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d
FW
560 cputime_t utime;
561 cputime_t stime;
9d7fb042
PZ
562 raw_spinlock_t lock;
563#endif
d37f761d
FW
564};
565
9d7fb042
PZ
566static inline void prev_cputime_init(struct prev_cputime *prev)
567{
568#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
569 prev->utime = prev->stime = 0;
570 raw_spin_lock_init(&prev->lock);
571#endif
572}
573
f06febc9
FM
574/**
575 * struct task_cputime - collected CPU time counts
576 * @utime: time spent in user mode, in &cputime_t units
577 * @stime: time spent in kernel mode, in &cputime_t units
578 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 579 *
9d7fb042
PZ
580 * This structure groups together three kinds of CPU time that are tracked for
581 * threads and thread groups. Most things considering CPU time want to group
582 * these counts together and treat all three of them in parallel.
f06febc9
FM
583 */
584struct task_cputime {
585 cputime_t utime;
586 cputime_t stime;
587 unsigned long long sum_exec_runtime;
588};
9d7fb042 589
f06febc9 590/* Alternate field names when used to cache expirations. */
f06febc9 591#define virt_exp utime
9d7fb042 592#define prof_exp stime
f06febc9
FM
593#define sched_exp sum_exec_runtime
594
4cd4c1b4
PZ
595#define INIT_CPUTIME \
596 (struct task_cputime) { \
64861634
MS
597 .utime = 0, \
598 .stime = 0, \
4cd4c1b4
PZ
599 .sum_exec_runtime = 0, \
600 }
601
971e8a98
JL
602/*
603 * This is the atomic variant of task_cputime, which can be used for
604 * storing and updating task_cputime statistics without locking.
605 */
606struct task_cputime_atomic {
607 atomic64_t utime;
608 atomic64_t stime;
609 atomic64_t sum_exec_runtime;
610};
611
612#define INIT_CPUTIME_ATOMIC \
613 (struct task_cputime_atomic) { \
614 .utime = ATOMIC64_INIT(0), \
615 .stime = ATOMIC64_INIT(0), \
616 .sum_exec_runtime = ATOMIC64_INIT(0), \
617 }
618
609ca066 619#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
a233f112 620
c99e6efe 621/*
87dcbc06
PZ
622 * Disable preemption until the scheduler is running -- use an unconditional
623 * value so that it also works on !PREEMPT_COUNT kernels.
d86ee480 624 *
87dcbc06 625 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
c99e6efe 626 */
87dcbc06 627#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
a233f112 628
c99e6efe 629/*
609ca066
PZ
630 * Initial preempt_count value; reflects the preempt_count schedule invariant
631 * which states that during context switches:
d86ee480 632 *
609ca066
PZ
633 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
634 *
635 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
636 * Note: See finish_task_switch().
c99e6efe 637 */
609ca066 638#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
c99e6efe 639
f06febc9 640/**
4cd4c1b4 641 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 642 * @cputime_atomic: atomic thread group interval timers.
d5c373eb
JL
643 * @running: true when there are timers running and
644 * @cputime_atomic receives updates.
c8d75aa4
JL
645 * @checking_timer: true when a thread in the group is in the
646 * process of checking for thread group timers.
f06febc9
FM
647 *
648 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 649 * used for thread group CPU timer calculations.
f06febc9 650 */
4cd4c1b4 651struct thread_group_cputimer {
71107445 652 struct task_cputime_atomic cputime_atomic;
d5c373eb 653 bool running;
c8d75aa4 654 bool checking_timer;
f06febc9 655};
f06febc9 656
4714d1d3 657#include <linux/rwsem.h>
5091faa4
MG
658struct autogroup;
659
1da177e4 660/*
e815f0a8 661 * NOTE! "signal_struct" does not have its own
1da177e4
LT
662 * locking, because a shared signal_struct always
663 * implies a shared sighand_struct, so locking
664 * sighand_struct is always a proper superset of
665 * the locking of signal_struct.
666 */
667struct signal_struct {
ea6d290c 668 atomic_t sigcnt;
1da177e4 669 atomic_t live;
b3ac022c 670 int nr_threads;
0c740d0a 671 struct list_head thread_head;
1da177e4
LT
672
673 wait_queue_head_t wait_chldexit; /* for wait4() */
674
675 /* current thread group signal load-balancing target: */
36c8b586 676 struct task_struct *curr_target;
1da177e4
LT
677
678 /* shared signal handling: */
679 struct sigpending shared_pending;
680
681 /* thread group exit support */
682 int group_exit_code;
683 /* overloaded:
684 * - notify group_exit_task when ->count is equal to notify_count
685 * - everyone except group_exit_task is stopped during signal delivery
686 * of fatal signals, group_exit_task processes the signal.
687 */
1da177e4 688 int notify_count;
07dd20e0 689 struct task_struct *group_exit_task;
1da177e4
LT
690
691 /* thread group stop support, overloads group_exit_code too */
692 int group_stop_count;
693 unsigned int flags; /* see SIGNAL_* flags below */
694
ebec18a6
LP
695 /*
696 * PR_SET_CHILD_SUBREAPER marks a process, like a service
697 * manager, to re-parent orphan (double-forking) child processes
698 * to this process instead of 'init'. The service manager is
699 * able to receive SIGCHLD signals and is able to investigate
700 * the process until it calls wait(). All children of this
701 * process will inherit a flag if they should look for a
702 * child_subreaper process at exit.
703 */
704 unsigned int is_child_subreaper:1;
705 unsigned int has_child_subreaper:1;
706
1da177e4 707 /* POSIX.1b Interval Timers */
5ed67f05
PE
708 int posix_timer_id;
709 struct list_head posix_timers;
1da177e4
LT
710
711 /* ITIMER_REAL timer for the process */
2ff678b8 712 struct hrtimer real_timer;
fea9d175 713 struct pid *leader_pid;
2ff678b8 714 ktime_t it_real_incr;
1da177e4 715
42c4ab41
SG
716 /*
717 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
718 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
719 * values are defined to 0 and 1 respectively
720 */
721 struct cpu_itimer it[2];
1da177e4 722
f06febc9 723 /*
4cd4c1b4
PZ
724 * Thread group totals for process CPU timers.
725 * See thread_group_cputimer(), et al, for details.
f06febc9 726 */
4cd4c1b4 727 struct thread_group_cputimer cputimer;
f06febc9
FM
728
729 /* Earliest-expiration cache. */
730 struct task_cputime cputime_expires;
731
d027d45d 732#ifdef CONFIG_NO_HZ_FULL
f009a7a7 733 atomic_t tick_dep_mask;
d027d45d
FW
734#endif
735
f06febc9
FM
736 struct list_head cpu_timers[3];
737
ab521dc0 738 struct pid *tty_old_pgrp;
1ec320af 739
1da177e4
LT
740 /* boolean value for session group leader */
741 int leader;
742
743 struct tty_struct *tty; /* NULL if no tty */
744
5091faa4
MG
745#ifdef CONFIG_SCHED_AUTOGROUP
746 struct autogroup *autogroup;
747#endif
1da177e4
LT
748 /*
749 * Cumulative resource counters for dead threads in the group,
750 * and for reaped dead child processes forked by this group.
751 * Live threads maintain their own counters and add to these
752 * in __exit_signal, except for the group leader.
753 */
e78c3496 754 seqlock_t stats_lock;
32bd671d 755 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
756 cputime_t gtime;
757 cputime_t cgtime;
9d7fb042 758 struct prev_cputime prev_cputime;
1da177e4
LT
759 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
760 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 761 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 762 unsigned long maxrss, cmaxrss;
940389b8 763 struct task_io_accounting ioac;
1da177e4 764
32bd671d
PZ
765 /*
766 * Cumulative ns of schedule CPU time fo dead threads in the
767 * group, not including a zombie group leader, (This only differs
768 * from jiffies_to_ns(utime + stime) if sched_clock uses something
769 * other than jiffies.)
770 */
771 unsigned long long sum_sched_runtime;
772
1da177e4
LT
773 /*
774 * We don't bother to synchronize most readers of this at all,
775 * because there is no reader checking a limit that actually needs
776 * to get both rlim_cur and rlim_max atomically, and either one
777 * alone is a single word that can safely be read normally.
778 * getrlimit/setrlimit use task_lock(current->group_leader) to
779 * protect this instead of the siglock, because they really
780 * have no need to disable irqs.
781 */
782 struct rlimit rlim[RLIM_NLIMITS];
783
0e464814
KK
784#ifdef CONFIG_BSD_PROCESS_ACCT
785 struct pacct_struct pacct; /* per-process accounting information */
786#endif
ad4ecbcb 787#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
788 struct taskstats *stats;
789#endif
522ed776
MT
790#ifdef CONFIG_AUDIT
791 unsigned audit_tty;
792 struct tty_audit_buf *tty_audit_buf;
793#endif
28b83c51 794
e1e12d2f 795 oom_flags_t oom_flags;
a9c58b90
DR
796 short oom_score_adj; /* OOM kill score adjustment */
797 short oom_score_adj_min; /* OOM kill score adjustment min value.
798 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
799
800 struct mutex cred_guard_mutex; /* guard against foreign influences on
801 * credential calculations
802 * (notably. ptrace) */
1da177e4
LT
803};
804
805/*
806 * Bits in flags field of signal_struct.
807 */
808#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
809#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
810#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 811#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
812/*
813 * Pending notifications to parent.
814 */
815#define SIGNAL_CLD_STOPPED 0x00000010
816#define SIGNAL_CLD_CONTINUED 0x00000020
817#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 818
fae5fa44
ON
819#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
820
ed5d2cac
ON
821/* If true, all threads except ->group_exit_task have pending SIGKILL */
822static inline int signal_group_exit(const struct signal_struct *sig)
823{
824 return (sig->flags & SIGNAL_GROUP_EXIT) ||
825 (sig->group_exit_task != NULL);
826}
827
1da177e4
LT
828/*
829 * Some day this will be a full-fledged user tracking system..
830 */
831struct user_struct {
832 atomic_t __count; /* reference count */
833 atomic_t processes; /* How many processes does this user have? */
1da177e4 834 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 835#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
836 atomic_t inotify_watches; /* How many inotify watches does this user have? */
837 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
838#endif
4afeff85
EP
839#ifdef CONFIG_FANOTIFY
840 atomic_t fanotify_listeners;
841#endif
7ef9964e 842#ifdef CONFIG_EPOLL
52bd19f7 843 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 844#endif
970a8645 845#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
846 /* protected by mq_lock */
847 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 848#endif
1da177e4 849 unsigned long locked_shm; /* How many pages of mlocked shm ? */
712f4aad 850 unsigned long unix_inflight; /* How many files in flight in unix sockets */
759c0114 851 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
1da177e4
LT
852
853#ifdef CONFIG_KEYS
854 struct key *uid_keyring; /* UID specific keyring */
855 struct key *session_keyring; /* UID's default session keyring */
856#endif
857
858 /* Hash table maintenance information */
735de223 859 struct hlist_node uidhash_node;
7b44ab97 860 kuid_t uid;
24e377a8 861
aaac3ba9 862#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
789f90fc
PZ
863 atomic_long_t locked_vm;
864#endif
1da177e4
LT
865};
866
eb41d946 867extern int uids_sysfs_init(void);
5cb350ba 868
7b44ab97 869extern struct user_struct *find_user(kuid_t);
1da177e4
LT
870
871extern struct user_struct root_user;
872#define INIT_USER (&root_user)
873
b6dff3ec 874
1da177e4
LT
875struct backing_dev_info;
876struct reclaim_state;
877
f6db8347 878#ifdef CONFIG_SCHED_INFO
1da177e4
LT
879struct sched_info {
880 /* cumulative counters */
2d72376b 881 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 882 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
883
884 /* timestamps */
172ba844
BS
885 unsigned long long last_arrival,/* when we last ran on a cpu */
886 last_queued; /* when we were last queued to run */
1da177e4 887};
f6db8347 888#endif /* CONFIG_SCHED_INFO */
1da177e4 889
ca74e92b
SN
890#ifdef CONFIG_TASK_DELAY_ACCT
891struct task_delay_info {
892 spinlock_t lock;
893 unsigned int flags; /* Private per-task flags */
894
895 /* For each stat XXX, add following, aligned appropriately
896 *
897 * struct timespec XXX_start, XXX_end;
898 * u64 XXX_delay;
899 * u32 XXX_count;
900 *
901 * Atomicity of updates to XXX_delay, XXX_count protected by
902 * single lock above (split into XXX_lock if contention is an issue).
903 */
0ff92245
SN
904
905 /*
906 * XXX_count is incremented on every XXX operation, the delay
907 * associated with the operation is added to XXX_delay.
908 * XXX_delay contains the accumulated delay time in nanoseconds.
909 */
9667a23d 910 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
911 u64 blkio_delay; /* wait for sync block io completion */
912 u64 swapin_delay; /* wait for swapin block io completion */
913 u32 blkio_count; /* total count of the number of sync block */
914 /* io operations performed */
915 u32 swapin_count; /* total count of the number of swapin block */
916 /* io operations performed */
873b4771 917
9667a23d 918 u64 freepages_start;
873b4771
KK
919 u64 freepages_delay; /* wait for memory reclaim */
920 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 921};
52f17b6c
CS
922#endif /* CONFIG_TASK_DELAY_ACCT */
923
924static inline int sched_info_on(void)
925{
926#ifdef CONFIG_SCHEDSTATS
927 return 1;
928#elif defined(CONFIG_TASK_DELAY_ACCT)
929 extern int delayacct_on;
930 return delayacct_on;
931#else
932 return 0;
ca74e92b 933#endif
52f17b6c 934}
ca74e92b 935
cb251765
MG
936#ifdef CONFIG_SCHEDSTATS
937void force_schedstat_enabled(void);
938#endif
939
d15bcfdb
IM
940enum cpu_idle_type {
941 CPU_IDLE,
942 CPU_NOT_IDLE,
943 CPU_NEWLY_IDLE,
944 CPU_MAX_IDLE_TYPES
1da177e4
LT
945};
946
6ecdd749
YD
947/*
948 * Integer metrics need fixed point arithmetic, e.g., sched/fair
949 * has a few: load, load_avg, util_avg, freq, and capacity.
950 *
951 * We define a basic fixed point arithmetic range, and then formalize
952 * all these metrics based on that basic range.
953 */
954# define SCHED_FIXEDPOINT_SHIFT 10
955# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
956
1399fa78 957/*
ca8ce3d0 958 * Increase resolution of cpu_capacity calculations
1399fa78 959 */
6ecdd749 960#define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
ca8ce3d0 961#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 962
76751049
PZ
963/*
964 * Wake-queues are lists of tasks with a pending wakeup, whose
965 * callers have already marked the task as woken internally,
966 * and can thus carry on. A common use case is being able to
967 * do the wakeups once the corresponding user lock as been
968 * released.
969 *
970 * We hold reference to each task in the list across the wakeup,
971 * thus guaranteeing that the memory is still valid by the time
972 * the actual wakeups are performed in wake_up_q().
973 *
974 * One per task suffices, because there's never a need for a task to be
975 * in two wake queues simultaneously; it is forbidden to abandon a task
976 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
977 * already in a wake queue, the wakeup will happen soon and the second
978 * waker can just skip it.
979 *
980 * The WAKE_Q macro declares and initializes the list head.
981 * wake_up_q() does NOT reinitialize the list; it's expected to be
982 * called near the end of a function, where the fact that the queue is
983 * not used again will be easy to see by inspection.
984 *
985 * Note that this can cause spurious wakeups. schedule() callers
986 * must ensure the call is done inside a loop, confirming that the
987 * wakeup condition has in fact occurred.
988 */
989struct wake_q_node {
990 struct wake_q_node *next;
991};
992
993struct wake_q_head {
994 struct wake_q_node *first;
995 struct wake_q_node **lastp;
996};
997
998#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
999
1000#define WAKE_Q(name) \
1001 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1002
1003extern void wake_q_add(struct wake_q_head *head,
1004 struct task_struct *task);
1005extern void wake_up_q(struct wake_q_head *head);
1006
1399fa78
NR
1007/*
1008 * sched-domains (multiprocessor balancing) declarations:
1009 */
2dd73a4f 1010#ifdef CONFIG_SMP
b5d978e0
PZ
1011#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
1012#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
1013#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
1014#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 1015#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 1016#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 1017#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 1018#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
1019#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1020#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 1021#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 1022#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 1023#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 1024#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 1025
143e1e28 1026#ifdef CONFIG_SCHED_SMT
b6220ad6 1027static inline int cpu_smt_flags(void)
143e1e28 1028{
5d4dfddd 1029 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
1030}
1031#endif
1032
1033#ifdef CONFIG_SCHED_MC
b6220ad6 1034static inline int cpu_core_flags(void)
143e1e28
VG
1035{
1036 return SD_SHARE_PKG_RESOURCES;
1037}
1038#endif
1039
1040#ifdef CONFIG_NUMA
b6220ad6 1041static inline int cpu_numa_flags(void)
143e1e28
VG
1042{
1043 return SD_NUMA;
1044}
1045#endif
532cb4c4 1046
1d3504fc
HS
1047struct sched_domain_attr {
1048 int relax_domain_level;
1049};
1050
1051#define SD_ATTR_INIT (struct sched_domain_attr) { \
1052 .relax_domain_level = -1, \
1053}
1054
60495e77
PZ
1055extern int sched_domain_level_max;
1056
5e6521ea
LZ
1057struct sched_group;
1058
1da177e4
LT
1059struct sched_domain {
1060 /* These fields must be setup */
1061 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1062 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1063 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1064 unsigned long min_interval; /* Minimum balance interval ms */
1065 unsigned long max_interval; /* Maximum balance interval ms */
1066 unsigned int busy_factor; /* less balancing by factor if busy */
1067 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1068 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1069 unsigned int busy_idx;
1070 unsigned int idle_idx;
1071 unsigned int newidle_idx;
1072 unsigned int wake_idx;
147cbb4b 1073 unsigned int forkexec_idx;
a52bfd73 1074 unsigned int smt_gain;
25f55d9d
VG
1075
1076 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1077 int flags; /* See SD_* */
60495e77 1078 int level;
1da177e4
LT
1079
1080 /* Runtime fields. */
1081 unsigned long last_balance; /* init to jiffies. units in jiffies */
1082 unsigned int balance_interval; /* initialise to 1. units in ms. */
1083 unsigned int nr_balance_failed; /* initialise to 0 */
1084
f48627e6 1085 /* idle_balance() stats */
9bd721c5 1086 u64 max_newidle_lb_cost;
f48627e6 1087 unsigned long next_decay_max_lb_cost;
2398f2c6 1088
1da177e4
LT
1089#ifdef CONFIG_SCHEDSTATS
1090 /* load_balance() stats */
480b9434
KC
1091 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1092 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1093 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1094 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1095 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1096 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1097 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1098 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1099
1100 /* Active load balancing */
480b9434
KC
1101 unsigned int alb_count;
1102 unsigned int alb_failed;
1103 unsigned int alb_pushed;
1da177e4 1104
68767a0a 1105 /* SD_BALANCE_EXEC stats */
480b9434
KC
1106 unsigned int sbe_count;
1107 unsigned int sbe_balanced;
1108 unsigned int sbe_pushed;
1da177e4 1109
68767a0a 1110 /* SD_BALANCE_FORK stats */
480b9434
KC
1111 unsigned int sbf_count;
1112 unsigned int sbf_balanced;
1113 unsigned int sbf_pushed;
68767a0a 1114
1da177e4 1115 /* try_to_wake_up() stats */
480b9434
KC
1116 unsigned int ttwu_wake_remote;
1117 unsigned int ttwu_move_affine;
1118 unsigned int ttwu_move_balance;
1da177e4 1119#endif
a5d8c348
IM
1120#ifdef CONFIG_SCHED_DEBUG
1121 char *name;
1122#endif
dce840a0
PZ
1123 union {
1124 void *private; /* used during construction */
1125 struct rcu_head rcu; /* used during destruction */
1126 };
6c99e9ad 1127
669c55e9 1128 unsigned int span_weight;
4200efd9
IM
1129 /*
1130 * Span of all CPUs in this domain.
1131 *
1132 * NOTE: this field is variable length. (Allocated dynamically
1133 * by attaching extra space to the end of the structure,
1134 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1135 */
1136 unsigned long span[0];
1da177e4
LT
1137};
1138
758b2cdc
RR
1139static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1140{
6c99e9ad 1141 return to_cpumask(sd->span);
758b2cdc
RR
1142}
1143
acc3f5d7 1144extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1145 struct sched_domain_attr *dattr_new);
029190c5 1146
acc3f5d7
RR
1147/* Allocate an array of sched domains, for partition_sched_domains(). */
1148cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1149void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1150
39be3501
PZ
1151bool cpus_share_cache(int this_cpu, int that_cpu);
1152
143e1e28 1153typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1154typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1155
1156#define SDTL_OVERLAP 0x01
1157
1158struct sd_data {
1159 struct sched_domain **__percpu sd;
1160 struct sched_group **__percpu sg;
63b2ca30 1161 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1162};
1163
1164struct sched_domain_topology_level {
1165 sched_domain_mask_f mask;
1166 sched_domain_flags_f sd_flags;
1167 int flags;
1168 int numa_level;
1169 struct sd_data data;
1170#ifdef CONFIG_SCHED_DEBUG
1171 char *name;
1172#endif
1173};
1174
143e1e28 1175extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1176extern void wake_up_if_idle(int cpu);
143e1e28
VG
1177
1178#ifdef CONFIG_SCHED_DEBUG
1179# define SD_INIT_NAME(type) .name = #type
1180#else
1181# define SD_INIT_NAME(type)
1182#endif
1183
1b427c15 1184#else /* CONFIG_SMP */
1da177e4 1185
1b427c15 1186struct sched_domain_attr;
d02c7a8c 1187
1b427c15 1188static inline void
acc3f5d7 1189partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1190 struct sched_domain_attr *dattr_new)
1191{
d02c7a8c 1192}
39be3501
PZ
1193
1194static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1195{
1196 return true;
1197}
1198
1b427c15 1199#endif /* !CONFIG_SMP */
1da177e4 1200
47fe38fc 1201
1da177e4 1202struct io_context; /* See blkdev.h */
1da177e4 1203
1da177e4 1204
383f2835 1205#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1206extern void prefetch_stack(struct task_struct *t);
383f2835
CK
1207#else
1208static inline void prefetch_stack(struct task_struct *t) { }
1209#endif
1da177e4
LT
1210
1211struct audit_context; /* See audit.c */
1212struct mempolicy;
b92ce558 1213struct pipe_inode_info;
4865ecf1 1214struct uts_namespace;
1da177e4 1215
20b8a59f 1216struct load_weight {
9dbdb155
PZ
1217 unsigned long weight;
1218 u32 inv_weight;
20b8a59f
IM
1219};
1220
9d89c257 1221/*
7b595334
YD
1222 * The load_avg/util_avg accumulates an infinite geometric series
1223 * (see __update_load_avg() in kernel/sched/fair.c).
1224 *
1225 * [load_avg definition]
1226 *
1227 * load_avg = runnable% * scale_load_down(load)
1228 *
1229 * where runnable% is the time ratio that a sched_entity is runnable.
1230 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 1231 * blocked sched_entities.
7b595334
YD
1232 *
1233 * load_avg may also take frequency scaling into account:
1234 *
1235 * load_avg = runnable% * scale_load_down(load) * freq%
1236 *
1237 * where freq% is the CPU frequency normalized to the highest frequency.
1238 *
1239 * [util_avg definition]
1240 *
1241 * util_avg = running% * SCHED_CAPACITY_SCALE
1242 *
1243 * where running% is the time ratio that a sched_entity is running on
1244 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1245 * and blocked sched_entities.
1246 *
1247 * util_avg may also factor frequency scaling and CPU capacity scaling:
1248 *
1249 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1250 *
1251 * where freq% is the same as above, and capacity% is the CPU capacity
1252 * normalized to the greatest capacity (due to uarch differences, etc).
1253 *
1254 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1255 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1256 * we therefore scale them to as large a range as necessary. This is for
1257 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1258 *
1259 * [Overflow issue]
1260 *
1261 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1262 * with the highest load (=88761), always runnable on a single cfs_rq,
1263 * and should not overflow as the number already hits PID_MAX_LIMIT.
1264 *
1265 * For all other cases (including 32-bit kernels), struct load_weight's
1266 * weight will overflow first before we do, because:
1267 *
1268 * Max(load_avg) <= Max(load.weight)
1269 *
1270 * Then it is the load_weight's responsibility to consider overflow
1271 * issues.
9d89c257 1272 */
9d85f21c 1273struct sched_avg {
9d89c257
YD
1274 u64 last_update_time, load_sum;
1275 u32 util_sum, period_contrib;
1276 unsigned long load_avg, util_avg;
9d85f21c
PT
1277};
1278
94c18227 1279#ifdef CONFIG_SCHEDSTATS
41acab88 1280struct sched_statistics {
20b8a59f 1281 u64 wait_start;
94c18227 1282 u64 wait_max;
6d082592
AV
1283 u64 wait_count;
1284 u64 wait_sum;
8f0dfc34
AV
1285 u64 iowait_count;
1286 u64 iowait_sum;
94c18227 1287
20b8a59f 1288 u64 sleep_start;
20b8a59f 1289 u64 sleep_max;
94c18227
IM
1290 s64 sum_sleep_runtime;
1291
1292 u64 block_start;
20b8a59f
IM
1293 u64 block_max;
1294 u64 exec_max;
eba1ed4b 1295 u64 slice_max;
cc367732 1296
cc367732
IM
1297 u64 nr_migrations_cold;
1298 u64 nr_failed_migrations_affine;
1299 u64 nr_failed_migrations_running;
1300 u64 nr_failed_migrations_hot;
1301 u64 nr_forced_migrations;
cc367732
IM
1302
1303 u64 nr_wakeups;
1304 u64 nr_wakeups_sync;
1305 u64 nr_wakeups_migrate;
1306 u64 nr_wakeups_local;
1307 u64 nr_wakeups_remote;
1308 u64 nr_wakeups_affine;
1309 u64 nr_wakeups_affine_attempts;
1310 u64 nr_wakeups_passive;
1311 u64 nr_wakeups_idle;
41acab88
LDM
1312};
1313#endif
1314
1315struct sched_entity {
1316 struct load_weight load; /* for load-balancing */
1317 struct rb_node run_node;
1318 struct list_head group_node;
1319 unsigned int on_rq;
1320
1321 u64 exec_start;
1322 u64 sum_exec_runtime;
1323 u64 vruntime;
1324 u64 prev_sum_exec_runtime;
1325
41acab88
LDM
1326 u64 nr_migrations;
1327
41acab88
LDM
1328#ifdef CONFIG_SCHEDSTATS
1329 struct sched_statistics statistics;
94c18227
IM
1330#endif
1331
20b8a59f 1332#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1333 int depth;
20b8a59f
IM
1334 struct sched_entity *parent;
1335 /* rq on which this entity is (to be) queued: */
1336 struct cfs_rq *cfs_rq;
1337 /* rq "owned" by this entity/group: */
1338 struct cfs_rq *my_q;
1339#endif
8bd75c77 1340
141965c7 1341#ifdef CONFIG_SMP
5a107804
JO
1342 /*
1343 * Per entity load average tracking.
1344 *
1345 * Put into separate cache line so it does not
1346 * collide with read-mostly values above.
1347 */
1348 struct sched_avg avg ____cacheline_aligned_in_smp;
9d85f21c 1349#endif
20b8a59f 1350};
70b97a7f 1351
fa717060
PZ
1352struct sched_rt_entity {
1353 struct list_head run_list;
78f2c7db 1354 unsigned long timeout;
57d2aa00 1355 unsigned long watchdog_stamp;
bee367ed 1356 unsigned int time_slice;
ff77e468
PZ
1357 unsigned short on_rq;
1358 unsigned short on_list;
6f505b16 1359
58d6c2d7 1360 struct sched_rt_entity *back;
052f1dc7 1361#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1362 struct sched_rt_entity *parent;
1363 /* rq on which this entity is (to be) queued: */
1364 struct rt_rq *rt_rq;
1365 /* rq "owned" by this entity/group: */
1366 struct rt_rq *my_q;
1367#endif
fa717060
PZ
1368};
1369
aab03e05
DF
1370struct sched_dl_entity {
1371 struct rb_node rb_node;
1372
1373 /*
1374 * Original scheduling parameters. Copied here from sched_attr
4027d080 1375 * during sched_setattr(), they will remain the same until
1376 * the next sched_setattr().
aab03e05
DF
1377 */
1378 u64 dl_runtime; /* maximum runtime for each instance */
1379 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1380 u64 dl_period; /* separation of two instances (period) */
332ac17e 1381 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1382
1383 /*
1384 * Actual scheduling parameters. Initialized with the values above,
1385 * they are continously updated during task execution. Note that
1386 * the remaining runtime could be < 0 in case we are in overrun.
1387 */
1388 s64 runtime; /* remaining runtime for this instance */
1389 u64 deadline; /* absolute deadline for this instance */
1390 unsigned int flags; /* specifying the scheduler behaviour */
1391
1392 /*
1393 * Some bool flags:
1394 *
1395 * @dl_throttled tells if we exhausted the runtime. If so, the
1396 * task has to wait for a replenishment to be performed at the
1397 * next firing of dl_timer.
1398 *
2d3d891d
DF
1399 * @dl_boosted tells if we are boosted due to DI. If so we are
1400 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1401 * exit the critical section);
1402 *
1403 * @dl_yielded tells if task gave up the cpu before consuming
1404 * all its available runtime during the last job.
aab03e05 1405 */
72f9f3fd 1406 int dl_throttled, dl_boosted, dl_yielded;
aab03e05
DF
1407
1408 /*
1409 * Bandwidth enforcement timer. Each -deadline task has its
1410 * own bandwidth to be enforced, thus we need one timer per task.
1411 */
1412 struct hrtimer dl_timer;
1413};
8bd75c77 1414
1d082fd0
PM
1415union rcu_special {
1416 struct {
8203d6d0
PM
1417 u8 blocked;
1418 u8 need_qs;
1419 u8 exp_need_qs;
1420 u8 pad; /* Otherwise the compiler can store garbage here. */
1421 } b; /* Bits. */
1422 u32 s; /* Set of bits. */
1d082fd0 1423};
86848966
PM
1424struct rcu_node;
1425
8dc85d54
PZ
1426enum perf_event_task_context {
1427 perf_invalid_context = -1,
1428 perf_hw_context = 0,
89a1e187 1429 perf_sw_context,
8dc85d54
PZ
1430 perf_nr_task_contexts,
1431};
1432
72b252ae
MG
1433/* Track pages that require TLB flushes */
1434struct tlbflush_unmap_batch {
1435 /*
1436 * Each bit set is a CPU that potentially has a TLB entry for one of
1437 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1438 */
1439 struct cpumask cpumask;
1440
1441 /* True if any bit in cpumask is set */
1442 bool flush_required;
d950c947
MG
1443
1444 /*
1445 * If true then the PTE was dirty when unmapped. The entry must be
1446 * flushed before IO is initiated or a stale TLB entry potentially
1447 * allows an update without redirtying the page.
1448 */
1449 bool writable;
72b252ae
MG
1450};
1451
1da177e4
LT
1452struct task_struct {
1453 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1454 void *stack;
1da177e4 1455 atomic_t usage;
97dc32cd
WC
1456 unsigned int flags; /* per process flags, defined below */
1457 unsigned int ptrace;
1da177e4 1458
2dd73a4f 1459#ifdef CONFIG_SMP
fa14ff4a 1460 struct llist_node wake_entry;
3ca7a440 1461 int on_cpu;
63b0e9ed 1462 unsigned int wakee_flips;
62470419 1463 unsigned long wakee_flip_decay_ts;
63b0e9ed 1464 struct task_struct *last_wakee;
ac66f547
PZ
1465
1466 int wake_cpu;
2dd73a4f 1467#endif
fd2f4419 1468 int on_rq;
50e645a8 1469
b29739f9 1470 int prio, static_prio, normal_prio;
c7aceaba 1471 unsigned int rt_priority;
5522d5d5 1472 const struct sched_class *sched_class;
20b8a59f 1473 struct sched_entity se;
fa717060 1474 struct sched_rt_entity rt;
8323f26c
PZ
1475#ifdef CONFIG_CGROUP_SCHED
1476 struct task_group *sched_task_group;
1477#endif
aab03e05 1478 struct sched_dl_entity dl;
1da177e4 1479
e107be36
AK
1480#ifdef CONFIG_PREEMPT_NOTIFIERS
1481 /* list of struct preempt_notifier: */
1482 struct hlist_head preempt_notifiers;
1483#endif
1484
6c5c9341 1485#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1486 unsigned int btrace_seq;
6c5c9341 1487#endif
1da177e4 1488
97dc32cd 1489 unsigned int policy;
29baa747 1490 int nr_cpus_allowed;
1da177e4 1491 cpumask_t cpus_allowed;
1da177e4 1492
a57eb940 1493#ifdef CONFIG_PREEMPT_RCU
e260be67 1494 int rcu_read_lock_nesting;
1d082fd0 1495 union rcu_special rcu_read_unlock_special;
f41d911f 1496 struct list_head rcu_node_entry;
a57eb940 1497 struct rcu_node *rcu_blocked_node;
28f6569a 1498#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1499#ifdef CONFIG_TASKS_RCU
1500 unsigned long rcu_tasks_nvcsw;
1501 bool rcu_tasks_holdout;
1502 struct list_head rcu_tasks_holdout_list;
176f8f7a 1503 int rcu_tasks_idle_cpu;
8315f422 1504#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1505
f6db8347 1506#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1507 struct sched_info sched_info;
1508#endif
1509
1510 struct list_head tasks;
806c09a7 1511#ifdef CONFIG_SMP
917b627d 1512 struct plist_node pushable_tasks;
1baca4ce 1513 struct rb_node pushable_dl_tasks;
806c09a7 1514#endif
1da177e4
LT
1515
1516 struct mm_struct *mm, *active_mm;
615d6e87
DB
1517 /* per-thread vma caching */
1518 u32 vmacache_seqnum;
1519 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1520#if defined(SPLIT_RSS_COUNTING)
1521 struct task_rss_stat rss_stat;
1522#endif
1da177e4 1523/* task state */
97dc32cd 1524 int exit_state;
1da177e4
LT
1525 int exit_code, exit_signal;
1526 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1527 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1528
1529 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1530 unsigned int personality;
9b89f6ba 1531
be958bdc 1532 /* scheduler bits, serialized by scheduler locks */
ca94c442 1533 unsigned sched_reset_on_fork:1;
a8e4f2ea 1534 unsigned sched_contributes_to_load:1;
ff303e66 1535 unsigned sched_migrated:1;
be958bdc
PZ
1536 unsigned :0; /* force alignment to the next boundary */
1537
1538 /* unserialized, strictly 'current' */
1539 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1540 unsigned in_iowait:1;
626ebc41
TH
1541#ifdef CONFIG_MEMCG
1542 unsigned memcg_may_oom:1;
127424c8 1543#ifndef CONFIG_SLOB
6f185c29
VD
1544 unsigned memcg_kmem_skip_account:1;
1545#endif
127424c8 1546#endif
ff303e66
PZ
1547#ifdef CONFIG_COMPAT_BRK
1548 unsigned brk_randomized:1;
1549#endif
6f185c29 1550
1d4457f9
KC
1551 unsigned long atomic_flags; /* Flags needing atomic access. */
1552
f56141e3
AL
1553 struct restart_block restart_block;
1554
1da177e4
LT
1555 pid_t pid;
1556 pid_t tgid;
0a425405 1557
1314562a 1558#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1559 /* Canary value for the -fstack-protector gcc feature */
1560 unsigned long stack_canary;
1314562a 1561#endif
4d1d61a6 1562 /*
1da177e4 1563 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1564 * older sibling, respectively. (p->father can be replaced with
f470021a 1565 * p->real_parent->pid)
1da177e4 1566 */
abd63bc3
KC
1567 struct task_struct __rcu *real_parent; /* real parent process */
1568 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1569 /*
f470021a 1570 * children/sibling forms the list of my natural children
1da177e4
LT
1571 */
1572 struct list_head children; /* list of my children */
1573 struct list_head sibling; /* linkage in my parent's children list */
1574 struct task_struct *group_leader; /* threadgroup leader */
1575
f470021a
RM
1576 /*
1577 * ptraced is the list of tasks this task is using ptrace on.
1578 * This includes both natural children and PTRACE_ATTACH targets.
1579 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1580 */
1581 struct list_head ptraced;
1582 struct list_head ptrace_entry;
1583
1da177e4 1584 /* PID/PID hash table linkage. */
92476d7f 1585 struct pid_link pids[PIDTYPE_MAX];
47e65328 1586 struct list_head thread_group;
0c740d0a 1587 struct list_head thread_node;
1da177e4
LT
1588
1589 struct completion *vfork_done; /* for vfork() */
1590 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1591 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1592
c66f08be 1593 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1594 cputime_t gtime;
9d7fb042 1595 struct prev_cputime prev_cputime;
6a61671b 1596#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
b7ce2277 1597 seqcount_t vtime_seqcount;
6a61671b
FW
1598 unsigned long long vtime_snap;
1599 enum {
7098c1ea
FW
1600 /* Task is sleeping or running in a CPU with VTIME inactive */
1601 VTIME_INACTIVE = 0,
1602 /* Task runs in userspace in a CPU with VTIME active */
6a61671b 1603 VTIME_USER,
7098c1ea 1604 /* Task runs in kernelspace in a CPU with VTIME active */
6a61671b
FW
1605 VTIME_SYS,
1606 } vtime_snap_whence;
d99ca3b9 1607#endif
d027d45d
FW
1608
1609#ifdef CONFIG_NO_HZ_FULL
f009a7a7 1610 atomic_t tick_dep_mask;
d027d45d 1611#endif
1da177e4 1612 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1613 u64 start_time; /* monotonic time in nsec */
57e0be04 1614 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1615/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1616 unsigned long min_flt, maj_flt;
1617
f06febc9 1618 struct task_cputime cputime_expires;
1da177e4
LT
1619 struct list_head cpu_timers[3];
1620
1621/* process credentials */
1b0ba1c9 1622 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1623 * credentials (COW) */
1b0ba1c9 1624 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1625 * credentials (COW) */
36772092
PBG
1626 char comm[TASK_COMM_LEN]; /* executable name excluding path
1627 - access with [gs]et_task_comm (which lock
1628 it with task_lock())
221af7f8 1629 - initialized normally by setup_new_exec */
1da177e4 1630/* file system info */
756daf26 1631 struct nameidata *nameidata;
3d5b6fcc 1632#ifdef CONFIG_SYSVIPC
1da177e4
LT
1633/* ipc stuff */
1634 struct sysv_sem sysvsem;
ab602f79 1635 struct sysv_shm sysvshm;
3d5b6fcc 1636#endif
e162b39a 1637#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1638/* hung task detection */
82a1fcb9
IM
1639 unsigned long last_switch_count;
1640#endif
1da177e4
LT
1641/* filesystem information */
1642 struct fs_struct *fs;
1643/* open file information */
1644 struct files_struct *files;
1651e14e 1645/* namespaces */
ab516013 1646 struct nsproxy *nsproxy;
1da177e4
LT
1647/* signal handlers */
1648 struct signal_struct *signal;
1649 struct sighand_struct *sighand;
1650
1651 sigset_t blocked, real_blocked;
f3de272b 1652 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1653 struct sigpending pending;
1654
1655 unsigned long sas_ss_sp;
1656 size_t sas_ss_size;
2a742138 1657 unsigned sas_ss_flags;
2e01fabe 1658
67d12145 1659 struct callback_head *task_works;
e73f8959 1660
1da177e4 1661 struct audit_context *audit_context;
bfef93a5 1662#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1663 kuid_t loginuid;
4746ec5b 1664 unsigned int sessionid;
bfef93a5 1665#endif
932ecebb 1666 struct seccomp seccomp;
1da177e4
LT
1667
1668/* Thread group tracking */
1669 u32 parent_exec_id;
1670 u32 self_exec_id;
58568d2a
MX
1671/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1672 * mempolicy */
1da177e4 1673 spinlock_t alloc_lock;
1da177e4 1674
b29739f9 1675 /* Protection of the PI data structures: */
1d615482 1676 raw_spinlock_t pi_lock;
b29739f9 1677
76751049
PZ
1678 struct wake_q_node wake_q;
1679
23f78d4a
IM
1680#ifdef CONFIG_RT_MUTEXES
1681 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1682 struct rb_root pi_waiters;
1683 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1684 /* Deadlock detection and priority inheritance handling */
1685 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1686#endif
1687
408894ee
IM
1688#ifdef CONFIG_DEBUG_MUTEXES
1689 /* mutex deadlock detection */
1690 struct mutex_waiter *blocked_on;
1691#endif
de30a2b3
IM
1692#ifdef CONFIG_TRACE_IRQFLAGS
1693 unsigned int irq_events;
de30a2b3 1694 unsigned long hardirq_enable_ip;
de30a2b3 1695 unsigned long hardirq_disable_ip;
fa1452e8 1696 unsigned int hardirq_enable_event;
de30a2b3 1697 unsigned int hardirq_disable_event;
fa1452e8
HS
1698 int hardirqs_enabled;
1699 int hardirq_context;
de30a2b3 1700 unsigned long softirq_disable_ip;
de30a2b3 1701 unsigned long softirq_enable_ip;
fa1452e8 1702 unsigned int softirq_disable_event;
de30a2b3 1703 unsigned int softirq_enable_event;
fa1452e8 1704 int softirqs_enabled;
de30a2b3
IM
1705 int softirq_context;
1706#endif
fbb9ce95 1707#ifdef CONFIG_LOCKDEP
bdb9441e 1708# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1709 u64 curr_chain_key;
1710 int lockdep_depth;
fbb9ce95 1711 unsigned int lockdep_recursion;
c7aceaba 1712 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1713 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1714#endif
c6d30853
AR
1715#ifdef CONFIG_UBSAN
1716 unsigned int in_ubsan;
1717#endif
408894ee 1718
1da177e4
LT
1719/* journalling filesystem info */
1720 void *journal_info;
1721
d89d8796 1722/* stacked block device info */
bddd87c7 1723 struct bio_list *bio_list;
d89d8796 1724
73c10101
JA
1725#ifdef CONFIG_BLOCK
1726/* stack plugging */
1727 struct blk_plug *plug;
1728#endif
1729
1da177e4
LT
1730/* VM state */
1731 struct reclaim_state *reclaim_state;
1732
1da177e4
LT
1733 struct backing_dev_info *backing_dev_info;
1734
1735 struct io_context *io_context;
1736
1737 unsigned long ptrace_message;
1738 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1739 struct task_io_accounting ioac;
8f0ab514 1740#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1741 u64 acct_rss_mem1; /* accumulated rss usage */
1742 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1743 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1744#endif
1745#ifdef CONFIG_CPUSETS
58568d2a 1746 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1747 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1748 int cpuset_mem_spread_rotor;
6adef3eb 1749 int cpuset_slab_spread_rotor;
1da177e4 1750#endif
ddbcc7e8 1751#ifdef CONFIG_CGROUPS
817929ec 1752 /* Control Group info protected by css_set_lock */
2c392b8c 1753 struct css_set __rcu *cgroups;
817929ec
PM
1754 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1755 struct list_head cg_list;
ddbcc7e8 1756#endif
42b2dd0a 1757#ifdef CONFIG_FUTEX
0771dfef 1758 struct robust_list_head __user *robust_list;
34f192c6
IM
1759#ifdef CONFIG_COMPAT
1760 struct compat_robust_list_head __user *compat_robust_list;
1761#endif
c87e2837
IM
1762 struct list_head pi_state_list;
1763 struct futex_pi_state *pi_state_cache;
c7aceaba 1764#endif
cdd6c482 1765#ifdef CONFIG_PERF_EVENTS
8dc85d54 1766 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1767 struct mutex perf_event_mutex;
1768 struct list_head perf_event_list;
a63eaf34 1769#endif
8f47b187
TG
1770#ifdef CONFIG_DEBUG_PREEMPT
1771 unsigned long preempt_disable_ip;
1772#endif
c7aceaba 1773#ifdef CONFIG_NUMA
58568d2a 1774 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1775 short il_next;
207205a2 1776 short pref_node_fork;
42b2dd0a 1777#endif
cbee9f88
PZ
1778#ifdef CONFIG_NUMA_BALANCING
1779 int numa_scan_seq;
cbee9f88 1780 unsigned int numa_scan_period;
598f0ec0 1781 unsigned int numa_scan_period_max;
de1c9ce6 1782 int numa_preferred_nid;
6b9a7460 1783 unsigned long numa_migrate_retry;
cbee9f88 1784 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1785 u64 last_task_numa_placement;
1786 u64 last_sum_exec_runtime;
cbee9f88 1787 struct callback_head numa_work;
f809ca9a 1788
8c8a743c
PZ
1789 struct list_head numa_entry;
1790 struct numa_group *numa_group;
1791
745d6147 1792 /*
44dba3d5
IM
1793 * numa_faults is an array split into four regions:
1794 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1795 * in this precise order.
1796 *
1797 * faults_memory: Exponential decaying average of faults on a per-node
1798 * basis. Scheduling placement decisions are made based on these
1799 * counts. The values remain static for the duration of a PTE scan.
1800 * faults_cpu: Track the nodes the process was running on when a NUMA
1801 * hinting fault was incurred.
1802 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1803 * during the current scan window. When the scan completes, the counts
1804 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1805 */
44dba3d5 1806 unsigned long *numa_faults;
83e1d2cd 1807 unsigned long total_numa_faults;
745d6147 1808
04bb2f94
RR
1809 /*
1810 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1811 * scan window were remote/local or failed to migrate. The task scan
1812 * period is adapted based on the locality of the faults with different
1813 * weights depending on whether they were shared or private faults
04bb2f94 1814 */
074c2381 1815 unsigned long numa_faults_locality[3];
04bb2f94 1816
b32e86b4 1817 unsigned long numa_pages_migrated;
cbee9f88
PZ
1818#endif /* CONFIG_NUMA_BALANCING */
1819
72b252ae
MG
1820#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1821 struct tlbflush_unmap_batch tlb_ubc;
1822#endif
1823
e56d0903 1824 struct rcu_head rcu;
b92ce558
JA
1825
1826 /*
1827 * cache last used pipe for splice
1828 */
1829 struct pipe_inode_info *splice_pipe;
5640f768
ED
1830
1831 struct page_frag task_frag;
1832
ca74e92b
SN
1833#ifdef CONFIG_TASK_DELAY_ACCT
1834 struct task_delay_info *delays;
f4f154fd
AM
1835#endif
1836#ifdef CONFIG_FAULT_INJECTION
1837 int make_it_fail;
ca74e92b 1838#endif
9d823e8f
WF
1839 /*
1840 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1841 * balance_dirty_pages() for some dirty throttling pause
1842 */
1843 int nr_dirtied;
1844 int nr_dirtied_pause;
83712358 1845 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1846
9745512c
AV
1847#ifdef CONFIG_LATENCYTOP
1848 int latency_record_count;
1849 struct latency_record latency_record[LT_SAVECOUNT];
1850#endif
6976675d
AV
1851 /*
1852 * time slack values; these are used to round up poll() and
1853 * select() etc timeout values. These are in nanoseconds.
1854 */
da8b44d5
JS
1855 u64 timer_slack_ns;
1856 u64 default_timer_slack_ns;
f8d570a4 1857
0b24becc
AR
1858#ifdef CONFIG_KASAN
1859 unsigned int kasan_depth;
1860#endif
fb52607a 1861#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1862 /* Index of current stored address in ret_stack */
f201ae23
FW
1863 int curr_ret_stack;
1864 /* Stack of return addresses for return function tracing */
1865 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1866 /* time stamp for last schedule */
1867 unsigned long long ftrace_timestamp;
f201ae23
FW
1868 /*
1869 * Number of functions that haven't been traced
1870 * because of depth overrun.
1871 */
1872 atomic_t trace_overrun;
380c4b14
FW
1873 /* Pause for the tracing */
1874 atomic_t tracing_graph_pause;
f201ae23 1875#endif
ea4e2bc4
SR
1876#ifdef CONFIG_TRACING
1877 /* state flags for use by tracers */
1878 unsigned long trace;
b1cff0ad 1879 /* bitmask and counter of trace recursion */
261842b7
SR
1880 unsigned long trace_recursion;
1881#endif /* CONFIG_TRACING */
5c9a8750
DV
1882#ifdef CONFIG_KCOV
1883 /* Coverage collection mode enabled for this task (0 if disabled). */
1884 enum kcov_mode kcov_mode;
1885 /* Size of the kcov_area. */
1886 unsigned kcov_size;
1887 /* Buffer for coverage collection. */
1888 void *kcov_area;
1889 /* kcov desciptor wired with this task or NULL. */
1890 struct kcov *kcov;
1891#endif
6f185c29 1892#ifdef CONFIG_MEMCG
626ebc41
TH
1893 struct mem_cgroup *memcg_in_oom;
1894 gfp_t memcg_oom_gfp_mask;
1895 int memcg_oom_order;
b23afb93
TH
1896
1897 /* number of pages to reclaim on returning to userland */
1898 unsigned int memcg_nr_pages_over_high;
569b846d 1899#endif
0326f5a9
SD
1900#ifdef CONFIG_UPROBES
1901 struct uprobe_task *utask;
0326f5a9 1902#endif
cafe5635
KO
1903#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1904 unsigned int sequential_io;
1905 unsigned int sequential_io_avg;
1906#endif
8eb23b9f
PZ
1907#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1908 unsigned long task_state_change;
1909#endif
8bcbde54 1910 int pagefault_disabled;
03049269 1911#ifdef CONFIG_MMU
29c696e1 1912 struct task_struct *oom_reaper_list;
03049269 1913#endif
0c8c0f03
DH
1914/* CPU-specific state of this task */
1915 struct thread_struct thread;
1916/*
1917 * WARNING: on x86, 'thread_struct' contains a variable-sized
1918 * structure. It *MUST* be at the end of 'task_struct'.
1919 *
1920 * Do not put anything below here!
1921 */
1da177e4
LT
1922};
1923
5aaeb5c0
IM
1924#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1925extern int arch_task_struct_size __read_mostly;
1926#else
1927# define arch_task_struct_size (sizeof(struct task_struct))
1928#endif
0c8c0f03 1929
76e6eee0 1930/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1931#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1932
50605ffb
TG
1933static inline int tsk_nr_cpus_allowed(struct task_struct *p)
1934{
1935 return p->nr_cpus_allowed;
1936}
1937
6688cc05
PZ
1938#define TNF_MIGRATED 0x01
1939#define TNF_NO_GROUP 0x02
dabe1d99 1940#define TNF_SHARED 0x04
04bb2f94 1941#define TNF_FAULT_LOCAL 0x08
074c2381 1942#define TNF_MIGRATE_FAIL 0x10
6688cc05 1943
cbee9f88 1944#ifdef CONFIG_NUMA_BALANCING
6688cc05 1945extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1946extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1947extern void set_numabalancing_state(bool enabled);
82727018 1948extern void task_numa_free(struct task_struct *p);
10f39042
RR
1949extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1950 int src_nid, int dst_cpu);
cbee9f88 1951#else
ac8e895b 1952static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1953 int flags)
cbee9f88
PZ
1954{
1955}
e29cf08b
MG
1956static inline pid_t task_numa_group_id(struct task_struct *p)
1957{
1958 return 0;
1959}
1a687c2e
MG
1960static inline void set_numabalancing_state(bool enabled)
1961{
1962}
82727018
RR
1963static inline void task_numa_free(struct task_struct *p)
1964{
1965}
10f39042
RR
1966static inline bool should_numa_migrate_memory(struct task_struct *p,
1967 struct page *page, int src_nid, int dst_cpu)
1968{
1969 return true;
1970}
cbee9f88
PZ
1971#endif
1972
e868171a 1973static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1974{
1975 return task->pids[PIDTYPE_PID].pid;
1976}
1977
e868171a 1978static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1979{
1980 return task->group_leader->pids[PIDTYPE_PID].pid;
1981}
1982
6dda81f4
ON
1983/*
1984 * Without tasklist or rcu lock it is not safe to dereference
1985 * the result of task_pgrp/task_session even if task == current,
1986 * we can race with another thread doing sys_setsid/sys_setpgid.
1987 */
e868171a 1988static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1989{
1990 return task->group_leader->pids[PIDTYPE_PGID].pid;
1991}
1992
e868171a 1993static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1994{
1995 return task->group_leader->pids[PIDTYPE_SID].pid;
1996}
1997
7af57294
PE
1998struct pid_namespace;
1999
2000/*
2001 * the helpers to get the task's different pids as they are seen
2002 * from various namespaces
2003 *
2004 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
2005 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
2006 * current.
7af57294
PE
2007 * task_xid_nr_ns() : id seen from the ns specified;
2008 *
2009 * set_task_vxid() : assigns a virtual id to a task;
2010 *
7af57294
PE
2011 * see also pid_nr() etc in include/linux/pid.h
2012 */
52ee2dfd
ON
2013pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2014 struct pid_namespace *ns);
7af57294 2015
e868171a 2016static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
2017{
2018 return tsk->pid;
2019}
2020
52ee2dfd
ON
2021static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2022 struct pid_namespace *ns)
2023{
2024 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2025}
7af57294
PE
2026
2027static inline pid_t task_pid_vnr(struct task_struct *tsk)
2028{
52ee2dfd 2029 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
2030}
2031
2032
e868171a 2033static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
2034{
2035 return tsk->tgid;
2036}
2037
2f2a3a46 2038pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
2039
2040static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2041{
2042 return pid_vnr(task_tgid(tsk));
2043}
2044
2045
80e0b6e8 2046static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
2047static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2048{
2049 pid_t pid = 0;
2050
2051 rcu_read_lock();
2052 if (pid_alive(tsk))
2053 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2054 rcu_read_unlock();
2055
2056 return pid;
2057}
2058
2059static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2060{
2061 return task_ppid_nr_ns(tsk, &init_pid_ns);
2062}
2063
52ee2dfd
ON
2064static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2065 struct pid_namespace *ns)
7af57294 2066{
52ee2dfd 2067 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
2068}
2069
7af57294
PE
2070static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2071{
52ee2dfd 2072 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
2073}
2074
2075
52ee2dfd
ON
2076static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2077 struct pid_namespace *ns)
7af57294 2078{
52ee2dfd 2079 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
2080}
2081
7af57294
PE
2082static inline pid_t task_session_vnr(struct task_struct *tsk)
2083{
52ee2dfd 2084 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
2085}
2086
1b0f7ffd
ON
2087/* obsolete, do not use */
2088static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2089{
2090 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2091}
7af57294 2092
1da177e4
LT
2093/**
2094 * pid_alive - check that a task structure is not stale
2095 * @p: Task structure to be checked.
2096 *
2097 * Test if a process is not yet dead (at most zombie state)
2098 * If pid_alive fails, then pointers within the task structure
2099 * can be stale and must not be dereferenced.
e69f6186
YB
2100 *
2101 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 2102 */
ad36d282 2103static inline int pid_alive(const struct task_struct *p)
1da177e4 2104{
92476d7f 2105 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
2106}
2107
f400e198 2108/**
570f5241
SS
2109 * is_global_init - check if a task structure is init. Since init
2110 * is free to have sub-threads we need to check tgid.
3260259f
H
2111 * @tsk: Task structure to be checked.
2112 *
2113 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
2114 *
2115 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 2116 */
e868171a 2117static inline int is_global_init(struct task_struct *tsk)
b461cc03 2118{
570f5241 2119 return task_tgid_nr(tsk) == 1;
b461cc03 2120}
b460cbc5 2121
9ec52099
CLG
2122extern struct pid *cad_pid;
2123
1da177e4 2124extern void free_task(struct task_struct *tsk);
1da177e4 2125#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 2126
158d9ebd 2127extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
2128
2129static inline void put_task_struct(struct task_struct *t)
2130{
2131 if (atomic_dec_and_test(&t->usage))
8c7904a0 2132 __put_task_struct(t);
e56d0903 2133}
1da177e4 2134
6a61671b
FW
2135#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2136extern void task_cputime(struct task_struct *t,
2137 cputime_t *utime, cputime_t *stime);
2138extern void task_cputime_scaled(struct task_struct *t,
2139 cputime_t *utimescaled, cputime_t *stimescaled);
2140extern cputime_t task_gtime(struct task_struct *t);
2141#else
6fac4829
FW
2142static inline void task_cputime(struct task_struct *t,
2143 cputime_t *utime, cputime_t *stime)
2144{
2145 if (utime)
2146 *utime = t->utime;
2147 if (stime)
2148 *stime = t->stime;
2149}
2150
2151static inline void task_cputime_scaled(struct task_struct *t,
2152 cputime_t *utimescaled,
2153 cputime_t *stimescaled)
2154{
2155 if (utimescaled)
2156 *utimescaled = t->utimescaled;
2157 if (stimescaled)
2158 *stimescaled = t->stimescaled;
2159}
6a61671b
FW
2160
2161static inline cputime_t task_gtime(struct task_struct *t)
2162{
2163 return t->gtime;
2164}
2165#endif
e80d0a1a
FW
2166extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2167extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2168
1da177e4
LT
2169/*
2170 * Per process flags
2171 */
1da177e4 2172#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2173#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2174#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2175#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2176#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2177#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2178#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2179#define PF_DUMPCORE 0x00000200 /* dumped core */
2180#define PF_SIGNALED 0x00000400 /* killed by a signal */
2181#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2182#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2183#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2184#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2185#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2186#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2187#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2188#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2189#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2190#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2191#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2192#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2193#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2194#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2195#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2196#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2197#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2198#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2199
2200/*
2201 * Only the _current_ task can read/write to tsk->flags, but other
2202 * tasks can access tsk->flags in readonly mode for example
2203 * with tsk_used_math (like during threaded core dumping).
2204 * There is however an exception to this rule during ptrace
2205 * or during fork: the ptracer task is allowed to write to the
2206 * child->flags of its traced child (same goes for fork, the parent
2207 * can write to the child->flags), because we're guaranteed the
2208 * child is not running and in turn not changing child->flags
2209 * at the same time the parent does it.
2210 */
2211#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2212#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2213#define clear_used_math() clear_stopped_child_used_math(current)
2214#define set_used_math() set_stopped_child_used_math(current)
2215#define conditional_stopped_child_used_math(condition, child) \
2216 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2217#define conditional_used_math(condition) \
2218 conditional_stopped_child_used_math(condition, current)
2219#define copy_to_stopped_child_used_math(child) \
2220 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2221/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2222#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2223#define used_math() tsk_used_math(current)
2224
934f3072
JB
2225/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2226 * __GFP_FS is also cleared as it implies __GFP_IO.
2227 */
21caf2fc
ML
2228static inline gfp_t memalloc_noio_flags(gfp_t flags)
2229{
2230 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2231 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2232 return flags;
2233}
2234
2235static inline unsigned int memalloc_noio_save(void)
2236{
2237 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2238 current->flags |= PF_MEMALLOC_NOIO;
2239 return flags;
2240}
2241
2242static inline void memalloc_noio_restore(unsigned int flags)
2243{
2244 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2245}
2246
1d4457f9 2247/* Per-process atomic flags. */
a2b86f77 2248#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2249#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2250#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2251
1d4457f9 2252
e0e5070b
ZL
2253#define TASK_PFA_TEST(name, func) \
2254 static inline bool task_##func(struct task_struct *p) \
2255 { return test_bit(PFA_##name, &p->atomic_flags); }
2256#define TASK_PFA_SET(name, func) \
2257 static inline void task_set_##func(struct task_struct *p) \
2258 { set_bit(PFA_##name, &p->atomic_flags); }
2259#define TASK_PFA_CLEAR(name, func) \
2260 static inline void task_clear_##func(struct task_struct *p) \
2261 { clear_bit(PFA_##name, &p->atomic_flags); }
2262
2263TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2264TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2265
2ad654bc
ZL
2266TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2267TASK_PFA_SET(SPREAD_PAGE, spread_page)
2268TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2269
2270TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2271TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2272TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2273
e5c1902e 2274/*
a8f072c1 2275 * task->jobctl flags
e5c1902e 2276 */
a8f072c1 2277#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2278
a8f072c1
TH
2279#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2280#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2281#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2282#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2283#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2284#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2285#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2286
b76808e6
PD
2287#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2288#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2289#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2290#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2291#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2292#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2293#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2294
fb1d910c 2295#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2296#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2297
7dd3db54 2298extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2299 unsigned long mask);
73ddff2b 2300extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2301extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2302 unsigned long mask);
39efa3ef 2303
f41d911f
PM
2304static inline void rcu_copy_process(struct task_struct *p)
2305{
8315f422 2306#ifdef CONFIG_PREEMPT_RCU
f41d911f 2307 p->rcu_read_lock_nesting = 0;
1d082fd0 2308 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2309 p->rcu_blocked_node = NULL;
f41d911f 2310 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2311#endif /* #ifdef CONFIG_PREEMPT_RCU */
2312#ifdef CONFIG_TASKS_RCU
2313 p->rcu_tasks_holdout = false;
2314 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2315 p->rcu_tasks_idle_cpu = -1;
8315f422 2316#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2317}
2318
907aed48
MG
2319static inline void tsk_restore_flags(struct task_struct *task,
2320 unsigned long orig_flags, unsigned long flags)
2321{
2322 task->flags &= ~flags;
2323 task->flags |= orig_flags & flags;
2324}
2325
f82f8042
JL
2326extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2327 const struct cpumask *trial);
7f51412a
JL
2328extern int task_can_attach(struct task_struct *p,
2329 const struct cpumask *cs_cpus_allowed);
1da177e4 2330#ifdef CONFIG_SMP
1e1b6c51
KM
2331extern void do_set_cpus_allowed(struct task_struct *p,
2332 const struct cpumask *new_mask);
2333
cd8ba7cd 2334extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2335 const struct cpumask *new_mask);
1da177e4 2336#else
1e1b6c51
KM
2337static inline void do_set_cpus_allowed(struct task_struct *p,
2338 const struct cpumask *new_mask)
2339{
2340}
cd8ba7cd 2341static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2342 const struct cpumask *new_mask)
1da177e4 2343{
96f874e2 2344 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2345 return -EINVAL;
2346 return 0;
2347}
2348#endif
e0ad9556 2349
3451d024 2350#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2351void calc_load_enter_idle(void);
2352void calc_load_exit_idle(void);
2353#else
2354static inline void calc_load_enter_idle(void) { }
2355static inline void calc_load_exit_idle(void) { }
3451d024 2356#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2357
b342501c 2358/*
c676329a
PZ
2359 * Do not use outside of architecture code which knows its limitations.
2360 *
2361 * sched_clock() has no promise of monotonicity or bounded drift between
2362 * CPUs, use (which you should not) requires disabling IRQs.
2363 *
2364 * Please use one of the three interfaces below.
b342501c 2365 */
1bbfa6f2 2366extern unsigned long long notrace sched_clock(void);
c676329a 2367/*
489a71b0 2368 * See the comment in kernel/sched/clock.c
c676329a 2369 */
545a2bf7 2370extern u64 running_clock(void);
c676329a
PZ
2371extern u64 sched_clock_cpu(int cpu);
2372
e436d800 2373
c1955a3d 2374extern void sched_clock_init(void);
3e51f33f 2375
c1955a3d 2376#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2377static inline void sched_clock_tick(void)
2378{
2379}
2380
2381static inline void sched_clock_idle_sleep_event(void)
2382{
2383}
2384
2385static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2386{
2387}
2c923e94
DL
2388
2389static inline u64 cpu_clock(int cpu)
2390{
2391 return sched_clock();
2392}
2393
2394static inline u64 local_clock(void)
2395{
2396 return sched_clock();
2397}
3e51f33f 2398#else
c676329a
PZ
2399/*
2400 * Architectures can set this to 1 if they have specified
2401 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2402 * but then during bootup it turns out that sched_clock()
2403 * is reliable after all:
2404 */
35af99e6
PZ
2405extern int sched_clock_stable(void);
2406extern void set_sched_clock_stable(void);
2407extern void clear_sched_clock_stable(void);
c676329a 2408
3e51f33f
PZ
2409extern void sched_clock_tick(void);
2410extern void sched_clock_idle_sleep_event(void);
2411extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2c923e94
DL
2412
2413/*
2414 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2415 * time source that is monotonic per cpu argument and has bounded drift
2416 * between cpus.
2417 *
2418 * ######################### BIG FAT WARNING ##########################
2419 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2420 * # go backwards !! #
2421 * ####################################################################
2422 */
2423static inline u64 cpu_clock(int cpu)
2424{
2425 return sched_clock_cpu(cpu);
2426}
2427
2428static inline u64 local_clock(void)
2429{
2430 return sched_clock_cpu(raw_smp_processor_id());
2431}
3e51f33f
PZ
2432#endif
2433
b52bfee4
VP
2434#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2435/*
2436 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2437 * The reason for this explicit opt-in is not to have perf penalty with
2438 * slow sched_clocks.
2439 */
2440extern void enable_sched_clock_irqtime(void);
2441extern void disable_sched_clock_irqtime(void);
2442#else
2443static inline void enable_sched_clock_irqtime(void) {}
2444static inline void disable_sched_clock_irqtime(void) {}
2445#endif
2446
36c8b586 2447extern unsigned long long
41b86e9c 2448task_sched_runtime(struct task_struct *task);
1da177e4
LT
2449
2450/* sched_exec is called by processes performing an exec */
2451#ifdef CONFIG_SMP
2452extern void sched_exec(void);
2453#else
2454#define sched_exec() {}
2455#endif
2456
2aa44d05
IM
2457extern void sched_clock_idle_sleep_event(void);
2458extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2459
1da177e4
LT
2460#ifdef CONFIG_HOTPLUG_CPU
2461extern void idle_task_exit(void);
2462#else
2463static inline void idle_task_exit(void) {}
2464#endif
2465
3451d024 2466#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2467extern void wake_up_nohz_cpu(int cpu);
06d8308c 2468#else
1c20091e 2469static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2470#endif
2471
ce831b38 2472#ifdef CONFIG_NO_HZ_FULL
265f22a9 2473extern u64 scheduler_tick_max_deferment(void);
06d8308c
TG
2474#endif
2475
5091faa4 2476#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2477extern void sched_autogroup_create_attach(struct task_struct *p);
2478extern void sched_autogroup_detach(struct task_struct *p);
2479extern void sched_autogroup_fork(struct signal_struct *sig);
2480extern void sched_autogroup_exit(struct signal_struct *sig);
2481#ifdef CONFIG_PROC_FS
2482extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2483extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2484#endif
2485#else
2486static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2487static inline void sched_autogroup_detach(struct task_struct *p) { }
2488static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2489static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2490#endif
2491
fa93384f 2492extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2493extern void set_user_nice(struct task_struct *p, long nice);
2494extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2495/**
2496 * task_nice - return the nice value of a given task.
2497 * @p: the task in question.
2498 *
2499 * Return: The nice value [ -20 ... 0 ... 19 ].
2500 */
2501static inline int task_nice(const struct task_struct *p)
2502{
2503 return PRIO_TO_NICE((p)->static_prio);
2504}
36c8b586
IM
2505extern int can_nice(const struct task_struct *p, const int nice);
2506extern int task_curr(const struct task_struct *p);
1da177e4 2507extern int idle_cpu(int cpu);
fe7de49f
KM
2508extern int sched_setscheduler(struct task_struct *, int,
2509 const struct sched_param *);
961ccddd 2510extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2511 const struct sched_param *);
d50dde5a
DF
2512extern int sched_setattr(struct task_struct *,
2513 const struct sched_attr *);
36c8b586 2514extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2515/**
2516 * is_idle_task - is the specified task an idle task?
fa757281 2517 * @p: the task in question.
e69f6186
YB
2518 *
2519 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2520 */
7061ca3b 2521static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2522{
2523 return p->pid == 0;
2524}
36c8b586
IM
2525extern struct task_struct *curr_task(int cpu);
2526extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2527
2528void yield(void);
2529
1da177e4
LT
2530union thread_union {
2531 struct thread_info thread_info;
2532 unsigned long stack[THREAD_SIZE/sizeof(long)];
2533};
2534
2535#ifndef __HAVE_ARCH_KSTACK_END
2536static inline int kstack_end(void *addr)
2537{
2538 /* Reliable end of stack detection:
2539 * Some APM bios versions misalign the stack
2540 */
2541 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2542}
2543#endif
2544
2545extern union thread_union init_thread_union;
2546extern struct task_struct init_task;
2547
2548extern struct mm_struct init_mm;
2549
198fe21b
PE
2550extern struct pid_namespace init_pid_ns;
2551
2552/*
2553 * find a task by one of its numerical ids
2554 *
198fe21b
PE
2555 * find_task_by_pid_ns():
2556 * finds a task by its pid in the specified namespace
228ebcbe
PE
2557 * find_task_by_vpid():
2558 * finds a task by its virtual pid
198fe21b 2559 *
e49859e7 2560 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2561 */
2562
228ebcbe
PE
2563extern struct task_struct *find_task_by_vpid(pid_t nr);
2564extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2565 struct pid_namespace *ns);
198fe21b 2566
1da177e4 2567/* per-UID process charging. */
7b44ab97 2568extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2569static inline struct user_struct *get_uid(struct user_struct *u)
2570{
2571 atomic_inc(&u->__count);
2572 return u;
2573}
2574extern void free_uid(struct user_struct *);
1da177e4
LT
2575
2576#include <asm/current.h>
2577
f0af911a 2578extern void xtime_update(unsigned long ticks);
1da177e4 2579
b3c97528
HH
2580extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2581extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2582extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2583#ifdef CONFIG_SMP
2584 extern void kick_process(struct task_struct *tsk);
2585#else
2586 static inline void kick_process(struct task_struct *tsk) { }
2587#endif
aab03e05 2588extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2589extern void sched_dead(struct task_struct *p);
1da177e4 2590
1da177e4
LT
2591extern void proc_caches_init(void);
2592extern void flush_signals(struct task_struct *);
10ab825b 2593extern void ignore_signals(struct task_struct *);
1da177e4
LT
2594extern void flush_signal_handlers(struct task_struct *, int force_default);
2595extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2596
be0e6f29 2597static inline int kernel_dequeue_signal(siginfo_t *info)
1da177e4 2598{
be0e6f29
ON
2599 struct task_struct *tsk = current;
2600 siginfo_t __info;
1da177e4
LT
2601 int ret;
2602
be0e6f29
ON
2603 spin_lock_irq(&tsk->sighand->siglock);
2604 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2605 spin_unlock_irq(&tsk->sighand->siglock);
1da177e4
LT
2606
2607 return ret;
53c8f9f1 2608}
1da177e4 2609
9a13049e
ON
2610static inline void kernel_signal_stop(void)
2611{
2612 spin_lock_irq(&current->sighand->siglock);
2613 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2614 __set_current_state(TASK_STOPPED);
2615 spin_unlock_irq(&current->sighand->siglock);
2616
2617 schedule();
2618}
2619
1da177e4
LT
2620extern void release_task(struct task_struct * p);
2621extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2622extern int force_sigsegv(int, struct task_struct *);
2623extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2624extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2625extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2626extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2627 const struct cred *, u32);
c4b92fc1
EB
2628extern int kill_pgrp(struct pid *pid, int sig, int priv);
2629extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2630extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2631extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2632extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2633extern void force_sig(int, struct task_struct *);
1da177e4 2634extern int send_sig(int, struct task_struct *, int);
09faef11 2635extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2636extern struct sigqueue *sigqueue_alloc(void);
2637extern void sigqueue_free(struct sigqueue *);
ac5c2153 2638extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2639extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2640
51a7b448
AV
2641static inline void restore_saved_sigmask(void)
2642{
2643 if (test_and_clear_restore_sigmask())
77097ae5 2644 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2645}
2646
b7f9a11a
AV
2647static inline sigset_t *sigmask_to_save(void)
2648{
2649 sigset_t *res = &current->blocked;
2650 if (unlikely(test_restore_sigmask()))
2651 res = &current->saved_sigmask;
2652 return res;
2653}
2654
9ec52099
CLG
2655static inline int kill_cad_pid(int sig, int priv)
2656{
2657 return kill_pid(cad_pid, sig, priv);
2658}
2659
1da177e4
LT
2660/* These can be the second arg to send_sig_info/send_group_sig_info. */
2661#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2662#define SEND_SIG_PRIV ((struct siginfo *) 1)
2663#define SEND_SIG_FORCED ((struct siginfo *) 2)
2664
2a855dd0
SAS
2665/*
2666 * True if we are on the alternate signal stack.
2667 */
1da177e4
LT
2668static inline int on_sig_stack(unsigned long sp)
2669{
c876eeab
AL
2670 /*
2671 * If the signal stack is SS_AUTODISARM then, by construction, we
2672 * can't be on the signal stack unless user code deliberately set
2673 * SS_AUTODISARM when we were already on it.
2674 *
2675 * This improves reliability: if user state gets corrupted such that
2676 * the stack pointer points very close to the end of the signal stack,
2677 * then this check will enable the signal to be handled anyway.
2678 */
2679 if (current->sas_ss_flags & SS_AUTODISARM)
2680 return 0;
2681
2a855dd0
SAS
2682#ifdef CONFIG_STACK_GROWSUP
2683 return sp >= current->sas_ss_sp &&
2684 sp - current->sas_ss_sp < current->sas_ss_size;
2685#else
2686 return sp > current->sas_ss_sp &&
2687 sp - current->sas_ss_sp <= current->sas_ss_size;
2688#endif
1da177e4
LT
2689}
2690
2691static inline int sas_ss_flags(unsigned long sp)
2692{
72f15c03
RW
2693 if (!current->sas_ss_size)
2694 return SS_DISABLE;
2695
2696 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2697}
2698
2a742138
SS
2699static inline void sas_ss_reset(struct task_struct *p)
2700{
2701 p->sas_ss_sp = 0;
2702 p->sas_ss_size = 0;
2703 p->sas_ss_flags = SS_DISABLE;
2704}
2705
5a1b98d3
AV
2706static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2707{
2708 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2709#ifdef CONFIG_STACK_GROWSUP
2710 return current->sas_ss_sp;
2711#else
2712 return current->sas_ss_sp + current->sas_ss_size;
2713#endif
2714 return sp;
2715}
2716
1da177e4
LT
2717/*
2718 * Routines for handling mm_structs
2719 */
2720extern struct mm_struct * mm_alloc(void);
2721
2722/* mmdrop drops the mm and the page tables */
b3c97528 2723extern void __mmdrop(struct mm_struct *);
1da177e4
LT
2724static inline void mmdrop(struct mm_struct * mm)
2725{
6fb43d7b 2726 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2727 __mmdrop(mm);
2728}
2729
2730/* mmput gets rid of the mappings and all user-space */
2731extern void mmput(struct mm_struct *);
2732/* Grab a reference to a task's mm, if it is not already going away */
2733extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2734/*
2735 * Grab a reference to a task's mm, if it is not already going away
2736 * and ptrace_may_access with the mode parameter passed to it
2737 * succeeds.
2738 */
2739extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2740/* Remove the current tasks stale references to the old mm_struct */
2741extern void mm_release(struct task_struct *, struct mm_struct *);
2742
3033f14a
JT
2743#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2744extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2745 struct task_struct *, unsigned long);
2746#else
6f2c55b8 2747extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2748 struct task_struct *);
3033f14a
JT
2749
2750/* Architectures that haven't opted into copy_thread_tls get the tls argument
2751 * via pt_regs, so ignore the tls argument passed via C. */
2752static inline int copy_thread_tls(
2753 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2754 struct task_struct *p, unsigned long tls)
2755{
2756 return copy_thread(clone_flags, sp, arg, p);
2757}
2758#endif
1da177e4
LT
2759extern void flush_thread(void);
2760extern void exit_thread(void);
2761
1da177e4 2762extern void exit_files(struct task_struct *);
a7e5328a 2763extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2764
1da177e4 2765extern void exit_itimers(struct signal_struct *);
cbaffba1 2766extern void flush_itimer_signals(void);
1da177e4 2767
9402c95f 2768extern void do_group_exit(int);
1da177e4 2769
c4ad8f98 2770extern int do_execve(struct filename *,
d7627467 2771 const char __user * const __user *,
da3d4c5f 2772 const char __user * const __user *);
51f39a1f
DD
2773extern int do_execveat(int, struct filename *,
2774 const char __user * const __user *,
2775 const char __user * const __user *,
2776 int);
3033f14a 2777extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 2778extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2779struct task_struct *fork_idle(int);
2aa3a7f8 2780extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2781
82b89778
AH
2782extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2783static inline void set_task_comm(struct task_struct *tsk, const char *from)
2784{
2785 __set_task_comm(tsk, from, false);
2786}
59714d65 2787extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2788
2789#ifdef CONFIG_SMP
317f3941 2790void scheduler_ipi(void);
85ba2d86 2791extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2792#else
184748cc 2793static inline void scheduler_ipi(void) { }
85ba2d86
RM
2794static inline unsigned long wait_task_inactive(struct task_struct *p,
2795 long match_state)
2796{
2797 return 1;
2798}
1da177e4
LT
2799#endif
2800
fafe870f
FW
2801#define tasklist_empty() \
2802 list_empty(&init_task.tasks)
2803
05725f7e
JP
2804#define next_task(p) \
2805 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2806
2807#define for_each_process(p) \
2808 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2809
5bb459bb 2810extern bool current_is_single_threaded(void);
d84f4f99 2811
1da177e4
LT
2812/*
2813 * Careful: do_each_thread/while_each_thread is a double loop so
2814 * 'break' will not work as expected - use goto instead.
2815 */
2816#define do_each_thread(g, t) \
2817 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2818
2819#define while_each_thread(g, t) \
2820 while ((t = next_thread(t)) != g)
2821
0c740d0a
ON
2822#define __for_each_thread(signal, t) \
2823 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2824
2825#define for_each_thread(p, t) \
2826 __for_each_thread((p)->signal, t)
2827
2828/* Careful: this is a double loop, 'break' won't work as expected. */
2829#define for_each_process_thread(p, t) \
2830 for_each_process(p) for_each_thread(p, t)
2831
7e49827c
ON
2832static inline int get_nr_threads(struct task_struct *tsk)
2833{
b3ac022c 2834 return tsk->signal->nr_threads;
7e49827c
ON
2835}
2836
087806b1
ON
2837static inline bool thread_group_leader(struct task_struct *p)
2838{
2839 return p->exit_signal >= 0;
2840}
1da177e4 2841
0804ef4b
EB
2842/* Do to the insanities of de_thread it is possible for a process
2843 * to have the pid of the thread group leader without actually being
2844 * the thread group leader. For iteration through the pids in proc
2845 * all we care about is that we have a task with the appropriate
2846 * pid, we don't actually care if we have the right task.
2847 */
e1403b8e 2848static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2849{
e1403b8e 2850 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2851}
2852
bac0abd6 2853static inline
e1403b8e 2854bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2855{
e1403b8e 2856 return p1->signal == p2->signal;
bac0abd6
PE
2857}
2858
36c8b586 2859static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2860{
05725f7e
JP
2861 return list_entry_rcu(p->thread_group.next,
2862 struct task_struct, thread_group);
47e65328
ON
2863}
2864
e868171a 2865static inline int thread_group_empty(struct task_struct *p)
1da177e4 2866{
47e65328 2867 return list_empty(&p->thread_group);
1da177e4
LT
2868}
2869
2870#define delay_group_leader(p) \
2871 (thread_group_leader(p) && !thread_group_empty(p))
2872
1da177e4 2873/*
260ea101 2874 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2875 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2876 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2877 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2878 *
2879 * Nests both inside and outside of read_lock(&tasklist_lock).
2880 * It must not be nested with write_lock_irq(&tasklist_lock),
2881 * neither inside nor outside.
2882 */
2883static inline void task_lock(struct task_struct *p)
2884{
2885 spin_lock(&p->alloc_lock);
2886}
2887
2888static inline void task_unlock(struct task_struct *p)
2889{
2890 spin_unlock(&p->alloc_lock);
2891}
2892
b8ed374e 2893extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2894 unsigned long *flags);
2895
9388dc30
AV
2896static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2897 unsigned long *flags)
2898{
2899 struct sighand_struct *ret;
2900
2901 ret = __lock_task_sighand(tsk, flags);
2902 (void)__cond_lock(&tsk->sighand->siglock, ret);
2903 return ret;
2904}
b8ed374e 2905
f63ee72e
ON
2906static inline void unlock_task_sighand(struct task_struct *tsk,
2907 unsigned long *flags)
2908{
2909 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2910}
2911
77e4ef99 2912/**
7d7efec3
TH
2913 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2914 * @tsk: task causing the changes
77e4ef99 2915 *
7d7efec3
TH
2916 * All operations which modify a threadgroup - a new thread joining the
2917 * group, death of a member thread (the assertion of PF_EXITING) and
2918 * exec(2) dethreading the process and replacing the leader - are wrapped
2919 * by threadgroup_change_{begin|end}(). This is to provide a place which
2920 * subsystems needing threadgroup stability can hook into for
2921 * synchronization.
77e4ef99 2922 */
7d7efec3 2923static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2924{
7d7efec3
TH
2925 might_sleep();
2926 cgroup_threadgroup_change_begin(tsk);
4714d1d3 2927}
77e4ef99
TH
2928
2929/**
7d7efec3
TH
2930 * threadgroup_change_end - mark the end of changes to a threadgroup
2931 * @tsk: task causing the changes
77e4ef99 2932 *
7d7efec3 2933 * See threadgroup_change_begin().
77e4ef99 2934 */
7d7efec3 2935static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2936{
7d7efec3 2937 cgroup_threadgroup_change_end(tsk);
4714d1d3 2938}
4714d1d3 2939
f037360f
AV
2940#ifndef __HAVE_THREAD_FUNCTIONS
2941
f7e4217b
RZ
2942#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2943#define task_stack_page(task) ((task)->stack)
a1261f54 2944
10ebffde
AV
2945static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2946{
2947 *task_thread_info(p) = *task_thread_info(org);
2948 task_thread_info(p)->task = p;
2949}
2950
6a40281a
CE
2951/*
2952 * Return the address of the last usable long on the stack.
2953 *
2954 * When the stack grows down, this is just above the thread
2955 * info struct. Going any lower will corrupt the threadinfo.
2956 *
2957 * When the stack grows up, this is the highest address.
2958 * Beyond that position, we corrupt data on the next page.
2959 */
10ebffde
AV
2960static inline unsigned long *end_of_stack(struct task_struct *p)
2961{
6a40281a
CE
2962#ifdef CONFIG_STACK_GROWSUP
2963 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2964#else
f7e4217b 2965 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 2966#endif
10ebffde
AV
2967}
2968
f037360f 2969#endif
a70857e4
AT
2970#define task_stack_end_corrupted(task) \
2971 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 2972
8b05c7e6
FT
2973static inline int object_is_on_stack(void *obj)
2974{
2975 void *stack = task_stack_page(current);
2976
2977 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2978}
2979
8c9843e5
BH
2980extern void thread_info_cache_init(void);
2981
7c9f8861
ES
2982#ifdef CONFIG_DEBUG_STACK_USAGE
2983static inline unsigned long stack_not_used(struct task_struct *p)
2984{
2985 unsigned long *n = end_of_stack(p);
2986
2987 do { /* Skip over canary */
6c31da34
HD
2988# ifdef CONFIG_STACK_GROWSUP
2989 n--;
2990# else
7c9f8861 2991 n++;
6c31da34 2992# endif
7c9f8861
ES
2993 } while (!*n);
2994
6c31da34
HD
2995# ifdef CONFIG_STACK_GROWSUP
2996 return (unsigned long)end_of_stack(p) - (unsigned long)n;
2997# else
7c9f8861 2998 return (unsigned long)n - (unsigned long)end_of_stack(p);
6c31da34 2999# endif
7c9f8861
ES
3000}
3001#endif
d4311ff1 3002extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 3003
1da177e4
LT
3004/* set thread flags in other task's structures
3005 * - see asm/thread_info.h for TIF_xxxx flags available
3006 */
3007static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3008{
a1261f54 3009 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3010}
3011
3012static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3013{
a1261f54 3014 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3015}
3016
3017static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3018{
a1261f54 3019 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3020}
3021
3022static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3023{
a1261f54 3024 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3025}
3026
3027static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3028{
a1261f54 3029 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3030}
3031
3032static inline void set_tsk_need_resched(struct task_struct *tsk)
3033{
3034 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3035}
3036
3037static inline void clear_tsk_need_resched(struct task_struct *tsk)
3038{
3039 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3040}
3041
8ae121ac
GH
3042static inline int test_tsk_need_resched(struct task_struct *tsk)
3043{
3044 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3045}
3046
690cc3ff
EB
3047static inline int restart_syscall(void)
3048{
3049 set_tsk_thread_flag(current, TIF_SIGPENDING);
3050 return -ERESTARTNOINTR;
3051}
3052
1da177e4
LT
3053static inline int signal_pending(struct task_struct *p)
3054{
3055 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3056}
f776d12d 3057
d9588725
RM
3058static inline int __fatal_signal_pending(struct task_struct *p)
3059{
3060 return unlikely(sigismember(&p->pending.signal, SIGKILL));
3061}
f776d12d
MW
3062
3063static inline int fatal_signal_pending(struct task_struct *p)
3064{
3065 return signal_pending(p) && __fatal_signal_pending(p);
3066}
3067
16882c1e
ON
3068static inline int signal_pending_state(long state, struct task_struct *p)
3069{
3070 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3071 return 0;
3072 if (!signal_pending(p))
3073 return 0;
3074
16882c1e
ON
3075 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3076}
3077
1da177e4
LT
3078/*
3079 * cond_resched() and cond_resched_lock(): latency reduction via
3080 * explicit rescheduling in places that are safe. The return
3081 * value indicates whether a reschedule was done in fact.
3082 * cond_resched_lock() will drop the spinlock before scheduling,
3083 * cond_resched_softirq() will enable bhs before scheduling.
3084 */
c3921ab7 3085extern int _cond_resched(void);
6f80bd98 3086
613afbf8 3087#define cond_resched() ({ \
3427445a 3088 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
3089 _cond_resched(); \
3090})
6f80bd98 3091
613afbf8
FW
3092extern int __cond_resched_lock(spinlock_t *lock);
3093
3094#define cond_resched_lock(lock) ({ \
3427445a 3095 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
3096 __cond_resched_lock(lock); \
3097})
3098
3099extern int __cond_resched_softirq(void);
3100
75e1056f 3101#define cond_resched_softirq() ({ \
3427445a 3102 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 3103 __cond_resched_softirq(); \
613afbf8 3104})
1da177e4 3105
f6f3c437
SH
3106static inline void cond_resched_rcu(void)
3107{
3108#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3109 rcu_read_unlock();
3110 cond_resched();
3111 rcu_read_lock();
3112#endif
3113}
3114
1da177e4
LT
3115/*
3116 * Does a critical section need to be broken due to another
95c354fe
NP
3117 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3118 * but a general need for low latency)
1da177e4 3119 */
95c354fe 3120static inline int spin_needbreak(spinlock_t *lock)
1da177e4 3121{
95c354fe
NP
3122#ifdef CONFIG_PREEMPT
3123 return spin_is_contended(lock);
3124#else
1da177e4 3125 return 0;
95c354fe 3126#endif
1da177e4
LT
3127}
3128
ee761f62
TG
3129/*
3130 * Idle thread specific functions to determine the need_resched
69dd0f84 3131 * polling state.
ee761f62 3132 */
69dd0f84 3133#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
3134static inline int tsk_is_polling(struct task_struct *p)
3135{
3136 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3137}
ea811747
PZ
3138
3139static inline void __current_set_polling(void)
3a98f871
TG
3140{
3141 set_thread_flag(TIF_POLLING_NRFLAG);
3142}
3143
ea811747
PZ
3144static inline bool __must_check current_set_polling_and_test(void)
3145{
3146 __current_set_polling();
3147
3148 /*
3149 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3150 * paired by resched_curr()
ea811747 3151 */
4e857c58 3152 smp_mb__after_atomic();
ea811747
PZ
3153
3154 return unlikely(tif_need_resched());
3155}
3156
3157static inline void __current_clr_polling(void)
3a98f871
TG
3158{
3159 clear_thread_flag(TIF_POLLING_NRFLAG);
3160}
ea811747
PZ
3161
3162static inline bool __must_check current_clr_polling_and_test(void)
3163{
3164 __current_clr_polling();
3165
3166 /*
3167 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3168 * paired by resched_curr()
ea811747 3169 */
4e857c58 3170 smp_mb__after_atomic();
ea811747
PZ
3171
3172 return unlikely(tif_need_resched());
3173}
3174
ee761f62
TG
3175#else
3176static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
3177static inline void __current_set_polling(void) { }
3178static inline void __current_clr_polling(void) { }
3179
3180static inline bool __must_check current_set_polling_and_test(void)
3181{
3182 return unlikely(tif_need_resched());
3183}
3184static inline bool __must_check current_clr_polling_and_test(void)
3185{
3186 return unlikely(tif_need_resched());
3187}
ee761f62
TG
3188#endif
3189
8cb75e0c
PZ
3190static inline void current_clr_polling(void)
3191{
3192 __current_clr_polling();
3193
3194 /*
3195 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3196 * Once the bit is cleared, we'll get IPIs with every new
3197 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3198 * fold.
3199 */
8875125e 3200 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3201
3202 preempt_fold_need_resched();
3203}
3204
75f93fed
PZ
3205static __always_inline bool need_resched(void)
3206{
3207 return unlikely(tif_need_resched());
3208}
3209
f06febc9
FM
3210/*
3211 * Thread group CPU time accounting.
3212 */
4cd4c1b4 3213void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3214void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3215
7bb44ade
RM
3216/*
3217 * Reevaluate whether the task has signals pending delivery.
3218 * Wake the task if so.
3219 * This is required every time the blocked sigset_t changes.
3220 * callers must hold sighand->siglock.
3221 */
3222extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3223extern void recalc_sigpending(void);
3224
910ffdb1
ON
3225extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3226
3227static inline void signal_wake_up(struct task_struct *t, bool resume)
3228{
3229 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3230}
3231static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3232{
3233 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3234}
1da177e4
LT
3235
3236/*
3237 * Wrappers for p->thread_info->cpu access. No-op on UP.
3238 */
3239#ifdef CONFIG_SMP
3240
3241static inline unsigned int task_cpu(const struct task_struct *p)
3242{
a1261f54 3243 return task_thread_info(p)->cpu;
1da177e4
LT
3244}
3245
b32e86b4
IM
3246static inline int task_node(const struct task_struct *p)
3247{
3248 return cpu_to_node(task_cpu(p));
3249}
3250
c65cc870 3251extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3252
3253#else
3254
3255static inline unsigned int task_cpu(const struct task_struct *p)
3256{
3257 return 0;
3258}
3259
3260static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3261{
3262}
3263
3264#endif /* CONFIG_SMP */
3265
96f874e2
RR
3266extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3267extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3268
7c941438 3269#ifdef CONFIG_CGROUP_SCHED
07e06b01 3270extern struct task_group root_task_group;
8323f26c 3271#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3272
54e99124
DG
3273extern int task_can_switch_user(struct user_struct *up,
3274 struct task_struct *tsk);
3275
4b98d11b
AD
3276#ifdef CONFIG_TASK_XACCT
3277static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3278{
940389b8 3279 tsk->ioac.rchar += amt;
4b98d11b
AD
3280}
3281
3282static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3283{
940389b8 3284 tsk->ioac.wchar += amt;
4b98d11b
AD
3285}
3286
3287static inline void inc_syscr(struct task_struct *tsk)
3288{
940389b8 3289 tsk->ioac.syscr++;
4b98d11b
AD
3290}
3291
3292static inline void inc_syscw(struct task_struct *tsk)
3293{
940389b8 3294 tsk->ioac.syscw++;
4b98d11b
AD
3295}
3296#else
3297static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3298{
3299}
3300
3301static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3302{
3303}
3304
3305static inline void inc_syscr(struct task_struct *tsk)
3306{
3307}
3308
3309static inline void inc_syscw(struct task_struct *tsk)
3310{
3311}
3312#endif
3313
82455257
DH
3314#ifndef TASK_SIZE_OF
3315#define TASK_SIZE_OF(tsk) TASK_SIZE
3316#endif
3317
f98bafa0 3318#ifdef CONFIG_MEMCG
cf475ad2 3319extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3320#else
3321static inline void mm_update_next_owner(struct mm_struct *mm)
3322{
3323}
f98bafa0 3324#endif /* CONFIG_MEMCG */
cf475ad2 3325
3e10e716
JS
3326static inline unsigned long task_rlimit(const struct task_struct *tsk,
3327 unsigned int limit)
3328{
316c1608 3329 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3330}
3331
3332static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3333 unsigned int limit)
3334{
316c1608 3335 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3336}
3337
3338static inline unsigned long rlimit(unsigned int limit)
3339{
3340 return task_rlimit(current, limit);
3341}
3342
3343static inline unsigned long rlimit_max(unsigned int limit)
3344{
3345 return task_rlimit_max(current, limit);
3346}
3347
adaf9fcd
RW
3348#ifdef CONFIG_CPU_FREQ
3349struct update_util_data {
3350 void (*func)(struct update_util_data *data,
3351 u64 time, unsigned long util, unsigned long max);
3352};
3353
0bed612b
RW
3354void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
3355 void (*func)(struct update_util_data *data, u64 time,
3356 unsigned long util, unsigned long max));
3357void cpufreq_remove_update_util_hook(int cpu);
adaf9fcd
RW
3358#endif /* CONFIG_CPU_FREQ */
3359
1da177e4 3360#endif