netdevsim: Add multi-queue support
[linux-2.6-block.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/mutex.h>
18#include <linux/plist.h>
19#include <linux/hrtimer.h>
0584df9c 20#include <linux/irqflags.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
ec1d2819 24#include <linux/refcount.h>
a3b6714e 25#include <linux/resource.h>
9745512c 26#include <linux/latencytop.h>
5eca1c10 27#include <linux/sched/prio.h>
9eacb5c7 28#include <linux/sched/types.h>
5eca1c10 29#include <linux/signal_types.h>
1446e1df 30#include <linux/syscall_user_dispatch.h>
5eca1c10
IM
31#include <linux/mm_types_task.h>
32#include <linux/task_io_accounting.h>
2b69942f 33#include <linux/posix-timers.h>
d7822b1e 34#include <linux/rseq.h>
0cd39f46 35#include <linux/seqlock.h>
dfd402a4 36#include <linux/kcsan.h>
5fbda3ec 37#include <asm/kmap_size.h>
a3b6714e 38
5eca1c10 39/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 40struct audit_context;
c7af7877 41struct backing_dev_info;
bddd87c7 42struct bio_list;
73c10101 43struct blk_plug;
a10787e6 44struct bpf_local_storage;
3c93a0c0 45struct capture_control;
c7af7877 46struct cfs_rq;
c7af7877
IM
47struct fs_struct;
48struct futex_pi_state;
49struct io_context;
1875dc5b 50struct io_uring_task;
c7af7877 51struct mempolicy;
89076bc3 52struct nameidata;
c7af7877
IM
53struct nsproxy;
54struct perf_event_context;
55struct pid_namespace;
56struct pipe_inode_info;
57struct rcu_node;
58struct reclaim_state;
59struct robust_list_head;
3c93a0c0
QY
60struct root_domain;
61struct rq;
c7af7877
IM
62struct sched_attr;
63struct sched_param;
43ae34cb 64struct seq_file;
c7af7877
IM
65struct sighand_struct;
66struct signal_struct;
67struct task_delay_info;
4cf86d77 68struct task_group;
1da177e4 69
4a8342d2
LT
70/*
71 * Task state bitmask. NOTE! These bits are also
72 * encoded in fs/proc/array.c: get_task_state().
73 *
74 * We have two separate sets of flags: task->state
75 * is about runnability, while task->exit_state are
76 * about the task exiting. Confusing, but this way
77 * modifying one set can't modify the other one by
78 * mistake.
79 */
5eca1c10
IM
80
81/* Used in tsk->state: */
92c4bc9f
PZ
82#define TASK_RUNNING 0x0000
83#define TASK_INTERRUPTIBLE 0x0001
84#define TASK_UNINTERRUPTIBLE 0x0002
85#define __TASK_STOPPED 0x0004
86#define __TASK_TRACED 0x0008
5eca1c10 87/* Used in tsk->exit_state: */
92c4bc9f
PZ
88#define EXIT_DEAD 0x0010
89#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
90#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
91/* Used in tsk->state again: */
8ef9925b
PZ
92#define TASK_PARKED 0x0040
93#define TASK_DEAD 0x0080
94#define TASK_WAKEKILL 0x0100
95#define TASK_WAKING 0x0200
92c4bc9f
PZ
96#define TASK_NOLOAD 0x0400
97#define TASK_NEW 0x0800
98#define TASK_STATE_MAX 0x1000
5eca1c10 99
5eca1c10
IM
100/* Convenience macros for the sake of set_current_state: */
101#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
102#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
103#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
104
105#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
106
107/* Convenience macros for the sake of wake_up(): */
108#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
109
110/* get_task_state(): */
111#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
112 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
113 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
114 TASK_PARKED)
5eca1c10 115
2f064a59 116#define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
5eca1c10 117
2f064a59 118#define task_is_traced(task) ((READ_ONCE(task->__state) & __TASK_TRACED) != 0)
5eca1c10 119
2f064a59 120#define task_is_stopped(task) ((READ_ONCE(task->__state) & __TASK_STOPPED) != 0)
5eca1c10 121
2f064a59 122#define task_is_stopped_or_traced(task) ((READ_ONCE(task->__state) & (__TASK_STOPPED | __TASK_TRACED)) != 0)
5eca1c10 123
8eb23b9f
PZ
124#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
125
b5bf9a90
PZ
126/*
127 * Special states are those that do not use the normal wait-loop pattern. See
128 * the comment with set_special_state().
129 */
130#define is_special_task_state(state) \
1cef1150 131 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 132
8eb23b9f
PZ
133#define __set_current_state(state_value) \
134 do { \
b5bf9a90 135 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f 136 current->task_state_change = _THIS_IP_; \
2f064a59 137 WRITE_ONCE(current->__state, (state_value)); \
8eb23b9f 138 } while (0)
b5bf9a90 139
8eb23b9f
PZ
140#define set_current_state(state_value) \
141 do { \
b5bf9a90 142 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f 143 current->task_state_change = _THIS_IP_; \
2f064a59 144 smp_store_mb(current->__state, (state_value)); \
8eb23b9f
PZ
145 } while (0)
146
b5bf9a90
PZ
147#define set_special_state(state_value) \
148 do { \
149 unsigned long flags; /* may shadow */ \
150 WARN_ON_ONCE(!is_special_task_state(state_value)); \
151 raw_spin_lock_irqsave(&current->pi_lock, flags); \
152 current->task_state_change = _THIS_IP_; \
2f064a59 153 WRITE_ONCE(current->__state, (state_value)); \
b5bf9a90
PZ
154 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
155 } while (0)
8eb23b9f 156#else
498d0c57
AM
157/*
158 * set_current_state() includes a barrier so that the write of current->state
159 * is correctly serialised wrt the caller's subsequent test of whether to
160 * actually sleep:
161 *
a2250238 162 * for (;;) {
498d0c57 163 * set_current_state(TASK_UNINTERRUPTIBLE);
58877d34
PZ
164 * if (CONDITION)
165 * break;
a2250238
PZ
166 *
167 * schedule();
168 * }
169 * __set_current_state(TASK_RUNNING);
170 *
171 * If the caller does not need such serialisation (because, for instance, the
58877d34 172 * CONDITION test and condition change and wakeup are under the same lock) then
a2250238
PZ
173 * use __set_current_state().
174 *
175 * The above is typically ordered against the wakeup, which does:
176 *
58877d34 177 * CONDITION = 1;
b5bf9a90 178 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 179 *
58877d34
PZ
180 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
181 * accessing p->state.
a2250238
PZ
182 *
183 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
184 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
185 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 186 *
b5bf9a90 187 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 188 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
189 * a problem either because that will result in one extra go around the loop
190 * and our @cond test will save the day.
498d0c57 191 *
a2250238 192 * Also see the comments of try_to_wake_up().
498d0c57 193 */
b5bf9a90 194#define __set_current_state(state_value) \
2f064a59 195 WRITE_ONCE(current->__state, (state_value))
b5bf9a90
PZ
196
197#define set_current_state(state_value) \
2f064a59 198 smp_store_mb(current->__state, (state_value))
b5bf9a90
PZ
199
200/*
201 * set_special_state() should be used for those states when the blocking task
202 * can not use the regular condition based wait-loop. In that case we must
203 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
204 * will not collide with our state change.
205 */
206#define set_special_state(state_value) \
207 do { \
208 unsigned long flags; /* may shadow */ \
209 raw_spin_lock_irqsave(&current->pi_lock, flags); \
2f064a59 210 WRITE_ONCE(current->__state, (state_value)); \
b5bf9a90
PZ
211 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
212 } while (0)
213
8eb23b9f
PZ
214#endif
215
2f064a59 216#define get_current_state() READ_ONCE(current->__state)
d6c23bb3 217
5eca1c10
IM
218/* Task command name length: */
219#define TASK_COMM_LEN 16
1da177e4 220
1da177e4
LT
221extern void scheduler_tick(void);
222
5eca1c10
IM
223#define MAX_SCHEDULE_TIMEOUT LONG_MAX
224
225extern long schedule_timeout(long timeout);
226extern long schedule_timeout_interruptible(long timeout);
227extern long schedule_timeout_killable(long timeout);
228extern long schedule_timeout_uninterruptible(long timeout);
229extern long schedule_timeout_idle(long timeout);
1da177e4 230asmlinkage void schedule(void);
c5491ea7 231extern void schedule_preempt_disabled(void);
19c95f26 232asmlinkage void preempt_schedule_irq(void);
1da177e4 233
10ab5643
TH
234extern int __must_check io_schedule_prepare(void);
235extern void io_schedule_finish(int token);
9cff8ade 236extern long io_schedule_timeout(long timeout);
10ab5643 237extern void io_schedule(void);
9cff8ade 238
d37f761d 239/**
0ba42a59 240 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
241 * @utime: time spent in user mode
242 * @stime: time spent in system mode
9d7fb042 243 * @lock: protects the above two fields
d37f761d 244 *
9d7fb042
PZ
245 * Stores previous user/system time values such that we can guarantee
246 * monotonicity.
d37f761d 247 */
9d7fb042
PZ
248struct prev_cputime {
249#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
250 u64 utime;
251 u64 stime;
252 raw_spinlock_t lock;
9d7fb042 253#endif
d37f761d
FW
254};
255
bac5b6b6
FW
256enum vtime_state {
257 /* Task is sleeping or running in a CPU with VTIME inactive: */
258 VTIME_INACTIVE = 0,
14faf6fc
FW
259 /* Task is idle */
260 VTIME_IDLE,
bac5b6b6
FW
261 /* Task runs in kernelspace in a CPU with VTIME active: */
262 VTIME_SYS,
14faf6fc
FW
263 /* Task runs in userspace in a CPU with VTIME active: */
264 VTIME_USER,
e6d5bf3e
FW
265 /* Task runs as guests in a CPU with VTIME active: */
266 VTIME_GUEST,
bac5b6b6
FW
267};
268
269struct vtime {
270 seqcount_t seqcount;
271 unsigned long long starttime;
272 enum vtime_state state;
802f4a82 273 unsigned int cpu;
2a42eb95
WL
274 u64 utime;
275 u64 stime;
276 u64 gtime;
bac5b6b6
FW
277};
278
69842cba
PB
279/*
280 * Utilization clamp constraints.
281 * @UCLAMP_MIN: Minimum utilization
282 * @UCLAMP_MAX: Maximum utilization
283 * @UCLAMP_CNT: Utilization clamp constraints count
284 */
285enum uclamp_id {
286 UCLAMP_MIN = 0,
287 UCLAMP_MAX,
288 UCLAMP_CNT
289};
290
f9a25f77
MP
291#ifdef CONFIG_SMP
292extern struct root_domain def_root_domain;
293extern struct mutex sched_domains_mutex;
294#endif
295
1da177e4 296struct sched_info {
7f5f8e8d 297#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
298 /* Cumulative counters: */
299
300 /* # of times we have run on this CPU: */
301 unsigned long pcount;
302
303 /* Time spent waiting on a runqueue: */
304 unsigned long long run_delay;
305
306 /* Timestamps: */
307
308 /* When did we last run on a CPU? */
309 unsigned long long last_arrival;
310
311 /* When were we last queued to run? */
312 unsigned long long last_queued;
1da177e4 313
f6db8347 314#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 315};
1da177e4 316
6ecdd749
YD
317/*
318 * Integer metrics need fixed point arithmetic, e.g., sched/fair
319 * has a few: load, load_avg, util_avg, freq, and capacity.
320 *
321 * We define a basic fixed point arithmetic range, and then formalize
322 * all these metrics based on that basic range.
323 */
5eca1c10
IM
324# define SCHED_FIXEDPOINT_SHIFT 10
325# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 326
69842cba
PB
327/* Increase resolution of cpu_capacity calculations */
328# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
329# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
330
20b8a59f 331struct load_weight {
5eca1c10
IM
332 unsigned long weight;
333 u32 inv_weight;
20b8a59f
IM
334};
335
7f65ea42
PB
336/**
337 * struct util_est - Estimation utilization of FAIR tasks
338 * @enqueued: instantaneous estimated utilization of a task/cpu
339 * @ewma: the Exponential Weighted Moving Average (EWMA)
340 * utilization of a task
341 *
342 * Support data structure to track an Exponential Weighted Moving Average
343 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
344 * average each time a task completes an activation. Sample's weight is chosen
345 * so that the EWMA will be relatively insensitive to transient changes to the
346 * task's workload.
347 *
348 * The enqueued attribute has a slightly different meaning for tasks and cpus:
349 * - task: the task's util_avg at last task dequeue time
350 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
351 * Thus, the util_est.enqueued of a task represents the contribution on the
352 * estimated utilization of the CPU where that task is currently enqueued.
353 *
354 * Only for tasks we track a moving average of the past instantaneous
355 * estimated utilization. This allows to absorb sporadic drops in utilization
356 * of an otherwise almost periodic task.
68d7a190
DE
357 *
358 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
359 * updates. When a task is dequeued, its util_est should not be updated if its
360 * util_avg has not been updated in the meantime.
361 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
362 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
363 * for a task) it is safe to use MSB.
7f65ea42
PB
364 */
365struct util_est {
366 unsigned int enqueued;
367 unsigned int ewma;
368#define UTIL_EST_WEIGHT_SHIFT 2
68d7a190 369#define UTIL_AVG_UNCHANGED 0x80000000
317d359d 370} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 371
9d89c257 372/*
9f683953 373 * The load/runnable/util_avg accumulates an infinite geometric series
0dacee1b 374 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
7b595334
YD
375 *
376 * [load_avg definition]
377 *
378 * load_avg = runnable% * scale_load_down(load)
379 *
9f683953
VG
380 * [runnable_avg definition]
381 *
382 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
7b595334 383 *
7b595334
YD
384 * [util_avg definition]
385 *
386 * util_avg = running% * SCHED_CAPACITY_SCALE
387 *
9f683953
VG
388 * where runnable% is the time ratio that a sched_entity is runnable and
389 * running% the time ratio that a sched_entity is running.
390 *
391 * For cfs_rq, they are the aggregated values of all runnable and blocked
392 * sched_entities.
7b595334 393 *
c1b7b8d4 394 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
9f683953
VG
395 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
396 * for computing those signals (see update_rq_clock_pelt())
7b595334 397 *
23127296
VG
398 * N.B., the above ratios (runnable% and running%) themselves are in the
399 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
400 * to as large a range as necessary. This is for example reflected by
401 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
402 *
403 * [Overflow issue]
404 *
405 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
406 * with the highest load (=88761), always runnable on a single cfs_rq,
407 * and should not overflow as the number already hits PID_MAX_LIMIT.
408 *
409 * For all other cases (including 32-bit kernels), struct load_weight's
410 * weight will overflow first before we do, because:
411 *
412 * Max(load_avg) <= Max(load.weight)
413 *
414 * Then it is the load_weight's responsibility to consider overflow
415 * issues.
9d89c257 416 */
9d85f21c 417struct sched_avg {
5eca1c10
IM
418 u64 last_update_time;
419 u64 load_sum;
9f683953 420 u64 runnable_sum;
5eca1c10
IM
421 u32 util_sum;
422 u32 period_contrib;
423 unsigned long load_avg;
9f683953 424 unsigned long runnable_avg;
5eca1c10 425 unsigned long util_avg;
7f65ea42 426 struct util_est util_est;
317d359d 427} ____cacheline_aligned;
9d85f21c 428
41acab88 429struct sched_statistics {
7f5f8e8d 430#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
431 u64 wait_start;
432 u64 wait_max;
433 u64 wait_count;
434 u64 wait_sum;
435 u64 iowait_count;
436 u64 iowait_sum;
437
438 u64 sleep_start;
439 u64 sleep_max;
440 s64 sum_sleep_runtime;
441
442 u64 block_start;
443 u64 block_max;
444 u64 exec_max;
445 u64 slice_max;
446
447 u64 nr_migrations_cold;
448 u64 nr_failed_migrations_affine;
449 u64 nr_failed_migrations_running;
450 u64 nr_failed_migrations_hot;
451 u64 nr_forced_migrations;
452
453 u64 nr_wakeups;
454 u64 nr_wakeups_sync;
455 u64 nr_wakeups_migrate;
456 u64 nr_wakeups_local;
457 u64 nr_wakeups_remote;
458 u64 nr_wakeups_affine;
459 u64 nr_wakeups_affine_attempts;
460 u64 nr_wakeups_passive;
461 u64 nr_wakeups_idle;
41acab88 462#endif
7f5f8e8d 463};
41acab88
LDM
464
465struct sched_entity {
5eca1c10
IM
466 /* For load-balancing: */
467 struct load_weight load;
468 struct rb_node run_node;
469 struct list_head group_node;
470 unsigned int on_rq;
41acab88 471
5eca1c10
IM
472 u64 exec_start;
473 u64 sum_exec_runtime;
474 u64 vruntime;
475 u64 prev_sum_exec_runtime;
41acab88 476
5eca1c10 477 u64 nr_migrations;
41acab88 478
5eca1c10 479 struct sched_statistics statistics;
94c18227 480
20b8a59f 481#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
482 int depth;
483 struct sched_entity *parent;
20b8a59f 484 /* rq on which this entity is (to be) queued: */
5eca1c10 485 struct cfs_rq *cfs_rq;
20b8a59f 486 /* rq "owned" by this entity/group: */
5eca1c10 487 struct cfs_rq *my_q;
9f683953
VG
488 /* cached value of my_q->h_nr_running */
489 unsigned long runnable_weight;
20b8a59f 490#endif
8bd75c77 491
141965c7 492#ifdef CONFIG_SMP
5a107804
JO
493 /*
494 * Per entity load average tracking.
495 *
496 * Put into separate cache line so it does not
497 * collide with read-mostly values above.
498 */
317d359d 499 struct sched_avg avg;
9d85f21c 500#endif
20b8a59f 501};
70b97a7f 502
fa717060 503struct sched_rt_entity {
5eca1c10
IM
504 struct list_head run_list;
505 unsigned long timeout;
506 unsigned long watchdog_stamp;
507 unsigned int time_slice;
508 unsigned short on_rq;
509 unsigned short on_list;
510
511 struct sched_rt_entity *back;
052f1dc7 512#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 513 struct sched_rt_entity *parent;
6f505b16 514 /* rq on which this entity is (to be) queued: */
5eca1c10 515 struct rt_rq *rt_rq;
6f505b16 516 /* rq "owned" by this entity/group: */
5eca1c10 517 struct rt_rq *my_q;
6f505b16 518#endif
3859a271 519} __randomize_layout;
fa717060 520
aab03e05 521struct sched_dl_entity {
5eca1c10 522 struct rb_node rb_node;
aab03e05
DF
523
524 /*
525 * Original scheduling parameters. Copied here from sched_attr
4027d080 526 * during sched_setattr(), they will remain the same until
527 * the next sched_setattr().
aab03e05 528 */
5eca1c10
IM
529 u64 dl_runtime; /* Maximum runtime for each instance */
530 u64 dl_deadline; /* Relative deadline of each instance */
531 u64 dl_period; /* Separation of two instances (period) */
54d6d303 532 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 533 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
534
535 /*
536 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 537 * they are continuously updated during task execution. Note that
aab03e05
DF
538 * the remaining runtime could be < 0 in case we are in overrun.
539 */
5eca1c10
IM
540 s64 runtime; /* Remaining runtime for this instance */
541 u64 deadline; /* Absolute deadline for this instance */
542 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
543
544 /*
545 * Some bool flags:
546 *
547 * @dl_throttled tells if we exhausted the runtime. If so, the
548 * task has to wait for a replenishment to be performed at the
549 * next firing of dl_timer.
550 *
2d3d891d
DF
551 * @dl_boosted tells if we are boosted due to DI. If so we are
552 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
553 * exit the critical section);
554 *
5eca1c10 555 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 556 * all its available runtime during the last job.
209a0cbd
LA
557 *
558 * @dl_non_contending tells if the task is inactive while still
559 * contributing to the active utilization. In other words, it
560 * indicates if the inactive timer has been armed and its handler
561 * has not been executed yet. This flag is useful to avoid race
562 * conditions between the inactive timer handler and the wakeup
563 * code.
34be3930
JL
564 *
565 * @dl_overrun tells if the task asked to be informed about runtime
566 * overruns.
aab03e05 567 */
aa5222e9 568 unsigned int dl_throttled : 1;
aa5222e9
DC
569 unsigned int dl_yielded : 1;
570 unsigned int dl_non_contending : 1;
34be3930 571 unsigned int dl_overrun : 1;
aab03e05
DF
572
573 /*
574 * Bandwidth enforcement timer. Each -deadline task has its
575 * own bandwidth to be enforced, thus we need one timer per task.
576 */
5eca1c10 577 struct hrtimer dl_timer;
209a0cbd
LA
578
579 /*
580 * Inactive timer, responsible for decreasing the active utilization
581 * at the "0-lag time". When a -deadline task blocks, it contributes
582 * to GRUB's active utilization until the "0-lag time", hence a
583 * timer is needed to decrease the active utilization at the correct
584 * time.
585 */
586 struct hrtimer inactive_timer;
2279f540
JL
587
588#ifdef CONFIG_RT_MUTEXES
589 /*
590 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
591 * pi_se points to the donor, otherwise points to the dl_se it belongs
592 * to (the original one/itself).
593 */
594 struct sched_dl_entity *pi_se;
595#endif
aab03e05 596};
8bd75c77 597
69842cba
PB
598#ifdef CONFIG_UCLAMP_TASK
599/* Number of utilization clamp buckets (shorter alias) */
600#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
601
602/*
603 * Utilization clamp for a scheduling entity
604 * @value: clamp value "assigned" to a se
605 * @bucket_id: bucket index corresponding to the "assigned" value
e8f14172 606 * @active: the se is currently refcounted in a rq's bucket
a509a7cd 607 * @user_defined: the requested clamp value comes from user-space
69842cba
PB
608 *
609 * The bucket_id is the index of the clamp bucket matching the clamp value
610 * which is pre-computed and stored to avoid expensive integer divisions from
611 * the fast path.
e8f14172
PB
612 *
613 * The active bit is set whenever a task has got an "effective" value assigned,
614 * which can be different from the clamp value "requested" from user-space.
615 * This allows to know a task is refcounted in the rq's bucket corresponding
616 * to the "effective" bucket_id.
a509a7cd
PB
617 *
618 * The user_defined bit is set whenever a task has got a task-specific clamp
619 * value requested from userspace, i.e. the system defaults apply to this task
620 * just as a restriction. This allows to relax default clamps when a less
621 * restrictive task-specific value has been requested, thus allowing to
622 * implement a "nice" semantic. For example, a task running with a 20%
623 * default boost can still drop its own boosting to 0%.
69842cba
PB
624 */
625struct uclamp_se {
626 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
627 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
e8f14172 628 unsigned int active : 1;
a509a7cd 629 unsigned int user_defined : 1;
69842cba
PB
630};
631#endif /* CONFIG_UCLAMP_TASK */
632
1d082fd0
PM
633union rcu_special {
634 struct {
5eca1c10
IM
635 u8 blocked;
636 u8 need_qs;
05f41571 637 u8 exp_hint; /* Hint for performance. */
276c4104 638 u8 need_mb; /* Readers need smp_mb(). */
8203d6d0 639 } b; /* Bits. */
05f41571 640 u32 s; /* Set of bits. */
1d082fd0 641};
86848966 642
8dc85d54
PZ
643enum perf_event_task_context {
644 perf_invalid_context = -1,
645 perf_hw_context = 0,
89a1e187 646 perf_sw_context,
8dc85d54
PZ
647 perf_nr_task_contexts,
648};
649
eb61baf6
IM
650struct wake_q_node {
651 struct wake_q_node *next;
652};
653
5fbda3ec
TG
654struct kmap_ctrl {
655#ifdef CONFIG_KMAP_LOCAL
656 int idx;
657 pte_t pteval[KM_MAX_IDX];
658#endif
659};
660
1da177e4 661struct task_struct {
c65eacbe
AL
662#ifdef CONFIG_THREAD_INFO_IN_TASK
663 /*
664 * For reasons of header soup (see current_thread_info()), this
665 * must be the first element of task_struct.
666 */
5eca1c10 667 struct thread_info thread_info;
c65eacbe 668#endif
2f064a59 669 unsigned int __state;
29e48ce8
KC
670
671 /*
672 * This begins the randomizable portion of task_struct. Only
673 * scheduling-critical items should be added above here.
674 */
675 randomized_struct_fields_start
676
5eca1c10 677 void *stack;
ec1d2819 678 refcount_t usage;
5eca1c10
IM
679 /* Per task flags (PF_*), defined further below: */
680 unsigned int flags;
681 unsigned int ptrace;
1da177e4 682
2dd73a4f 683#ifdef CONFIG_SMP
5eca1c10 684 int on_cpu;
8c4890d1 685 struct __call_single_node wake_entry;
c65eacbe 686#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
687 /* Current CPU: */
688 unsigned int cpu;
c65eacbe 689#endif
5eca1c10
IM
690 unsigned int wakee_flips;
691 unsigned long wakee_flip_decay_ts;
692 struct task_struct *last_wakee;
ac66f547 693
32e839dd
MG
694 /*
695 * recent_used_cpu is initially set as the last CPU used by a task
696 * that wakes affine another task. Waker/wakee relationships can
697 * push tasks around a CPU where each wakeup moves to the next one.
698 * Tracking a recently used CPU allows a quick search for a recently
699 * used CPU that may be idle.
700 */
701 int recent_used_cpu;
5eca1c10 702 int wake_cpu;
2dd73a4f 703#endif
5eca1c10
IM
704 int on_rq;
705
706 int prio;
707 int static_prio;
708 int normal_prio;
709 unsigned int rt_priority;
50e645a8 710
5eca1c10
IM
711 const struct sched_class *sched_class;
712 struct sched_entity se;
713 struct sched_rt_entity rt;
8a311c74
PZ
714 struct sched_dl_entity dl;
715
716#ifdef CONFIG_SCHED_CORE
717 struct rb_node core_node;
718 unsigned long core_cookie;
d2dfa17b 719 unsigned int core_occupation;
8a311c74
PZ
720#endif
721
8323f26c 722#ifdef CONFIG_CGROUP_SCHED
5eca1c10 723 struct task_group *sched_task_group;
8323f26c 724#endif
1da177e4 725
69842cba 726#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
727 /*
728 * Clamp values requested for a scheduling entity.
729 * Must be updated with task_rq_lock() held.
730 */
e8f14172 731 struct uclamp_se uclamp_req[UCLAMP_CNT];
13685c4a
QY
732 /*
733 * Effective clamp values used for a scheduling entity.
734 * Must be updated with task_rq_lock() held.
735 */
69842cba
PB
736 struct uclamp_se uclamp[UCLAMP_CNT];
737#endif
738
e107be36 739#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
740 /* List of struct preempt_notifier: */
741 struct hlist_head preempt_notifiers;
e107be36
AK
742#endif
743
6c5c9341 744#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 745 unsigned int btrace_seq;
6c5c9341 746#endif
1da177e4 747
5eca1c10
IM
748 unsigned int policy;
749 int nr_cpus_allowed;
3bd37062
SAS
750 const cpumask_t *cpus_ptr;
751 cpumask_t cpus_mask;
6d337eab 752 void *migration_pending;
74d862b6 753#ifdef CONFIG_SMP
a7c81556 754 unsigned short migration_disabled;
af449901 755#endif
a7c81556 756 unsigned short migration_flags;
1da177e4 757
a57eb940 758#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
759 int rcu_read_lock_nesting;
760 union rcu_special rcu_read_unlock_special;
761 struct list_head rcu_node_entry;
762 struct rcu_node *rcu_blocked_node;
28f6569a 763#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 764
8315f422 765#ifdef CONFIG_TASKS_RCU
5eca1c10 766 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
767 u8 rcu_tasks_holdout;
768 u8 rcu_tasks_idx;
5eca1c10 769 int rcu_tasks_idle_cpu;
ccdd29ff 770 struct list_head rcu_tasks_holdout_list;
8315f422 771#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 772
d5f177d3
PM
773#ifdef CONFIG_TASKS_TRACE_RCU
774 int trc_reader_nesting;
775 int trc_ipi_to_cpu;
276c4104 776 union rcu_special trc_reader_special;
d5f177d3
PM
777 bool trc_reader_checked;
778 struct list_head trc_holdout_list;
779#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
780
5eca1c10 781 struct sched_info sched_info;
1da177e4 782
5eca1c10 783 struct list_head tasks;
806c09a7 784#ifdef CONFIG_SMP
5eca1c10
IM
785 struct plist_node pushable_tasks;
786 struct rb_node pushable_dl_tasks;
806c09a7 787#endif
1da177e4 788
5eca1c10
IM
789 struct mm_struct *mm;
790 struct mm_struct *active_mm;
314ff785
IM
791
792 /* Per-thread vma caching: */
5eca1c10 793 struct vmacache vmacache;
314ff785 794
5eca1c10
IM
795#ifdef SPLIT_RSS_COUNTING
796 struct task_rss_stat rss_stat;
34e55232 797#endif
5eca1c10
IM
798 int exit_state;
799 int exit_code;
800 int exit_signal;
801 /* The signal sent when the parent dies: */
802 int pdeath_signal;
803 /* JOBCTL_*, siglock protected: */
804 unsigned long jobctl;
805
806 /* Used for emulating ABI behavior of previous Linux versions: */
807 unsigned int personality;
808
809 /* Scheduler bits, serialized by scheduler locks: */
810 unsigned sched_reset_on_fork:1;
811 unsigned sched_contributes_to_load:1;
812 unsigned sched_migrated:1;
eb414681
JW
813#ifdef CONFIG_PSI
814 unsigned sched_psi_wake_requeue:1;
815#endif
816
5eca1c10
IM
817 /* Force alignment to the next boundary: */
818 unsigned :0;
819
820 /* Unserialized, strictly 'current' */
821
f97bb527
PZ
822 /*
823 * This field must not be in the scheduler word above due to wakelist
824 * queueing no longer being serialized by p->on_cpu. However:
825 *
826 * p->XXX = X; ttwu()
827 * schedule() if (p->on_rq && ..) // false
828 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
829 * deactivate_task() ttwu_queue_wakelist())
830 * p->on_rq = 0; p->sched_remote_wakeup = Y;
831 *
832 * guarantees all stores of 'current' are visible before
833 * ->sched_remote_wakeup gets used, so it can be in this word.
834 */
835 unsigned sched_remote_wakeup:1;
836
5eca1c10
IM
837 /* Bit to tell LSMs we're in execve(): */
838 unsigned in_execve:1;
839 unsigned in_iowait:1;
840#ifndef TIF_RESTORE_SIGMASK
841 unsigned restore_sigmask:1;
7e781418 842#endif
626ebc41 843#ifdef CONFIG_MEMCG
29ef680a 844 unsigned in_user_fault:1;
127424c8 845#endif
ff303e66 846#ifdef CONFIG_COMPAT_BRK
5eca1c10 847 unsigned brk_randomized:1;
ff303e66 848#endif
77f88796
TH
849#ifdef CONFIG_CGROUPS
850 /* disallow userland-initiated cgroup migration */
851 unsigned no_cgroup_migration:1;
76f969e8
RG
852 /* task is frozen/stopped (used by the cgroup freezer) */
853 unsigned frozen:1;
77f88796 854#endif
d09d8df3 855#ifdef CONFIG_BLK_CGROUP
d09d8df3
JB
856 unsigned use_memdelay:1;
857#endif
1066d1b6
YS
858#ifdef CONFIG_PSI
859 /* Stalled due to lack of memory */
860 unsigned in_memstall:1;
861#endif
8e9b16c4
ST
862#ifdef CONFIG_PAGE_OWNER
863 /* Used by page_owner=on to detect recursion in page tracking. */
864 unsigned in_page_owner:1;
865#endif
6f185c29 866
5eca1c10 867 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 868
5eca1c10 869 struct restart_block restart_block;
f56141e3 870
5eca1c10
IM
871 pid_t pid;
872 pid_t tgid;
0a425405 873
050e9baa 874#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
875 /* Canary value for the -fstack-protector GCC feature: */
876 unsigned long stack_canary;
1314562a 877#endif
4d1d61a6 878 /*
5eca1c10 879 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 880 * older sibling, respectively. (p->father can be replaced with
f470021a 881 * p->real_parent->pid)
1da177e4 882 */
5eca1c10
IM
883
884 /* Real parent process: */
885 struct task_struct __rcu *real_parent;
886
887 /* Recipient of SIGCHLD, wait4() reports: */
888 struct task_struct __rcu *parent;
889
1da177e4 890 /*
5eca1c10 891 * Children/sibling form the list of natural children:
1da177e4 892 */
5eca1c10
IM
893 struct list_head children;
894 struct list_head sibling;
895 struct task_struct *group_leader;
1da177e4 896
f470021a 897 /*
5eca1c10
IM
898 * 'ptraced' is the list of tasks this task is using ptrace() on.
899 *
f470021a 900 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 901 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 902 */
5eca1c10
IM
903 struct list_head ptraced;
904 struct list_head ptrace_entry;
f470021a 905
1da177e4 906 /* PID/PID hash table linkage. */
2c470475
EB
907 struct pid *thread_pid;
908 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
909 struct list_head thread_group;
910 struct list_head thread_node;
911
912 struct completion *vfork_done;
1da177e4 913
5eca1c10
IM
914 /* CLONE_CHILD_SETTID: */
915 int __user *set_child_tid;
1da177e4 916
5eca1c10
IM
917 /* CLONE_CHILD_CLEARTID: */
918 int __user *clear_child_tid;
919
3bfe6106
JA
920 /* PF_IO_WORKER */
921 void *pf_io_worker;
922
5eca1c10
IM
923 u64 utime;
924 u64 stime;
40565b5a 925#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
926 u64 utimescaled;
927 u64 stimescaled;
40565b5a 928#endif
5eca1c10
IM
929 u64 gtime;
930 struct prev_cputime prev_cputime;
6a61671b 931#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 932 struct vtime vtime;
d99ca3b9 933#endif
d027d45d
FW
934
935#ifdef CONFIG_NO_HZ_FULL
5eca1c10 936 atomic_t tick_dep_mask;
d027d45d 937#endif
5eca1c10
IM
938 /* Context switch counts: */
939 unsigned long nvcsw;
940 unsigned long nivcsw;
941
942 /* Monotonic time in nsecs: */
943 u64 start_time;
944
945 /* Boot based time in nsecs: */
cf25e24d 946 u64 start_boottime;
5eca1c10
IM
947
948 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
949 unsigned long min_flt;
950 unsigned long maj_flt;
1da177e4 951
2b69942f
TG
952 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
953 struct posix_cputimers posix_cputimers;
1da177e4 954
1fb497dd
TG
955#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
956 struct posix_cputimers_work posix_cputimers_work;
957#endif
958
5eca1c10
IM
959 /* Process credentials: */
960
961 /* Tracer's credentials at attach: */
962 const struct cred __rcu *ptracer_cred;
963
964 /* Objective and real subjective task credentials (COW): */
965 const struct cred __rcu *real_cred;
966
967 /* Effective (overridable) subjective task credentials (COW): */
968 const struct cred __rcu *cred;
969
7743c48e
DH
970#ifdef CONFIG_KEYS
971 /* Cached requested key. */
972 struct key *cached_requested_key;
973#endif
974
5eca1c10
IM
975 /*
976 * executable name, excluding path.
977 *
978 * - normally initialized setup_new_exec()
979 * - access it with [gs]et_task_comm()
980 * - lock it with task_lock()
981 */
982 char comm[TASK_COMM_LEN];
983
984 struct nameidata *nameidata;
985
3d5b6fcc 986#ifdef CONFIG_SYSVIPC
5eca1c10
IM
987 struct sysv_sem sysvsem;
988 struct sysv_shm sysvshm;
3d5b6fcc 989#endif
e162b39a 990#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 991 unsigned long last_switch_count;
a2e51445 992 unsigned long last_switch_time;
82a1fcb9 993#endif
5eca1c10
IM
994 /* Filesystem information: */
995 struct fs_struct *fs;
996
997 /* Open file information: */
998 struct files_struct *files;
999
0f212204
JA
1000#ifdef CONFIG_IO_URING
1001 struct io_uring_task *io_uring;
1002#endif
1003
5eca1c10
IM
1004 /* Namespaces: */
1005 struct nsproxy *nsproxy;
1006
1007 /* Signal handlers: */
1008 struct signal_struct *signal;
913292c9 1009 struct sighand_struct __rcu *sighand;
5eca1c10
IM
1010 sigset_t blocked;
1011 sigset_t real_blocked;
1012 /* Restored if set_restore_sigmask() was used: */
1013 sigset_t saved_sigmask;
1014 struct sigpending pending;
1015 unsigned long sas_ss_sp;
1016 size_t sas_ss_size;
1017 unsigned int sas_ss_flags;
1018
1019 struct callback_head *task_works;
1020
4b7d248b 1021#ifdef CONFIG_AUDIT
bfef93a5 1022#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
1023 struct audit_context *audit_context;
1024#endif
5eca1c10
IM
1025 kuid_t loginuid;
1026 unsigned int sessionid;
bfef93a5 1027#endif
5eca1c10 1028 struct seccomp seccomp;
1446e1df 1029 struct syscall_user_dispatch syscall_dispatch;
5eca1c10
IM
1030
1031 /* Thread group tracking: */
d1e7fd64
EB
1032 u64 parent_exec_id;
1033 u64 self_exec_id;
1da177e4 1034
5eca1c10
IM
1035 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1036 spinlock_t alloc_lock;
1da177e4 1037
b29739f9 1038 /* Protection of the PI data structures: */
5eca1c10 1039 raw_spinlock_t pi_lock;
b29739f9 1040
5eca1c10 1041 struct wake_q_node wake_q;
76751049 1042
23f78d4a 1043#ifdef CONFIG_RT_MUTEXES
5eca1c10 1044 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 1045 struct rb_root_cached pi_waiters;
e96a7705
XP
1046 /* Updated under owner's pi_lock and rq lock */
1047 struct task_struct *pi_top_task;
5eca1c10
IM
1048 /* Deadlock detection and priority inheritance handling: */
1049 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1050#endif
1051
408894ee 1052#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
1053 /* Mutex deadlock detection: */
1054 struct mutex_waiter *blocked_on;
408894ee 1055#endif
5eca1c10 1056
312364f3
DV
1057#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1058 int non_block_count;
1059#endif
1060
de30a2b3 1061#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c 1062 struct irqtrace_events irqtrace;
de8f5e4f 1063 unsigned int hardirq_threaded;
c86e9b98 1064 u64 hardirq_chain_key;
5eca1c10
IM
1065 int softirqs_enabled;
1066 int softirq_context;
40db1739 1067 int irq_config;
de30a2b3 1068#endif
728b478d
TG
1069#ifdef CONFIG_PREEMPT_RT
1070 int softirq_disable_cnt;
1071#endif
5eca1c10 1072
fbb9ce95 1073#ifdef CONFIG_LOCKDEP
5eca1c10
IM
1074# define MAX_LOCK_DEPTH 48UL
1075 u64 curr_chain_key;
1076 int lockdep_depth;
1077 unsigned int lockdep_recursion;
1078 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 1079#endif
5eca1c10 1080
5cf53f3c 1081#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
5eca1c10 1082 unsigned int in_ubsan;
c6d30853 1083#endif
408894ee 1084
5eca1c10
IM
1085 /* Journalling filesystem info: */
1086 void *journal_info;
1da177e4 1087
5eca1c10
IM
1088 /* Stacked block device info: */
1089 struct bio_list *bio_list;
d89d8796 1090
73c10101 1091#ifdef CONFIG_BLOCK
5eca1c10
IM
1092 /* Stack plugging: */
1093 struct blk_plug *plug;
73c10101
JA
1094#endif
1095
5eca1c10
IM
1096 /* VM state: */
1097 struct reclaim_state *reclaim_state;
1098
1099 struct backing_dev_info *backing_dev_info;
1da177e4 1100
5eca1c10 1101 struct io_context *io_context;
1da177e4 1102
5e1f0f09
MG
1103#ifdef CONFIG_COMPACTION
1104 struct capture_control *capture_control;
1105#endif
5eca1c10
IM
1106 /* Ptrace state: */
1107 unsigned long ptrace_message;
ae7795bc 1108 kernel_siginfo_t *last_siginfo;
1da177e4 1109
5eca1c10 1110 struct task_io_accounting ioac;
eb414681
JW
1111#ifdef CONFIG_PSI
1112 /* Pressure stall state */
1113 unsigned int psi_flags;
1114#endif
5eca1c10
IM
1115#ifdef CONFIG_TASK_XACCT
1116 /* Accumulated RSS usage: */
1117 u64 acct_rss_mem1;
1118 /* Accumulated virtual memory usage: */
1119 u64 acct_vm_mem1;
1120 /* stime + utime since last update: */
1121 u64 acct_timexpd;
1da177e4
LT
1122#endif
1123#ifdef CONFIG_CPUSETS
5eca1c10
IM
1124 /* Protected by ->alloc_lock: */
1125 nodemask_t mems_allowed;
3b03706f 1126 /* Sequence number to catch updates: */
b7505861 1127 seqcount_spinlock_t mems_allowed_seq;
5eca1c10
IM
1128 int cpuset_mem_spread_rotor;
1129 int cpuset_slab_spread_rotor;
1da177e4 1130#endif
ddbcc7e8 1131#ifdef CONFIG_CGROUPS
5eca1c10
IM
1132 /* Control Group info protected by css_set_lock: */
1133 struct css_set __rcu *cgroups;
1134 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1135 struct list_head cg_list;
ddbcc7e8 1136#endif
e6d42931 1137#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 1138 u32 closid;
d6aaba61 1139 u32 rmid;
e02737d5 1140#endif
42b2dd0a 1141#ifdef CONFIG_FUTEX
5eca1c10 1142 struct robust_list_head __user *robust_list;
34f192c6
IM
1143#ifdef CONFIG_COMPAT
1144 struct compat_robust_list_head __user *compat_robust_list;
1145#endif
5eca1c10
IM
1146 struct list_head pi_state_list;
1147 struct futex_pi_state *pi_state_cache;
3f186d97 1148 struct mutex futex_exit_mutex;
3d4775df 1149 unsigned int futex_state;
c7aceaba 1150#endif
cdd6c482 1151#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
1152 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1153 struct mutex perf_event_mutex;
1154 struct list_head perf_event_list;
a63eaf34 1155#endif
8f47b187 1156#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1157 unsigned long preempt_disable_ip;
8f47b187 1158#endif
c7aceaba 1159#ifdef CONFIG_NUMA
5eca1c10
IM
1160 /* Protected by alloc_lock: */
1161 struct mempolicy *mempolicy;
45816682 1162 short il_prev;
5eca1c10 1163 short pref_node_fork;
42b2dd0a 1164#endif
cbee9f88 1165#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1166 int numa_scan_seq;
1167 unsigned int numa_scan_period;
1168 unsigned int numa_scan_period_max;
1169 int numa_preferred_nid;
1170 unsigned long numa_migrate_retry;
1171 /* Migration stamp: */
1172 u64 node_stamp;
1173 u64 last_task_numa_placement;
1174 u64 last_sum_exec_runtime;
1175 struct callback_head numa_work;
1176
cb361d8c
JH
1177 /*
1178 * This pointer is only modified for current in syscall and
1179 * pagefault context (and for tasks being destroyed), so it can be read
1180 * from any of the following contexts:
1181 * - RCU read-side critical section
1182 * - current->numa_group from everywhere
1183 * - task's runqueue locked, task not running
1184 */
1185 struct numa_group __rcu *numa_group;
8c8a743c 1186
745d6147 1187 /*
44dba3d5
IM
1188 * numa_faults is an array split into four regions:
1189 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1190 * in this precise order.
1191 *
1192 * faults_memory: Exponential decaying average of faults on a per-node
1193 * basis. Scheduling placement decisions are made based on these
1194 * counts. The values remain static for the duration of a PTE scan.
1195 * faults_cpu: Track the nodes the process was running on when a NUMA
1196 * hinting fault was incurred.
1197 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1198 * during the current scan window. When the scan completes, the counts
1199 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1200 */
5eca1c10
IM
1201 unsigned long *numa_faults;
1202 unsigned long total_numa_faults;
745d6147 1203
04bb2f94
RR
1204 /*
1205 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1206 * scan window were remote/local or failed to migrate. The task scan
1207 * period is adapted based on the locality of the faults with different
1208 * weights depending on whether they were shared or private faults
04bb2f94 1209 */
5eca1c10 1210 unsigned long numa_faults_locality[3];
04bb2f94 1211
5eca1c10 1212 unsigned long numa_pages_migrated;
cbee9f88
PZ
1213#endif /* CONFIG_NUMA_BALANCING */
1214
d7822b1e
MD
1215#ifdef CONFIG_RSEQ
1216 struct rseq __user *rseq;
d7822b1e
MD
1217 u32 rseq_sig;
1218 /*
1219 * RmW on rseq_event_mask must be performed atomically
1220 * with respect to preemption.
1221 */
1222 unsigned long rseq_event_mask;
1223#endif
1224
5eca1c10 1225 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1226
3fbd7ee2
EB
1227 union {
1228 refcount_t rcu_users;
1229 struct rcu_head rcu;
1230 };
b92ce558 1231
5eca1c10
IM
1232 /* Cache last used pipe for splice(): */
1233 struct pipe_inode_info *splice_pipe;
5640f768 1234
5eca1c10 1235 struct page_frag task_frag;
5640f768 1236
47913d4e
IM
1237#ifdef CONFIG_TASK_DELAY_ACCT
1238 struct task_delay_info *delays;
f4f154fd 1239#endif
47913d4e 1240
f4f154fd 1241#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1242 int make_it_fail;
9049f2f6 1243 unsigned int fail_nth;
ca74e92b 1244#endif
9d823e8f 1245 /*
5eca1c10
IM
1246 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1247 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1248 */
5eca1c10
IM
1249 int nr_dirtied;
1250 int nr_dirtied_pause;
1251 /* Start of a write-and-pause period: */
1252 unsigned long dirty_paused_when;
9d823e8f 1253
9745512c 1254#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1255 int latency_record_count;
1256 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1257#endif
6976675d 1258 /*
5eca1c10 1259 * Time slack values; these are used to round up poll() and
6976675d
AV
1260 * select() etc timeout values. These are in nanoseconds.
1261 */
5eca1c10
IM
1262 u64 timer_slack_ns;
1263 u64 default_timer_slack_ns;
f8d570a4 1264
d73b4936 1265#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
5eca1c10 1266 unsigned int kasan_depth;
0b24becc 1267#endif
92c209ac 1268
dfd402a4
ME
1269#ifdef CONFIG_KCSAN
1270 struct kcsan_ctx kcsan_ctx;
92c209ac
ME
1271#ifdef CONFIG_TRACE_IRQFLAGS
1272 struct irqtrace_events kcsan_save_irqtrace;
1273#endif
dfd402a4 1274#endif
5eca1c10 1275
393824f6
PA
1276#if IS_ENABLED(CONFIG_KUNIT)
1277 struct kunit *kunit_test;
1278#endif
1279
fb52607a 1280#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1281 /* Index of current stored address in ret_stack: */
1282 int curr_ret_stack;
39eb456d 1283 int curr_ret_depth;
5eca1c10
IM
1284
1285 /* Stack of return addresses for return function tracing: */
1286 struct ftrace_ret_stack *ret_stack;
1287
1288 /* Timestamp for last schedule: */
1289 unsigned long long ftrace_timestamp;
1290
f201ae23
FW
1291 /*
1292 * Number of functions that haven't been traced
5eca1c10 1293 * because of depth overrun:
f201ae23 1294 */
5eca1c10
IM
1295 atomic_t trace_overrun;
1296
1297 /* Pause tracing: */
1298 atomic_t tracing_graph_pause;
f201ae23 1299#endif
5eca1c10 1300
ea4e2bc4 1301#ifdef CONFIG_TRACING
5eca1c10
IM
1302 /* State flags for use by tracers: */
1303 unsigned long trace;
1304
1305 /* Bitmask and counter of trace recursion: */
1306 unsigned long trace_recursion;
261842b7 1307#endif /* CONFIG_TRACING */
5eca1c10 1308
5c9a8750 1309#ifdef CONFIG_KCOV
eec028c9
AK
1310 /* See kernel/kcov.c for more details. */
1311
5eca1c10 1312 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1313 unsigned int kcov_mode;
5eca1c10
IM
1314
1315 /* Size of the kcov_area: */
1316 unsigned int kcov_size;
1317
1318 /* Buffer for coverage collection: */
1319 void *kcov_area;
1320
1321 /* KCOV descriptor wired with this task or NULL: */
1322 struct kcov *kcov;
eec028c9
AK
1323
1324 /* KCOV common handle for remote coverage collection: */
1325 u64 kcov_handle;
1326
1327 /* KCOV sequence number: */
1328 int kcov_sequence;
5ff3b30a
AK
1329
1330 /* Collect coverage from softirq context: */
1331 unsigned int kcov_softirq;
5c9a8750 1332#endif
5eca1c10 1333
6f185c29 1334#ifdef CONFIG_MEMCG
5eca1c10
IM
1335 struct mem_cgroup *memcg_in_oom;
1336 gfp_t memcg_oom_gfp_mask;
1337 int memcg_oom_order;
b23afb93 1338
5eca1c10
IM
1339 /* Number of pages to reclaim on returning to userland: */
1340 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1341
1342 /* Used by memcontrol for targeted memcg charge: */
1343 struct mem_cgroup *active_memcg;
569b846d 1344#endif
5eca1c10 1345
d09d8df3
JB
1346#ifdef CONFIG_BLK_CGROUP
1347 struct request_queue *throttle_queue;
1348#endif
1349
0326f5a9 1350#ifdef CONFIG_UPROBES
5eca1c10 1351 struct uprobe_task *utask;
0326f5a9 1352#endif
cafe5635 1353#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1354 unsigned int sequential_io;
1355 unsigned int sequential_io_avg;
cafe5635 1356#endif
5fbda3ec 1357 struct kmap_ctrl kmap_ctrl;
8eb23b9f 1358#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1359 unsigned long task_state_change;
8eb23b9f 1360#endif
5eca1c10 1361 int pagefault_disabled;
03049269 1362#ifdef CONFIG_MMU
5eca1c10 1363 struct task_struct *oom_reaper_list;
03049269 1364#endif
ba14a194 1365#ifdef CONFIG_VMAP_STACK
5eca1c10 1366 struct vm_struct *stack_vm_area;
ba14a194 1367#endif
68f24b08 1368#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1369 /* A live task holds one reference: */
f0b89d39 1370 refcount_t stack_refcount;
d83a7cb3
JP
1371#endif
1372#ifdef CONFIG_LIVEPATCH
1373 int patch_state;
0302e28d 1374#endif
e4e55b47
TH
1375#ifdef CONFIG_SECURITY
1376 /* Used by LSM modules for access restriction: */
1377 void *security;
68f24b08 1378#endif
a10787e6
SL
1379#ifdef CONFIG_BPF_SYSCALL
1380 /* Used by BPF task local storage */
1381 struct bpf_local_storage __rcu *bpf_storage;
1382#endif
29e48ce8 1383
afaef01c
AP
1384#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1385 unsigned long lowest_stack;
c8d12627 1386 unsigned long prev_lowest_stack;
afaef01c
AP
1387#endif
1388
5567d11c 1389#ifdef CONFIG_X86_MCE
c0ab7ffc
TL
1390 void __user *mce_vaddr;
1391 __u64 mce_kflags;
5567d11c 1392 u64 mce_addr;
17fae129
TL
1393 __u64 mce_ripv : 1,
1394 mce_whole_page : 1,
1395 __mce_reserved : 62;
5567d11c
PZ
1396 struct callback_head mce_kill_me;
1397#endif
1398
d741bf41
PZ
1399#ifdef CONFIG_KRETPROBES
1400 struct llist_head kretprobe_instances;
1401#endif
1402
29e48ce8
KC
1403 /*
1404 * New fields for task_struct should be added above here, so that
1405 * they are included in the randomized portion of task_struct.
1406 */
1407 randomized_struct_fields_end
1408
5eca1c10
IM
1409 /* CPU-specific state of this task: */
1410 struct thread_struct thread;
1411
1412 /*
1413 * WARNING: on x86, 'thread_struct' contains a variable-sized
1414 * structure. It *MUST* be at the end of 'task_struct'.
1415 *
1416 * Do not put anything below here!
1417 */
1da177e4
LT
1418};
1419
e868171a 1420static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1421{
2c470475 1422 return task->thread_pid;
22c935f4
EB
1423}
1424
7af57294
PE
1425/*
1426 * the helpers to get the task's different pids as they are seen
1427 * from various namespaces
1428 *
1429 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1430 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1431 * current.
7af57294
PE
1432 * task_xid_nr_ns() : id seen from the ns specified;
1433 *
7af57294
PE
1434 * see also pid_nr() etc in include/linux/pid.h
1435 */
5eca1c10 1436pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1437
e868171a 1438static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1439{
1440 return tsk->pid;
1441}
1442
5eca1c10 1443static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1444{
1445 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1446}
7af57294
PE
1447
1448static inline pid_t task_pid_vnr(struct task_struct *tsk)
1449{
52ee2dfd 1450 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1451}
1452
1453
e868171a 1454static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1455{
1456 return tsk->tgid;
1457}
1458
5eca1c10
IM
1459/**
1460 * pid_alive - check that a task structure is not stale
1461 * @p: Task structure to be checked.
1462 *
1463 * Test if a process is not yet dead (at most zombie state)
1464 * If pid_alive fails, then pointers within the task structure
1465 * can be stale and must not be dereferenced.
1466 *
1467 * Return: 1 if the process is alive. 0 otherwise.
1468 */
1469static inline int pid_alive(const struct task_struct *p)
1470{
2c470475 1471 return p->thread_pid != NULL;
5eca1c10 1472}
7af57294 1473
5eca1c10 1474static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1475{
52ee2dfd 1476 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1477}
1478
7af57294
PE
1479static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1480{
52ee2dfd 1481 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1482}
1483
1484
5eca1c10 1485static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1486{
52ee2dfd 1487 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1488}
1489
7af57294
PE
1490static inline pid_t task_session_vnr(struct task_struct *tsk)
1491{
52ee2dfd 1492 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1493}
1494
dd1c1f2f
ON
1495static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1496{
6883f81a 1497 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1498}
1499
1500static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1501{
6883f81a 1502 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1503}
1504
1505static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1506{
1507 pid_t pid = 0;
1508
1509 rcu_read_lock();
1510 if (pid_alive(tsk))
1511 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1512 rcu_read_unlock();
1513
1514 return pid;
1515}
1516
1517static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1518{
1519 return task_ppid_nr_ns(tsk, &init_pid_ns);
1520}
1521
5eca1c10 1522/* Obsolete, do not use: */
1b0f7ffd
ON
1523static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1524{
1525 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1526}
7af57294 1527
06eb6184
PZ
1528#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1529#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1530
1d48b080 1531static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1532{
2f064a59 1533 unsigned int tsk_state = READ_ONCE(tsk->__state);
1593baab 1534 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1535
06eb6184
PZ
1536 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1537
06eb6184
PZ
1538 if (tsk_state == TASK_IDLE)
1539 state = TASK_REPORT_IDLE;
1540
1593baab
PZ
1541 return fls(state);
1542}
1543
1d48b080 1544static inline char task_index_to_char(unsigned int state)
1593baab 1545{
8ef9925b 1546 static const char state_char[] = "RSDTtXZPI";
1593baab 1547
06eb6184 1548 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1549
1593baab
PZ
1550 return state_char[state];
1551}
1552
1553static inline char task_state_to_char(struct task_struct *tsk)
1554{
1d48b080 1555 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1556}
1557
f400e198 1558/**
570f5241
SS
1559 * is_global_init - check if a task structure is init. Since init
1560 * is free to have sub-threads we need to check tgid.
3260259f
H
1561 * @tsk: Task structure to be checked.
1562 *
1563 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1564 *
1565 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1566 */
e868171a 1567static inline int is_global_init(struct task_struct *tsk)
b461cc03 1568{
570f5241 1569 return task_tgid_nr(tsk) == 1;
b461cc03 1570}
b460cbc5 1571
9ec52099
CLG
1572extern struct pid *cad_pid;
1573
1da177e4
LT
1574/*
1575 * Per process flags
1576 */
01ccf592 1577#define PF_VCPU 0x00000001 /* I'm a virtual CPU */
5eca1c10
IM
1578#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1579#define PF_EXITING 0x00000004 /* Getting shut down */
01ccf592 1580#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
5eca1c10
IM
1581#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1582#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1583#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1584#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1585#define PF_DUMPCORE 0x00000200 /* Dumped core */
1586#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1587#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1588#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1589#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1590#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1591#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1592#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1593#define PF_KSWAPD 0x00020000 /* I am kswapd */
1594#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1595#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
a37b0715
N
1596#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1597 * I am cleaning dirty pages from some other bdi. */
5eca1c10
IM
1598#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1599#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1600#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
3bd37062 1601#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1602#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1a08ae36 1603#define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
5eca1c10
IM
1604#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1605#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1606
1607/*
1608 * Only the _current_ task can read/write to tsk->flags, but other
1609 * tasks can access tsk->flags in readonly mode for example
1610 * with tsk_used_math (like during threaded core dumping).
1611 * There is however an exception to this rule during ptrace
1612 * or during fork: the ptracer task is allowed to write to the
1613 * child->flags of its traced child (same goes for fork, the parent
1614 * can write to the child->flags), because we're guaranteed the
1615 * child is not running and in turn not changing child->flags
1616 * at the same time the parent does it.
1617 */
5eca1c10
IM
1618#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1619#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1620#define clear_used_math() clear_stopped_child_used_math(current)
1621#define set_used_math() set_stopped_child_used_math(current)
1622
1da177e4
LT
1623#define conditional_stopped_child_used_math(condition, child) \
1624 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1625
1626#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1627
1da177e4
LT
1628#define copy_to_stopped_child_used_math(child) \
1629 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1630
1da177e4 1631/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1632#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1633#define used_math() tsk_used_math(current)
1da177e4 1634
62ec05dd
TG
1635static inline bool is_percpu_thread(void)
1636{
1637#ifdef CONFIG_SMP
1638 return (current->flags & PF_NO_SETAFFINITY) &&
1639 (current->nr_cpus_allowed == 1);
1640#else
1641 return true;
1642#endif
1643}
1644
1d4457f9 1645/* Per-process atomic flags. */
5eca1c10
IM
1646#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1647#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1648#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1649#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1650#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1651#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1652#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1653#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1654
e0e5070b
ZL
1655#define TASK_PFA_TEST(name, func) \
1656 static inline bool task_##func(struct task_struct *p) \
1657 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1658
e0e5070b
ZL
1659#define TASK_PFA_SET(name, func) \
1660 static inline void task_set_##func(struct task_struct *p) \
1661 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1662
e0e5070b
ZL
1663#define TASK_PFA_CLEAR(name, func) \
1664 static inline void task_clear_##func(struct task_struct *p) \
1665 { clear_bit(PFA_##name, &p->atomic_flags); }
1666
1667TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1668TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1669
2ad654bc
ZL
1670TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1671TASK_PFA_SET(SPREAD_PAGE, spread_page)
1672TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1673
1674TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1675TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1676TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1677
356e4bff
TG
1678TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1679TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1680TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1681
71368af9
WL
1682TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1683TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1684TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1685
356e4bff
TG
1686TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1687TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1688
9137bb27
TG
1689TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1690TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1691TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1692
1693TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1694TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1695
5eca1c10 1696static inline void
717a94b5 1697current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1698{
717a94b5
N
1699 current->flags &= ~flags;
1700 current->flags |= orig_flags & flags;
907aed48
MG
1701}
1702
5eca1c10
IM
1703extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1704extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1705#ifdef CONFIG_SMP
5eca1c10
IM
1706extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1707extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1708#else
5eca1c10 1709static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1710{
1711}
5eca1c10 1712static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1713{
96f874e2 1714 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1715 return -EINVAL;
1716 return 0;
1717}
1718#endif
e0ad9556 1719
fa93384f 1720extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1721extern void set_user_nice(struct task_struct *p, long nice);
1722extern int task_prio(const struct task_struct *p);
5eca1c10 1723
d0ea0268
DY
1724/**
1725 * task_nice - return the nice value of a given task.
1726 * @p: the task in question.
1727 *
1728 * Return: The nice value [ -20 ... 0 ... 19 ].
1729 */
1730static inline int task_nice(const struct task_struct *p)
1731{
1732 return PRIO_TO_NICE((p)->static_prio);
1733}
5eca1c10 1734
36c8b586
IM
1735extern int can_nice(const struct task_struct *p, const int nice);
1736extern int task_curr(const struct task_struct *p);
1da177e4 1737extern int idle_cpu(int cpu);
943d355d 1738extern int available_idle_cpu(int cpu);
5eca1c10
IM
1739extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1740extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
8b700983
PZ
1741extern void sched_set_fifo(struct task_struct *p);
1742extern void sched_set_fifo_low(struct task_struct *p);
1743extern void sched_set_normal(struct task_struct *p, int nice);
5eca1c10 1744extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1745extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1746extern struct task_struct *idle_task(int cpu);
5eca1c10 1747
c4f30608
PM
1748/**
1749 * is_idle_task - is the specified task an idle task?
fa757281 1750 * @p: the task in question.
e69f6186
YB
1751 *
1752 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1753 */
c94a88f3 1754static __always_inline bool is_idle_task(const struct task_struct *p)
c4f30608 1755{
c1de45ca 1756 return !!(p->flags & PF_IDLE);
c4f30608 1757}
5eca1c10 1758
36c8b586 1759extern struct task_struct *curr_task(int cpu);
a458ae2e 1760extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1761
1762void yield(void);
1763
1da177e4 1764union thread_union {
0500871f
DH
1765#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1766 struct task_struct task;
1767#endif
c65eacbe 1768#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1769 struct thread_info thread_info;
c65eacbe 1770#endif
1da177e4
LT
1771 unsigned long stack[THREAD_SIZE/sizeof(long)];
1772};
1773
0500871f
DH
1774#ifndef CONFIG_THREAD_INFO_IN_TASK
1775extern struct thread_info init_thread_info;
1776#endif
1777
1778extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1779
f3ac6067
IM
1780#ifdef CONFIG_THREAD_INFO_IN_TASK
1781static inline struct thread_info *task_thread_info(struct task_struct *task)
1782{
1783 return &task->thread_info;
1784}
1785#elif !defined(__HAVE_THREAD_FUNCTIONS)
1786# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1787#endif
1788
198fe21b
PE
1789/*
1790 * find a task by one of its numerical ids
1791 *
198fe21b
PE
1792 * find_task_by_pid_ns():
1793 * finds a task by its pid in the specified namespace
228ebcbe
PE
1794 * find_task_by_vpid():
1795 * finds a task by its virtual pid
198fe21b 1796 *
e49859e7 1797 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1798 */
1799
228ebcbe 1800extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1801extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1802
2ee08260
MR
1803/*
1804 * find a task by its virtual pid and get the task struct
1805 */
1806extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1807
b3c97528
HH
1808extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1809extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1810extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1811
1da177e4 1812#ifdef CONFIG_SMP
5eca1c10 1813extern void kick_process(struct task_struct *tsk);
1da177e4 1814#else
5eca1c10 1815static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1816#endif
1da177e4 1817
82b89778 1818extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1819
82b89778
AH
1820static inline void set_task_comm(struct task_struct *tsk, const char *from)
1821{
1822 __set_task_comm(tsk, from, false);
1823}
5eca1c10 1824
3756f640
AB
1825extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1826#define get_task_comm(buf, tsk) ({ \
1827 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1828 __get_task_comm(buf, sizeof(buf), tsk); \
1829})
1da177e4
LT
1830
1831#ifdef CONFIG_SMP
2a0a24eb
TG
1832static __always_inline void scheduler_ipi(void)
1833{
1834 /*
1835 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1836 * TIF_NEED_RESCHED remotely (for the first time) will also send
1837 * this IPI.
1838 */
1839 preempt_fold_need_resched();
1840}
2f064a59 1841extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1da177e4 1842#else
184748cc 1843static inline void scheduler_ipi(void) { }
2f064a59 1844static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
85ba2d86
RM
1845{
1846 return 1;
1847}
1da177e4
LT
1848#endif
1849
5eca1c10
IM
1850/*
1851 * Set thread flags in other task's structures.
1852 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1853 */
1854static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1855{
a1261f54 1856 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1857}
1858
1859static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1860{
a1261f54 1861 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1862}
1863
93ee37c2
DM
1864static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1865 bool value)
1866{
1867 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1868}
1869
1da177e4
LT
1870static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1871{
a1261f54 1872 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1873}
1874
1875static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1876{
a1261f54 1877 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1878}
1879
1880static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1881{
a1261f54 1882 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1883}
1884
1885static inline void set_tsk_need_resched(struct task_struct *tsk)
1886{
1887 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1888}
1889
1890static inline void clear_tsk_need_resched(struct task_struct *tsk)
1891{
1892 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1893}
1894
8ae121ac
GH
1895static inline int test_tsk_need_resched(struct task_struct *tsk)
1896{
1897 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1898}
1899
1da177e4
LT
1900/*
1901 * cond_resched() and cond_resched_lock(): latency reduction via
1902 * explicit rescheduling in places that are safe. The return
1903 * value indicates whether a reschedule was done in fact.
1904 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 1905 */
b965f1dd
PZI
1906#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
1907extern int __cond_resched(void);
1908
1909#ifdef CONFIG_PREEMPT_DYNAMIC
1910
1911DECLARE_STATIC_CALL(cond_resched, __cond_resched);
1912
1913static __always_inline int _cond_resched(void)
1914{
ef72661e 1915 return static_call_mod(cond_resched)();
b965f1dd
PZI
1916}
1917
35a773a0 1918#else
b965f1dd
PZI
1919
1920static inline int _cond_resched(void)
1921{
1922 return __cond_resched();
1923}
1924
1925#endif /* CONFIG_PREEMPT_DYNAMIC */
1926
1927#else
1928
35a773a0 1929static inline int _cond_resched(void) { return 0; }
b965f1dd
PZI
1930
1931#endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
6f80bd98 1932
613afbf8 1933#define cond_resched() ({ \
3427445a 1934 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1935 _cond_resched(); \
1936})
6f80bd98 1937
613afbf8 1938extern int __cond_resched_lock(spinlock_t *lock);
f3d4b4b1
BG
1939extern int __cond_resched_rwlock_read(rwlock_t *lock);
1940extern int __cond_resched_rwlock_write(rwlock_t *lock);
613afbf8
FW
1941
1942#define cond_resched_lock(lock) ({ \
3427445a 1943 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1944 __cond_resched_lock(lock); \
1945})
1946
f3d4b4b1
BG
1947#define cond_resched_rwlock_read(lock) ({ \
1948 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
1949 __cond_resched_rwlock_read(lock); \
1950})
1951
1952#define cond_resched_rwlock_write(lock) ({ \
1953 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
1954 __cond_resched_rwlock_write(lock); \
1955})
1956
f6f3c437
SH
1957static inline void cond_resched_rcu(void)
1958{
1959#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1960 rcu_read_unlock();
1961 cond_resched();
1962 rcu_read_lock();
1963#endif
1964}
1965
1da177e4
LT
1966/*
1967 * Does a critical section need to be broken due to another
c1a280b6 1968 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
95c354fe 1969 * but a general need for low latency)
1da177e4 1970 */
95c354fe 1971static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1972{
c1a280b6 1973#ifdef CONFIG_PREEMPTION
95c354fe
NP
1974 return spin_is_contended(lock);
1975#else
1da177e4 1976 return 0;
95c354fe 1977#endif
1da177e4
LT
1978}
1979
a09a689a
BG
1980/*
1981 * Check if a rwlock is contended.
1982 * Returns non-zero if there is another task waiting on the rwlock.
1983 * Returns zero if the lock is not contended or the system / underlying
1984 * rwlock implementation does not support contention detection.
1985 * Technically does not depend on CONFIG_PREEMPTION, but a general need
1986 * for low latency.
1987 */
1988static inline int rwlock_needbreak(rwlock_t *lock)
1989{
1990#ifdef CONFIG_PREEMPTION
1991 return rwlock_is_contended(lock);
1992#else
1993 return 0;
1994#endif
1995}
1996
75f93fed
PZ
1997static __always_inline bool need_resched(void)
1998{
1999 return unlikely(tif_need_resched());
2000}
2001
1da177e4
LT
2002/*
2003 * Wrappers for p->thread_info->cpu access. No-op on UP.
2004 */
2005#ifdef CONFIG_SMP
2006
2007static inline unsigned int task_cpu(const struct task_struct *p)
2008{
c65eacbe 2009#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 2010 return READ_ONCE(p->cpu);
c65eacbe 2011#else
c546951d 2012 return READ_ONCE(task_thread_info(p)->cpu);
c65eacbe 2013#endif
1da177e4
LT
2014}
2015
c65cc870 2016extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
2017
2018#else
2019
2020static inline unsigned int task_cpu(const struct task_struct *p)
2021{
2022 return 0;
2023}
2024
2025static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2026{
2027}
2028
2029#endif /* CONFIG_SMP */
2030
a1dfb631
MT
2031extern bool sched_task_on_rq(struct task_struct *p);
2032
d9345c65
PX
2033/*
2034 * In order to reduce various lock holder preemption latencies provide an
2035 * interface to see if a vCPU is currently running or not.
2036 *
2037 * This allows us to terminate optimistic spin loops and block, analogous to
2038 * the native optimistic spin heuristic of testing if the lock owner task is
2039 * running or not.
2040 */
2041#ifndef vcpu_is_preempted
42fd8baa
QC
2042static inline bool vcpu_is_preempted(int cpu)
2043{
2044 return false;
2045}
d9345c65
PX
2046#endif
2047
96f874e2
RR
2048extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2049extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 2050
82455257
DH
2051#ifndef TASK_SIZE_OF
2052#define TASK_SIZE_OF(tsk) TASK_SIZE
2053#endif
2054
a5418be9
VK
2055#ifdef CONFIG_SMP
2056/* Returns effective CPU energy utilization, as seen by the scheduler */
2057unsigned long sched_cpu_util(int cpu, unsigned long max);
2058#endif /* CONFIG_SMP */
2059
d7822b1e
MD
2060#ifdef CONFIG_RSEQ
2061
2062/*
2063 * Map the event mask on the user-space ABI enum rseq_cs_flags
2064 * for direct mask checks.
2065 */
2066enum rseq_event_mask_bits {
2067 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2068 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2069 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2070};
2071
2072enum rseq_event_mask {
2073 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2074 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2075 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2076};
2077
2078static inline void rseq_set_notify_resume(struct task_struct *t)
2079{
2080 if (t->rseq)
2081 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2082}
2083
784e0300 2084void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 2085
784e0300
WD
2086static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2087 struct pt_regs *regs)
d7822b1e
MD
2088{
2089 if (current->rseq)
784e0300 2090 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2091}
2092
784e0300
WD
2093static inline void rseq_signal_deliver(struct ksignal *ksig,
2094 struct pt_regs *regs)
d7822b1e
MD
2095{
2096 preempt_disable();
2097 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2098 preempt_enable();
784e0300 2099 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2100}
2101
2102/* rseq_preempt() requires preemption to be disabled. */
2103static inline void rseq_preempt(struct task_struct *t)
2104{
2105 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2106 rseq_set_notify_resume(t);
2107}
2108
2109/* rseq_migrate() requires preemption to be disabled. */
2110static inline void rseq_migrate(struct task_struct *t)
2111{
2112 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2113 rseq_set_notify_resume(t);
2114}
2115
2116/*
2117 * If parent process has a registered restartable sequences area, the
463f550f 2118 * child inherits. Unregister rseq for a clone with CLONE_VM set.
d7822b1e
MD
2119 */
2120static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2121{
463f550f 2122 if (clone_flags & CLONE_VM) {
d7822b1e 2123 t->rseq = NULL;
d7822b1e
MD
2124 t->rseq_sig = 0;
2125 t->rseq_event_mask = 0;
2126 } else {
2127 t->rseq = current->rseq;
d7822b1e
MD
2128 t->rseq_sig = current->rseq_sig;
2129 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
2130 }
2131}
2132
2133static inline void rseq_execve(struct task_struct *t)
2134{
2135 t->rseq = NULL;
d7822b1e
MD
2136 t->rseq_sig = 0;
2137 t->rseq_event_mask = 0;
2138}
2139
2140#else
2141
2142static inline void rseq_set_notify_resume(struct task_struct *t)
2143{
2144}
784e0300
WD
2145static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2146 struct pt_regs *regs)
d7822b1e
MD
2147{
2148}
784e0300
WD
2149static inline void rseq_signal_deliver(struct ksignal *ksig,
2150 struct pt_regs *regs)
d7822b1e
MD
2151{
2152}
2153static inline void rseq_preempt(struct task_struct *t)
2154{
2155}
2156static inline void rseq_migrate(struct task_struct *t)
2157{
2158}
2159static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2160{
2161}
2162static inline void rseq_execve(struct task_struct *t)
2163{
2164}
2165
2166#endif
2167
2168#ifdef CONFIG_DEBUG_RSEQ
2169
2170void rseq_syscall(struct pt_regs *regs);
2171
2172#else
2173
2174static inline void rseq_syscall(struct pt_regs *regs)
2175{
2176}
2177
2178#endif
2179
3c93a0c0
QY
2180const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2181char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2182int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2183
2184const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2185const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2186const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2187
2188int sched_trace_rq_cpu(struct rq *rq);
51cf18c9 2189int sched_trace_rq_cpu_capacity(struct rq *rq);
9d246053 2190int sched_trace_rq_nr_running(struct rq *rq);
3c93a0c0
QY
2191
2192const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2193
6e33cad0
PZ
2194#ifdef CONFIG_SCHED_CORE
2195extern void sched_core_free(struct task_struct *tsk);
85dd3f61 2196extern void sched_core_fork(struct task_struct *p);
7ac592aa
CH
2197extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2198 unsigned long uaddr);
6e33cad0
PZ
2199#else
2200static inline void sched_core_free(struct task_struct *tsk) { }
85dd3f61 2201static inline void sched_core_fork(struct task_struct *p) { }
6e33cad0
PZ
2202#endif
2203
1da177e4 2204#endif