LoongArch: signal.c: add header file to fix build error
[linux-2.6-block.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
e034d49e 14#include <linux/cache.h>
9983deb2 15#include <linux/irqflags_types.h>
6d5e9d63 16#include <linux/pid_types.h>
e034d49e 17#include <linux/sem_types.h>
ab602f79 18#include <linux/shm.h>
f80be457 19#include <linux/kmsan_types.h>
d84f3179 20#include <linux/mutex_types.h>
8b7787a5 21#include <linux/plist_types.h>
50d91c76 22#include <linux/hrtimer_types.h>
e034d49e 23#include <linux/timer_types.h>
a6e1420c 24#include <linux/seccomp_types.h>
bea32141 25#include <linux/nodemask_types.h>
b68070e1 26#include <linux/rcupdate.h>
f9d6966b 27#include <linux/refcount_types.h>
a3b6714e 28#include <linux/resource.h>
9745512c 29#include <linux/latencytop.h>
5eca1c10 30#include <linux/sched/prio.h>
9eacb5c7 31#include <linux/sched/types.h>
5eca1c10 32#include <linux/signal_types.h>
55b899aa 33#include <linux/syscall_user_dispatch_types.h>
5eca1c10
IM
34#include <linux/mm_types_task.h>
35#include <linux/task_io_accounting.h>
53d31ba8 36#include <linux/posix-timers_types.h>
cba6167f 37#include <linux/restart_block.h>
d7822b1e 38#include <linux/rseq.h>
f038cc13 39#include <linux/seqlock_types.h>
dfd402a4 40#include <linux/kcsan.h>
102227b9 41#include <linux/rv.h>
e3ff7c60 42#include <linux/livepatch_sched.h>
af6da56a 43#include <linux/uidgid_types.h>
5fbda3ec 44#include <asm/kmap_size.h>
a3b6714e 45
5eca1c10 46/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 47struct audit_context;
bddd87c7 48struct bio_list;
73c10101 49struct blk_plug;
a10787e6 50struct bpf_local_storage;
c7603cfa 51struct bpf_run_ctx;
3c93a0c0 52struct capture_control;
c7af7877 53struct cfs_rq;
c7af7877
IM
54struct fs_struct;
55struct futex_pi_state;
56struct io_context;
1875dc5b 57struct io_uring_task;
c7af7877 58struct mempolicy;
89076bc3 59struct nameidata;
c7af7877
IM
60struct nsproxy;
61struct perf_event_context;
62struct pid_namespace;
63struct pipe_inode_info;
64struct rcu_node;
65struct reclaim_state;
66struct robust_list_head;
3c93a0c0
QY
67struct root_domain;
68struct rq;
c7af7877 69struct sched_attr;
43ae34cb 70struct seq_file;
c7af7877
IM
71struct sighand_struct;
72struct signal_struct;
73struct task_delay_info;
4cf86d77 74struct task_group;
fd593511 75struct user_event_mm;
1da177e4 76
4a8342d2
LT
77/*
78 * Task state bitmask. NOTE! These bits are also
79 * encoded in fs/proc/array.c: get_task_state().
80 *
48b55837 81 * We have two separate sets of flags: task->__state
4a8342d2
LT
82 * is about runnability, while task->exit_state are
83 * about the task exiting. Confusing, but this way
84 * modifying one set can't modify the other one by
85 * mistake.
86 */
5eca1c10 87
48b55837 88/* Used in tsk->__state: */
9963e444
PZ
89#define TASK_RUNNING 0x00000000
90#define TASK_INTERRUPTIBLE 0x00000001
91#define TASK_UNINTERRUPTIBLE 0x00000002
92#define __TASK_STOPPED 0x00000004
93#define __TASK_TRACED 0x00000008
5eca1c10 94/* Used in tsk->exit_state: */
9963e444
PZ
95#define EXIT_DEAD 0x00000010
96#define EXIT_ZOMBIE 0x00000020
5eca1c10 97#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
48b55837 98/* Used in tsk->__state again: */
9963e444
PZ
99#define TASK_PARKED 0x00000040
100#define TASK_DEAD 0x00000080
101#define TASK_WAKEKILL 0x00000100
102#define TASK_WAKING 0x00000200
103#define TASK_NOLOAD 0x00000400
104#define TASK_NEW 0x00000800
9963e444 105#define TASK_RTLOCK_WAIT 0x00001000
f5d39b02
PZ
106#define TASK_FREEZABLE 0x00002000
107#define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
108#define TASK_FROZEN 0x00008000
109#define TASK_STATE_MAX 0x00010000
5eca1c10 110
f9fc8cad
PZ
111#define TASK_ANY (TASK_STATE_MAX-1)
112
f5d39b02
PZ
113/*
114 * DO NOT ADD ANY NEW USERS !
115 */
116#define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
5eca1c10 117
5eca1c10
IM
118/* Convenience macros for the sake of set_current_state: */
119#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
120#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
2500ad1c 121#define TASK_TRACED __TASK_TRACED
5eca1c10
IM
122
123#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
124
125/* Convenience macros for the sake of wake_up(): */
126#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
127
128/* get_task_state(): */
129#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
130 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
131 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
132 TASK_PARKED)
5eca1c10 133
2f064a59 134#define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
5eca1c10 135
31cae1ea
PZ
136#define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
137#define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
138#define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
5eca1c10 139
b5bf9a90
PZ
140/*
141 * Special states are those that do not use the normal wait-loop pattern. See
142 * the comment with set_special_state().
143 */
144#define is_special_task_state(state) \
1cef1150 145 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 146
85019c16
TG
147#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
148# define debug_normal_state_change(state_value) \
149 do { \
150 WARN_ON_ONCE(is_special_task_state(state_value)); \
151 current->task_state_change = _THIS_IP_; \
8eb23b9f
PZ
152 } while (0)
153
85019c16 154# define debug_special_state_change(state_value) \
b5bf9a90 155 do { \
b5bf9a90 156 WARN_ON_ONCE(!is_special_task_state(state_value)); \
b5bf9a90 157 current->task_state_change = _THIS_IP_; \
b5bf9a90 158 } while (0)
85019c16 159
5f220be2
TG
160# define debug_rtlock_wait_set_state() \
161 do { \
162 current->saved_state_change = current->task_state_change;\
163 current->task_state_change = _THIS_IP_; \
164 } while (0)
165
166# define debug_rtlock_wait_restore_state() \
167 do { \
168 current->task_state_change = current->saved_state_change;\
169 } while (0)
170
8eb23b9f 171#else
85019c16
TG
172# define debug_normal_state_change(cond) do { } while (0)
173# define debug_special_state_change(cond) do { } while (0)
5f220be2
TG
174# define debug_rtlock_wait_set_state() do { } while (0)
175# define debug_rtlock_wait_restore_state() do { } while (0)
85019c16
TG
176#endif
177
498d0c57 178/*
48b55837 179 * set_current_state() includes a barrier so that the write of current->__state
498d0c57
AM
180 * is correctly serialised wrt the caller's subsequent test of whether to
181 * actually sleep:
182 *
a2250238 183 * for (;;) {
498d0c57 184 * set_current_state(TASK_UNINTERRUPTIBLE);
58877d34
PZ
185 * if (CONDITION)
186 * break;
a2250238
PZ
187 *
188 * schedule();
189 * }
190 * __set_current_state(TASK_RUNNING);
191 *
192 * If the caller does not need such serialisation (because, for instance, the
58877d34 193 * CONDITION test and condition change and wakeup are under the same lock) then
a2250238
PZ
194 * use __set_current_state().
195 *
196 * The above is typically ordered against the wakeup, which does:
197 *
58877d34 198 * CONDITION = 1;
b5bf9a90 199 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 200 *
58877d34 201 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
48b55837 202 * accessing p->__state.
a2250238 203 *
48b55837 204 * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
a2250238
PZ
205 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
206 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 207 *
b5bf9a90 208 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 209 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
210 * a problem either because that will result in one extra go around the loop
211 * and our @cond test will save the day.
498d0c57 212 *
a2250238 213 * Also see the comments of try_to_wake_up().
498d0c57 214 */
b5bf9a90 215#define __set_current_state(state_value) \
85019c16
TG
216 do { \
217 debug_normal_state_change((state_value)); \
218 WRITE_ONCE(current->__state, (state_value)); \
219 } while (0)
b5bf9a90
PZ
220
221#define set_current_state(state_value) \
85019c16
TG
222 do { \
223 debug_normal_state_change((state_value)); \
224 smp_store_mb(current->__state, (state_value)); \
225 } while (0)
b5bf9a90
PZ
226
227/*
228 * set_special_state() should be used for those states when the blocking task
229 * can not use the regular condition based wait-loop. In that case we must
85019c16
TG
230 * serialize against wakeups such that any possible in-flight TASK_RUNNING
231 * stores will not collide with our state change.
b5bf9a90
PZ
232 */
233#define set_special_state(state_value) \
234 do { \
235 unsigned long flags; /* may shadow */ \
85019c16 236 \
b5bf9a90 237 raw_spin_lock_irqsave(&current->pi_lock, flags); \
85019c16 238 debug_special_state_change((state_value)); \
2f064a59 239 WRITE_ONCE(current->__state, (state_value)); \
b5bf9a90
PZ
240 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
241 } while (0)
242
5f220be2
TG
243/*
244 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
245 *
246 * RT's spin/rwlock substitutions are state preserving. The state of the
247 * task when blocking on the lock is saved in task_struct::saved_state and
248 * restored after the lock has been acquired. These operations are
249 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
250 * lock related wakeups while the task is blocked on the lock are
251 * redirected to operate on task_struct::saved_state to ensure that these
252 * are not dropped. On restore task_struct::saved_state is set to
253 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
254 *
255 * The lock operation looks like this:
256 *
257 * current_save_and_set_rtlock_wait_state();
258 * for (;;) {
259 * if (try_lock())
260 * break;
261 * raw_spin_unlock_irq(&lock->wait_lock);
262 * schedule_rtlock();
263 * raw_spin_lock_irq(&lock->wait_lock);
264 * set_current_state(TASK_RTLOCK_WAIT);
265 * }
266 * current_restore_rtlock_saved_state();
267 */
268#define current_save_and_set_rtlock_wait_state() \
269 do { \
270 lockdep_assert_irqs_disabled(); \
271 raw_spin_lock(&current->pi_lock); \
272 current->saved_state = current->__state; \
273 debug_rtlock_wait_set_state(); \
274 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
275 raw_spin_unlock(&current->pi_lock); \
276 } while (0);
277
278#define current_restore_rtlock_saved_state() \
279 do { \
280 lockdep_assert_irqs_disabled(); \
281 raw_spin_lock(&current->pi_lock); \
282 debug_rtlock_wait_restore_state(); \
283 WRITE_ONCE(current->__state, current->saved_state); \
284 current->saved_state = TASK_RUNNING; \
285 raw_spin_unlock(&current->pi_lock); \
286 } while (0);
8eb23b9f 287
2f064a59 288#define get_current_state() READ_ONCE(current->__state)
d6c23bb3 289
3087c61e
YS
290/*
291 * Define the task command name length as enum, then it can be visible to
292 * BPF programs.
293 */
294enum {
295 TASK_COMM_LEN = 16,
296};
1da177e4 297
1da177e4
LT
298extern void scheduler_tick(void);
299
5eca1c10
IM
300#define MAX_SCHEDULE_TIMEOUT LONG_MAX
301
302extern long schedule_timeout(long timeout);
303extern long schedule_timeout_interruptible(long timeout);
304extern long schedule_timeout_killable(long timeout);
305extern long schedule_timeout_uninterruptible(long timeout);
306extern long schedule_timeout_idle(long timeout);
1da177e4 307asmlinkage void schedule(void);
c5491ea7 308extern void schedule_preempt_disabled(void);
19c95f26 309asmlinkage void preempt_schedule_irq(void);
6991436c
TG
310#ifdef CONFIG_PREEMPT_RT
311 extern void schedule_rtlock(void);
312#endif
1da177e4 313
10ab5643
TH
314extern int __must_check io_schedule_prepare(void);
315extern void io_schedule_finish(int token);
9cff8ade 316extern long io_schedule_timeout(long timeout);
10ab5643 317extern void io_schedule(void);
9cff8ade 318
d37f761d 319/**
0ba42a59 320 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
321 * @utime: time spent in user mode
322 * @stime: time spent in system mode
9d7fb042 323 * @lock: protects the above two fields
d37f761d 324 *
9d7fb042
PZ
325 * Stores previous user/system time values such that we can guarantee
326 * monotonicity.
d37f761d 327 */
9d7fb042
PZ
328struct prev_cputime {
329#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
330 u64 utime;
331 u64 stime;
332 raw_spinlock_t lock;
9d7fb042 333#endif
d37f761d
FW
334};
335
bac5b6b6
FW
336enum vtime_state {
337 /* Task is sleeping or running in a CPU with VTIME inactive: */
338 VTIME_INACTIVE = 0,
14faf6fc
FW
339 /* Task is idle */
340 VTIME_IDLE,
bac5b6b6
FW
341 /* Task runs in kernelspace in a CPU with VTIME active: */
342 VTIME_SYS,
14faf6fc
FW
343 /* Task runs in userspace in a CPU with VTIME active: */
344 VTIME_USER,
e6d5bf3e
FW
345 /* Task runs as guests in a CPU with VTIME active: */
346 VTIME_GUEST,
bac5b6b6
FW
347};
348
349struct vtime {
350 seqcount_t seqcount;
351 unsigned long long starttime;
352 enum vtime_state state;
802f4a82 353 unsigned int cpu;
2a42eb95
WL
354 u64 utime;
355 u64 stime;
356 u64 gtime;
bac5b6b6
FW
357};
358
69842cba
PB
359/*
360 * Utilization clamp constraints.
361 * @UCLAMP_MIN: Minimum utilization
362 * @UCLAMP_MAX: Maximum utilization
363 * @UCLAMP_CNT: Utilization clamp constraints count
364 */
365enum uclamp_id {
366 UCLAMP_MIN = 0,
367 UCLAMP_MAX,
368 UCLAMP_CNT
369};
370
f9a25f77
MP
371#ifdef CONFIG_SMP
372extern struct root_domain def_root_domain;
373extern struct mutex sched_domains_mutex;
374#endif
375
d844fe65
KK
376struct sched_param {
377 int sched_priority;
378};
379
1da177e4 380struct sched_info {
7f5f8e8d 381#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
382 /* Cumulative counters: */
383
384 /* # of times we have run on this CPU: */
385 unsigned long pcount;
386
387 /* Time spent waiting on a runqueue: */
388 unsigned long long run_delay;
389
390 /* Timestamps: */
391
392 /* When did we last run on a CPU? */
393 unsigned long long last_arrival;
394
395 /* When were we last queued to run? */
396 unsigned long long last_queued;
1da177e4 397
f6db8347 398#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 399};
1da177e4 400
6ecdd749
YD
401/*
402 * Integer metrics need fixed point arithmetic, e.g., sched/fair
403 * has a few: load, load_avg, util_avg, freq, and capacity.
404 *
405 * We define a basic fixed point arithmetic range, and then formalize
406 * all these metrics based on that basic range.
407 */
5eca1c10
IM
408# define SCHED_FIXEDPOINT_SHIFT 10
409# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 410
69842cba
PB
411/* Increase resolution of cpu_capacity calculations */
412# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
413# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
414
20b8a59f 415struct load_weight {
5eca1c10
IM
416 unsigned long weight;
417 u32 inv_weight;
20b8a59f
IM
418};
419
7f65ea42
PB
420/**
421 * struct util_est - Estimation utilization of FAIR tasks
422 * @enqueued: instantaneous estimated utilization of a task/cpu
423 * @ewma: the Exponential Weighted Moving Average (EWMA)
424 * utilization of a task
425 *
426 * Support data structure to track an Exponential Weighted Moving Average
427 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
428 * average each time a task completes an activation. Sample's weight is chosen
429 * so that the EWMA will be relatively insensitive to transient changes to the
430 * task's workload.
431 *
432 * The enqueued attribute has a slightly different meaning for tasks and cpus:
433 * - task: the task's util_avg at last task dequeue time
434 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
435 * Thus, the util_est.enqueued of a task represents the contribution on the
436 * estimated utilization of the CPU where that task is currently enqueued.
437 *
438 * Only for tasks we track a moving average of the past instantaneous
439 * estimated utilization. This allows to absorb sporadic drops in utilization
440 * of an otherwise almost periodic task.
68d7a190
DE
441 *
442 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
443 * updates. When a task is dequeued, its util_est should not be updated if its
444 * util_avg has not been updated in the meantime.
445 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
446 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
447 * for a task) it is safe to use MSB.
7f65ea42
PB
448 */
449struct util_est {
450 unsigned int enqueued;
451 unsigned int ewma;
452#define UTIL_EST_WEIGHT_SHIFT 2
68d7a190 453#define UTIL_AVG_UNCHANGED 0x80000000
317d359d 454} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 455
9d89c257 456/*
9f683953 457 * The load/runnable/util_avg accumulates an infinite geometric series
0dacee1b 458 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
7b595334
YD
459 *
460 * [load_avg definition]
461 *
462 * load_avg = runnable% * scale_load_down(load)
463 *
9f683953
VG
464 * [runnable_avg definition]
465 *
466 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
7b595334 467 *
7b595334
YD
468 * [util_avg definition]
469 *
470 * util_avg = running% * SCHED_CAPACITY_SCALE
471 *
9f683953
VG
472 * where runnable% is the time ratio that a sched_entity is runnable and
473 * running% the time ratio that a sched_entity is running.
474 *
475 * For cfs_rq, they are the aggregated values of all runnable and blocked
476 * sched_entities.
7b595334 477 *
c1b7b8d4 478 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
9f683953
VG
479 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
480 * for computing those signals (see update_rq_clock_pelt())
7b595334 481 *
23127296
VG
482 * N.B., the above ratios (runnable% and running%) themselves are in the
483 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
484 * to as large a range as necessary. This is for example reflected by
485 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
486 *
487 * [Overflow issue]
488 *
489 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
490 * with the highest load (=88761), always runnable on a single cfs_rq,
491 * and should not overflow as the number already hits PID_MAX_LIMIT.
492 *
493 * For all other cases (including 32-bit kernels), struct load_weight's
494 * weight will overflow first before we do, because:
495 *
496 * Max(load_avg) <= Max(load.weight)
497 *
498 * Then it is the load_weight's responsibility to consider overflow
499 * issues.
9d89c257 500 */
9d85f21c 501struct sched_avg {
5eca1c10
IM
502 u64 last_update_time;
503 u64 load_sum;
9f683953 504 u64 runnable_sum;
5eca1c10
IM
505 u32 util_sum;
506 u32 period_contrib;
507 unsigned long load_avg;
9f683953 508 unsigned long runnable_avg;
5eca1c10 509 unsigned long util_avg;
7f65ea42 510 struct util_est util_est;
317d359d 511} ____cacheline_aligned;
9d85f21c 512
41acab88 513struct sched_statistics {
7f5f8e8d 514#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
515 u64 wait_start;
516 u64 wait_max;
517 u64 wait_count;
518 u64 wait_sum;
519 u64 iowait_count;
520 u64 iowait_sum;
521
522 u64 sleep_start;
523 u64 sleep_max;
524 s64 sum_sleep_runtime;
525
526 u64 block_start;
527 u64 block_max;
847fc0cd
YS
528 s64 sum_block_runtime;
529
5eca1c10
IM
530 u64 exec_max;
531 u64 slice_max;
532
533 u64 nr_migrations_cold;
534 u64 nr_failed_migrations_affine;
535 u64 nr_failed_migrations_running;
536 u64 nr_failed_migrations_hot;
537 u64 nr_forced_migrations;
538
539 u64 nr_wakeups;
540 u64 nr_wakeups_sync;
541 u64 nr_wakeups_migrate;
542 u64 nr_wakeups_local;
543 u64 nr_wakeups_remote;
544 u64 nr_wakeups_affine;
545 u64 nr_wakeups_affine_attempts;
546 u64 nr_wakeups_passive;
547 u64 nr_wakeups_idle;
4feee7d1
JD
548
549#ifdef CONFIG_SCHED_CORE
550 u64 core_forceidle_sum;
41acab88 551#endif
4feee7d1 552#endif /* CONFIG_SCHEDSTATS */
ceeadb83 553} ____cacheline_aligned;
41acab88
LDM
554
555struct sched_entity {
5eca1c10
IM
556 /* For load-balancing: */
557 struct load_weight load;
558 struct rb_node run_node;
147f3efa
PZ
559 u64 deadline;
560 u64 min_deadline;
561
5eca1c10
IM
562 struct list_head group_node;
563 unsigned int on_rq;
41acab88 564
5eca1c10
IM
565 u64 exec_start;
566 u64 sum_exec_runtime;
5eca1c10 567 u64 prev_sum_exec_runtime;
86bfbb7c
PZ
568 u64 vruntime;
569 s64 vlag;
147f3efa 570 u64 slice;
41acab88 571
5eca1c10 572 u64 nr_migrations;
41acab88 573
20b8a59f 574#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
575 int depth;
576 struct sched_entity *parent;
20b8a59f 577 /* rq on which this entity is (to be) queued: */
5eca1c10 578 struct cfs_rq *cfs_rq;
20b8a59f 579 /* rq "owned" by this entity/group: */
5eca1c10 580 struct cfs_rq *my_q;
9f683953
VG
581 /* cached value of my_q->h_nr_running */
582 unsigned long runnable_weight;
20b8a59f 583#endif
8bd75c77 584
141965c7 585#ifdef CONFIG_SMP
5a107804
JO
586 /*
587 * Per entity load average tracking.
588 *
589 * Put into separate cache line so it does not
590 * collide with read-mostly values above.
591 */
317d359d 592 struct sched_avg avg;
9d85f21c 593#endif
20b8a59f 594};
70b97a7f 595
fa717060 596struct sched_rt_entity {
5eca1c10
IM
597 struct list_head run_list;
598 unsigned long timeout;
599 unsigned long watchdog_stamp;
600 unsigned int time_slice;
601 unsigned short on_rq;
602 unsigned short on_list;
603
604 struct sched_rt_entity *back;
052f1dc7 605#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 606 struct sched_rt_entity *parent;
6f505b16 607 /* rq on which this entity is (to be) queued: */
5eca1c10 608 struct rt_rq *rt_rq;
6f505b16 609 /* rq "owned" by this entity/group: */
5eca1c10 610 struct rt_rq *my_q;
6f505b16 611#endif
3859a271 612} __randomize_layout;
fa717060 613
aab03e05 614struct sched_dl_entity {
5eca1c10 615 struct rb_node rb_node;
aab03e05
DF
616
617 /*
618 * Original scheduling parameters. Copied here from sched_attr
4027d080 619 * during sched_setattr(), they will remain the same until
620 * the next sched_setattr().
aab03e05 621 */
5eca1c10
IM
622 u64 dl_runtime; /* Maximum runtime for each instance */
623 u64 dl_deadline; /* Relative deadline of each instance */
624 u64 dl_period; /* Separation of two instances (period) */
54d6d303 625 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 626 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
627
628 /*
629 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 630 * they are continuously updated during task execution. Note that
aab03e05
DF
631 * the remaining runtime could be < 0 in case we are in overrun.
632 */
5eca1c10
IM
633 s64 runtime; /* Remaining runtime for this instance */
634 u64 deadline; /* Absolute deadline for this instance */
635 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
636
637 /*
638 * Some bool flags:
639 *
640 * @dl_throttled tells if we exhausted the runtime. If so, the
641 * task has to wait for a replenishment to be performed at the
642 * next firing of dl_timer.
643 *
5eca1c10 644 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 645 * all its available runtime during the last job.
209a0cbd
LA
646 *
647 * @dl_non_contending tells if the task is inactive while still
648 * contributing to the active utilization. In other words, it
649 * indicates if the inactive timer has been armed and its handler
650 * has not been executed yet. This flag is useful to avoid race
651 * conditions between the inactive timer handler and the wakeup
652 * code.
34be3930
JL
653 *
654 * @dl_overrun tells if the task asked to be informed about runtime
655 * overruns.
aab03e05 656 */
aa5222e9 657 unsigned int dl_throttled : 1;
aa5222e9
DC
658 unsigned int dl_yielded : 1;
659 unsigned int dl_non_contending : 1;
34be3930 660 unsigned int dl_overrun : 1;
aab03e05
DF
661
662 /*
663 * Bandwidth enforcement timer. Each -deadline task has its
664 * own bandwidth to be enforced, thus we need one timer per task.
665 */
5eca1c10 666 struct hrtimer dl_timer;
209a0cbd
LA
667
668 /*
669 * Inactive timer, responsible for decreasing the active utilization
670 * at the "0-lag time". When a -deadline task blocks, it contributes
671 * to GRUB's active utilization until the "0-lag time", hence a
672 * timer is needed to decrease the active utilization at the correct
673 * time.
674 */
675 struct hrtimer inactive_timer;
2279f540
JL
676
677#ifdef CONFIG_RT_MUTEXES
678 /*
679 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
680 * pi_se points to the donor, otherwise points to the dl_se it belongs
681 * to (the original one/itself).
682 */
683 struct sched_dl_entity *pi_se;
684#endif
aab03e05 685};
8bd75c77 686
69842cba
PB
687#ifdef CONFIG_UCLAMP_TASK
688/* Number of utilization clamp buckets (shorter alias) */
689#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
690
691/*
692 * Utilization clamp for a scheduling entity
693 * @value: clamp value "assigned" to a se
694 * @bucket_id: bucket index corresponding to the "assigned" value
e8f14172 695 * @active: the se is currently refcounted in a rq's bucket
a509a7cd 696 * @user_defined: the requested clamp value comes from user-space
69842cba
PB
697 *
698 * The bucket_id is the index of the clamp bucket matching the clamp value
699 * which is pre-computed and stored to avoid expensive integer divisions from
700 * the fast path.
e8f14172
PB
701 *
702 * The active bit is set whenever a task has got an "effective" value assigned,
703 * which can be different from the clamp value "requested" from user-space.
704 * This allows to know a task is refcounted in the rq's bucket corresponding
705 * to the "effective" bucket_id.
a509a7cd
PB
706 *
707 * The user_defined bit is set whenever a task has got a task-specific clamp
708 * value requested from userspace, i.e. the system defaults apply to this task
709 * just as a restriction. This allows to relax default clamps when a less
710 * restrictive task-specific value has been requested, thus allowing to
711 * implement a "nice" semantic. For example, a task running with a 20%
712 * default boost can still drop its own boosting to 0%.
69842cba
PB
713 */
714struct uclamp_se {
715 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
716 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
e8f14172 717 unsigned int active : 1;
a509a7cd 718 unsigned int user_defined : 1;
69842cba
PB
719};
720#endif /* CONFIG_UCLAMP_TASK */
721
1d082fd0
PM
722union rcu_special {
723 struct {
5eca1c10
IM
724 u8 blocked;
725 u8 need_qs;
05f41571 726 u8 exp_hint; /* Hint for performance. */
276c4104 727 u8 need_mb; /* Readers need smp_mb(). */
8203d6d0 728 } b; /* Bits. */
05f41571 729 u32 s; /* Set of bits. */
1d082fd0 730};
86848966 731
8dc85d54
PZ
732enum perf_event_task_context {
733 perf_invalid_context = -1,
734 perf_hw_context = 0,
89a1e187 735 perf_sw_context,
8dc85d54
PZ
736 perf_nr_task_contexts,
737};
738
eb61baf6
IM
739struct wake_q_node {
740 struct wake_q_node *next;
741};
742
5fbda3ec
TG
743struct kmap_ctrl {
744#ifdef CONFIG_KMAP_LOCAL
745 int idx;
746 pte_t pteval[KM_MAX_IDX];
747#endif
748};
749
1da177e4 750struct task_struct {
c65eacbe
AL
751#ifdef CONFIG_THREAD_INFO_IN_TASK
752 /*
753 * For reasons of header soup (see current_thread_info()), this
754 * must be the first element of task_struct.
755 */
5eca1c10 756 struct thread_info thread_info;
c65eacbe 757#endif
2f064a59 758 unsigned int __state;
29e48ce8 759
5f220be2
TG
760 /* saved state for "spinlock sleepers" */
761 unsigned int saved_state;
5f220be2 762
29e48ce8
KC
763 /*
764 * This begins the randomizable portion of task_struct. Only
765 * scheduling-critical items should be added above here.
766 */
767 randomized_struct_fields_start
768
5eca1c10 769 void *stack;
ec1d2819 770 refcount_t usage;
5eca1c10
IM
771 /* Per task flags (PF_*), defined further below: */
772 unsigned int flags;
773 unsigned int ptrace;
1da177e4 774
2dd73a4f 775#ifdef CONFIG_SMP
5eca1c10 776 int on_cpu;
8c4890d1 777 struct __call_single_node wake_entry;
5eca1c10
IM
778 unsigned int wakee_flips;
779 unsigned long wakee_flip_decay_ts;
780 struct task_struct *last_wakee;
ac66f547 781
32e839dd
MG
782 /*
783 * recent_used_cpu is initially set as the last CPU used by a task
784 * that wakes affine another task. Waker/wakee relationships can
785 * push tasks around a CPU where each wakeup moves to the next one.
786 * Tracking a recently used CPU allows a quick search for a recently
787 * used CPU that may be idle.
788 */
789 int recent_used_cpu;
5eca1c10 790 int wake_cpu;
2dd73a4f 791#endif
5eca1c10
IM
792 int on_rq;
793
794 int prio;
795 int static_prio;
796 int normal_prio;
797 unsigned int rt_priority;
50e645a8 798
5eca1c10
IM
799 struct sched_entity se;
800 struct sched_rt_entity rt;
8a311c74 801 struct sched_dl_entity dl;
804bccba 802 const struct sched_class *sched_class;
8a311c74
PZ
803
804#ifdef CONFIG_SCHED_CORE
805 struct rb_node core_node;
806 unsigned long core_cookie;
d2dfa17b 807 unsigned int core_occupation;
8a311c74
PZ
808#endif
809
8323f26c 810#ifdef CONFIG_CGROUP_SCHED
5eca1c10 811 struct task_group *sched_task_group;
8323f26c 812#endif
1da177e4 813
69842cba 814#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
815 /*
816 * Clamp values requested for a scheduling entity.
817 * Must be updated with task_rq_lock() held.
818 */
e8f14172 819 struct uclamp_se uclamp_req[UCLAMP_CNT];
13685c4a
QY
820 /*
821 * Effective clamp values used for a scheduling entity.
822 * Must be updated with task_rq_lock() held.
823 */
69842cba
PB
824 struct uclamp_se uclamp[UCLAMP_CNT];
825#endif
826
ceeadb83
YS
827 struct sched_statistics stats;
828
e107be36 829#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
830 /* List of struct preempt_notifier: */
831 struct hlist_head preempt_notifiers;
e107be36
AK
832#endif
833
6c5c9341 834#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 835 unsigned int btrace_seq;
6c5c9341 836#endif
1da177e4 837
5eca1c10
IM
838 unsigned int policy;
839 int nr_cpus_allowed;
3bd37062 840 const cpumask_t *cpus_ptr;
b90ca8ba 841 cpumask_t *user_cpus_ptr;
3bd37062 842 cpumask_t cpus_mask;
6d337eab 843 void *migration_pending;
74d862b6 844#ifdef CONFIG_SMP
a7c81556 845 unsigned short migration_disabled;
af449901 846#endif
a7c81556 847 unsigned short migration_flags;
1da177e4 848
a57eb940 849#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
850 int rcu_read_lock_nesting;
851 union rcu_special rcu_read_unlock_special;
852 struct list_head rcu_node_entry;
853 struct rcu_node *rcu_blocked_node;
28f6569a 854#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 855
8315f422 856#ifdef CONFIG_TASKS_RCU
5eca1c10 857 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
858 u8 rcu_tasks_holdout;
859 u8 rcu_tasks_idx;
5eca1c10 860 int rcu_tasks_idle_cpu;
ccdd29ff 861 struct list_head rcu_tasks_holdout_list;
8315f422 862#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 863
d5f177d3
PM
864#ifdef CONFIG_TASKS_TRACE_RCU
865 int trc_reader_nesting;
866 int trc_ipi_to_cpu;
276c4104 867 union rcu_special trc_reader_special;
d5f177d3 868 struct list_head trc_holdout_list;
434c9eef
PM
869 struct list_head trc_blkd_node;
870 int trc_blkd_cpu;
d5f177d3
PM
871#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
872
5eca1c10 873 struct sched_info sched_info;
1da177e4 874
5eca1c10 875 struct list_head tasks;
806c09a7 876#ifdef CONFIG_SMP
5eca1c10
IM
877 struct plist_node pushable_tasks;
878 struct rb_node pushable_dl_tasks;
806c09a7 879#endif
1da177e4 880
5eca1c10
IM
881 struct mm_struct *mm;
882 struct mm_struct *active_mm;
2b69987b 883 struct address_space *faults_disabled_mapping;
314ff785 884
5eca1c10
IM
885 int exit_state;
886 int exit_code;
887 int exit_signal;
888 /* The signal sent when the parent dies: */
889 int pdeath_signal;
890 /* JOBCTL_*, siglock protected: */
891 unsigned long jobctl;
892
893 /* Used for emulating ABI behavior of previous Linux versions: */
894 unsigned int personality;
895
896 /* Scheduler bits, serialized by scheduler locks: */
897 unsigned sched_reset_on_fork:1;
898 unsigned sched_contributes_to_load:1;
899 unsigned sched_migrated:1;
eb414681 900
5eca1c10
IM
901 /* Force alignment to the next boundary: */
902 unsigned :0;
903
904 /* Unserialized, strictly 'current' */
905
f97bb527
PZ
906 /*
907 * This field must not be in the scheduler word above due to wakelist
908 * queueing no longer being serialized by p->on_cpu. However:
909 *
910 * p->XXX = X; ttwu()
911 * schedule() if (p->on_rq && ..) // false
912 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
913 * deactivate_task() ttwu_queue_wakelist())
914 * p->on_rq = 0; p->sched_remote_wakeup = Y;
915 *
916 * guarantees all stores of 'current' are visible before
917 * ->sched_remote_wakeup gets used, so it can be in this word.
918 */
919 unsigned sched_remote_wakeup:1;
6b596e62
PZ
920#ifdef CONFIG_RT_MUTEXES
921 unsigned sched_rt_mutex:1;
922#endif
f97bb527 923
5eca1c10
IM
924 /* Bit to tell LSMs we're in execve(): */
925 unsigned in_execve:1;
926 unsigned in_iowait:1;
927#ifndef TIF_RESTORE_SIGMASK
928 unsigned restore_sigmask:1;
7e781418 929#endif
626ebc41 930#ifdef CONFIG_MEMCG
29ef680a 931 unsigned in_user_fault:1;
127424c8 932#endif
ec1c86b2
YZ
933#ifdef CONFIG_LRU_GEN
934 /* whether the LRU algorithm may apply to this access */
935 unsigned in_lru_fault:1;
936#endif
ff303e66 937#ifdef CONFIG_COMPAT_BRK
5eca1c10 938 unsigned brk_randomized:1;
ff303e66 939#endif
77f88796
TH
940#ifdef CONFIG_CGROUPS
941 /* disallow userland-initiated cgroup migration */
942 unsigned no_cgroup_migration:1;
76f969e8
RG
943 /* task is frozen/stopped (used by the cgroup freezer) */
944 unsigned frozen:1;
77f88796 945#endif
d09d8df3 946#ifdef CONFIG_BLK_CGROUP
d09d8df3
JB
947 unsigned use_memdelay:1;
948#endif
1066d1b6
YS
949#ifdef CONFIG_PSI
950 /* Stalled due to lack of memory */
951 unsigned in_memstall:1;
952#endif
8e9b16c4
ST
953#ifdef CONFIG_PAGE_OWNER
954 /* Used by page_owner=on to detect recursion in page tracking. */
955 unsigned in_page_owner:1;
956#endif
b542e383
TG
957#ifdef CONFIG_EVENTFD
958 /* Recursion prevention for eventfd_signal() */
9f0deaa1 959 unsigned in_eventfd:1;
b542e383 960#endif
a3d29e82
PZ
961#ifdef CONFIG_IOMMU_SVA
962 unsigned pasid_activated:1;
963#endif
b041b525
TL
964#ifdef CONFIG_CPU_SUP_INTEL
965 unsigned reported_split_lock:1;
966#endif
aa1cf99b
YY
967#ifdef CONFIG_TASK_DELAY_ACCT
968 /* delay due to memory thrashing */
969 unsigned in_thrashing:1;
970#endif
6f185c29 971
5eca1c10 972 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 973
5eca1c10 974 struct restart_block restart_block;
f56141e3 975
5eca1c10
IM
976 pid_t pid;
977 pid_t tgid;
0a425405 978
050e9baa 979#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
980 /* Canary value for the -fstack-protector GCC feature: */
981 unsigned long stack_canary;
1314562a 982#endif
4d1d61a6 983 /*
5eca1c10 984 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 985 * older sibling, respectively. (p->father can be replaced with
f470021a 986 * p->real_parent->pid)
1da177e4 987 */
5eca1c10
IM
988
989 /* Real parent process: */
990 struct task_struct __rcu *real_parent;
991
992 /* Recipient of SIGCHLD, wait4() reports: */
993 struct task_struct __rcu *parent;
994
1da177e4 995 /*
5eca1c10 996 * Children/sibling form the list of natural children:
1da177e4 997 */
5eca1c10
IM
998 struct list_head children;
999 struct list_head sibling;
1000 struct task_struct *group_leader;
1da177e4 1001
f470021a 1002 /*
5eca1c10
IM
1003 * 'ptraced' is the list of tasks this task is using ptrace() on.
1004 *
f470021a 1005 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 1006 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 1007 */
5eca1c10
IM
1008 struct list_head ptraced;
1009 struct list_head ptrace_entry;
f470021a 1010
1da177e4 1011 /* PID/PID hash table linkage. */
2c470475
EB
1012 struct pid *thread_pid;
1013 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
1014 struct list_head thread_node;
1015
1016 struct completion *vfork_done;
1da177e4 1017
5eca1c10
IM
1018 /* CLONE_CHILD_SETTID: */
1019 int __user *set_child_tid;
1da177e4 1020
5eca1c10
IM
1021 /* CLONE_CHILD_CLEARTID: */
1022 int __user *clear_child_tid;
1023
e32cf5df
EB
1024 /* PF_KTHREAD | PF_IO_WORKER */
1025 void *worker_private;
3bfe6106 1026
5eca1c10
IM
1027 u64 utime;
1028 u64 stime;
40565b5a 1029#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
1030 u64 utimescaled;
1031 u64 stimescaled;
40565b5a 1032#endif
5eca1c10
IM
1033 u64 gtime;
1034 struct prev_cputime prev_cputime;
6a61671b 1035#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 1036 struct vtime vtime;
d99ca3b9 1037#endif
d027d45d
FW
1038
1039#ifdef CONFIG_NO_HZ_FULL
5eca1c10 1040 atomic_t tick_dep_mask;
d027d45d 1041#endif
5eca1c10
IM
1042 /* Context switch counts: */
1043 unsigned long nvcsw;
1044 unsigned long nivcsw;
1045
1046 /* Monotonic time in nsecs: */
1047 u64 start_time;
1048
1049 /* Boot based time in nsecs: */
cf25e24d 1050 u64 start_boottime;
5eca1c10
IM
1051
1052 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1053 unsigned long min_flt;
1054 unsigned long maj_flt;
1da177e4 1055
2b69942f
TG
1056 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1057 struct posix_cputimers posix_cputimers;
1da177e4 1058
1fb497dd
TG
1059#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1060 struct posix_cputimers_work posix_cputimers_work;
1061#endif
1062
5eca1c10
IM
1063 /* Process credentials: */
1064
1065 /* Tracer's credentials at attach: */
1066 const struct cred __rcu *ptracer_cred;
1067
1068 /* Objective and real subjective task credentials (COW): */
1069 const struct cred __rcu *real_cred;
1070
1071 /* Effective (overridable) subjective task credentials (COW): */
1072 const struct cred __rcu *cred;
1073
7743c48e
DH
1074#ifdef CONFIG_KEYS
1075 /* Cached requested key. */
1076 struct key *cached_requested_key;
1077#endif
1078
5eca1c10
IM
1079 /*
1080 * executable name, excluding path.
1081 *
1082 * - normally initialized setup_new_exec()
1083 * - access it with [gs]et_task_comm()
1084 * - lock it with task_lock()
1085 */
1086 char comm[TASK_COMM_LEN];
1087
1088 struct nameidata *nameidata;
1089
3d5b6fcc 1090#ifdef CONFIG_SYSVIPC
5eca1c10
IM
1091 struct sysv_sem sysvsem;
1092 struct sysv_shm sysvshm;
3d5b6fcc 1093#endif
e162b39a 1094#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 1095 unsigned long last_switch_count;
a2e51445 1096 unsigned long last_switch_time;
82a1fcb9 1097#endif
5eca1c10
IM
1098 /* Filesystem information: */
1099 struct fs_struct *fs;
1100
1101 /* Open file information: */
1102 struct files_struct *files;
1103
0f212204
JA
1104#ifdef CONFIG_IO_URING
1105 struct io_uring_task *io_uring;
1106#endif
1107
5eca1c10
IM
1108 /* Namespaces: */
1109 struct nsproxy *nsproxy;
1110
1111 /* Signal handlers: */
1112 struct signal_struct *signal;
913292c9 1113 struct sighand_struct __rcu *sighand;
5eca1c10
IM
1114 sigset_t blocked;
1115 sigset_t real_blocked;
1116 /* Restored if set_restore_sigmask() was used: */
1117 sigset_t saved_sigmask;
1118 struct sigpending pending;
1119 unsigned long sas_ss_sp;
1120 size_t sas_ss_size;
1121 unsigned int sas_ss_flags;
1122
1123 struct callback_head *task_works;
1124
4b7d248b 1125#ifdef CONFIG_AUDIT
bfef93a5 1126#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
1127 struct audit_context *audit_context;
1128#endif
5eca1c10
IM
1129 kuid_t loginuid;
1130 unsigned int sessionid;
bfef93a5 1131#endif
5eca1c10 1132 struct seccomp seccomp;
1446e1df 1133 struct syscall_user_dispatch syscall_dispatch;
5eca1c10
IM
1134
1135 /* Thread group tracking: */
d1e7fd64
EB
1136 u64 parent_exec_id;
1137 u64 self_exec_id;
1da177e4 1138
5eca1c10
IM
1139 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1140 spinlock_t alloc_lock;
1da177e4 1141
b29739f9 1142 /* Protection of the PI data structures: */
5eca1c10 1143 raw_spinlock_t pi_lock;
b29739f9 1144
5eca1c10 1145 struct wake_q_node wake_q;
76751049 1146
23f78d4a 1147#ifdef CONFIG_RT_MUTEXES
5eca1c10 1148 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 1149 struct rb_root_cached pi_waiters;
e96a7705
XP
1150 /* Updated under owner's pi_lock and rq lock */
1151 struct task_struct *pi_top_task;
5eca1c10
IM
1152 /* Deadlock detection and priority inheritance handling: */
1153 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1154#endif
1155
408894ee 1156#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
1157 /* Mutex deadlock detection: */
1158 struct mutex_waiter *blocked_on;
408894ee 1159#endif
5eca1c10 1160
312364f3
DV
1161#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1162 int non_block_count;
1163#endif
1164
de30a2b3 1165#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c 1166 struct irqtrace_events irqtrace;
de8f5e4f 1167 unsigned int hardirq_threaded;
c86e9b98 1168 u64 hardirq_chain_key;
5eca1c10
IM
1169 int softirqs_enabled;
1170 int softirq_context;
40db1739 1171 int irq_config;
de30a2b3 1172#endif
728b478d
TG
1173#ifdef CONFIG_PREEMPT_RT
1174 int softirq_disable_cnt;
1175#endif
5eca1c10 1176
fbb9ce95 1177#ifdef CONFIG_LOCKDEP
5eca1c10
IM
1178# define MAX_LOCK_DEPTH 48UL
1179 u64 curr_chain_key;
1180 int lockdep_depth;
1181 unsigned int lockdep_recursion;
1182 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 1183#endif
5eca1c10 1184
5cf53f3c 1185#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
5eca1c10 1186 unsigned int in_ubsan;
c6d30853 1187#endif
408894ee 1188
5eca1c10
IM
1189 /* Journalling filesystem info: */
1190 void *journal_info;
1da177e4 1191
5eca1c10
IM
1192 /* Stacked block device info: */
1193 struct bio_list *bio_list;
d89d8796 1194
5eca1c10
IM
1195 /* Stack plugging: */
1196 struct blk_plug *plug;
73c10101 1197
5eca1c10
IM
1198 /* VM state: */
1199 struct reclaim_state *reclaim_state;
1200
5eca1c10 1201 struct io_context *io_context;
1da177e4 1202
5e1f0f09
MG
1203#ifdef CONFIG_COMPACTION
1204 struct capture_control *capture_control;
1205#endif
5eca1c10
IM
1206 /* Ptrace state: */
1207 unsigned long ptrace_message;
ae7795bc 1208 kernel_siginfo_t *last_siginfo;
1da177e4 1209
5eca1c10 1210 struct task_io_accounting ioac;
eb414681
JW
1211#ifdef CONFIG_PSI
1212 /* Pressure stall state */
1213 unsigned int psi_flags;
1214#endif
5eca1c10
IM
1215#ifdef CONFIG_TASK_XACCT
1216 /* Accumulated RSS usage: */
1217 u64 acct_rss_mem1;
1218 /* Accumulated virtual memory usage: */
1219 u64 acct_vm_mem1;
1220 /* stime + utime since last update: */
1221 u64 acct_timexpd;
1da177e4
LT
1222#endif
1223#ifdef CONFIG_CPUSETS
5eca1c10
IM
1224 /* Protected by ->alloc_lock: */
1225 nodemask_t mems_allowed;
3b03706f 1226 /* Sequence number to catch updates: */
b7505861 1227 seqcount_spinlock_t mems_allowed_seq;
5eca1c10
IM
1228 int cpuset_mem_spread_rotor;
1229 int cpuset_slab_spread_rotor;
1da177e4 1230#endif
ddbcc7e8 1231#ifdef CONFIG_CGROUPS
5eca1c10
IM
1232 /* Control Group info protected by css_set_lock: */
1233 struct css_set __rcu *cgroups;
1234 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1235 struct list_head cg_list;
ddbcc7e8 1236#endif
e6d42931 1237#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 1238 u32 closid;
d6aaba61 1239 u32 rmid;
e02737d5 1240#endif
42b2dd0a 1241#ifdef CONFIG_FUTEX
5eca1c10 1242 struct robust_list_head __user *robust_list;
34f192c6
IM
1243#ifdef CONFIG_COMPAT
1244 struct compat_robust_list_head __user *compat_robust_list;
1245#endif
5eca1c10
IM
1246 struct list_head pi_state_list;
1247 struct futex_pi_state *pi_state_cache;
3f186d97 1248 struct mutex futex_exit_mutex;
3d4775df 1249 unsigned int futex_state;
c7aceaba 1250#endif
cdd6c482 1251#ifdef CONFIG_PERF_EVENTS
bd275681 1252 struct perf_event_context *perf_event_ctxp;
5eca1c10
IM
1253 struct mutex perf_event_mutex;
1254 struct list_head perf_event_list;
a63eaf34 1255#endif
8f47b187 1256#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1257 unsigned long preempt_disable_ip;
8f47b187 1258#endif
c7aceaba 1259#ifdef CONFIG_NUMA
5eca1c10
IM
1260 /* Protected by alloc_lock: */
1261 struct mempolicy *mempolicy;
45816682 1262 short il_prev;
5eca1c10 1263 short pref_node_fork;
42b2dd0a 1264#endif
cbee9f88 1265#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1266 int numa_scan_seq;
1267 unsigned int numa_scan_period;
1268 unsigned int numa_scan_period_max;
1269 int numa_preferred_nid;
1270 unsigned long numa_migrate_retry;
1271 /* Migration stamp: */
1272 u64 node_stamp;
1273 u64 last_task_numa_placement;
1274 u64 last_sum_exec_runtime;
1275 struct callback_head numa_work;
1276
cb361d8c
JH
1277 /*
1278 * This pointer is only modified for current in syscall and
1279 * pagefault context (and for tasks being destroyed), so it can be read
1280 * from any of the following contexts:
1281 * - RCU read-side critical section
1282 * - current->numa_group from everywhere
1283 * - task's runqueue locked, task not running
1284 */
1285 struct numa_group __rcu *numa_group;
8c8a743c 1286
745d6147 1287 /*
44dba3d5
IM
1288 * numa_faults is an array split into four regions:
1289 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1290 * in this precise order.
1291 *
1292 * faults_memory: Exponential decaying average of faults on a per-node
1293 * basis. Scheduling placement decisions are made based on these
1294 * counts. The values remain static for the duration of a PTE scan.
1295 * faults_cpu: Track the nodes the process was running on when a NUMA
1296 * hinting fault was incurred.
1297 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1298 * during the current scan window. When the scan completes, the counts
1299 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1300 */
5eca1c10
IM
1301 unsigned long *numa_faults;
1302 unsigned long total_numa_faults;
745d6147 1303
04bb2f94
RR
1304 /*
1305 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1306 * scan window were remote/local or failed to migrate. The task scan
1307 * period is adapted based on the locality of the faults with different
1308 * weights depending on whether they were shared or private faults
04bb2f94 1309 */
5eca1c10 1310 unsigned long numa_faults_locality[3];
04bb2f94 1311
5eca1c10 1312 unsigned long numa_pages_migrated;
cbee9f88
PZ
1313#endif /* CONFIG_NUMA_BALANCING */
1314
d7822b1e
MD
1315#ifdef CONFIG_RSEQ
1316 struct rseq __user *rseq;
ee3e3ac0 1317 u32 rseq_len;
d7822b1e
MD
1318 u32 rseq_sig;
1319 /*
1320 * RmW on rseq_event_mask must be performed atomically
1321 * with respect to preemption.
1322 */
1323 unsigned long rseq_event_mask;
1324#endif
1325
af7f588d
MD
1326#ifdef CONFIG_SCHED_MM_CID
1327 int mm_cid; /* Current cid in mm */
223baf9d
MD
1328 int last_mm_cid; /* Most recent cid in mm */
1329 int migrate_from_cpu;
af7f588d 1330 int mm_cid_active; /* Whether cid bitmap is active */
223baf9d 1331 struct callback_head cid_work;
af7f588d
MD
1332#endif
1333
5eca1c10 1334 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1335
5eca1c10
IM
1336 /* Cache last used pipe for splice(): */
1337 struct pipe_inode_info *splice_pipe;
5640f768 1338
5eca1c10 1339 struct page_frag task_frag;
5640f768 1340
47913d4e
IM
1341#ifdef CONFIG_TASK_DELAY_ACCT
1342 struct task_delay_info *delays;
f4f154fd 1343#endif
47913d4e 1344
f4f154fd 1345#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1346 int make_it_fail;
9049f2f6 1347 unsigned int fail_nth;
ca74e92b 1348#endif
9d823e8f 1349 /*
5eca1c10
IM
1350 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1351 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1352 */
5eca1c10
IM
1353 int nr_dirtied;
1354 int nr_dirtied_pause;
1355 /* Start of a write-and-pause period: */
1356 unsigned long dirty_paused_when;
9d823e8f 1357
9745512c 1358#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1359 int latency_record_count;
1360 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1361#endif
6976675d 1362 /*
5eca1c10 1363 * Time slack values; these are used to round up poll() and
6976675d
AV
1364 * select() etc timeout values. These are in nanoseconds.
1365 */
5eca1c10
IM
1366 u64 timer_slack_ns;
1367 u64 default_timer_slack_ns;
f8d570a4 1368
d73b4936 1369#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
5eca1c10 1370 unsigned int kasan_depth;
0b24becc 1371#endif
92c209ac 1372
dfd402a4
ME
1373#ifdef CONFIG_KCSAN
1374 struct kcsan_ctx kcsan_ctx;
92c209ac
ME
1375#ifdef CONFIG_TRACE_IRQFLAGS
1376 struct irqtrace_events kcsan_save_irqtrace;
1377#endif
69562e49
ME
1378#ifdef CONFIG_KCSAN_WEAK_MEMORY
1379 int kcsan_stack_depth;
1380#endif
dfd402a4 1381#endif
5eca1c10 1382
f80be457
AP
1383#ifdef CONFIG_KMSAN
1384 struct kmsan_ctx kmsan_ctx;
1385#endif
1386
393824f6
PA
1387#if IS_ENABLED(CONFIG_KUNIT)
1388 struct kunit *kunit_test;
1389#endif
1390
fb52607a 1391#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1392 /* Index of current stored address in ret_stack: */
1393 int curr_ret_stack;
39eb456d 1394 int curr_ret_depth;
5eca1c10
IM
1395
1396 /* Stack of return addresses for return function tracing: */
1397 struct ftrace_ret_stack *ret_stack;
1398
1399 /* Timestamp for last schedule: */
1400 unsigned long long ftrace_timestamp;
1401
f201ae23
FW
1402 /*
1403 * Number of functions that haven't been traced
5eca1c10 1404 * because of depth overrun:
f201ae23 1405 */
5eca1c10
IM
1406 atomic_t trace_overrun;
1407
1408 /* Pause tracing: */
1409 atomic_t tracing_graph_pause;
f201ae23 1410#endif
5eca1c10 1411
ea4e2bc4 1412#ifdef CONFIG_TRACING
5eca1c10
IM
1413 /* Bitmask and counter of trace recursion: */
1414 unsigned long trace_recursion;
261842b7 1415#endif /* CONFIG_TRACING */
5eca1c10 1416
5c9a8750 1417#ifdef CONFIG_KCOV
eec028c9
AK
1418 /* See kernel/kcov.c for more details. */
1419
5eca1c10 1420 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1421 unsigned int kcov_mode;
5eca1c10
IM
1422
1423 /* Size of the kcov_area: */
1424 unsigned int kcov_size;
1425
1426 /* Buffer for coverage collection: */
1427 void *kcov_area;
1428
1429 /* KCOV descriptor wired with this task or NULL: */
1430 struct kcov *kcov;
eec028c9
AK
1431
1432 /* KCOV common handle for remote coverage collection: */
1433 u64 kcov_handle;
1434
1435 /* KCOV sequence number: */
1436 int kcov_sequence;
5ff3b30a
AK
1437
1438 /* Collect coverage from softirq context: */
1439 unsigned int kcov_softirq;
5c9a8750 1440#endif
5eca1c10 1441
6f185c29 1442#ifdef CONFIG_MEMCG
5eca1c10
IM
1443 struct mem_cgroup *memcg_in_oom;
1444 gfp_t memcg_oom_gfp_mask;
1445 int memcg_oom_order;
b23afb93 1446
5eca1c10
IM
1447 /* Number of pages to reclaim on returning to userland: */
1448 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1449
1450 /* Used by memcontrol for targeted memcg charge: */
1451 struct mem_cgroup *active_memcg;
569b846d 1452#endif
5eca1c10 1453
1aacbd35
RG
1454#ifdef CONFIG_MEMCG_KMEM
1455 struct obj_cgroup *objcg;
1456#endif
1457
d09d8df3 1458#ifdef CONFIG_BLK_CGROUP
f05837ed 1459 struct gendisk *throttle_disk;
d09d8df3
JB
1460#endif
1461
0326f5a9 1462#ifdef CONFIG_UPROBES
5eca1c10 1463 struct uprobe_task *utask;
0326f5a9 1464#endif
cafe5635 1465#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1466 unsigned int sequential_io;
1467 unsigned int sequential_io_avg;
cafe5635 1468#endif
5fbda3ec 1469 struct kmap_ctrl kmap_ctrl;
8eb23b9f 1470#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1471 unsigned long task_state_change;
5f220be2
TG
1472# ifdef CONFIG_PREEMPT_RT
1473 unsigned long saved_state_change;
1474# endif
8eb23b9f 1475#endif
22df776a
DV
1476 struct rcu_head rcu;
1477 refcount_t rcu_users;
5eca1c10 1478 int pagefault_disabled;
03049269 1479#ifdef CONFIG_MMU
5eca1c10 1480 struct task_struct *oom_reaper_list;
e4a38402 1481 struct timer_list oom_reaper_timer;
03049269 1482#endif
ba14a194 1483#ifdef CONFIG_VMAP_STACK
5eca1c10 1484 struct vm_struct *stack_vm_area;
ba14a194 1485#endif
68f24b08 1486#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1487 /* A live task holds one reference: */
f0b89d39 1488 refcount_t stack_refcount;
d83a7cb3
JP
1489#endif
1490#ifdef CONFIG_LIVEPATCH
1491 int patch_state;
0302e28d 1492#endif
e4e55b47
TH
1493#ifdef CONFIG_SECURITY
1494 /* Used by LSM modules for access restriction: */
1495 void *security;
68f24b08 1496#endif
a10787e6
SL
1497#ifdef CONFIG_BPF_SYSCALL
1498 /* Used by BPF task local storage */
1499 struct bpf_local_storage __rcu *bpf_storage;
c7603cfa
AN
1500 /* Used for BPF run context */
1501 struct bpf_run_ctx *bpf_ctx;
a10787e6 1502#endif
29e48ce8 1503
afaef01c
AP
1504#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1505 unsigned long lowest_stack;
c8d12627 1506 unsigned long prev_lowest_stack;
afaef01c
AP
1507#endif
1508
5567d11c 1509#ifdef CONFIG_X86_MCE
c0ab7ffc
TL
1510 void __user *mce_vaddr;
1511 __u64 mce_kflags;
5567d11c 1512 u64 mce_addr;
17fae129
TL
1513 __u64 mce_ripv : 1,
1514 mce_whole_page : 1,
1515 __mce_reserved : 62;
5567d11c 1516 struct callback_head mce_kill_me;
81065b35 1517 int mce_count;
5567d11c
PZ
1518#endif
1519
d741bf41
PZ
1520#ifdef CONFIG_KRETPROBES
1521 struct llist_head kretprobe_instances;
1522#endif
54ecbe6f
MH
1523#ifdef CONFIG_RETHOOK
1524 struct llist_head rethooks;
1525#endif
d741bf41 1526
58e106e7
BS
1527#ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1528 /*
1529 * If L1D flush is supported on mm context switch
1530 * then we use this callback head to queue kill work
1531 * to kill tasks that are not running on SMT disabled
1532 * cores
1533 */
1534 struct callback_head l1d_flush_kill;
1535#endif
1536
102227b9
DBO
1537#ifdef CONFIG_RV
1538 /*
1539 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1540 * If we find justification for more monitors, we can think
1541 * about adding more or developing a dynamic method. So far,
1542 * none of these are justified.
1543 */
1544 union rv_task_monitor rv[RV_PER_TASK_MONITORS];
1545#endif
1546
fd593511
BB
1547#ifdef CONFIG_USER_EVENTS
1548 struct user_event_mm *user_event_mm;
1549#endif
1550
29e48ce8
KC
1551 /*
1552 * New fields for task_struct should be added above here, so that
1553 * they are included in the randomized portion of task_struct.
1554 */
1555 randomized_struct_fields_end
1556
5eca1c10
IM
1557 /* CPU-specific state of this task: */
1558 struct thread_struct thread;
1559
1560 /*
1561 * WARNING: on x86, 'thread_struct' contains a variable-sized
1562 * structure. It *MUST* be at the end of 'task_struct'.
1563 *
1564 * Do not put anything below here!
1565 */
1da177e4
LT
1566};
1567
06eb6184
PZ
1568#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1569#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1570
fa2c3254
VS
1571static inline unsigned int __task_state_index(unsigned int tsk_state,
1572 unsigned int tsk_exit_state)
20435d84 1573{
fa2c3254 1574 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
20435d84 1575
06eb6184
PZ
1576 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1577
0d6b3528 1578 if ((tsk_state & TASK_IDLE) == TASK_IDLE)
06eb6184
PZ
1579 state = TASK_REPORT_IDLE;
1580
25795ef6
VS
1581 /*
1582 * We're lying here, but rather than expose a completely new task state
1583 * to userspace, we can make this appear as if the task has gone through
1584 * a regular rt_mutex_lock() call.
1585 */
0d6b3528 1586 if (tsk_state & TASK_RTLOCK_WAIT)
25795ef6
VS
1587 state = TASK_UNINTERRUPTIBLE;
1588
1593baab
PZ
1589 return fls(state);
1590}
1591
fa2c3254
VS
1592static inline unsigned int task_state_index(struct task_struct *tsk)
1593{
1594 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1595}
1596
1d48b080 1597static inline char task_index_to_char(unsigned int state)
1593baab 1598{
8ef9925b 1599 static const char state_char[] = "RSDTtXZPI";
1593baab 1600
06eb6184 1601 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1602
1593baab
PZ
1603 return state_char[state];
1604}
1605
1606static inline char task_state_to_char(struct task_struct *tsk)
1607{
1d48b080 1608 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1609}
1610
9ec52099
CLG
1611extern struct pid *cad_pid;
1612
1da177e4
LT
1613/*
1614 * Per process flags
1615 */
01ccf592 1616#define PF_VCPU 0x00000001 /* I'm a virtual CPU */
5eca1c10
IM
1617#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1618#define PF_EXITING 0x00000004 /* Getting shut down */
92307383 1619#define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
01ccf592 1620#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
5eca1c10
IM
1621#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1622#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1623#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1624#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1625#define PF_DUMPCORE 0x00000200 /* Dumped core */
1626#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1627#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1628#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1629#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
54e6842d 1630#define PF_USER_WORKER 0x00004000 /* Kernel thread cloned from userspace thread */
5eca1c10 1631#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
fb04563d 1632#define PF__HOLE__00010000 0x00010000
7dea19f9
MH
1633#define PF_KSWAPD 0x00020000 /* I am kswapd */
1634#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1635#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
a37b0715
N
1636#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1637 * I am cleaning dirty pages from some other bdi. */
5eca1c10
IM
1638#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1639#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
fb04563d
PZ
1640#define PF__HOLE__00800000 0x00800000
1641#define PF__HOLE__01000000 0x01000000
1642#define PF__HOLE__02000000 0x02000000
3bd37062 1643#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1644#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1a08ae36 1645#define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
fb04563d
PZ
1646#define PF__HOLE__20000000 0x20000000
1647#define PF__HOLE__40000000 0x40000000
5eca1c10 1648#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1649
1650/*
1651 * Only the _current_ task can read/write to tsk->flags, but other
1652 * tasks can access tsk->flags in readonly mode for example
1653 * with tsk_used_math (like during threaded core dumping).
1654 * There is however an exception to this rule during ptrace
1655 * or during fork: the ptracer task is allowed to write to the
1656 * child->flags of its traced child (same goes for fork, the parent
1657 * can write to the child->flags), because we're guaranteed the
1658 * child is not running and in turn not changing child->flags
1659 * at the same time the parent does it.
1660 */
5eca1c10
IM
1661#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1662#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1663#define clear_used_math() clear_stopped_child_used_math(current)
1664#define set_used_math() set_stopped_child_used_math(current)
1665
1da177e4
LT
1666#define conditional_stopped_child_used_math(condition, child) \
1667 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1668
1669#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1670
1da177e4
LT
1671#define copy_to_stopped_child_used_math(child) \
1672 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1673
1da177e4 1674/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1675#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1676#define used_math() tsk_used_math(current)
1da177e4 1677
83d40a61 1678static __always_inline bool is_percpu_thread(void)
62ec05dd
TG
1679{
1680#ifdef CONFIG_SMP
1681 return (current->flags & PF_NO_SETAFFINITY) &&
1682 (current->nr_cpus_allowed == 1);
1683#else
1684 return true;
1685#endif
1686}
1687
1d4457f9 1688/* Per-process atomic flags. */
5eca1c10
IM
1689#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1690#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1691#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1692#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1693#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1694#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1695#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1696#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1697
e0e5070b
ZL
1698#define TASK_PFA_TEST(name, func) \
1699 static inline bool task_##func(struct task_struct *p) \
1700 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1701
e0e5070b
ZL
1702#define TASK_PFA_SET(name, func) \
1703 static inline void task_set_##func(struct task_struct *p) \
1704 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1705
e0e5070b
ZL
1706#define TASK_PFA_CLEAR(name, func) \
1707 static inline void task_clear_##func(struct task_struct *p) \
1708 { clear_bit(PFA_##name, &p->atomic_flags); }
1709
1710TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1711TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1712
2ad654bc
ZL
1713TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1714TASK_PFA_SET(SPREAD_PAGE, spread_page)
1715TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1716
1717TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1718TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1719TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1720
356e4bff
TG
1721TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1722TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1723TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1724
71368af9
WL
1725TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1726TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1727TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1728
356e4bff
TG
1729TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1730TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1731
9137bb27
TG
1732TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1733TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1734TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1735
1736TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1737TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1738
5eca1c10 1739static inline void
717a94b5 1740current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1741{
717a94b5
N
1742 current->flags &= ~flags;
1743 current->flags |= orig_flags & flags;
907aed48
MG
1744}
1745
5eca1c10 1746extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
2ef269ef 1747extern int task_can_attach(struct task_struct *p);
85989106
DE
1748extern int dl_bw_alloc(int cpu, u64 dl_bw);
1749extern void dl_bw_free(int cpu, u64 dl_bw);
1da177e4 1750#ifdef CONFIG_SMP
ae894083
CS
1751
1752/* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
5eca1c10 1753extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
ae894083
CS
1754
1755/**
1756 * set_cpus_allowed_ptr - set CPU affinity mask of a task
1757 * @p: the task
1758 * @new_mask: CPU affinity mask
1759 *
1760 * Return: zero if successful, or a negative error code
1761 */
5eca1c10 1762extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
b90ca8ba
WD
1763extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1764extern void release_user_cpus_ptr(struct task_struct *p);
234b8ab6 1765extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
07ec77a1
WD
1766extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1767extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1da177e4 1768#else
5eca1c10 1769static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1770{
1771}
5eca1c10 1772static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1773{
96f874e2 1774 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1775 return -EINVAL;
1776 return 0;
1777}
b90ca8ba
WD
1778static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1779{
1780 if (src->user_cpus_ptr)
1781 return -EINVAL;
1782 return 0;
1783}
1784static inline void release_user_cpus_ptr(struct task_struct *p)
1785{
1786 WARN_ON(p->user_cpus_ptr);
1787}
234b8ab6
WD
1788
1789static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1790{
1791 return 0;
1792}
1da177e4 1793#endif
e0ad9556 1794
fa93384f 1795extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1796extern void set_user_nice(struct task_struct *p, long nice);
1797extern int task_prio(const struct task_struct *p);
5eca1c10 1798
d0ea0268
DY
1799/**
1800 * task_nice - return the nice value of a given task.
1801 * @p: the task in question.
1802 *
1803 * Return: The nice value [ -20 ... 0 ... 19 ].
1804 */
1805static inline int task_nice(const struct task_struct *p)
1806{
1807 return PRIO_TO_NICE((p)->static_prio);
1808}
5eca1c10 1809
36c8b586
IM
1810extern int can_nice(const struct task_struct *p, const int nice);
1811extern int task_curr(const struct task_struct *p);
1da177e4 1812extern int idle_cpu(int cpu);
943d355d 1813extern int available_idle_cpu(int cpu);
5eca1c10
IM
1814extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1815extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
8b700983
PZ
1816extern void sched_set_fifo(struct task_struct *p);
1817extern void sched_set_fifo_low(struct task_struct *p);
1818extern void sched_set_normal(struct task_struct *p, int nice);
5eca1c10 1819extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1820extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1821extern struct task_struct *idle_task(int cpu);
5eca1c10 1822
c4f30608
PM
1823/**
1824 * is_idle_task - is the specified task an idle task?
fa757281 1825 * @p: the task in question.
e69f6186
YB
1826 *
1827 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1828 */
c94a88f3 1829static __always_inline bool is_idle_task(const struct task_struct *p)
c4f30608 1830{
c1de45ca 1831 return !!(p->flags & PF_IDLE);
c4f30608 1832}
5eca1c10 1833
36c8b586 1834extern struct task_struct *curr_task(int cpu);
a458ae2e 1835extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1836
1837void yield(void);
1838
1da177e4 1839union thread_union {
0500871f
DH
1840#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1841 struct task_struct task;
1842#endif
c65eacbe 1843#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1844 struct thread_info thread_info;
c65eacbe 1845#endif
1da177e4
LT
1846 unsigned long stack[THREAD_SIZE/sizeof(long)];
1847};
1848
0500871f
DH
1849#ifndef CONFIG_THREAD_INFO_IN_TASK
1850extern struct thread_info init_thread_info;
1851#endif
1852
1853extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1854
f3ac6067 1855#ifdef CONFIG_THREAD_INFO_IN_TASK
bcf9033e 1856# define task_thread_info(task) (&(task)->thread_info)
f3ac6067
IM
1857#elif !defined(__HAVE_THREAD_FUNCTIONS)
1858# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1859#endif
1860
198fe21b
PE
1861/*
1862 * find a task by one of its numerical ids
1863 *
198fe21b
PE
1864 * find_task_by_pid_ns():
1865 * finds a task by its pid in the specified namespace
228ebcbe
PE
1866 * find_task_by_vpid():
1867 * finds a task by its virtual pid
198fe21b 1868 *
e49859e7 1869 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1870 */
1871
228ebcbe 1872extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1873extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1874
2ee08260
MR
1875/*
1876 * find a task by its virtual pid and get the task struct
1877 */
1878extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1879
b3c97528
HH
1880extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1881extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1882extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1883
1da177e4 1884#ifdef CONFIG_SMP
5eca1c10 1885extern void kick_process(struct task_struct *tsk);
1da177e4 1886#else
5eca1c10 1887static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1888#endif
1da177e4 1889
82b89778 1890extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1891
82b89778
AH
1892static inline void set_task_comm(struct task_struct *tsk, const char *from)
1893{
1894 __set_task_comm(tsk, from, false);
1895}
5eca1c10 1896
3756f640
AB
1897extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1898#define get_task_comm(buf, tsk) ({ \
1899 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1900 __get_task_comm(buf, sizeof(buf), tsk); \
1901})
1da177e4
LT
1902
1903#ifdef CONFIG_SMP
2a0a24eb
TG
1904static __always_inline void scheduler_ipi(void)
1905{
1906 /*
1907 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1908 * TIF_NEED_RESCHED remotely (for the first time) will also send
1909 * this IPI.
1910 */
1911 preempt_fold_need_resched();
1912}
1da177e4 1913#else
184748cc 1914static inline void scheduler_ipi(void) { }
1da177e4
LT
1915#endif
1916
d5e15866
PZ
1917extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1918
5eca1c10
IM
1919/*
1920 * Set thread flags in other task's structures.
1921 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1922 */
1923static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1924{
a1261f54 1925 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1926}
1927
1928static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1929{
a1261f54 1930 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1931}
1932
93ee37c2
DM
1933static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1934 bool value)
1935{
1936 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1937}
1938
1da177e4
LT
1939static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1940{
a1261f54 1941 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1942}
1943
1944static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1945{
a1261f54 1946 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1947}
1948
1949static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1950{
a1261f54 1951 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1952}
1953
1954static inline void set_tsk_need_resched(struct task_struct *tsk)
1955{
1956 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1957}
1958
1959static inline void clear_tsk_need_resched(struct task_struct *tsk)
1960{
1961 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1962}
1963
8ae121ac
GH
1964static inline int test_tsk_need_resched(struct task_struct *tsk)
1965{
1966 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1967}
1968
1da177e4
LT
1969/*
1970 * cond_resched() and cond_resched_lock(): latency reduction via
1971 * explicit rescheduling in places that are safe. The return
1972 * value indicates whether a reschedule was done in fact.
1973 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 1974 */
b965f1dd
PZI
1975#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
1976extern int __cond_resched(void);
1977
99cf983c 1978#if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
b965f1dd 1979
e3ff7c60
JP
1980void sched_dynamic_klp_enable(void);
1981void sched_dynamic_klp_disable(void);
1982
b965f1dd
PZI
1983DECLARE_STATIC_CALL(cond_resched, __cond_resched);
1984
1985static __always_inline int _cond_resched(void)
1986{
ef72661e 1987 return static_call_mod(cond_resched)();
b965f1dd
PZI
1988}
1989
99cf983c 1990#elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
e3ff7c60 1991
99cf983c
MR
1992extern int dynamic_cond_resched(void);
1993
1994static __always_inline int _cond_resched(void)
1995{
1996 return dynamic_cond_resched();
1997}
1998
e3ff7c60 1999#else /* !CONFIG_PREEMPTION */
b965f1dd
PZI
2000
2001static inline int _cond_resched(void)
2002{
e3ff7c60 2003 klp_sched_try_switch();
b965f1dd
PZI
2004 return __cond_resched();
2005}
2006
e3ff7c60 2007#endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
b965f1dd 2008
e3ff7c60 2009#else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
b965f1dd 2010
e3ff7c60
JP
2011static inline int _cond_resched(void)
2012{
2013 klp_sched_try_switch();
2014 return 0;
2015}
b965f1dd 2016
e3ff7c60 2017#endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
6f80bd98 2018
613afbf8 2019#define cond_resched() ({ \
874f670e 2020 __might_resched(__FILE__, __LINE__, 0); \
613afbf8
FW
2021 _cond_resched(); \
2022})
6f80bd98 2023
613afbf8 2024extern int __cond_resched_lock(spinlock_t *lock);
f3d4b4b1
BG
2025extern int __cond_resched_rwlock_read(rwlock_t *lock);
2026extern int __cond_resched_rwlock_write(rwlock_t *lock);
613afbf8 2027
50e081b9
TG
2028#define MIGHT_RESCHED_RCU_SHIFT 8
2029#define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2030
3e9cc688
TG
2031#ifndef CONFIG_PREEMPT_RT
2032/*
2033 * Non RT kernels have an elevated preempt count due to the held lock,
2034 * but are not allowed to be inside a RCU read side critical section
2035 */
2036# define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2037#else
2038/*
2039 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2040 * cond_resched*lock() has to take that into account because it checks for
2041 * preempt_count() and rcu_preempt_depth().
2042 */
2043# define PREEMPT_LOCK_RESCHED_OFFSETS \
2044 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2045#endif
2046
2047#define cond_resched_lock(lock) ({ \
2048 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2049 __cond_resched_lock(lock); \
613afbf8
FW
2050})
2051
3e9cc688
TG
2052#define cond_resched_rwlock_read(lock) ({ \
2053 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2054 __cond_resched_rwlock_read(lock); \
f3d4b4b1
BG
2055})
2056
3e9cc688
TG
2057#define cond_resched_rwlock_write(lock) ({ \
2058 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2059 __cond_resched_rwlock_write(lock); \
f3d4b4b1
BG
2060})
2061
f6f3c437
SH
2062static inline void cond_resched_rcu(void)
2063{
2064#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2065 rcu_read_unlock();
2066 cond_resched();
2067 rcu_read_lock();
2068#endif
2069}
2070
cfe43f47
VS
2071#ifdef CONFIG_PREEMPT_DYNAMIC
2072
2073extern bool preempt_model_none(void);
2074extern bool preempt_model_voluntary(void);
2075extern bool preempt_model_full(void);
2076
2077#else
2078
2079static inline bool preempt_model_none(void)
2080{
2081 return IS_ENABLED(CONFIG_PREEMPT_NONE);
2082}
2083static inline bool preempt_model_voluntary(void)
2084{
2085 return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2086}
2087static inline bool preempt_model_full(void)
2088{
2089 return IS_ENABLED(CONFIG_PREEMPT);
2090}
2091
2092#endif
2093
2094static inline bool preempt_model_rt(void)
2095{
2096 return IS_ENABLED(CONFIG_PREEMPT_RT);
2097}
2098
2099/*
2100 * Does the preemption model allow non-cooperative preemption?
2101 *
2102 * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2103 * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2104 * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2105 * PREEMPT_NONE model.
2106 */
2107static inline bool preempt_model_preemptible(void)
2108{
2109 return preempt_model_full() || preempt_model_rt();
2110}
2111
75f93fed
PZ
2112static __always_inline bool need_resched(void)
2113{
2114 return unlikely(tif_need_resched());
2115}
2116
1da177e4
LT
2117/*
2118 * Wrappers for p->thread_info->cpu access. No-op on UP.
2119 */
2120#ifdef CONFIG_SMP
2121
2122static inline unsigned int task_cpu(const struct task_struct *p)
2123{
c546951d 2124 return READ_ONCE(task_thread_info(p)->cpu);
1da177e4
LT
2125}
2126
c65cc870 2127extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
2128
2129#else
2130
2131static inline unsigned int task_cpu(const struct task_struct *p)
2132{
2133 return 0;
2134}
2135
2136static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2137{
2138}
2139
2140#endif /* CONFIG_SMP */
2141
a1dfb631 2142extern bool sched_task_on_rq(struct task_struct *p);
42a20f86 2143extern unsigned long get_wchan(struct task_struct *p);
e386b672 2144extern struct task_struct *cpu_curr_snapshot(int cpu);
a1dfb631 2145
72375a88
KO
2146#include <linux/spinlock.h>
2147
d9345c65
PX
2148/*
2149 * In order to reduce various lock holder preemption latencies provide an
2150 * interface to see if a vCPU is currently running or not.
2151 *
2152 * This allows us to terminate optimistic spin loops and block, analogous to
2153 * the native optimistic spin heuristic of testing if the lock owner task is
2154 * running or not.
2155 */
2156#ifndef vcpu_is_preempted
42fd8baa
QC
2157static inline bool vcpu_is_preempted(int cpu)
2158{
2159 return false;
2160}
d9345c65
PX
2161#endif
2162
96f874e2
RR
2163extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2164extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 2165
82455257
DH
2166#ifndef TASK_SIZE_OF
2167#define TASK_SIZE_OF(tsk) TASK_SIZE
2168#endif
2169
a5418be9 2170#ifdef CONFIG_SMP
c0bed69d
KW
2171static inline bool owner_on_cpu(struct task_struct *owner)
2172{
2173 /*
2174 * As lock holder preemption issue, we both skip spinning if
2175 * task is not on cpu or its cpu is preempted
2176 */
4cf75fd4 2177 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
c0bed69d
KW
2178}
2179
a5418be9 2180/* Returns effective CPU energy utilization, as seen by the scheduler */
bb447999 2181unsigned long sched_cpu_util(int cpu);
a5418be9
VK
2182#endif /* CONFIG_SMP */
2183
d7822b1e
MD
2184#ifdef CONFIG_RSEQ
2185
2186/*
2187 * Map the event mask on the user-space ABI enum rseq_cs_flags
2188 * for direct mask checks.
2189 */
2190enum rseq_event_mask_bits {
2191 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2192 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2193 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2194};
2195
2196enum rseq_event_mask {
2197 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2198 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2199 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2200};
2201
2202static inline void rseq_set_notify_resume(struct task_struct *t)
2203{
2204 if (t->rseq)
2205 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2206}
2207
784e0300 2208void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 2209
784e0300
WD
2210static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2211 struct pt_regs *regs)
d7822b1e
MD
2212{
2213 if (current->rseq)
784e0300 2214 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2215}
2216
784e0300
WD
2217static inline void rseq_signal_deliver(struct ksignal *ksig,
2218 struct pt_regs *regs)
d7822b1e
MD
2219{
2220 preempt_disable();
2221 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2222 preempt_enable();
784e0300 2223 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2224}
2225
2226/* rseq_preempt() requires preemption to be disabled. */
2227static inline void rseq_preempt(struct task_struct *t)
2228{
2229 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2230 rseq_set_notify_resume(t);
2231}
2232
2233/* rseq_migrate() requires preemption to be disabled. */
2234static inline void rseq_migrate(struct task_struct *t)
2235{
2236 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2237 rseq_set_notify_resume(t);
2238}
2239
2240/*
2241 * If parent process has a registered restartable sequences area, the
463f550f 2242 * child inherits. Unregister rseq for a clone with CLONE_VM set.
d7822b1e
MD
2243 */
2244static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2245{
463f550f 2246 if (clone_flags & CLONE_VM) {
d7822b1e 2247 t->rseq = NULL;
ee3e3ac0 2248 t->rseq_len = 0;
d7822b1e
MD
2249 t->rseq_sig = 0;
2250 t->rseq_event_mask = 0;
2251 } else {
2252 t->rseq = current->rseq;
ee3e3ac0 2253 t->rseq_len = current->rseq_len;
d7822b1e
MD
2254 t->rseq_sig = current->rseq_sig;
2255 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
2256 }
2257}
2258
2259static inline void rseq_execve(struct task_struct *t)
2260{
2261 t->rseq = NULL;
ee3e3ac0 2262 t->rseq_len = 0;
d7822b1e
MD
2263 t->rseq_sig = 0;
2264 t->rseq_event_mask = 0;
2265}
2266
2267#else
2268
2269static inline void rseq_set_notify_resume(struct task_struct *t)
2270{
2271}
784e0300
WD
2272static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2273 struct pt_regs *regs)
d7822b1e
MD
2274{
2275}
784e0300
WD
2276static inline void rseq_signal_deliver(struct ksignal *ksig,
2277 struct pt_regs *regs)
d7822b1e
MD
2278{
2279}
2280static inline void rseq_preempt(struct task_struct *t)
2281{
2282}
2283static inline void rseq_migrate(struct task_struct *t)
2284{
2285}
2286static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2287{
2288}
2289static inline void rseq_execve(struct task_struct *t)
2290{
2291}
2292
2293#endif
2294
2295#ifdef CONFIG_DEBUG_RSEQ
2296
2297void rseq_syscall(struct pt_regs *regs);
2298
2299#else
2300
2301static inline void rseq_syscall(struct pt_regs *regs)
2302{
2303}
2304
2305#endif
2306
6e33cad0
PZ
2307#ifdef CONFIG_SCHED_CORE
2308extern void sched_core_free(struct task_struct *tsk);
85dd3f61 2309extern void sched_core_fork(struct task_struct *p);
7ac592aa
CH
2310extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2311 unsigned long uaddr);
548796e2 2312extern int sched_core_idle_cpu(int cpu);
6e33cad0
PZ
2313#else
2314static inline void sched_core_free(struct task_struct *tsk) { }
85dd3f61 2315static inline void sched_core_fork(struct task_struct *p) { }
548796e2 2316static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
6e33cad0
PZ
2317#endif
2318
d664e399
TG
2319extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2320
1da177e4 2321#endif