futex: Provide state handling for exec() as well
[linux-2.6-block.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
ec1d2819 24#include <linux/refcount.h>
a3b6714e 25#include <linux/resource.h>
9745512c 26#include <linux/latencytop.h>
5eca1c10 27#include <linux/sched/prio.h>
9eacb5c7 28#include <linux/sched/types.h>
5eca1c10
IM
29#include <linux/signal_types.h>
30#include <linux/mm_types_task.h>
31#include <linux/task_io_accounting.h>
2b69942f 32#include <linux/posix-timers.h>
d7822b1e 33#include <linux/rseq.h>
a3b6714e 34
5eca1c10 35/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 36struct audit_context;
c7af7877 37struct backing_dev_info;
bddd87c7 38struct bio_list;
73c10101 39struct blk_plug;
3c93a0c0 40struct capture_control;
c7af7877 41struct cfs_rq;
c7af7877
IM
42struct fs_struct;
43struct futex_pi_state;
44struct io_context;
45struct mempolicy;
89076bc3 46struct nameidata;
c7af7877
IM
47struct nsproxy;
48struct perf_event_context;
49struct pid_namespace;
50struct pipe_inode_info;
51struct rcu_node;
52struct reclaim_state;
53struct robust_list_head;
3c93a0c0
QY
54struct root_domain;
55struct rq;
c7af7877
IM
56struct sched_attr;
57struct sched_param;
43ae34cb 58struct seq_file;
c7af7877
IM
59struct sighand_struct;
60struct signal_struct;
61struct task_delay_info;
4cf86d77 62struct task_group;
1da177e4 63
4a8342d2
LT
64/*
65 * Task state bitmask. NOTE! These bits are also
66 * encoded in fs/proc/array.c: get_task_state().
67 *
68 * We have two separate sets of flags: task->state
69 * is about runnability, while task->exit_state are
70 * about the task exiting. Confusing, but this way
71 * modifying one set can't modify the other one by
72 * mistake.
73 */
5eca1c10
IM
74
75/* Used in tsk->state: */
92c4bc9f
PZ
76#define TASK_RUNNING 0x0000
77#define TASK_INTERRUPTIBLE 0x0001
78#define TASK_UNINTERRUPTIBLE 0x0002
79#define __TASK_STOPPED 0x0004
80#define __TASK_TRACED 0x0008
5eca1c10 81/* Used in tsk->exit_state: */
92c4bc9f
PZ
82#define EXIT_DEAD 0x0010
83#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
84#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
85/* Used in tsk->state again: */
8ef9925b
PZ
86#define TASK_PARKED 0x0040
87#define TASK_DEAD 0x0080
88#define TASK_WAKEKILL 0x0100
89#define TASK_WAKING 0x0200
92c4bc9f
PZ
90#define TASK_NOLOAD 0x0400
91#define TASK_NEW 0x0800
92#define TASK_STATE_MAX 0x1000
5eca1c10 93
5eca1c10
IM
94/* Convenience macros for the sake of set_current_state: */
95#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
96#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
97#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
98
99#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
100
101/* Convenience macros for the sake of wake_up(): */
102#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
103
104/* get_task_state(): */
105#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
106 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
107 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
108 TASK_PARKED)
5eca1c10
IM
109
110#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
111
112#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
113
114#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
115
116#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
117 (task->flags & PF_FROZEN) == 0 && \
118 (task->state & TASK_NOLOAD) == 0)
1da177e4 119
8eb23b9f
PZ
120#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
121
b5bf9a90
PZ
122/*
123 * Special states are those that do not use the normal wait-loop pattern. See
124 * the comment with set_special_state().
125 */
126#define is_special_task_state(state) \
1cef1150 127 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 128
8eb23b9f
PZ
129#define __set_current_state(state_value) \
130 do { \
b5bf9a90 131 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f
PZ
132 current->task_state_change = _THIS_IP_; \
133 current->state = (state_value); \
134 } while (0)
b5bf9a90 135
8eb23b9f
PZ
136#define set_current_state(state_value) \
137 do { \
b5bf9a90 138 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f 139 current->task_state_change = _THIS_IP_; \
a2250238 140 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
141 } while (0)
142
b5bf9a90
PZ
143#define set_special_state(state_value) \
144 do { \
145 unsigned long flags; /* may shadow */ \
146 WARN_ON_ONCE(!is_special_task_state(state_value)); \
147 raw_spin_lock_irqsave(&current->pi_lock, flags); \
148 current->task_state_change = _THIS_IP_; \
149 current->state = (state_value); \
150 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
151 } while (0)
8eb23b9f 152#else
498d0c57
AM
153/*
154 * set_current_state() includes a barrier so that the write of current->state
155 * is correctly serialised wrt the caller's subsequent test of whether to
156 * actually sleep:
157 *
a2250238 158 * for (;;) {
498d0c57 159 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
160 * if (!need_sleep)
161 * break;
162 *
163 * schedule();
164 * }
165 * __set_current_state(TASK_RUNNING);
166 *
167 * If the caller does not need such serialisation (because, for instance, the
168 * condition test and condition change and wakeup are under the same lock) then
169 * use __set_current_state().
170 *
171 * The above is typically ordered against the wakeup, which does:
172 *
b5bf9a90
PZ
173 * need_sleep = false;
174 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 175 *
7696f991
AP
176 * where wake_up_state() executes a full memory barrier before accessing the
177 * task state.
a2250238
PZ
178 *
179 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
180 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
181 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 182 *
b5bf9a90 183 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 184 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
185 * a problem either because that will result in one extra go around the loop
186 * and our @cond test will save the day.
498d0c57 187 *
a2250238 188 * Also see the comments of try_to_wake_up().
498d0c57 189 */
b5bf9a90
PZ
190#define __set_current_state(state_value) \
191 current->state = (state_value)
192
193#define set_current_state(state_value) \
194 smp_store_mb(current->state, (state_value))
195
196/*
197 * set_special_state() should be used for those states when the blocking task
198 * can not use the regular condition based wait-loop. In that case we must
199 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
200 * will not collide with our state change.
201 */
202#define set_special_state(state_value) \
203 do { \
204 unsigned long flags; /* may shadow */ \
205 raw_spin_lock_irqsave(&current->pi_lock, flags); \
206 current->state = (state_value); \
207 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
208 } while (0)
209
8eb23b9f
PZ
210#endif
211
5eca1c10
IM
212/* Task command name length: */
213#define TASK_COMM_LEN 16
1da177e4 214
1da177e4
LT
215extern void scheduler_tick(void);
216
5eca1c10
IM
217#define MAX_SCHEDULE_TIMEOUT LONG_MAX
218
219extern long schedule_timeout(long timeout);
220extern long schedule_timeout_interruptible(long timeout);
221extern long schedule_timeout_killable(long timeout);
222extern long schedule_timeout_uninterruptible(long timeout);
223extern long schedule_timeout_idle(long timeout);
1da177e4 224asmlinkage void schedule(void);
c5491ea7 225extern void schedule_preempt_disabled(void);
1da177e4 226
10ab5643
TH
227extern int __must_check io_schedule_prepare(void);
228extern void io_schedule_finish(int token);
9cff8ade 229extern long io_schedule_timeout(long timeout);
10ab5643 230extern void io_schedule(void);
9cff8ade 231
d37f761d 232/**
0ba42a59 233 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
234 * @utime: time spent in user mode
235 * @stime: time spent in system mode
9d7fb042 236 * @lock: protects the above two fields
d37f761d 237 *
9d7fb042
PZ
238 * Stores previous user/system time values such that we can guarantee
239 * monotonicity.
d37f761d 240 */
9d7fb042
PZ
241struct prev_cputime {
242#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
243 u64 utime;
244 u64 stime;
245 raw_spinlock_t lock;
9d7fb042 246#endif
d37f761d
FW
247};
248
bac5b6b6
FW
249enum vtime_state {
250 /* Task is sleeping or running in a CPU with VTIME inactive: */
251 VTIME_INACTIVE = 0,
252 /* Task runs in userspace in a CPU with VTIME active: */
253 VTIME_USER,
254 /* Task runs in kernelspace in a CPU with VTIME active: */
255 VTIME_SYS,
256};
257
258struct vtime {
259 seqcount_t seqcount;
260 unsigned long long starttime;
261 enum vtime_state state;
2a42eb95
WL
262 u64 utime;
263 u64 stime;
264 u64 gtime;
bac5b6b6
FW
265};
266
69842cba
PB
267/*
268 * Utilization clamp constraints.
269 * @UCLAMP_MIN: Minimum utilization
270 * @UCLAMP_MAX: Maximum utilization
271 * @UCLAMP_CNT: Utilization clamp constraints count
272 */
273enum uclamp_id {
274 UCLAMP_MIN = 0,
275 UCLAMP_MAX,
276 UCLAMP_CNT
277};
278
f9a25f77
MP
279#ifdef CONFIG_SMP
280extern struct root_domain def_root_domain;
281extern struct mutex sched_domains_mutex;
282#endif
283
1da177e4 284struct sched_info {
7f5f8e8d 285#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
286 /* Cumulative counters: */
287
288 /* # of times we have run on this CPU: */
289 unsigned long pcount;
290
291 /* Time spent waiting on a runqueue: */
292 unsigned long long run_delay;
293
294 /* Timestamps: */
295
296 /* When did we last run on a CPU? */
297 unsigned long long last_arrival;
298
299 /* When were we last queued to run? */
300 unsigned long long last_queued;
1da177e4 301
f6db8347 302#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 303};
1da177e4 304
6ecdd749
YD
305/*
306 * Integer metrics need fixed point arithmetic, e.g., sched/fair
307 * has a few: load, load_avg, util_avg, freq, and capacity.
308 *
309 * We define a basic fixed point arithmetic range, and then formalize
310 * all these metrics based on that basic range.
311 */
5eca1c10
IM
312# define SCHED_FIXEDPOINT_SHIFT 10
313# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 314
69842cba
PB
315/* Increase resolution of cpu_capacity calculations */
316# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
317# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
318
20b8a59f 319struct load_weight {
5eca1c10
IM
320 unsigned long weight;
321 u32 inv_weight;
20b8a59f
IM
322};
323
7f65ea42
PB
324/**
325 * struct util_est - Estimation utilization of FAIR tasks
326 * @enqueued: instantaneous estimated utilization of a task/cpu
327 * @ewma: the Exponential Weighted Moving Average (EWMA)
328 * utilization of a task
329 *
330 * Support data structure to track an Exponential Weighted Moving Average
331 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
332 * average each time a task completes an activation. Sample's weight is chosen
333 * so that the EWMA will be relatively insensitive to transient changes to the
334 * task's workload.
335 *
336 * The enqueued attribute has a slightly different meaning for tasks and cpus:
337 * - task: the task's util_avg at last task dequeue time
338 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
339 * Thus, the util_est.enqueued of a task represents the contribution on the
340 * estimated utilization of the CPU where that task is currently enqueued.
341 *
342 * Only for tasks we track a moving average of the past instantaneous
343 * estimated utilization. This allows to absorb sporadic drops in utilization
344 * of an otherwise almost periodic task.
345 */
346struct util_est {
347 unsigned int enqueued;
348 unsigned int ewma;
349#define UTIL_EST_WEIGHT_SHIFT 2
317d359d 350} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 351
9d89c257 352/*
7b595334
YD
353 * The load_avg/util_avg accumulates an infinite geometric series
354 * (see __update_load_avg() in kernel/sched/fair.c).
355 *
356 * [load_avg definition]
357 *
358 * load_avg = runnable% * scale_load_down(load)
359 *
360 * where runnable% is the time ratio that a sched_entity is runnable.
361 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 362 * blocked sched_entities.
7b595334 363 *
7b595334
YD
364 * [util_avg definition]
365 *
366 * util_avg = running% * SCHED_CAPACITY_SCALE
367 *
368 * where running% is the time ratio that a sched_entity is running on
369 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
370 * and blocked sched_entities.
371 *
23127296
VG
372 * load_avg and util_avg don't direcly factor frequency scaling and CPU
373 * capacity scaling. The scaling is done through the rq_clock_pelt that
374 * is used for computing those signals (see update_rq_clock_pelt())
7b595334 375 *
23127296
VG
376 * N.B., the above ratios (runnable% and running%) themselves are in the
377 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
378 * to as large a range as necessary. This is for example reflected by
379 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
380 *
381 * [Overflow issue]
382 *
383 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
384 * with the highest load (=88761), always runnable on a single cfs_rq,
385 * and should not overflow as the number already hits PID_MAX_LIMIT.
386 *
387 * For all other cases (including 32-bit kernels), struct load_weight's
388 * weight will overflow first before we do, because:
389 *
390 * Max(load_avg) <= Max(load.weight)
391 *
392 * Then it is the load_weight's responsibility to consider overflow
393 * issues.
9d89c257 394 */
9d85f21c 395struct sched_avg {
5eca1c10
IM
396 u64 last_update_time;
397 u64 load_sum;
1ea6c46a 398 u64 runnable_load_sum;
5eca1c10
IM
399 u32 util_sum;
400 u32 period_contrib;
401 unsigned long load_avg;
1ea6c46a 402 unsigned long runnable_load_avg;
5eca1c10 403 unsigned long util_avg;
7f65ea42 404 struct util_est util_est;
317d359d 405} ____cacheline_aligned;
9d85f21c 406
41acab88 407struct sched_statistics {
7f5f8e8d 408#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
409 u64 wait_start;
410 u64 wait_max;
411 u64 wait_count;
412 u64 wait_sum;
413 u64 iowait_count;
414 u64 iowait_sum;
415
416 u64 sleep_start;
417 u64 sleep_max;
418 s64 sum_sleep_runtime;
419
420 u64 block_start;
421 u64 block_max;
422 u64 exec_max;
423 u64 slice_max;
424
425 u64 nr_migrations_cold;
426 u64 nr_failed_migrations_affine;
427 u64 nr_failed_migrations_running;
428 u64 nr_failed_migrations_hot;
429 u64 nr_forced_migrations;
430
431 u64 nr_wakeups;
432 u64 nr_wakeups_sync;
433 u64 nr_wakeups_migrate;
434 u64 nr_wakeups_local;
435 u64 nr_wakeups_remote;
436 u64 nr_wakeups_affine;
437 u64 nr_wakeups_affine_attempts;
438 u64 nr_wakeups_passive;
439 u64 nr_wakeups_idle;
41acab88 440#endif
7f5f8e8d 441};
41acab88
LDM
442
443struct sched_entity {
5eca1c10
IM
444 /* For load-balancing: */
445 struct load_weight load;
1ea6c46a 446 unsigned long runnable_weight;
5eca1c10
IM
447 struct rb_node run_node;
448 struct list_head group_node;
449 unsigned int on_rq;
41acab88 450
5eca1c10
IM
451 u64 exec_start;
452 u64 sum_exec_runtime;
453 u64 vruntime;
454 u64 prev_sum_exec_runtime;
41acab88 455
5eca1c10 456 u64 nr_migrations;
41acab88 457
5eca1c10 458 struct sched_statistics statistics;
94c18227 459
20b8a59f 460#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
461 int depth;
462 struct sched_entity *parent;
20b8a59f 463 /* rq on which this entity is (to be) queued: */
5eca1c10 464 struct cfs_rq *cfs_rq;
20b8a59f 465 /* rq "owned" by this entity/group: */
5eca1c10 466 struct cfs_rq *my_q;
20b8a59f 467#endif
8bd75c77 468
141965c7 469#ifdef CONFIG_SMP
5a107804
JO
470 /*
471 * Per entity load average tracking.
472 *
473 * Put into separate cache line so it does not
474 * collide with read-mostly values above.
475 */
317d359d 476 struct sched_avg avg;
9d85f21c 477#endif
20b8a59f 478};
70b97a7f 479
fa717060 480struct sched_rt_entity {
5eca1c10
IM
481 struct list_head run_list;
482 unsigned long timeout;
483 unsigned long watchdog_stamp;
484 unsigned int time_slice;
485 unsigned short on_rq;
486 unsigned short on_list;
487
488 struct sched_rt_entity *back;
052f1dc7 489#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 490 struct sched_rt_entity *parent;
6f505b16 491 /* rq on which this entity is (to be) queued: */
5eca1c10 492 struct rt_rq *rt_rq;
6f505b16 493 /* rq "owned" by this entity/group: */
5eca1c10 494 struct rt_rq *my_q;
6f505b16 495#endif
3859a271 496} __randomize_layout;
fa717060 497
aab03e05 498struct sched_dl_entity {
5eca1c10 499 struct rb_node rb_node;
aab03e05
DF
500
501 /*
502 * Original scheduling parameters. Copied here from sched_attr
4027d080 503 * during sched_setattr(), they will remain the same until
504 * the next sched_setattr().
aab03e05 505 */
5eca1c10
IM
506 u64 dl_runtime; /* Maximum runtime for each instance */
507 u64 dl_deadline; /* Relative deadline of each instance */
508 u64 dl_period; /* Separation of two instances (period) */
54d6d303 509 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 510 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
511
512 /*
513 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 514 * they are continuously updated during task execution. Note that
aab03e05
DF
515 * the remaining runtime could be < 0 in case we are in overrun.
516 */
5eca1c10
IM
517 s64 runtime; /* Remaining runtime for this instance */
518 u64 deadline; /* Absolute deadline for this instance */
519 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
520
521 /*
522 * Some bool flags:
523 *
524 * @dl_throttled tells if we exhausted the runtime. If so, the
525 * task has to wait for a replenishment to be performed at the
526 * next firing of dl_timer.
527 *
2d3d891d
DF
528 * @dl_boosted tells if we are boosted due to DI. If so we are
529 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
530 * exit the critical section);
531 *
5eca1c10 532 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 533 * all its available runtime during the last job.
209a0cbd
LA
534 *
535 * @dl_non_contending tells if the task is inactive while still
536 * contributing to the active utilization. In other words, it
537 * indicates if the inactive timer has been armed and its handler
538 * has not been executed yet. This flag is useful to avoid race
539 * conditions between the inactive timer handler and the wakeup
540 * code.
34be3930
JL
541 *
542 * @dl_overrun tells if the task asked to be informed about runtime
543 * overruns.
aab03e05 544 */
aa5222e9
DC
545 unsigned int dl_throttled : 1;
546 unsigned int dl_boosted : 1;
547 unsigned int dl_yielded : 1;
548 unsigned int dl_non_contending : 1;
34be3930 549 unsigned int dl_overrun : 1;
aab03e05
DF
550
551 /*
552 * Bandwidth enforcement timer. Each -deadline task has its
553 * own bandwidth to be enforced, thus we need one timer per task.
554 */
5eca1c10 555 struct hrtimer dl_timer;
209a0cbd
LA
556
557 /*
558 * Inactive timer, responsible for decreasing the active utilization
559 * at the "0-lag time". When a -deadline task blocks, it contributes
560 * to GRUB's active utilization until the "0-lag time", hence a
561 * timer is needed to decrease the active utilization at the correct
562 * time.
563 */
564 struct hrtimer inactive_timer;
aab03e05 565};
8bd75c77 566
69842cba
PB
567#ifdef CONFIG_UCLAMP_TASK
568/* Number of utilization clamp buckets (shorter alias) */
569#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
570
571/*
572 * Utilization clamp for a scheduling entity
573 * @value: clamp value "assigned" to a se
574 * @bucket_id: bucket index corresponding to the "assigned" value
e8f14172 575 * @active: the se is currently refcounted in a rq's bucket
a509a7cd 576 * @user_defined: the requested clamp value comes from user-space
69842cba
PB
577 *
578 * The bucket_id is the index of the clamp bucket matching the clamp value
579 * which is pre-computed and stored to avoid expensive integer divisions from
580 * the fast path.
e8f14172
PB
581 *
582 * The active bit is set whenever a task has got an "effective" value assigned,
583 * which can be different from the clamp value "requested" from user-space.
584 * This allows to know a task is refcounted in the rq's bucket corresponding
585 * to the "effective" bucket_id.
a509a7cd
PB
586 *
587 * The user_defined bit is set whenever a task has got a task-specific clamp
588 * value requested from userspace, i.e. the system defaults apply to this task
589 * just as a restriction. This allows to relax default clamps when a less
590 * restrictive task-specific value has been requested, thus allowing to
591 * implement a "nice" semantic. For example, a task running with a 20%
592 * default boost can still drop its own boosting to 0%.
69842cba
PB
593 */
594struct uclamp_se {
595 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
596 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
e8f14172 597 unsigned int active : 1;
a509a7cd 598 unsigned int user_defined : 1;
69842cba
PB
599};
600#endif /* CONFIG_UCLAMP_TASK */
601
1d082fd0
PM
602union rcu_special {
603 struct {
5eca1c10
IM
604 u8 blocked;
605 u8 need_qs;
05f41571 606 u8 exp_hint; /* Hint for performance. */
23634ebc 607 u8 deferred_qs;
8203d6d0 608 } b; /* Bits. */
05f41571 609 u32 s; /* Set of bits. */
1d082fd0 610};
86848966 611
8dc85d54
PZ
612enum perf_event_task_context {
613 perf_invalid_context = -1,
614 perf_hw_context = 0,
89a1e187 615 perf_sw_context,
8dc85d54
PZ
616 perf_nr_task_contexts,
617};
618
eb61baf6
IM
619struct wake_q_node {
620 struct wake_q_node *next;
621};
622
1da177e4 623struct task_struct {
c65eacbe
AL
624#ifdef CONFIG_THREAD_INFO_IN_TASK
625 /*
626 * For reasons of header soup (see current_thread_info()), this
627 * must be the first element of task_struct.
628 */
5eca1c10 629 struct thread_info thread_info;
c65eacbe 630#endif
5eca1c10
IM
631 /* -1 unrunnable, 0 runnable, >0 stopped: */
632 volatile long state;
29e48ce8
KC
633
634 /*
635 * This begins the randomizable portion of task_struct. Only
636 * scheduling-critical items should be added above here.
637 */
638 randomized_struct_fields_start
639
5eca1c10 640 void *stack;
ec1d2819 641 refcount_t usage;
5eca1c10
IM
642 /* Per task flags (PF_*), defined further below: */
643 unsigned int flags;
644 unsigned int ptrace;
1da177e4 645
2dd73a4f 646#ifdef CONFIG_SMP
5eca1c10
IM
647 struct llist_node wake_entry;
648 int on_cpu;
c65eacbe 649#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
650 /* Current CPU: */
651 unsigned int cpu;
c65eacbe 652#endif
5eca1c10
IM
653 unsigned int wakee_flips;
654 unsigned long wakee_flip_decay_ts;
655 struct task_struct *last_wakee;
ac66f547 656
32e839dd
MG
657 /*
658 * recent_used_cpu is initially set as the last CPU used by a task
659 * that wakes affine another task. Waker/wakee relationships can
660 * push tasks around a CPU where each wakeup moves to the next one.
661 * Tracking a recently used CPU allows a quick search for a recently
662 * used CPU that may be idle.
663 */
664 int recent_used_cpu;
5eca1c10 665 int wake_cpu;
2dd73a4f 666#endif
5eca1c10
IM
667 int on_rq;
668
669 int prio;
670 int static_prio;
671 int normal_prio;
672 unsigned int rt_priority;
50e645a8 673
5eca1c10
IM
674 const struct sched_class *sched_class;
675 struct sched_entity se;
676 struct sched_rt_entity rt;
8323f26c 677#ifdef CONFIG_CGROUP_SCHED
5eca1c10 678 struct task_group *sched_task_group;
8323f26c 679#endif
5eca1c10 680 struct sched_dl_entity dl;
1da177e4 681
69842cba 682#ifdef CONFIG_UCLAMP_TASK
e8f14172
PB
683 /* Clamp values requested for a scheduling entity */
684 struct uclamp_se uclamp_req[UCLAMP_CNT];
685 /* Effective clamp values used for a scheduling entity */
69842cba
PB
686 struct uclamp_se uclamp[UCLAMP_CNT];
687#endif
688
e107be36 689#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
690 /* List of struct preempt_notifier: */
691 struct hlist_head preempt_notifiers;
e107be36
AK
692#endif
693
6c5c9341 694#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 695 unsigned int btrace_seq;
6c5c9341 696#endif
1da177e4 697
5eca1c10
IM
698 unsigned int policy;
699 int nr_cpus_allowed;
3bd37062
SAS
700 const cpumask_t *cpus_ptr;
701 cpumask_t cpus_mask;
1da177e4 702
a57eb940 703#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
704 int rcu_read_lock_nesting;
705 union rcu_special rcu_read_unlock_special;
706 struct list_head rcu_node_entry;
707 struct rcu_node *rcu_blocked_node;
28f6569a 708#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 709
8315f422 710#ifdef CONFIG_TASKS_RCU
5eca1c10 711 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
712 u8 rcu_tasks_holdout;
713 u8 rcu_tasks_idx;
5eca1c10 714 int rcu_tasks_idle_cpu;
ccdd29ff 715 struct list_head rcu_tasks_holdout_list;
8315f422 716#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 717
5eca1c10 718 struct sched_info sched_info;
1da177e4 719
5eca1c10 720 struct list_head tasks;
806c09a7 721#ifdef CONFIG_SMP
5eca1c10
IM
722 struct plist_node pushable_tasks;
723 struct rb_node pushable_dl_tasks;
806c09a7 724#endif
1da177e4 725
5eca1c10
IM
726 struct mm_struct *mm;
727 struct mm_struct *active_mm;
314ff785
IM
728
729 /* Per-thread vma caching: */
5eca1c10 730 struct vmacache vmacache;
314ff785 731
5eca1c10
IM
732#ifdef SPLIT_RSS_COUNTING
733 struct task_rss_stat rss_stat;
34e55232 734#endif
5eca1c10
IM
735 int exit_state;
736 int exit_code;
737 int exit_signal;
738 /* The signal sent when the parent dies: */
739 int pdeath_signal;
740 /* JOBCTL_*, siglock protected: */
741 unsigned long jobctl;
742
743 /* Used for emulating ABI behavior of previous Linux versions: */
744 unsigned int personality;
745
746 /* Scheduler bits, serialized by scheduler locks: */
747 unsigned sched_reset_on_fork:1;
748 unsigned sched_contributes_to_load:1;
749 unsigned sched_migrated:1;
750 unsigned sched_remote_wakeup:1;
eb414681
JW
751#ifdef CONFIG_PSI
752 unsigned sched_psi_wake_requeue:1;
753#endif
754
5eca1c10
IM
755 /* Force alignment to the next boundary: */
756 unsigned :0;
757
758 /* Unserialized, strictly 'current' */
759
760 /* Bit to tell LSMs we're in execve(): */
761 unsigned in_execve:1;
762 unsigned in_iowait:1;
763#ifndef TIF_RESTORE_SIGMASK
764 unsigned restore_sigmask:1;
7e781418 765#endif
626ebc41 766#ifdef CONFIG_MEMCG
29ef680a 767 unsigned in_user_fault:1;
127424c8 768#endif
ff303e66 769#ifdef CONFIG_COMPAT_BRK
5eca1c10 770 unsigned brk_randomized:1;
ff303e66 771#endif
77f88796
TH
772#ifdef CONFIG_CGROUPS
773 /* disallow userland-initiated cgroup migration */
774 unsigned no_cgroup_migration:1;
76f969e8
RG
775 /* task is frozen/stopped (used by the cgroup freezer) */
776 unsigned frozen:1;
77f88796 777#endif
d09d8df3
JB
778#ifdef CONFIG_BLK_CGROUP
779 /* to be used once the psi infrastructure lands upstream. */
780 unsigned use_memdelay:1;
781#endif
6f185c29 782
5eca1c10 783 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 784
5eca1c10 785 struct restart_block restart_block;
f56141e3 786
5eca1c10
IM
787 pid_t pid;
788 pid_t tgid;
0a425405 789
050e9baa 790#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
791 /* Canary value for the -fstack-protector GCC feature: */
792 unsigned long stack_canary;
1314562a 793#endif
4d1d61a6 794 /*
5eca1c10 795 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 796 * older sibling, respectively. (p->father can be replaced with
f470021a 797 * p->real_parent->pid)
1da177e4 798 */
5eca1c10
IM
799
800 /* Real parent process: */
801 struct task_struct __rcu *real_parent;
802
803 /* Recipient of SIGCHLD, wait4() reports: */
804 struct task_struct __rcu *parent;
805
1da177e4 806 /*
5eca1c10 807 * Children/sibling form the list of natural children:
1da177e4 808 */
5eca1c10
IM
809 struct list_head children;
810 struct list_head sibling;
811 struct task_struct *group_leader;
1da177e4 812
f470021a 813 /*
5eca1c10
IM
814 * 'ptraced' is the list of tasks this task is using ptrace() on.
815 *
f470021a 816 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 817 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 818 */
5eca1c10
IM
819 struct list_head ptraced;
820 struct list_head ptrace_entry;
f470021a 821
1da177e4 822 /* PID/PID hash table linkage. */
2c470475
EB
823 struct pid *thread_pid;
824 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
825 struct list_head thread_group;
826 struct list_head thread_node;
827
828 struct completion *vfork_done;
1da177e4 829
5eca1c10
IM
830 /* CLONE_CHILD_SETTID: */
831 int __user *set_child_tid;
1da177e4 832
5eca1c10
IM
833 /* CLONE_CHILD_CLEARTID: */
834 int __user *clear_child_tid;
835
836 u64 utime;
837 u64 stime;
40565b5a 838#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
839 u64 utimescaled;
840 u64 stimescaled;
40565b5a 841#endif
5eca1c10
IM
842 u64 gtime;
843 struct prev_cputime prev_cputime;
6a61671b 844#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 845 struct vtime vtime;
d99ca3b9 846#endif
d027d45d
FW
847
848#ifdef CONFIG_NO_HZ_FULL
5eca1c10 849 atomic_t tick_dep_mask;
d027d45d 850#endif
5eca1c10
IM
851 /* Context switch counts: */
852 unsigned long nvcsw;
853 unsigned long nivcsw;
854
855 /* Monotonic time in nsecs: */
856 u64 start_time;
857
858 /* Boot based time in nsecs: */
859 u64 real_start_time;
860
861 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
862 unsigned long min_flt;
863 unsigned long maj_flt;
1da177e4 864
2b69942f
TG
865 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
866 struct posix_cputimers posix_cputimers;
1da177e4 867
5eca1c10
IM
868 /* Process credentials: */
869
870 /* Tracer's credentials at attach: */
871 const struct cred __rcu *ptracer_cred;
872
873 /* Objective and real subjective task credentials (COW): */
874 const struct cred __rcu *real_cred;
875
876 /* Effective (overridable) subjective task credentials (COW): */
877 const struct cred __rcu *cred;
878
7743c48e
DH
879#ifdef CONFIG_KEYS
880 /* Cached requested key. */
881 struct key *cached_requested_key;
882#endif
883
5eca1c10
IM
884 /*
885 * executable name, excluding path.
886 *
887 * - normally initialized setup_new_exec()
888 * - access it with [gs]et_task_comm()
889 * - lock it with task_lock()
890 */
891 char comm[TASK_COMM_LEN];
892
893 struct nameidata *nameidata;
894
3d5b6fcc 895#ifdef CONFIG_SYSVIPC
5eca1c10
IM
896 struct sysv_sem sysvsem;
897 struct sysv_shm sysvshm;
3d5b6fcc 898#endif
e162b39a 899#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 900 unsigned long last_switch_count;
a2e51445 901 unsigned long last_switch_time;
82a1fcb9 902#endif
5eca1c10
IM
903 /* Filesystem information: */
904 struct fs_struct *fs;
905
906 /* Open file information: */
907 struct files_struct *files;
908
909 /* Namespaces: */
910 struct nsproxy *nsproxy;
911
912 /* Signal handlers: */
913 struct signal_struct *signal;
914 struct sighand_struct *sighand;
915 sigset_t blocked;
916 sigset_t real_blocked;
917 /* Restored if set_restore_sigmask() was used: */
918 sigset_t saved_sigmask;
919 struct sigpending pending;
920 unsigned long sas_ss_sp;
921 size_t sas_ss_size;
922 unsigned int sas_ss_flags;
923
924 struct callback_head *task_works;
925
4b7d248b 926#ifdef CONFIG_AUDIT
bfef93a5 927#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
928 struct audit_context *audit_context;
929#endif
5eca1c10
IM
930 kuid_t loginuid;
931 unsigned int sessionid;
bfef93a5 932#endif
5eca1c10
IM
933 struct seccomp seccomp;
934
935 /* Thread group tracking: */
936 u32 parent_exec_id;
937 u32 self_exec_id;
1da177e4 938
5eca1c10
IM
939 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
940 spinlock_t alloc_lock;
1da177e4 941
b29739f9 942 /* Protection of the PI data structures: */
5eca1c10 943 raw_spinlock_t pi_lock;
b29739f9 944
5eca1c10 945 struct wake_q_node wake_q;
76751049 946
23f78d4a 947#ifdef CONFIG_RT_MUTEXES
5eca1c10 948 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 949 struct rb_root_cached pi_waiters;
e96a7705
XP
950 /* Updated under owner's pi_lock and rq lock */
951 struct task_struct *pi_top_task;
5eca1c10
IM
952 /* Deadlock detection and priority inheritance handling: */
953 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
954#endif
955
408894ee 956#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
957 /* Mutex deadlock detection: */
958 struct mutex_waiter *blocked_on;
408894ee 959#endif
5eca1c10 960
312364f3
DV
961#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
962 int non_block_count;
963#endif
964
de30a2b3 965#ifdef CONFIG_TRACE_IRQFLAGS
5eca1c10
IM
966 unsigned int irq_events;
967 unsigned long hardirq_enable_ip;
968 unsigned long hardirq_disable_ip;
969 unsigned int hardirq_enable_event;
970 unsigned int hardirq_disable_event;
971 int hardirqs_enabled;
972 int hardirq_context;
973 unsigned long softirq_disable_ip;
974 unsigned long softirq_enable_ip;
975 unsigned int softirq_disable_event;
976 unsigned int softirq_enable_event;
977 int softirqs_enabled;
978 int softirq_context;
de30a2b3 979#endif
5eca1c10 980
fbb9ce95 981#ifdef CONFIG_LOCKDEP
5eca1c10
IM
982# define MAX_LOCK_DEPTH 48UL
983 u64 curr_chain_key;
984 int lockdep_depth;
985 unsigned int lockdep_recursion;
986 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 987#endif
5eca1c10 988
c6d30853 989#ifdef CONFIG_UBSAN
5eca1c10 990 unsigned int in_ubsan;
c6d30853 991#endif
408894ee 992
5eca1c10
IM
993 /* Journalling filesystem info: */
994 void *journal_info;
1da177e4 995
5eca1c10
IM
996 /* Stacked block device info: */
997 struct bio_list *bio_list;
d89d8796 998
73c10101 999#ifdef CONFIG_BLOCK
5eca1c10
IM
1000 /* Stack plugging: */
1001 struct blk_plug *plug;
73c10101
JA
1002#endif
1003
5eca1c10
IM
1004 /* VM state: */
1005 struct reclaim_state *reclaim_state;
1006
1007 struct backing_dev_info *backing_dev_info;
1da177e4 1008
5eca1c10 1009 struct io_context *io_context;
1da177e4 1010
5e1f0f09
MG
1011#ifdef CONFIG_COMPACTION
1012 struct capture_control *capture_control;
1013#endif
5eca1c10
IM
1014 /* Ptrace state: */
1015 unsigned long ptrace_message;
ae7795bc 1016 kernel_siginfo_t *last_siginfo;
1da177e4 1017
5eca1c10 1018 struct task_io_accounting ioac;
eb414681
JW
1019#ifdef CONFIG_PSI
1020 /* Pressure stall state */
1021 unsigned int psi_flags;
1022#endif
5eca1c10
IM
1023#ifdef CONFIG_TASK_XACCT
1024 /* Accumulated RSS usage: */
1025 u64 acct_rss_mem1;
1026 /* Accumulated virtual memory usage: */
1027 u64 acct_vm_mem1;
1028 /* stime + utime since last update: */
1029 u64 acct_timexpd;
1da177e4
LT
1030#endif
1031#ifdef CONFIG_CPUSETS
5eca1c10
IM
1032 /* Protected by ->alloc_lock: */
1033 nodemask_t mems_allowed;
1034 /* Seqence number to catch updates: */
1035 seqcount_t mems_allowed_seq;
1036 int cpuset_mem_spread_rotor;
1037 int cpuset_slab_spread_rotor;
1da177e4 1038#endif
ddbcc7e8 1039#ifdef CONFIG_CGROUPS
5eca1c10
IM
1040 /* Control Group info protected by css_set_lock: */
1041 struct css_set __rcu *cgroups;
1042 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1043 struct list_head cg_list;
ddbcc7e8 1044#endif
e6d42931 1045#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 1046 u32 closid;
d6aaba61 1047 u32 rmid;
e02737d5 1048#endif
42b2dd0a 1049#ifdef CONFIG_FUTEX
5eca1c10 1050 struct robust_list_head __user *robust_list;
34f192c6
IM
1051#ifdef CONFIG_COMPAT
1052 struct compat_robust_list_head __user *compat_robust_list;
1053#endif
5eca1c10
IM
1054 struct list_head pi_state_list;
1055 struct futex_pi_state *pi_state_cache;
3d4775df 1056 unsigned int futex_state;
c7aceaba 1057#endif
cdd6c482 1058#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
1059 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1060 struct mutex perf_event_mutex;
1061 struct list_head perf_event_list;
a63eaf34 1062#endif
8f47b187 1063#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1064 unsigned long preempt_disable_ip;
8f47b187 1065#endif
c7aceaba 1066#ifdef CONFIG_NUMA
5eca1c10
IM
1067 /* Protected by alloc_lock: */
1068 struct mempolicy *mempolicy;
45816682 1069 short il_prev;
5eca1c10 1070 short pref_node_fork;
42b2dd0a 1071#endif
cbee9f88 1072#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1073 int numa_scan_seq;
1074 unsigned int numa_scan_period;
1075 unsigned int numa_scan_period_max;
1076 int numa_preferred_nid;
1077 unsigned long numa_migrate_retry;
1078 /* Migration stamp: */
1079 u64 node_stamp;
1080 u64 last_task_numa_placement;
1081 u64 last_sum_exec_runtime;
1082 struct callback_head numa_work;
1083
cb361d8c
JH
1084 /*
1085 * This pointer is only modified for current in syscall and
1086 * pagefault context (and for tasks being destroyed), so it can be read
1087 * from any of the following contexts:
1088 * - RCU read-side critical section
1089 * - current->numa_group from everywhere
1090 * - task's runqueue locked, task not running
1091 */
1092 struct numa_group __rcu *numa_group;
8c8a743c 1093
745d6147 1094 /*
44dba3d5
IM
1095 * numa_faults is an array split into four regions:
1096 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1097 * in this precise order.
1098 *
1099 * faults_memory: Exponential decaying average of faults on a per-node
1100 * basis. Scheduling placement decisions are made based on these
1101 * counts. The values remain static for the duration of a PTE scan.
1102 * faults_cpu: Track the nodes the process was running on when a NUMA
1103 * hinting fault was incurred.
1104 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1105 * during the current scan window. When the scan completes, the counts
1106 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1107 */
5eca1c10
IM
1108 unsigned long *numa_faults;
1109 unsigned long total_numa_faults;
745d6147 1110
04bb2f94
RR
1111 /*
1112 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1113 * scan window were remote/local or failed to migrate. The task scan
1114 * period is adapted based on the locality of the faults with different
1115 * weights depending on whether they were shared or private faults
04bb2f94 1116 */
5eca1c10 1117 unsigned long numa_faults_locality[3];
04bb2f94 1118
5eca1c10 1119 unsigned long numa_pages_migrated;
cbee9f88
PZ
1120#endif /* CONFIG_NUMA_BALANCING */
1121
d7822b1e
MD
1122#ifdef CONFIG_RSEQ
1123 struct rseq __user *rseq;
d7822b1e
MD
1124 u32 rseq_sig;
1125 /*
1126 * RmW on rseq_event_mask must be performed atomically
1127 * with respect to preemption.
1128 */
1129 unsigned long rseq_event_mask;
1130#endif
1131
5eca1c10 1132 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1133
3fbd7ee2
EB
1134 union {
1135 refcount_t rcu_users;
1136 struct rcu_head rcu;
1137 };
b92ce558 1138
5eca1c10
IM
1139 /* Cache last used pipe for splice(): */
1140 struct pipe_inode_info *splice_pipe;
5640f768 1141
5eca1c10 1142 struct page_frag task_frag;
5640f768 1143
47913d4e
IM
1144#ifdef CONFIG_TASK_DELAY_ACCT
1145 struct task_delay_info *delays;
f4f154fd 1146#endif
47913d4e 1147
f4f154fd 1148#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1149 int make_it_fail;
9049f2f6 1150 unsigned int fail_nth;
ca74e92b 1151#endif
9d823e8f 1152 /*
5eca1c10
IM
1153 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1154 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1155 */
5eca1c10
IM
1156 int nr_dirtied;
1157 int nr_dirtied_pause;
1158 /* Start of a write-and-pause period: */
1159 unsigned long dirty_paused_when;
9d823e8f 1160
9745512c 1161#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1162 int latency_record_count;
1163 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1164#endif
6976675d 1165 /*
5eca1c10 1166 * Time slack values; these are used to round up poll() and
6976675d
AV
1167 * select() etc timeout values. These are in nanoseconds.
1168 */
5eca1c10
IM
1169 u64 timer_slack_ns;
1170 u64 default_timer_slack_ns;
f8d570a4 1171
0b24becc 1172#ifdef CONFIG_KASAN
5eca1c10 1173 unsigned int kasan_depth;
0b24becc 1174#endif
5eca1c10 1175
fb52607a 1176#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1177 /* Index of current stored address in ret_stack: */
1178 int curr_ret_stack;
39eb456d 1179 int curr_ret_depth;
5eca1c10
IM
1180
1181 /* Stack of return addresses for return function tracing: */
1182 struct ftrace_ret_stack *ret_stack;
1183
1184 /* Timestamp for last schedule: */
1185 unsigned long long ftrace_timestamp;
1186
f201ae23
FW
1187 /*
1188 * Number of functions that haven't been traced
5eca1c10 1189 * because of depth overrun:
f201ae23 1190 */
5eca1c10
IM
1191 atomic_t trace_overrun;
1192
1193 /* Pause tracing: */
1194 atomic_t tracing_graph_pause;
f201ae23 1195#endif
5eca1c10 1196
ea4e2bc4 1197#ifdef CONFIG_TRACING
5eca1c10
IM
1198 /* State flags for use by tracers: */
1199 unsigned long trace;
1200
1201 /* Bitmask and counter of trace recursion: */
1202 unsigned long trace_recursion;
261842b7 1203#endif /* CONFIG_TRACING */
5eca1c10 1204
5c9a8750 1205#ifdef CONFIG_KCOV
5eca1c10 1206 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1207 unsigned int kcov_mode;
5eca1c10
IM
1208
1209 /* Size of the kcov_area: */
1210 unsigned int kcov_size;
1211
1212 /* Buffer for coverage collection: */
1213 void *kcov_area;
1214
1215 /* KCOV descriptor wired with this task or NULL: */
1216 struct kcov *kcov;
5c9a8750 1217#endif
5eca1c10 1218
6f185c29 1219#ifdef CONFIG_MEMCG
5eca1c10
IM
1220 struct mem_cgroup *memcg_in_oom;
1221 gfp_t memcg_oom_gfp_mask;
1222 int memcg_oom_order;
b23afb93 1223
5eca1c10
IM
1224 /* Number of pages to reclaim on returning to userland: */
1225 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1226
1227 /* Used by memcontrol for targeted memcg charge: */
1228 struct mem_cgroup *active_memcg;
569b846d 1229#endif
5eca1c10 1230
d09d8df3
JB
1231#ifdef CONFIG_BLK_CGROUP
1232 struct request_queue *throttle_queue;
1233#endif
1234
0326f5a9 1235#ifdef CONFIG_UPROBES
5eca1c10 1236 struct uprobe_task *utask;
0326f5a9 1237#endif
cafe5635 1238#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1239 unsigned int sequential_io;
1240 unsigned int sequential_io_avg;
cafe5635 1241#endif
8eb23b9f 1242#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1243 unsigned long task_state_change;
8eb23b9f 1244#endif
5eca1c10 1245 int pagefault_disabled;
03049269 1246#ifdef CONFIG_MMU
5eca1c10 1247 struct task_struct *oom_reaper_list;
03049269 1248#endif
ba14a194 1249#ifdef CONFIG_VMAP_STACK
5eca1c10 1250 struct vm_struct *stack_vm_area;
ba14a194 1251#endif
68f24b08 1252#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1253 /* A live task holds one reference: */
f0b89d39 1254 refcount_t stack_refcount;
d83a7cb3
JP
1255#endif
1256#ifdef CONFIG_LIVEPATCH
1257 int patch_state;
0302e28d 1258#endif
e4e55b47
TH
1259#ifdef CONFIG_SECURITY
1260 /* Used by LSM modules for access restriction: */
1261 void *security;
68f24b08 1262#endif
29e48ce8 1263
afaef01c
AP
1264#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1265 unsigned long lowest_stack;
c8d12627 1266 unsigned long prev_lowest_stack;
afaef01c
AP
1267#endif
1268
29e48ce8
KC
1269 /*
1270 * New fields for task_struct should be added above here, so that
1271 * they are included in the randomized portion of task_struct.
1272 */
1273 randomized_struct_fields_end
1274
5eca1c10
IM
1275 /* CPU-specific state of this task: */
1276 struct thread_struct thread;
1277
1278 /*
1279 * WARNING: on x86, 'thread_struct' contains a variable-sized
1280 * structure. It *MUST* be at the end of 'task_struct'.
1281 *
1282 * Do not put anything below here!
1283 */
1da177e4
LT
1284};
1285
e868171a 1286static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1287{
2c470475 1288 return task->thread_pid;
22c935f4
EB
1289}
1290
7af57294
PE
1291/*
1292 * the helpers to get the task's different pids as they are seen
1293 * from various namespaces
1294 *
1295 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1296 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1297 * current.
7af57294
PE
1298 * task_xid_nr_ns() : id seen from the ns specified;
1299 *
7af57294
PE
1300 * see also pid_nr() etc in include/linux/pid.h
1301 */
5eca1c10 1302pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1303
e868171a 1304static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1305{
1306 return tsk->pid;
1307}
1308
5eca1c10 1309static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1310{
1311 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1312}
7af57294
PE
1313
1314static inline pid_t task_pid_vnr(struct task_struct *tsk)
1315{
52ee2dfd 1316 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1317}
1318
1319
e868171a 1320static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1321{
1322 return tsk->tgid;
1323}
1324
5eca1c10
IM
1325/**
1326 * pid_alive - check that a task structure is not stale
1327 * @p: Task structure to be checked.
1328 *
1329 * Test if a process is not yet dead (at most zombie state)
1330 * If pid_alive fails, then pointers within the task structure
1331 * can be stale and must not be dereferenced.
1332 *
1333 * Return: 1 if the process is alive. 0 otherwise.
1334 */
1335static inline int pid_alive(const struct task_struct *p)
1336{
2c470475 1337 return p->thread_pid != NULL;
5eca1c10 1338}
7af57294 1339
5eca1c10 1340static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1341{
52ee2dfd 1342 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1343}
1344
7af57294
PE
1345static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1346{
52ee2dfd 1347 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1348}
1349
1350
5eca1c10 1351static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1352{
52ee2dfd 1353 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1354}
1355
7af57294
PE
1356static inline pid_t task_session_vnr(struct task_struct *tsk)
1357{
52ee2dfd 1358 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1359}
1360
dd1c1f2f
ON
1361static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1362{
6883f81a 1363 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1364}
1365
1366static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1367{
6883f81a 1368 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1369}
1370
1371static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1372{
1373 pid_t pid = 0;
1374
1375 rcu_read_lock();
1376 if (pid_alive(tsk))
1377 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1378 rcu_read_unlock();
1379
1380 return pid;
1381}
1382
1383static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1384{
1385 return task_ppid_nr_ns(tsk, &init_pid_ns);
1386}
1387
5eca1c10 1388/* Obsolete, do not use: */
1b0f7ffd
ON
1389static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1390{
1391 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1392}
7af57294 1393
06eb6184
PZ
1394#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1395#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1396
1d48b080 1397static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1398{
1593baab
PZ
1399 unsigned int tsk_state = READ_ONCE(tsk->state);
1400 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1401
06eb6184
PZ
1402 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1403
06eb6184
PZ
1404 if (tsk_state == TASK_IDLE)
1405 state = TASK_REPORT_IDLE;
1406
1593baab
PZ
1407 return fls(state);
1408}
1409
1d48b080 1410static inline char task_index_to_char(unsigned int state)
1593baab 1411{
8ef9925b 1412 static const char state_char[] = "RSDTtXZPI";
1593baab 1413
06eb6184 1414 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1415
1593baab
PZ
1416 return state_char[state];
1417}
1418
1419static inline char task_state_to_char(struct task_struct *tsk)
1420{
1d48b080 1421 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1422}
1423
f400e198 1424/**
570f5241
SS
1425 * is_global_init - check if a task structure is init. Since init
1426 * is free to have sub-threads we need to check tgid.
3260259f
H
1427 * @tsk: Task structure to be checked.
1428 *
1429 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1430 *
1431 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1432 */
e868171a 1433static inline int is_global_init(struct task_struct *tsk)
b461cc03 1434{
570f5241 1435 return task_tgid_nr(tsk) == 1;
b461cc03 1436}
b460cbc5 1437
9ec52099
CLG
1438extern struct pid *cad_pid;
1439
1da177e4
LT
1440/*
1441 * Per process flags
1442 */
5eca1c10
IM
1443#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1444#define PF_EXITING 0x00000004 /* Getting shut down */
5eca1c10
IM
1445#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1446#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1447#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1448#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1449#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1450#define PF_DUMPCORE 0x00000200 /* Dumped core */
1451#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1452#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1453#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1454#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1455#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1456#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1457#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1458#define PF_KSWAPD 0x00020000 /* I am kswapd */
1459#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1460#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
5eca1c10
IM
1461#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1462#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1463#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1464#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
eb414681 1465#define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */
73ab1cb2 1466#define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
3bd37062 1467#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1468#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
d7fefcc8 1469#define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
5eca1c10
IM
1470#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1471#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1472
1473/*
1474 * Only the _current_ task can read/write to tsk->flags, but other
1475 * tasks can access tsk->flags in readonly mode for example
1476 * with tsk_used_math (like during threaded core dumping).
1477 * There is however an exception to this rule during ptrace
1478 * or during fork: the ptracer task is allowed to write to the
1479 * child->flags of its traced child (same goes for fork, the parent
1480 * can write to the child->flags), because we're guaranteed the
1481 * child is not running and in turn not changing child->flags
1482 * at the same time the parent does it.
1483 */
5eca1c10
IM
1484#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1485#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1486#define clear_used_math() clear_stopped_child_used_math(current)
1487#define set_used_math() set_stopped_child_used_math(current)
1488
1da177e4
LT
1489#define conditional_stopped_child_used_math(condition, child) \
1490 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1491
1492#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1493
1da177e4
LT
1494#define copy_to_stopped_child_used_math(child) \
1495 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1496
1da177e4 1497/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1498#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1499#define used_math() tsk_used_math(current)
1da177e4 1500
62ec05dd
TG
1501static inline bool is_percpu_thread(void)
1502{
1503#ifdef CONFIG_SMP
1504 return (current->flags & PF_NO_SETAFFINITY) &&
1505 (current->nr_cpus_allowed == 1);
1506#else
1507 return true;
1508#endif
1509}
1510
1d4457f9 1511/* Per-process atomic flags. */
5eca1c10
IM
1512#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1513#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1514#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1515#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1516#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1517#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1518#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1519#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1520
e0e5070b
ZL
1521#define TASK_PFA_TEST(name, func) \
1522 static inline bool task_##func(struct task_struct *p) \
1523 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1524
e0e5070b
ZL
1525#define TASK_PFA_SET(name, func) \
1526 static inline void task_set_##func(struct task_struct *p) \
1527 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1528
e0e5070b
ZL
1529#define TASK_PFA_CLEAR(name, func) \
1530 static inline void task_clear_##func(struct task_struct *p) \
1531 { clear_bit(PFA_##name, &p->atomic_flags); }
1532
1533TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1534TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1535
2ad654bc
ZL
1536TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1537TASK_PFA_SET(SPREAD_PAGE, spread_page)
1538TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1539
1540TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1541TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1542TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1543
356e4bff
TG
1544TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1545TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1546TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1547
71368af9
WL
1548TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1549TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1550TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1551
356e4bff
TG
1552TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1553TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1554
9137bb27
TG
1555TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1556TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1557TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1558
1559TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1560TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1561
5eca1c10 1562static inline void
717a94b5 1563current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1564{
717a94b5
N
1565 current->flags &= ~flags;
1566 current->flags |= orig_flags & flags;
907aed48
MG
1567}
1568
5eca1c10
IM
1569extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1570extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1571#ifdef CONFIG_SMP
5eca1c10
IM
1572extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1573extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1574#else
5eca1c10 1575static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1576{
1577}
5eca1c10 1578static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1579{
96f874e2 1580 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1581 return -EINVAL;
1582 return 0;
1583}
1584#endif
e0ad9556 1585
fa93384f 1586extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1587extern void set_user_nice(struct task_struct *p, long nice);
1588extern int task_prio(const struct task_struct *p);
5eca1c10 1589
d0ea0268
DY
1590/**
1591 * task_nice - return the nice value of a given task.
1592 * @p: the task in question.
1593 *
1594 * Return: The nice value [ -20 ... 0 ... 19 ].
1595 */
1596static inline int task_nice(const struct task_struct *p)
1597{
1598 return PRIO_TO_NICE((p)->static_prio);
1599}
5eca1c10 1600
36c8b586
IM
1601extern int can_nice(const struct task_struct *p, const int nice);
1602extern int task_curr(const struct task_struct *p);
1da177e4 1603extern int idle_cpu(int cpu);
943d355d 1604extern int available_idle_cpu(int cpu);
5eca1c10
IM
1605extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1606extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1607extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1608extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1609extern struct task_struct *idle_task(int cpu);
5eca1c10 1610
c4f30608
PM
1611/**
1612 * is_idle_task - is the specified task an idle task?
fa757281 1613 * @p: the task in question.
e69f6186
YB
1614 *
1615 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1616 */
7061ca3b 1617static inline bool is_idle_task(const struct task_struct *p)
c4f30608 1618{
c1de45ca 1619 return !!(p->flags & PF_IDLE);
c4f30608 1620}
5eca1c10 1621
36c8b586 1622extern struct task_struct *curr_task(int cpu);
a458ae2e 1623extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1624
1625void yield(void);
1626
1da177e4 1627union thread_union {
0500871f
DH
1628#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1629 struct task_struct task;
1630#endif
c65eacbe 1631#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1632 struct thread_info thread_info;
c65eacbe 1633#endif
1da177e4
LT
1634 unsigned long stack[THREAD_SIZE/sizeof(long)];
1635};
1636
0500871f
DH
1637#ifndef CONFIG_THREAD_INFO_IN_TASK
1638extern struct thread_info init_thread_info;
1639#endif
1640
1641extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1642
f3ac6067
IM
1643#ifdef CONFIG_THREAD_INFO_IN_TASK
1644static inline struct thread_info *task_thread_info(struct task_struct *task)
1645{
1646 return &task->thread_info;
1647}
1648#elif !defined(__HAVE_THREAD_FUNCTIONS)
1649# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1650#endif
1651
198fe21b
PE
1652/*
1653 * find a task by one of its numerical ids
1654 *
198fe21b
PE
1655 * find_task_by_pid_ns():
1656 * finds a task by its pid in the specified namespace
228ebcbe
PE
1657 * find_task_by_vpid():
1658 * finds a task by its virtual pid
198fe21b 1659 *
e49859e7 1660 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1661 */
1662
228ebcbe 1663extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1664extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1665
2ee08260
MR
1666/*
1667 * find a task by its virtual pid and get the task struct
1668 */
1669extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1670
b3c97528
HH
1671extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1672extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1673extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1674
1da177e4 1675#ifdef CONFIG_SMP
5eca1c10 1676extern void kick_process(struct task_struct *tsk);
1da177e4 1677#else
5eca1c10 1678static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1679#endif
1da177e4 1680
82b89778 1681extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1682
82b89778
AH
1683static inline void set_task_comm(struct task_struct *tsk, const char *from)
1684{
1685 __set_task_comm(tsk, from, false);
1686}
5eca1c10 1687
3756f640
AB
1688extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1689#define get_task_comm(buf, tsk) ({ \
1690 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1691 __get_task_comm(buf, sizeof(buf), tsk); \
1692})
1da177e4
LT
1693
1694#ifdef CONFIG_SMP
317f3941 1695void scheduler_ipi(void);
85ba2d86 1696extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 1697#else
184748cc 1698static inline void scheduler_ipi(void) { }
5eca1c10 1699static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
85ba2d86
RM
1700{
1701 return 1;
1702}
1da177e4
LT
1703#endif
1704
5eca1c10
IM
1705/*
1706 * Set thread flags in other task's structures.
1707 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1708 */
1709static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1710{
a1261f54 1711 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1712}
1713
1714static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1715{
a1261f54 1716 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1717}
1718
93ee37c2
DM
1719static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1720 bool value)
1721{
1722 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1723}
1724
1da177e4
LT
1725static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1726{
a1261f54 1727 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1728}
1729
1730static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1731{
a1261f54 1732 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1733}
1734
1735static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1736{
a1261f54 1737 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1738}
1739
1740static inline void set_tsk_need_resched(struct task_struct *tsk)
1741{
1742 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1743}
1744
1745static inline void clear_tsk_need_resched(struct task_struct *tsk)
1746{
1747 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1748}
1749
8ae121ac
GH
1750static inline int test_tsk_need_resched(struct task_struct *tsk)
1751{
1752 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1753}
1754
1da177e4
LT
1755/*
1756 * cond_resched() and cond_resched_lock(): latency reduction via
1757 * explicit rescheduling in places that are safe. The return
1758 * value indicates whether a reschedule was done in fact.
1759 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 1760 */
c1a280b6 1761#ifndef CONFIG_PREEMPTION
c3921ab7 1762extern int _cond_resched(void);
35a773a0
PZ
1763#else
1764static inline int _cond_resched(void) { return 0; }
1765#endif
6f80bd98 1766
613afbf8 1767#define cond_resched() ({ \
3427445a 1768 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1769 _cond_resched(); \
1770})
6f80bd98 1771
613afbf8
FW
1772extern int __cond_resched_lock(spinlock_t *lock);
1773
1774#define cond_resched_lock(lock) ({ \
3427445a 1775 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1776 __cond_resched_lock(lock); \
1777})
1778
f6f3c437
SH
1779static inline void cond_resched_rcu(void)
1780{
1781#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1782 rcu_read_unlock();
1783 cond_resched();
1784 rcu_read_lock();
1785#endif
1786}
1787
1da177e4
LT
1788/*
1789 * Does a critical section need to be broken due to another
c1a280b6 1790 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
95c354fe 1791 * but a general need for low latency)
1da177e4 1792 */
95c354fe 1793static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1794{
c1a280b6 1795#ifdef CONFIG_PREEMPTION
95c354fe
NP
1796 return spin_is_contended(lock);
1797#else
1da177e4 1798 return 0;
95c354fe 1799#endif
1da177e4
LT
1800}
1801
75f93fed
PZ
1802static __always_inline bool need_resched(void)
1803{
1804 return unlikely(tif_need_resched());
1805}
1806
1da177e4
LT
1807/*
1808 * Wrappers for p->thread_info->cpu access. No-op on UP.
1809 */
1810#ifdef CONFIG_SMP
1811
1812static inline unsigned int task_cpu(const struct task_struct *p)
1813{
c65eacbe 1814#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 1815 return READ_ONCE(p->cpu);
c65eacbe 1816#else
c546951d 1817 return READ_ONCE(task_thread_info(p)->cpu);
c65eacbe 1818#endif
1da177e4
LT
1819}
1820
c65cc870 1821extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
1822
1823#else
1824
1825static inline unsigned int task_cpu(const struct task_struct *p)
1826{
1827 return 0;
1828}
1829
1830static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1831{
1832}
1833
1834#endif /* CONFIG_SMP */
1835
d9345c65
PX
1836/*
1837 * In order to reduce various lock holder preemption latencies provide an
1838 * interface to see if a vCPU is currently running or not.
1839 *
1840 * This allows us to terminate optimistic spin loops and block, analogous to
1841 * the native optimistic spin heuristic of testing if the lock owner task is
1842 * running or not.
1843 */
1844#ifndef vcpu_is_preempted
42fd8baa
QC
1845static inline bool vcpu_is_preempted(int cpu)
1846{
1847 return false;
1848}
d9345c65
PX
1849#endif
1850
96f874e2
RR
1851extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1852extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 1853
82455257
DH
1854#ifndef TASK_SIZE_OF
1855#define TASK_SIZE_OF(tsk) TASK_SIZE
1856#endif
1857
d7822b1e
MD
1858#ifdef CONFIG_RSEQ
1859
1860/*
1861 * Map the event mask on the user-space ABI enum rseq_cs_flags
1862 * for direct mask checks.
1863 */
1864enum rseq_event_mask_bits {
1865 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1866 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1867 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1868};
1869
1870enum rseq_event_mask {
1871 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1872 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1873 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1874};
1875
1876static inline void rseq_set_notify_resume(struct task_struct *t)
1877{
1878 if (t->rseq)
1879 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1880}
1881
784e0300 1882void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 1883
784e0300
WD
1884static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1885 struct pt_regs *regs)
d7822b1e
MD
1886{
1887 if (current->rseq)
784e0300 1888 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1889}
1890
784e0300
WD
1891static inline void rseq_signal_deliver(struct ksignal *ksig,
1892 struct pt_regs *regs)
d7822b1e
MD
1893{
1894 preempt_disable();
1895 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1896 preempt_enable();
784e0300 1897 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1898}
1899
1900/* rseq_preempt() requires preemption to be disabled. */
1901static inline void rseq_preempt(struct task_struct *t)
1902{
1903 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1904 rseq_set_notify_resume(t);
1905}
1906
1907/* rseq_migrate() requires preemption to be disabled. */
1908static inline void rseq_migrate(struct task_struct *t)
1909{
1910 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1911 rseq_set_notify_resume(t);
1912}
1913
1914/*
1915 * If parent process has a registered restartable sequences area, the
9a789fcf 1916 * child inherits. Only applies when forking a process, not a thread.
d7822b1e
MD
1917 */
1918static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1919{
1920 if (clone_flags & CLONE_THREAD) {
1921 t->rseq = NULL;
d7822b1e
MD
1922 t->rseq_sig = 0;
1923 t->rseq_event_mask = 0;
1924 } else {
1925 t->rseq = current->rseq;
d7822b1e
MD
1926 t->rseq_sig = current->rseq_sig;
1927 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
1928 }
1929}
1930
1931static inline void rseq_execve(struct task_struct *t)
1932{
1933 t->rseq = NULL;
d7822b1e
MD
1934 t->rseq_sig = 0;
1935 t->rseq_event_mask = 0;
1936}
1937
1938#else
1939
1940static inline void rseq_set_notify_resume(struct task_struct *t)
1941{
1942}
784e0300
WD
1943static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1944 struct pt_regs *regs)
d7822b1e
MD
1945{
1946}
784e0300
WD
1947static inline void rseq_signal_deliver(struct ksignal *ksig,
1948 struct pt_regs *regs)
d7822b1e
MD
1949{
1950}
1951static inline void rseq_preempt(struct task_struct *t)
1952{
1953}
1954static inline void rseq_migrate(struct task_struct *t)
1955{
1956}
1957static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1958{
1959}
1960static inline void rseq_execve(struct task_struct *t)
1961{
1962}
1963
1964#endif
1965
73ab1cb2
TY
1966void __exit_umh(struct task_struct *tsk);
1967
1968static inline void exit_umh(struct task_struct *tsk)
1969{
1970 if (unlikely(tsk->flags & PF_UMH))
1971 __exit_umh(tsk);
1972}
1973
d7822b1e
MD
1974#ifdef CONFIG_DEBUG_RSEQ
1975
1976void rseq_syscall(struct pt_regs *regs);
1977
1978#else
1979
1980static inline void rseq_syscall(struct pt_regs *regs)
1981{
1982}
1983
1984#endif
1985
3c93a0c0
QY
1986const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
1987char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
1988int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
1989
1990const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
1991const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
1992const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
1993
1994int sched_trace_rq_cpu(struct rq *rq);
1995
1996const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
1997
1da177e4 1998#endif