sched/fair: Rename weighted_cpuload() to cpu_runnable_load()
[linux-block.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
ec1d2819 24#include <linux/refcount.h>
a3b6714e 25#include <linux/resource.h>
9745512c 26#include <linux/latencytop.h>
5eca1c10
IM
27#include <linux/sched/prio.h>
28#include <linux/signal_types.h>
29#include <linux/mm_types_task.h>
30#include <linux/task_io_accounting.h>
d7822b1e 31#include <linux/rseq.h>
a3b6714e 32
5eca1c10 33/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 34struct audit_context;
c7af7877 35struct backing_dev_info;
bddd87c7 36struct bio_list;
73c10101 37struct blk_plug;
3c93a0c0 38struct capture_control;
c7af7877 39struct cfs_rq;
c7af7877
IM
40struct fs_struct;
41struct futex_pi_state;
42struct io_context;
43struct mempolicy;
89076bc3 44struct nameidata;
c7af7877
IM
45struct nsproxy;
46struct perf_event_context;
47struct pid_namespace;
48struct pipe_inode_info;
49struct rcu_node;
50struct reclaim_state;
51struct robust_list_head;
3c93a0c0
QY
52struct root_domain;
53struct rq;
c7af7877
IM
54struct sched_attr;
55struct sched_param;
43ae34cb 56struct seq_file;
c7af7877
IM
57struct sighand_struct;
58struct signal_struct;
59struct task_delay_info;
4cf86d77 60struct task_group;
1da177e4 61
4a8342d2
LT
62/*
63 * Task state bitmask. NOTE! These bits are also
64 * encoded in fs/proc/array.c: get_task_state().
65 *
66 * We have two separate sets of flags: task->state
67 * is about runnability, while task->exit_state are
68 * about the task exiting. Confusing, but this way
69 * modifying one set can't modify the other one by
70 * mistake.
71 */
5eca1c10
IM
72
73/* Used in tsk->state: */
92c4bc9f
PZ
74#define TASK_RUNNING 0x0000
75#define TASK_INTERRUPTIBLE 0x0001
76#define TASK_UNINTERRUPTIBLE 0x0002
77#define __TASK_STOPPED 0x0004
78#define __TASK_TRACED 0x0008
5eca1c10 79/* Used in tsk->exit_state: */
92c4bc9f
PZ
80#define EXIT_DEAD 0x0010
81#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
82#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
83/* Used in tsk->state again: */
8ef9925b
PZ
84#define TASK_PARKED 0x0040
85#define TASK_DEAD 0x0080
86#define TASK_WAKEKILL 0x0100
87#define TASK_WAKING 0x0200
92c4bc9f
PZ
88#define TASK_NOLOAD 0x0400
89#define TASK_NEW 0x0800
90#define TASK_STATE_MAX 0x1000
5eca1c10 91
5eca1c10
IM
92/* Convenience macros for the sake of set_current_state: */
93#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
94#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
95#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
96
97#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
98
99/* Convenience macros for the sake of wake_up(): */
100#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
101
102/* get_task_state(): */
103#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
104 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
105 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
106 TASK_PARKED)
5eca1c10
IM
107
108#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
109
110#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
111
112#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
113
114#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
115 (task->flags & PF_FROZEN) == 0 && \
116 (task->state & TASK_NOLOAD) == 0)
1da177e4 117
8eb23b9f
PZ
118#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
119
b5bf9a90
PZ
120/*
121 * Special states are those that do not use the normal wait-loop pattern. See
122 * the comment with set_special_state().
123 */
124#define is_special_task_state(state) \
1cef1150 125 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 126
8eb23b9f
PZ
127#define __set_current_state(state_value) \
128 do { \
b5bf9a90 129 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f
PZ
130 current->task_state_change = _THIS_IP_; \
131 current->state = (state_value); \
132 } while (0)
b5bf9a90 133
8eb23b9f
PZ
134#define set_current_state(state_value) \
135 do { \
b5bf9a90 136 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f 137 current->task_state_change = _THIS_IP_; \
a2250238 138 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
139 } while (0)
140
b5bf9a90
PZ
141#define set_special_state(state_value) \
142 do { \
143 unsigned long flags; /* may shadow */ \
144 WARN_ON_ONCE(!is_special_task_state(state_value)); \
145 raw_spin_lock_irqsave(&current->pi_lock, flags); \
146 current->task_state_change = _THIS_IP_; \
147 current->state = (state_value); \
148 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
149 } while (0)
8eb23b9f 150#else
498d0c57
AM
151/*
152 * set_current_state() includes a barrier so that the write of current->state
153 * is correctly serialised wrt the caller's subsequent test of whether to
154 * actually sleep:
155 *
a2250238 156 * for (;;) {
498d0c57 157 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
158 * if (!need_sleep)
159 * break;
160 *
161 * schedule();
162 * }
163 * __set_current_state(TASK_RUNNING);
164 *
165 * If the caller does not need such serialisation (because, for instance, the
166 * condition test and condition change and wakeup are under the same lock) then
167 * use __set_current_state().
168 *
169 * The above is typically ordered against the wakeup, which does:
170 *
b5bf9a90
PZ
171 * need_sleep = false;
172 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 173 *
7696f991
AP
174 * where wake_up_state() executes a full memory barrier before accessing the
175 * task state.
a2250238
PZ
176 *
177 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
178 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
179 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 180 *
b5bf9a90 181 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 182 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
183 * a problem either because that will result in one extra go around the loop
184 * and our @cond test will save the day.
498d0c57 185 *
a2250238 186 * Also see the comments of try_to_wake_up().
498d0c57 187 */
b5bf9a90
PZ
188#define __set_current_state(state_value) \
189 current->state = (state_value)
190
191#define set_current_state(state_value) \
192 smp_store_mb(current->state, (state_value))
193
194/*
195 * set_special_state() should be used for those states when the blocking task
196 * can not use the regular condition based wait-loop. In that case we must
197 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
198 * will not collide with our state change.
199 */
200#define set_special_state(state_value) \
201 do { \
202 unsigned long flags; /* may shadow */ \
203 raw_spin_lock_irqsave(&current->pi_lock, flags); \
204 current->state = (state_value); \
205 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
206 } while (0)
207
8eb23b9f
PZ
208#endif
209
5eca1c10
IM
210/* Task command name length: */
211#define TASK_COMM_LEN 16
1da177e4 212
1da177e4
LT
213extern void scheduler_tick(void);
214
5eca1c10
IM
215#define MAX_SCHEDULE_TIMEOUT LONG_MAX
216
217extern long schedule_timeout(long timeout);
218extern long schedule_timeout_interruptible(long timeout);
219extern long schedule_timeout_killable(long timeout);
220extern long schedule_timeout_uninterruptible(long timeout);
221extern long schedule_timeout_idle(long timeout);
1da177e4 222asmlinkage void schedule(void);
c5491ea7 223extern void schedule_preempt_disabled(void);
1da177e4 224
10ab5643
TH
225extern int __must_check io_schedule_prepare(void);
226extern void io_schedule_finish(int token);
9cff8ade 227extern long io_schedule_timeout(long timeout);
10ab5643 228extern void io_schedule(void);
9cff8ade 229
d37f761d 230/**
0ba42a59 231 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
232 * @utime: time spent in user mode
233 * @stime: time spent in system mode
9d7fb042 234 * @lock: protects the above two fields
d37f761d 235 *
9d7fb042
PZ
236 * Stores previous user/system time values such that we can guarantee
237 * monotonicity.
d37f761d 238 */
9d7fb042
PZ
239struct prev_cputime {
240#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
241 u64 utime;
242 u64 stime;
243 raw_spinlock_t lock;
9d7fb042 244#endif
d37f761d
FW
245};
246
f06febc9
FM
247/**
248 * struct task_cputime - collected CPU time counts
5613fda9
FW
249 * @utime: time spent in user mode, in nanoseconds
250 * @stime: time spent in kernel mode, in nanoseconds
f06febc9 251 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 252 *
9d7fb042
PZ
253 * This structure groups together three kinds of CPU time that are tracked for
254 * threads and thread groups. Most things considering CPU time want to group
255 * these counts together and treat all three of them in parallel.
f06febc9
FM
256 */
257struct task_cputime {
5eca1c10
IM
258 u64 utime;
259 u64 stime;
260 unsigned long long sum_exec_runtime;
f06febc9 261};
9d7fb042 262
5eca1c10
IM
263/* Alternate field names when used on cache expirations: */
264#define virt_exp utime
265#define prof_exp stime
266#define sched_exp sum_exec_runtime
f06febc9 267
bac5b6b6
FW
268enum vtime_state {
269 /* Task is sleeping or running in a CPU with VTIME inactive: */
270 VTIME_INACTIVE = 0,
271 /* Task runs in userspace in a CPU with VTIME active: */
272 VTIME_USER,
273 /* Task runs in kernelspace in a CPU with VTIME active: */
274 VTIME_SYS,
275};
276
277struct vtime {
278 seqcount_t seqcount;
279 unsigned long long starttime;
280 enum vtime_state state;
2a42eb95
WL
281 u64 utime;
282 u64 stime;
283 u64 gtime;
bac5b6b6
FW
284};
285
1da177e4 286struct sched_info {
7f5f8e8d 287#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
288 /* Cumulative counters: */
289
290 /* # of times we have run on this CPU: */
291 unsigned long pcount;
292
293 /* Time spent waiting on a runqueue: */
294 unsigned long long run_delay;
295
296 /* Timestamps: */
297
298 /* When did we last run on a CPU? */
299 unsigned long long last_arrival;
300
301 /* When were we last queued to run? */
302 unsigned long long last_queued;
1da177e4 303
f6db8347 304#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 305};
1da177e4 306
6ecdd749
YD
307/*
308 * Integer metrics need fixed point arithmetic, e.g., sched/fair
309 * has a few: load, load_avg, util_avg, freq, and capacity.
310 *
311 * We define a basic fixed point arithmetic range, and then formalize
312 * all these metrics based on that basic range.
313 */
5eca1c10
IM
314# define SCHED_FIXEDPOINT_SHIFT 10
315# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 316
20b8a59f 317struct load_weight {
5eca1c10
IM
318 unsigned long weight;
319 u32 inv_weight;
20b8a59f
IM
320};
321
7f65ea42
PB
322/**
323 * struct util_est - Estimation utilization of FAIR tasks
324 * @enqueued: instantaneous estimated utilization of a task/cpu
325 * @ewma: the Exponential Weighted Moving Average (EWMA)
326 * utilization of a task
327 *
328 * Support data structure to track an Exponential Weighted Moving Average
329 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
330 * average each time a task completes an activation. Sample's weight is chosen
331 * so that the EWMA will be relatively insensitive to transient changes to the
332 * task's workload.
333 *
334 * The enqueued attribute has a slightly different meaning for tasks and cpus:
335 * - task: the task's util_avg at last task dequeue time
336 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
337 * Thus, the util_est.enqueued of a task represents the contribution on the
338 * estimated utilization of the CPU where that task is currently enqueued.
339 *
340 * Only for tasks we track a moving average of the past instantaneous
341 * estimated utilization. This allows to absorb sporadic drops in utilization
342 * of an otherwise almost periodic task.
343 */
344struct util_est {
345 unsigned int enqueued;
346 unsigned int ewma;
347#define UTIL_EST_WEIGHT_SHIFT 2
317d359d 348} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 349
9d89c257 350/*
7b595334
YD
351 * The load_avg/util_avg accumulates an infinite geometric series
352 * (see __update_load_avg() in kernel/sched/fair.c).
353 *
354 * [load_avg definition]
355 *
356 * load_avg = runnable% * scale_load_down(load)
357 *
358 * where runnable% is the time ratio that a sched_entity is runnable.
359 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 360 * blocked sched_entities.
7b595334 361 *
7b595334
YD
362 * [util_avg definition]
363 *
364 * util_avg = running% * SCHED_CAPACITY_SCALE
365 *
366 * where running% is the time ratio that a sched_entity is running on
367 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
368 * and blocked sched_entities.
369 *
23127296
VG
370 * load_avg and util_avg don't direcly factor frequency scaling and CPU
371 * capacity scaling. The scaling is done through the rq_clock_pelt that
372 * is used for computing those signals (see update_rq_clock_pelt())
7b595334 373 *
23127296
VG
374 * N.B., the above ratios (runnable% and running%) themselves are in the
375 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
376 * to as large a range as necessary. This is for example reflected by
377 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
378 *
379 * [Overflow issue]
380 *
381 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
382 * with the highest load (=88761), always runnable on a single cfs_rq,
383 * and should not overflow as the number already hits PID_MAX_LIMIT.
384 *
385 * For all other cases (including 32-bit kernels), struct load_weight's
386 * weight will overflow first before we do, because:
387 *
388 * Max(load_avg) <= Max(load.weight)
389 *
390 * Then it is the load_weight's responsibility to consider overflow
391 * issues.
9d89c257 392 */
9d85f21c 393struct sched_avg {
5eca1c10
IM
394 u64 last_update_time;
395 u64 load_sum;
1ea6c46a 396 u64 runnable_load_sum;
5eca1c10
IM
397 u32 util_sum;
398 u32 period_contrib;
399 unsigned long load_avg;
1ea6c46a 400 unsigned long runnable_load_avg;
5eca1c10 401 unsigned long util_avg;
7f65ea42 402 struct util_est util_est;
317d359d 403} ____cacheline_aligned;
9d85f21c 404
41acab88 405struct sched_statistics {
7f5f8e8d 406#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
407 u64 wait_start;
408 u64 wait_max;
409 u64 wait_count;
410 u64 wait_sum;
411 u64 iowait_count;
412 u64 iowait_sum;
413
414 u64 sleep_start;
415 u64 sleep_max;
416 s64 sum_sleep_runtime;
417
418 u64 block_start;
419 u64 block_max;
420 u64 exec_max;
421 u64 slice_max;
422
423 u64 nr_migrations_cold;
424 u64 nr_failed_migrations_affine;
425 u64 nr_failed_migrations_running;
426 u64 nr_failed_migrations_hot;
427 u64 nr_forced_migrations;
428
429 u64 nr_wakeups;
430 u64 nr_wakeups_sync;
431 u64 nr_wakeups_migrate;
432 u64 nr_wakeups_local;
433 u64 nr_wakeups_remote;
434 u64 nr_wakeups_affine;
435 u64 nr_wakeups_affine_attempts;
436 u64 nr_wakeups_passive;
437 u64 nr_wakeups_idle;
41acab88 438#endif
7f5f8e8d 439};
41acab88
LDM
440
441struct sched_entity {
5eca1c10
IM
442 /* For load-balancing: */
443 struct load_weight load;
1ea6c46a 444 unsigned long runnable_weight;
5eca1c10
IM
445 struct rb_node run_node;
446 struct list_head group_node;
447 unsigned int on_rq;
41acab88 448
5eca1c10
IM
449 u64 exec_start;
450 u64 sum_exec_runtime;
451 u64 vruntime;
452 u64 prev_sum_exec_runtime;
41acab88 453
5eca1c10 454 u64 nr_migrations;
41acab88 455
5eca1c10 456 struct sched_statistics statistics;
94c18227 457
20b8a59f 458#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
459 int depth;
460 struct sched_entity *parent;
20b8a59f 461 /* rq on which this entity is (to be) queued: */
5eca1c10 462 struct cfs_rq *cfs_rq;
20b8a59f 463 /* rq "owned" by this entity/group: */
5eca1c10 464 struct cfs_rq *my_q;
20b8a59f 465#endif
8bd75c77 466
141965c7 467#ifdef CONFIG_SMP
5a107804
JO
468 /*
469 * Per entity load average tracking.
470 *
471 * Put into separate cache line so it does not
472 * collide with read-mostly values above.
473 */
317d359d 474 struct sched_avg avg;
9d85f21c 475#endif
20b8a59f 476};
70b97a7f 477
fa717060 478struct sched_rt_entity {
5eca1c10
IM
479 struct list_head run_list;
480 unsigned long timeout;
481 unsigned long watchdog_stamp;
482 unsigned int time_slice;
483 unsigned short on_rq;
484 unsigned short on_list;
485
486 struct sched_rt_entity *back;
052f1dc7 487#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 488 struct sched_rt_entity *parent;
6f505b16 489 /* rq on which this entity is (to be) queued: */
5eca1c10 490 struct rt_rq *rt_rq;
6f505b16 491 /* rq "owned" by this entity/group: */
5eca1c10 492 struct rt_rq *my_q;
6f505b16 493#endif
3859a271 494} __randomize_layout;
fa717060 495
aab03e05 496struct sched_dl_entity {
5eca1c10 497 struct rb_node rb_node;
aab03e05
DF
498
499 /*
500 * Original scheduling parameters. Copied here from sched_attr
4027d080 501 * during sched_setattr(), they will remain the same until
502 * the next sched_setattr().
aab03e05 503 */
5eca1c10
IM
504 u64 dl_runtime; /* Maximum runtime for each instance */
505 u64 dl_deadline; /* Relative deadline of each instance */
506 u64 dl_period; /* Separation of two instances (period) */
54d6d303 507 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 508 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
509
510 /*
511 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 512 * they are continuously updated during task execution. Note that
aab03e05
DF
513 * the remaining runtime could be < 0 in case we are in overrun.
514 */
5eca1c10
IM
515 s64 runtime; /* Remaining runtime for this instance */
516 u64 deadline; /* Absolute deadline for this instance */
517 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
518
519 /*
520 * Some bool flags:
521 *
522 * @dl_throttled tells if we exhausted the runtime. If so, the
523 * task has to wait for a replenishment to be performed at the
524 * next firing of dl_timer.
525 *
2d3d891d
DF
526 * @dl_boosted tells if we are boosted due to DI. If so we are
527 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
528 * exit the critical section);
529 *
5eca1c10 530 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 531 * all its available runtime during the last job.
209a0cbd
LA
532 *
533 * @dl_non_contending tells if the task is inactive while still
534 * contributing to the active utilization. In other words, it
535 * indicates if the inactive timer has been armed and its handler
536 * has not been executed yet. This flag is useful to avoid race
537 * conditions between the inactive timer handler and the wakeup
538 * code.
34be3930
JL
539 *
540 * @dl_overrun tells if the task asked to be informed about runtime
541 * overruns.
aab03e05 542 */
aa5222e9
DC
543 unsigned int dl_throttled : 1;
544 unsigned int dl_boosted : 1;
545 unsigned int dl_yielded : 1;
546 unsigned int dl_non_contending : 1;
34be3930 547 unsigned int dl_overrun : 1;
aab03e05
DF
548
549 /*
550 * Bandwidth enforcement timer. Each -deadline task has its
551 * own bandwidth to be enforced, thus we need one timer per task.
552 */
5eca1c10 553 struct hrtimer dl_timer;
209a0cbd
LA
554
555 /*
556 * Inactive timer, responsible for decreasing the active utilization
557 * at the "0-lag time". When a -deadline task blocks, it contributes
558 * to GRUB's active utilization until the "0-lag time", hence a
559 * timer is needed to decrease the active utilization at the correct
560 * time.
561 */
562 struct hrtimer inactive_timer;
aab03e05 563};
8bd75c77 564
1d082fd0
PM
565union rcu_special {
566 struct {
5eca1c10
IM
567 u8 blocked;
568 u8 need_qs;
05f41571
PM
569 u8 exp_hint; /* Hint for performance. */
570 u8 pad; /* No garbage from compiler! */
8203d6d0 571 } b; /* Bits. */
05f41571 572 u32 s; /* Set of bits. */
1d082fd0 573};
86848966 574
8dc85d54
PZ
575enum perf_event_task_context {
576 perf_invalid_context = -1,
577 perf_hw_context = 0,
89a1e187 578 perf_sw_context,
8dc85d54
PZ
579 perf_nr_task_contexts,
580};
581
eb61baf6
IM
582struct wake_q_node {
583 struct wake_q_node *next;
584};
585
1da177e4 586struct task_struct {
c65eacbe
AL
587#ifdef CONFIG_THREAD_INFO_IN_TASK
588 /*
589 * For reasons of header soup (see current_thread_info()), this
590 * must be the first element of task_struct.
591 */
5eca1c10 592 struct thread_info thread_info;
c65eacbe 593#endif
5eca1c10
IM
594 /* -1 unrunnable, 0 runnable, >0 stopped: */
595 volatile long state;
29e48ce8
KC
596
597 /*
598 * This begins the randomizable portion of task_struct. Only
599 * scheduling-critical items should be added above here.
600 */
601 randomized_struct_fields_start
602
5eca1c10 603 void *stack;
ec1d2819 604 refcount_t usage;
5eca1c10
IM
605 /* Per task flags (PF_*), defined further below: */
606 unsigned int flags;
607 unsigned int ptrace;
1da177e4 608
2dd73a4f 609#ifdef CONFIG_SMP
5eca1c10
IM
610 struct llist_node wake_entry;
611 int on_cpu;
c65eacbe 612#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
613 /* Current CPU: */
614 unsigned int cpu;
c65eacbe 615#endif
5eca1c10
IM
616 unsigned int wakee_flips;
617 unsigned long wakee_flip_decay_ts;
618 struct task_struct *last_wakee;
ac66f547 619
32e839dd
MG
620 /*
621 * recent_used_cpu is initially set as the last CPU used by a task
622 * that wakes affine another task. Waker/wakee relationships can
623 * push tasks around a CPU where each wakeup moves to the next one.
624 * Tracking a recently used CPU allows a quick search for a recently
625 * used CPU that may be idle.
626 */
627 int recent_used_cpu;
5eca1c10 628 int wake_cpu;
2dd73a4f 629#endif
5eca1c10
IM
630 int on_rq;
631
632 int prio;
633 int static_prio;
634 int normal_prio;
635 unsigned int rt_priority;
50e645a8 636
5eca1c10
IM
637 const struct sched_class *sched_class;
638 struct sched_entity se;
639 struct sched_rt_entity rt;
8323f26c 640#ifdef CONFIG_CGROUP_SCHED
5eca1c10 641 struct task_group *sched_task_group;
8323f26c 642#endif
5eca1c10 643 struct sched_dl_entity dl;
1da177e4 644
e107be36 645#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
646 /* List of struct preempt_notifier: */
647 struct hlist_head preempt_notifiers;
e107be36
AK
648#endif
649
6c5c9341 650#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 651 unsigned int btrace_seq;
6c5c9341 652#endif
1da177e4 653
5eca1c10
IM
654 unsigned int policy;
655 int nr_cpus_allowed;
3bd37062
SAS
656 const cpumask_t *cpus_ptr;
657 cpumask_t cpus_mask;
1da177e4 658
a57eb940 659#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
660 int rcu_read_lock_nesting;
661 union rcu_special rcu_read_unlock_special;
662 struct list_head rcu_node_entry;
663 struct rcu_node *rcu_blocked_node;
28f6569a 664#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 665
8315f422 666#ifdef CONFIG_TASKS_RCU
5eca1c10 667 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
668 u8 rcu_tasks_holdout;
669 u8 rcu_tasks_idx;
5eca1c10 670 int rcu_tasks_idle_cpu;
ccdd29ff 671 struct list_head rcu_tasks_holdout_list;
8315f422 672#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 673
5eca1c10 674 struct sched_info sched_info;
1da177e4 675
5eca1c10 676 struct list_head tasks;
806c09a7 677#ifdef CONFIG_SMP
5eca1c10
IM
678 struct plist_node pushable_tasks;
679 struct rb_node pushable_dl_tasks;
806c09a7 680#endif
1da177e4 681
5eca1c10
IM
682 struct mm_struct *mm;
683 struct mm_struct *active_mm;
314ff785
IM
684
685 /* Per-thread vma caching: */
5eca1c10 686 struct vmacache vmacache;
314ff785 687
5eca1c10
IM
688#ifdef SPLIT_RSS_COUNTING
689 struct task_rss_stat rss_stat;
34e55232 690#endif
5eca1c10
IM
691 int exit_state;
692 int exit_code;
693 int exit_signal;
694 /* The signal sent when the parent dies: */
695 int pdeath_signal;
696 /* JOBCTL_*, siglock protected: */
697 unsigned long jobctl;
698
699 /* Used for emulating ABI behavior of previous Linux versions: */
700 unsigned int personality;
701
702 /* Scheduler bits, serialized by scheduler locks: */
703 unsigned sched_reset_on_fork:1;
704 unsigned sched_contributes_to_load:1;
705 unsigned sched_migrated:1;
706 unsigned sched_remote_wakeup:1;
eb414681
JW
707#ifdef CONFIG_PSI
708 unsigned sched_psi_wake_requeue:1;
709#endif
710
5eca1c10
IM
711 /* Force alignment to the next boundary: */
712 unsigned :0;
713
714 /* Unserialized, strictly 'current' */
715
716 /* Bit to tell LSMs we're in execve(): */
717 unsigned in_execve:1;
718 unsigned in_iowait:1;
719#ifndef TIF_RESTORE_SIGMASK
720 unsigned restore_sigmask:1;
7e781418 721#endif
626ebc41 722#ifdef CONFIG_MEMCG
29ef680a 723 unsigned in_user_fault:1;
127424c8 724#endif
ff303e66 725#ifdef CONFIG_COMPAT_BRK
5eca1c10 726 unsigned brk_randomized:1;
ff303e66 727#endif
77f88796
TH
728#ifdef CONFIG_CGROUPS
729 /* disallow userland-initiated cgroup migration */
730 unsigned no_cgroup_migration:1;
76f969e8
RG
731 /* task is frozen/stopped (used by the cgroup freezer) */
732 unsigned frozen:1;
77f88796 733#endif
d09d8df3
JB
734#ifdef CONFIG_BLK_CGROUP
735 /* to be used once the psi infrastructure lands upstream. */
736 unsigned use_memdelay:1;
737#endif
6f185c29 738
5eca1c10 739 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 740
5eca1c10 741 struct restart_block restart_block;
f56141e3 742
5eca1c10
IM
743 pid_t pid;
744 pid_t tgid;
0a425405 745
050e9baa 746#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
747 /* Canary value for the -fstack-protector GCC feature: */
748 unsigned long stack_canary;
1314562a 749#endif
4d1d61a6 750 /*
5eca1c10 751 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 752 * older sibling, respectively. (p->father can be replaced with
f470021a 753 * p->real_parent->pid)
1da177e4 754 */
5eca1c10
IM
755
756 /* Real parent process: */
757 struct task_struct __rcu *real_parent;
758
759 /* Recipient of SIGCHLD, wait4() reports: */
760 struct task_struct __rcu *parent;
761
1da177e4 762 /*
5eca1c10 763 * Children/sibling form the list of natural children:
1da177e4 764 */
5eca1c10
IM
765 struct list_head children;
766 struct list_head sibling;
767 struct task_struct *group_leader;
1da177e4 768
f470021a 769 /*
5eca1c10
IM
770 * 'ptraced' is the list of tasks this task is using ptrace() on.
771 *
f470021a 772 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 773 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 774 */
5eca1c10
IM
775 struct list_head ptraced;
776 struct list_head ptrace_entry;
f470021a 777
1da177e4 778 /* PID/PID hash table linkage. */
2c470475
EB
779 struct pid *thread_pid;
780 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
781 struct list_head thread_group;
782 struct list_head thread_node;
783
784 struct completion *vfork_done;
1da177e4 785
5eca1c10
IM
786 /* CLONE_CHILD_SETTID: */
787 int __user *set_child_tid;
1da177e4 788
5eca1c10
IM
789 /* CLONE_CHILD_CLEARTID: */
790 int __user *clear_child_tid;
791
792 u64 utime;
793 u64 stime;
40565b5a 794#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
795 u64 utimescaled;
796 u64 stimescaled;
40565b5a 797#endif
5eca1c10
IM
798 u64 gtime;
799 struct prev_cputime prev_cputime;
6a61671b 800#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 801 struct vtime vtime;
d99ca3b9 802#endif
d027d45d
FW
803
804#ifdef CONFIG_NO_HZ_FULL
5eca1c10 805 atomic_t tick_dep_mask;
d027d45d 806#endif
5eca1c10
IM
807 /* Context switch counts: */
808 unsigned long nvcsw;
809 unsigned long nivcsw;
810
811 /* Monotonic time in nsecs: */
812 u64 start_time;
813
814 /* Boot based time in nsecs: */
815 u64 real_start_time;
816
817 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
818 unsigned long min_flt;
819 unsigned long maj_flt;
1da177e4 820
b18b6a9c 821#ifdef CONFIG_POSIX_TIMERS
5eca1c10
IM
822 struct task_cputime cputime_expires;
823 struct list_head cpu_timers[3];
b18b6a9c 824#endif
1da177e4 825
5eca1c10
IM
826 /* Process credentials: */
827
828 /* Tracer's credentials at attach: */
829 const struct cred __rcu *ptracer_cred;
830
831 /* Objective and real subjective task credentials (COW): */
832 const struct cred __rcu *real_cred;
833
834 /* Effective (overridable) subjective task credentials (COW): */
835 const struct cred __rcu *cred;
836
837 /*
838 * executable name, excluding path.
839 *
840 * - normally initialized setup_new_exec()
841 * - access it with [gs]et_task_comm()
842 * - lock it with task_lock()
843 */
844 char comm[TASK_COMM_LEN];
845
846 struct nameidata *nameidata;
847
3d5b6fcc 848#ifdef CONFIG_SYSVIPC
5eca1c10
IM
849 struct sysv_sem sysvsem;
850 struct sysv_shm sysvshm;
3d5b6fcc 851#endif
e162b39a 852#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 853 unsigned long last_switch_count;
a2e51445 854 unsigned long last_switch_time;
82a1fcb9 855#endif
5eca1c10
IM
856 /* Filesystem information: */
857 struct fs_struct *fs;
858
859 /* Open file information: */
860 struct files_struct *files;
861
862 /* Namespaces: */
863 struct nsproxy *nsproxy;
864
865 /* Signal handlers: */
866 struct signal_struct *signal;
867 struct sighand_struct *sighand;
868 sigset_t blocked;
869 sigset_t real_blocked;
870 /* Restored if set_restore_sigmask() was used: */
871 sigset_t saved_sigmask;
872 struct sigpending pending;
873 unsigned long sas_ss_sp;
874 size_t sas_ss_size;
875 unsigned int sas_ss_flags;
876
877 struct callback_head *task_works;
878
4b7d248b 879#ifdef CONFIG_AUDIT
bfef93a5 880#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
881 struct audit_context *audit_context;
882#endif
5eca1c10
IM
883 kuid_t loginuid;
884 unsigned int sessionid;
bfef93a5 885#endif
5eca1c10
IM
886 struct seccomp seccomp;
887
888 /* Thread group tracking: */
889 u32 parent_exec_id;
890 u32 self_exec_id;
1da177e4 891
5eca1c10
IM
892 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
893 spinlock_t alloc_lock;
1da177e4 894
b29739f9 895 /* Protection of the PI data structures: */
5eca1c10 896 raw_spinlock_t pi_lock;
b29739f9 897
5eca1c10 898 struct wake_q_node wake_q;
76751049 899
23f78d4a 900#ifdef CONFIG_RT_MUTEXES
5eca1c10 901 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 902 struct rb_root_cached pi_waiters;
e96a7705
XP
903 /* Updated under owner's pi_lock and rq lock */
904 struct task_struct *pi_top_task;
5eca1c10
IM
905 /* Deadlock detection and priority inheritance handling: */
906 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
907#endif
908
408894ee 909#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
910 /* Mutex deadlock detection: */
911 struct mutex_waiter *blocked_on;
408894ee 912#endif
5eca1c10 913
de30a2b3 914#ifdef CONFIG_TRACE_IRQFLAGS
5eca1c10
IM
915 unsigned int irq_events;
916 unsigned long hardirq_enable_ip;
917 unsigned long hardirq_disable_ip;
918 unsigned int hardirq_enable_event;
919 unsigned int hardirq_disable_event;
920 int hardirqs_enabled;
921 int hardirq_context;
922 unsigned long softirq_disable_ip;
923 unsigned long softirq_enable_ip;
924 unsigned int softirq_disable_event;
925 unsigned int softirq_enable_event;
926 int softirqs_enabled;
927 int softirq_context;
de30a2b3 928#endif
5eca1c10 929
fbb9ce95 930#ifdef CONFIG_LOCKDEP
5eca1c10
IM
931# define MAX_LOCK_DEPTH 48UL
932 u64 curr_chain_key;
933 int lockdep_depth;
934 unsigned int lockdep_recursion;
935 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 936#endif
5eca1c10 937
c6d30853 938#ifdef CONFIG_UBSAN
5eca1c10 939 unsigned int in_ubsan;
c6d30853 940#endif
408894ee 941
5eca1c10
IM
942 /* Journalling filesystem info: */
943 void *journal_info;
1da177e4 944
5eca1c10
IM
945 /* Stacked block device info: */
946 struct bio_list *bio_list;
d89d8796 947
73c10101 948#ifdef CONFIG_BLOCK
5eca1c10
IM
949 /* Stack plugging: */
950 struct blk_plug *plug;
73c10101
JA
951#endif
952
5eca1c10
IM
953 /* VM state: */
954 struct reclaim_state *reclaim_state;
955
956 struct backing_dev_info *backing_dev_info;
1da177e4 957
5eca1c10 958 struct io_context *io_context;
1da177e4 959
5e1f0f09
MG
960#ifdef CONFIG_COMPACTION
961 struct capture_control *capture_control;
962#endif
5eca1c10
IM
963 /* Ptrace state: */
964 unsigned long ptrace_message;
ae7795bc 965 kernel_siginfo_t *last_siginfo;
1da177e4 966
5eca1c10 967 struct task_io_accounting ioac;
eb414681
JW
968#ifdef CONFIG_PSI
969 /* Pressure stall state */
970 unsigned int psi_flags;
971#endif
5eca1c10
IM
972#ifdef CONFIG_TASK_XACCT
973 /* Accumulated RSS usage: */
974 u64 acct_rss_mem1;
975 /* Accumulated virtual memory usage: */
976 u64 acct_vm_mem1;
977 /* stime + utime since last update: */
978 u64 acct_timexpd;
1da177e4
LT
979#endif
980#ifdef CONFIG_CPUSETS
5eca1c10
IM
981 /* Protected by ->alloc_lock: */
982 nodemask_t mems_allowed;
983 /* Seqence number to catch updates: */
984 seqcount_t mems_allowed_seq;
985 int cpuset_mem_spread_rotor;
986 int cpuset_slab_spread_rotor;
1da177e4 987#endif
ddbcc7e8 988#ifdef CONFIG_CGROUPS
5eca1c10
IM
989 /* Control Group info protected by css_set_lock: */
990 struct css_set __rcu *cgroups;
991 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
992 struct list_head cg_list;
ddbcc7e8 993#endif
e6d42931 994#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 995 u32 closid;
d6aaba61 996 u32 rmid;
e02737d5 997#endif
42b2dd0a 998#ifdef CONFIG_FUTEX
5eca1c10 999 struct robust_list_head __user *robust_list;
34f192c6
IM
1000#ifdef CONFIG_COMPAT
1001 struct compat_robust_list_head __user *compat_robust_list;
1002#endif
5eca1c10
IM
1003 struct list_head pi_state_list;
1004 struct futex_pi_state *pi_state_cache;
c7aceaba 1005#endif
cdd6c482 1006#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
1007 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1008 struct mutex perf_event_mutex;
1009 struct list_head perf_event_list;
a63eaf34 1010#endif
8f47b187 1011#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1012 unsigned long preempt_disable_ip;
8f47b187 1013#endif
c7aceaba 1014#ifdef CONFIG_NUMA
5eca1c10
IM
1015 /* Protected by alloc_lock: */
1016 struct mempolicy *mempolicy;
45816682 1017 short il_prev;
5eca1c10 1018 short pref_node_fork;
42b2dd0a 1019#endif
cbee9f88 1020#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1021 int numa_scan_seq;
1022 unsigned int numa_scan_period;
1023 unsigned int numa_scan_period_max;
1024 int numa_preferred_nid;
1025 unsigned long numa_migrate_retry;
1026 /* Migration stamp: */
1027 u64 node_stamp;
1028 u64 last_task_numa_placement;
1029 u64 last_sum_exec_runtime;
1030 struct callback_head numa_work;
1031
5eca1c10 1032 struct numa_group *numa_group;
8c8a743c 1033
745d6147 1034 /*
44dba3d5
IM
1035 * numa_faults is an array split into four regions:
1036 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1037 * in this precise order.
1038 *
1039 * faults_memory: Exponential decaying average of faults on a per-node
1040 * basis. Scheduling placement decisions are made based on these
1041 * counts. The values remain static for the duration of a PTE scan.
1042 * faults_cpu: Track the nodes the process was running on when a NUMA
1043 * hinting fault was incurred.
1044 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1045 * during the current scan window. When the scan completes, the counts
1046 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1047 */
5eca1c10
IM
1048 unsigned long *numa_faults;
1049 unsigned long total_numa_faults;
745d6147 1050
04bb2f94
RR
1051 /*
1052 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1053 * scan window were remote/local or failed to migrate. The task scan
1054 * period is adapted based on the locality of the faults with different
1055 * weights depending on whether they were shared or private faults
04bb2f94 1056 */
5eca1c10 1057 unsigned long numa_faults_locality[3];
04bb2f94 1058
5eca1c10 1059 unsigned long numa_pages_migrated;
cbee9f88
PZ
1060#endif /* CONFIG_NUMA_BALANCING */
1061
d7822b1e
MD
1062#ifdef CONFIG_RSEQ
1063 struct rseq __user *rseq;
d7822b1e
MD
1064 u32 rseq_sig;
1065 /*
1066 * RmW on rseq_event_mask must be performed atomically
1067 * with respect to preemption.
1068 */
1069 unsigned long rseq_event_mask;
1070#endif
1071
5eca1c10 1072 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1073
5eca1c10 1074 struct rcu_head rcu;
b92ce558 1075
5eca1c10
IM
1076 /* Cache last used pipe for splice(): */
1077 struct pipe_inode_info *splice_pipe;
5640f768 1078
5eca1c10 1079 struct page_frag task_frag;
5640f768 1080
47913d4e
IM
1081#ifdef CONFIG_TASK_DELAY_ACCT
1082 struct task_delay_info *delays;
f4f154fd 1083#endif
47913d4e 1084
f4f154fd 1085#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1086 int make_it_fail;
9049f2f6 1087 unsigned int fail_nth;
ca74e92b 1088#endif
9d823e8f 1089 /*
5eca1c10
IM
1090 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1091 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1092 */
5eca1c10
IM
1093 int nr_dirtied;
1094 int nr_dirtied_pause;
1095 /* Start of a write-and-pause period: */
1096 unsigned long dirty_paused_when;
9d823e8f 1097
9745512c 1098#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1099 int latency_record_count;
1100 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1101#endif
6976675d 1102 /*
5eca1c10 1103 * Time slack values; these are used to round up poll() and
6976675d
AV
1104 * select() etc timeout values. These are in nanoseconds.
1105 */
5eca1c10
IM
1106 u64 timer_slack_ns;
1107 u64 default_timer_slack_ns;
f8d570a4 1108
0b24becc 1109#ifdef CONFIG_KASAN
5eca1c10 1110 unsigned int kasan_depth;
0b24becc 1111#endif
5eca1c10 1112
fb52607a 1113#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1114 /* Index of current stored address in ret_stack: */
1115 int curr_ret_stack;
39eb456d 1116 int curr_ret_depth;
5eca1c10
IM
1117
1118 /* Stack of return addresses for return function tracing: */
1119 struct ftrace_ret_stack *ret_stack;
1120
1121 /* Timestamp for last schedule: */
1122 unsigned long long ftrace_timestamp;
1123
f201ae23
FW
1124 /*
1125 * Number of functions that haven't been traced
5eca1c10 1126 * because of depth overrun:
f201ae23 1127 */
5eca1c10
IM
1128 atomic_t trace_overrun;
1129
1130 /* Pause tracing: */
1131 atomic_t tracing_graph_pause;
f201ae23 1132#endif
5eca1c10 1133
ea4e2bc4 1134#ifdef CONFIG_TRACING
5eca1c10
IM
1135 /* State flags for use by tracers: */
1136 unsigned long trace;
1137
1138 /* Bitmask and counter of trace recursion: */
1139 unsigned long trace_recursion;
261842b7 1140#endif /* CONFIG_TRACING */
5eca1c10 1141
5c9a8750 1142#ifdef CONFIG_KCOV
5eca1c10 1143 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1144 unsigned int kcov_mode;
5eca1c10
IM
1145
1146 /* Size of the kcov_area: */
1147 unsigned int kcov_size;
1148
1149 /* Buffer for coverage collection: */
1150 void *kcov_area;
1151
1152 /* KCOV descriptor wired with this task or NULL: */
1153 struct kcov *kcov;
5c9a8750 1154#endif
5eca1c10 1155
6f185c29 1156#ifdef CONFIG_MEMCG
5eca1c10
IM
1157 struct mem_cgroup *memcg_in_oom;
1158 gfp_t memcg_oom_gfp_mask;
1159 int memcg_oom_order;
b23afb93 1160
5eca1c10
IM
1161 /* Number of pages to reclaim on returning to userland: */
1162 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1163
1164 /* Used by memcontrol for targeted memcg charge: */
1165 struct mem_cgroup *active_memcg;
569b846d 1166#endif
5eca1c10 1167
d09d8df3
JB
1168#ifdef CONFIG_BLK_CGROUP
1169 struct request_queue *throttle_queue;
1170#endif
1171
0326f5a9 1172#ifdef CONFIG_UPROBES
5eca1c10 1173 struct uprobe_task *utask;
0326f5a9 1174#endif
cafe5635 1175#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1176 unsigned int sequential_io;
1177 unsigned int sequential_io_avg;
cafe5635 1178#endif
8eb23b9f 1179#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1180 unsigned long task_state_change;
8eb23b9f 1181#endif
5eca1c10 1182 int pagefault_disabled;
03049269 1183#ifdef CONFIG_MMU
5eca1c10 1184 struct task_struct *oom_reaper_list;
03049269 1185#endif
ba14a194 1186#ifdef CONFIG_VMAP_STACK
5eca1c10 1187 struct vm_struct *stack_vm_area;
ba14a194 1188#endif
68f24b08 1189#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1190 /* A live task holds one reference: */
f0b89d39 1191 refcount_t stack_refcount;
d83a7cb3
JP
1192#endif
1193#ifdef CONFIG_LIVEPATCH
1194 int patch_state;
0302e28d 1195#endif
e4e55b47
TH
1196#ifdef CONFIG_SECURITY
1197 /* Used by LSM modules for access restriction: */
1198 void *security;
68f24b08 1199#endif
29e48ce8 1200
afaef01c
AP
1201#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1202 unsigned long lowest_stack;
c8d12627 1203 unsigned long prev_lowest_stack;
afaef01c
AP
1204#endif
1205
29e48ce8
KC
1206 /*
1207 * New fields for task_struct should be added above here, so that
1208 * they are included in the randomized portion of task_struct.
1209 */
1210 randomized_struct_fields_end
1211
5eca1c10
IM
1212 /* CPU-specific state of this task: */
1213 struct thread_struct thread;
1214
1215 /*
1216 * WARNING: on x86, 'thread_struct' contains a variable-sized
1217 * structure. It *MUST* be at the end of 'task_struct'.
1218 *
1219 * Do not put anything below here!
1220 */
1da177e4
LT
1221};
1222
e868171a 1223static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1224{
2c470475 1225 return task->thread_pid;
22c935f4
EB
1226}
1227
7af57294
PE
1228/*
1229 * the helpers to get the task's different pids as they are seen
1230 * from various namespaces
1231 *
1232 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1233 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1234 * current.
7af57294
PE
1235 * task_xid_nr_ns() : id seen from the ns specified;
1236 *
7af57294
PE
1237 * see also pid_nr() etc in include/linux/pid.h
1238 */
5eca1c10 1239pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1240
e868171a 1241static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1242{
1243 return tsk->pid;
1244}
1245
5eca1c10 1246static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1247{
1248 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1249}
7af57294
PE
1250
1251static inline pid_t task_pid_vnr(struct task_struct *tsk)
1252{
52ee2dfd 1253 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1254}
1255
1256
e868171a 1257static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1258{
1259 return tsk->tgid;
1260}
1261
5eca1c10
IM
1262/**
1263 * pid_alive - check that a task structure is not stale
1264 * @p: Task structure to be checked.
1265 *
1266 * Test if a process is not yet dead (at most zombie state)
1267 * If pid_alive fails, then pointers within the task structure
1268 * can be stale and must not be dereferenced.
1269 *
1270 * Return: 1 if the process is alive. 0 otherwise.
1271 */
1272static inline int pid_alive(const struct task_struct *p)
1273{
2c470475 1274 return p->thread_pid != NULL;
5eca1c10 1275}
7af57294 1276
5eca1c10 1277static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1278{
52ee2dfd 1279 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1280}
1281
7af57294
PE
1282static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1283{
52ee2dfd 1284 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1285}
1286
1287
5eca1c10 1288static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1289{
52ee2dfd 1290 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1291}
1292
7af57294
PE
1293static inline pid_t task_session_vnr(struct task_struct *tsk)
1294{
52ee2dfd 1295 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1296}
1297
dd1c1f2f
ON
1298static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1299{
6883f81a 1300 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1301}
1302
1303static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1304{
6883f81a 1305 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1306}
1307
1308static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1309{
1310 pid_t pid = 0;
1311
1312 rcu_read_lock();
1313 if (pid_alive(tsk))
1314 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1315 rcu_read_unlock();
1316
1317 return pid;
1318}
1319
1320static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1321{
1322 return task_ppid_nr_ns(tsk, &init_pid_ns);
1323}
1324
5eca1c10 1325/* Obsolete, do not use: */
1b0f7ffd
ON
1326static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1327{
1328 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1329}
7af57294 1330
06eb6184
PZ
1331#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1332#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1333
1d48b080 1334static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1335{
1593baab
PZ
1336 unsigned int tsk_state = READ_ONCE(tsk->state);
1337 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1338
06eb6184
PZ
1339 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1340
06eb6184
PZ
1341 if (tsk_state == TASK_IDLE)
1342 state = TASK_REPORT_IDLE;
1343
1593baab
PZ
1344 return fls(state);
1345}
1346
1d48b080 1347static inline char task_index_to_char(unsigned int state)
1593baab 1348{
8ef9925b 1349 static const char state_char[] = "RSDTtXZPI";
1593baab 1350
06eb6184 1351 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1352
1593baab
PZ
1353 return state_char[state];
1354}
1355
1356static inline char task_state_to_char(struct task_struct *tsk)
1357{
1d48b080 1358 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1359}
1360
f400e198 1361/**
570f5241
SS
1362 * is_global_init - check if a task structure is init. Since init
1363 * is free to have sub-threads we need to check tgid.
3260259f
H
1364 * @tsk: Task structure to be checked.
1365 *
1366 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1367 *
1368 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1369 */
e868171a 1370static inline int is_global_init(struct task_struct *tsk)
b461cc03 1371{
570f5241 1372 return task_tgid_nr(tsk) == 1;
b461cc03 1373}
b460cbc5 1374
9ec52099
CLG
1375extern struct pid *cad_pid;
1376
1da177e4
LT
1377/*
1378 * Per process flags
1379 */
5eca1c10
IM
1380#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1381#define PF_EXITING 0x00000004 /* Getting shut down */
1382#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1383#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1384#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1385#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1386#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1387#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1388#define PF_DUMPCORE 0x00000200 /* Dumped core */
1389#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1390#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1391#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1392#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1393#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1394#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1395#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1396#define PF_KSWAPD 0x00020000 /* I am kswapd */
1397#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1398#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
5eca1c10
IM
1399#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1400#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1401#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1402#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
eb414681 1403#define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */
73ab1cb2 1404#define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
3bd37062 1405#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1406#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
d7fefcc8 1407#define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
5eca1c10
IM
1408#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1409#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1410
1411/*
1412 * Only the _current_ task can read/write to tsk->flags, but other
1413 * tasks can access tsk->flags in readonly mode for example
1414 * with tsk_used_math (like during threaded core dumping).
1415 * There is however an exception to this rule during ptrace
1416 * or during fork: the ptracer task is allowed to write to the
1417 * child->flags of its traced child (same goes for fork, the parent
1418 * can write to the child->flags), because we're guaranteed the
1419 * child is not running and in turn not changing child->flags
1420 * at the same time the parent does it.
1421 */
5eca1c10
IM
1422#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1423#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1424#define clear_used_math() clear_stopped_child_used_math(current)
1425#define set_used_math() set_stopped_child_used_math(current)
1426
1da177e4
LT
1427#define conditional_stopped_child_used_math(condition, child) \
1428 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1429
1430#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1431
1da177e4
LT
1432#define copy_to_stopped_child_used_math(child) \
1433 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1434
1da177e4 1435/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1436#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1437#define used_math() tsk_used_math(current)
1da177e4 1438
62ec05dd
TG
1439static inline bool is_percpu_thread(void)
1440{
1441#ifdef CONFIG_SMP
1442 return (current->flags & PF_NO_SETAFFINITY) &&
1443 (current->nr_cpus_allowed == 1);
1444#else
1445 return true;
1446#endif
1447}
1448
1d4457f9 1449/* Per-process atomic flags. */
5eca1c10
IM
1450#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1451#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1452#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1453#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1454#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1455#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1456#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1457#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1458
e0e5070b
ZL
1459#define TASK_PFA_TEST(name, func) \
1460 static inline bool task_##func(struct task_struct *p) \
1461 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1462
e0e5070b
ZL
1463#define TASK_PFA_SET(name, func) \
1464 static inline void task_set_##func(struct task_struct *p) \
1465 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1466
e0e5070b
ZL
1467#define TASK_PFA_CLEAR(name, func) \
1468 static inline void task_clear_##func(struct task_struct *p) \
1469 { clear_bit(PFA_##name, &p->atomic_flags); }
1470
1471TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1472TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1473
2ad654bc
ZL
1474TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1475TASK_PFA_SET(SPREAD_PAGE, spread_page)
1476TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1477
1478TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1479TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1480TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1481
356e4bff
TG
1482TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1483TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1484TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1485
71368af9
WL
1486TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1487TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1488TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1489
356e4bff
TG
1490TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1491TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1492
9137bb27
TG
1493TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1494TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1495TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1496
1497TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1498TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1499
5eca1c10 1500static inline void
717a94b5 1501current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1502{
717a94b5
N
1503 current->flags &= ~flags;
1504 current->flags |= orig_flags & flags;
907aed48
MG
1505}
1506
5eca1c10
IM
1507extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1508extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1509#ifdef CONFIG_SMP
5eca1c10
IM
1510extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1511extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1512#else
5eca1c10 1513static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1514{
1515}
5eca1c10 1516static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1517{
96f874e2 1518 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1519 return -EINVAL;
1520 return 0;
1521}
1522#endif
e0ad9556 1523
6d0d2878
CB
1524#ifndef cpu_relax_yield
1525#define cpu_relax_yield() cpu_relax()
1526#endif
1527
fa93384f 1528extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1529extern void set_user_nice(struct task_struct *p, long nice);
1530extern int task_prio(const struct task_struct *p);
5eca1c10 1531
d0ea0268
DY
1532/**
1533 * task_nice - return the nice value of a given task.
1534 * @p: the task in question.
1535 *
1536 * Return: The nice value [ -20 ... 0 ... 19 ].
1537 */
1538static inline int task_nice(const struct task_struct *p)
1539{
1540 return PRIO_TO_NICE((p)->static_prio);
1541}
5eca1c10 1542
36c8b586
IM
1543extern int can_nice(const struct task_struct *p, const int nice);
1544extern int task_curr(const struct task_struct *p);
1da177e4 1545extern int idle_cpu(int cpu);
943d355d 1546extern int available_idle_cpu(int cpu);
5eca1c10
IM
1547extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1548extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1549extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1550extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1551extern struct task_struct *idle_task(int cpu);
5eca1c10 1552
c4f30608
PM
1553/**
1554 * is_idle_task - is the specified task an idle task?
fa757281 1555 * @p: the task in question.
e69f6186
YB
1556 *
1557 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1558 */
7061ca3b 1559static inline bool is_idle_task(const struct task_struct *p)
c4f30608 1560{
c1de45ca 1561 return !!(p->flags & PF_IDLE);
c4f30608 1562}
5eca1c10 1563
36c8b586 1564extern struct task_struct *curr_task(int cpu);
a458ae2e 1565extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1566
1567void yield(void);
1568
1da177e4 1569union thread_union {
0500871f
DH
1570#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1571 struct task_struct task;
1572#endif
c65eacbe 1573#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1574 struct thread_info thread_info;
c65eacbe 1575#endif
1da177e4
LT
1576 unsigned long stack[THREAD_SIZE/sizeof(long)];
1577};
1578
0500871f
DH
1579#ifndef CONFIG_THREAD_INFO_IN_TASK
1580extern struct thread_info init_thread_info;
1581#endif
1582
1583extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1584
f3ac6067
IM
1585#ifdef CONFIG_THREAD_INFO_IN_TASK
1586static inline struct thread_info *task_thread_info(struct task_struct *task)
1587{
1588 return &task->thread_info;
1589}
1590#elif !defined(__HAVE_THREAD_FUNCTIONS)
1591# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1592#endif
1593
198fe21b
PE
1594/*
1595 * find a task by one of its numerical ids
1596 *
198fe21b
PE
1597 * find_task_by_pid_ns():
1598 * finds a task by its pid in the specified namespace
228ebcbe
PE
1599 * find_task_by_vpid():
1600 * finds a task by its virtual pid
198fe21b 1601 *
e49859e7 1602 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1603 */
1604
228ebcbe 1605extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1606extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1607
2ee08260
MR
1608/*
1609 * find a task by its virtual pid and get the task struct
1610 */
1611extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1612
b3c97528
HH
1613extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1614extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1615extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1616
1da177e4 1617#ifdef CONFIG_SMP
5eca1c10 1618extern void kick_process(struct task_struct *tsk);
1da177e4 1619#else
5eca1c10 1620static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1621#endif
1da177e4 1622
82b89778 1623extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1624
82b89778
AH
1625static inline void set_task_comm(struct task_struct *tsk, const char *from)
1626{
1627 __set_task_comm(tsk, from, false);
1628}
5eca1c10 1629
3756f640
AB
1630extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1631#define get_task_comm(buf, tsk) ({ \
1632 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1633 __get_task_comm(buf, sizeof(buf), tsk); \
1634})
1da177e4
LT
1635
1636#ifdef CONFIG_SMP
317f3941 1637void scheduler_ipi(void);
85ba2d86 1638extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 1639#else
184748cc 1640static inline void scheduler_ipi(void) { }
5eca1c10 1641static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
85ba2d86
RM
1642{
1643 return 1;
1644}
1da177e4
LT
1645#endif
1646
5eca1c10
IM
1647/*
1648 * Set thread flags in other task's structures.
1649 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1650 */
1651static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1652{
a1261f54 1653 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1654}
1655
1656static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1657{
a1261f54 1658 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1659}
1660
93ee37c2
DM
1661static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1662 bool value)
1663{
1664 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1665}
1666
1da177e4
LT
1667static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1668{
a1261f54 1669 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1670}
1671
1672static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1673{
a1261f54 1674 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1675}
1676
1677static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1678{
a1261f54 1679 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1680}
1681
1682static inline void set_tsk_need_resched(struct task_struct *tsk)
1683{
1684 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1685}
1686
1687static inline void clear_tsk_need_resched(struct task_struct *tsk)
1688{
1689 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1690}
1691
8ae121ac
GH
1692static inline int test_tsk_need_resched(struct task_struct *tsk)
1693{
1694 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1695}
1696
1da177e4
LT
1697/*
1698 * cond_resched() and cond_resched_lock(): latency reduction via
1699 * explicit rescheduling in places that are safe. The return
1700 * value indicates whether a reschedule was done in fact.
1701 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 1702 */
35a773a0 1703#ifndef CONFIG_PREEMPT
c3921ab7 1704extern int _cond_resched(void);
35a773a0
PZ
1705#else
1706static inline int _cond_resched(void) { return 0; }
1707#endif
6f80bd98 1708
613afbf8 1709#define cond_resched() ({ \
3427445a 1710 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1711 _cond_resched(); \
1712})
6f80bd98 1713
613afbf8
FW
1714extern int __cond_resched_lock(spinlock_t *lock);
1715
1716#define cond_resched_lock(lock) ({ \
3427445a 1717 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1718 __cond_resched_lock(lock); \
1719})
1720
f6f3c437
SH
1721static inline void cond_resched_rcu(void)
1722{
1723#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1724 rcu_read_unlock();
1725 cond_resched();
1726 rcu_read_lock();
1727#endif
1728}
1729
1da177e4
LT
1730/*
1731 * Does a critical section need to be broken due to another
95c354fe
NP
1732 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1733 * but a general need for low latency)
1da177e4 1734 */
95c354fe 1735static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1736{
95c354fe
NP
1737#ifdef CONFIG_PREEMPT
1738 return spin_is_contended(lock);
1739#else
1da177e4 1740 return 0;
95c354fe 1741#endif
1da177e4
LT
1742}
1743
75f93fed
PZ
1744static __always_inline bool need_resched(void)
1745{
1746 return unlikely(tif_need_resched());
1747}
1748
1da177e4
LT
1749/*
1750 * Wrappers for p->thread_info->cpu access. No-op on UP.
1751 */
1752#ifdef CONFIG_SMP
1753
1754static inline unsigned int task_cpu(const struct task_struct *p)
1755{
c65eacbe 1756#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 1757 return READ_ONCE(p->cpu);
c65eacbe 1758#else
c546951d 1759 return READ_ONCE(task_thread_info(p)->cpu);
c65eacbe 1760#endif
1da177e4
LT
1761}
1762
c65cc870 1763extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
1764
1765#else
1766
1767static inline unsigned int task_cpu(const struct task_struct *p)
1768{
1769 return 0;
1770}
1771
1772static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1773{
1774}
1775
1776#endif /* CONFIG_SMP */
1777
d9345c65
PX
1778/*
1779 * In order to reduce various lock holder preemption latencies provide an
1780 * interface to see if a vCPU is currently running or not.
1781 *
1782 * This allows us to terminate optimistic spin loops and block, analogous to
1783 * the native optimistic spin heuristic of testing if the lock owner task is
1784 * running or not.
1785 */
1786#ifndef vcpu_is_preempted
1787# define vcpu_is_preempted(cpu) false
1788#endif
1789
96f874e2
RR
1790extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1791extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 1792
82455257
DH
1793#ifndef TASK_SIZE_OF
1794#define TASK_SIZE_OF(tsk) TASK_SIZE
1795#endif
1796
d7822b1e
MD
1797#ifdef CONFIG_RSEQ
1798
1799/*
1800 * Map the event mask on the user-space ABI enum rseq_cs_flags
1801 * for direct mask checks.
1802 */
1803enum rseq_event_mask_bits {
1804 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1805 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1806 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1807};
1808
1809enum rseq_event_mask {
1810 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1811 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1812 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1813};
1814
1815static inline void rseq_set_notify_resume(struct task_struct *t)
1816{
1817 if (t->rseq)
1818 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1819}
1820
784e0300 1821void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 1822
784e0300
WD
1823static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1824 struct pt_regs *regs)
d7822b1e
MD
1825{
1826 if (current->rseq)
784e0300 1827 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1828}
1829
784e0300
WD
1830static inline void rseq_signal_deliver(struct ksignal *ksig,
1831 struct pt_regs *regs)
d7822b1e
MD
1832{
1833 preempt_disable();
1834 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1835 preempt_enable();
784e0300 1836 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1837}
1838
1839/* rseq_preempt() requires preemption to be disabled. */
1840static inline void rseq_preempt(struct task_struct *t)
1841{
1842 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1843 rseq_set_notify_resume(t);
1844}
1845
1846/* rseq_migrate() requires preemption to be disabled. */
1847static inline void rseq_migrate(struct task_struct *t)
1848{
1849 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1850 rseq_set_notify_resume(t);
1851}
1852
1853/*
1854 * If parent process has a registered restartable sequences area, the
9a789fcf 1855 * child inherits. Only applies when forking a process, not a thread.
d7822b1e
MD
1856 */
1857static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1858{
1859 if (clone_flags & CLONE_THREAD) {
1860 t->rseq = NULL;
d7822b1e
MD
1861 t->rseq_sig = 0;
1862 t->rseq_event_mask = 0;
1863 } else {
1864 t->rseq = current->rseq;
d7822b1e
MD
1865 t->rseq_sig = current->rseq_sig;
1866 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
1867 }
1868}
1869
1870static inline void rseq_execve(struct task_struct *t)
1871{
1872 t->rseq = NULL;
d7822b1e
MD
1873 t->rseq_sig = 0;
1874 t->rseq_event_mask = 0;
1875}
1876
1877#else
1878
1879static inline void rseq_set_notify_resume(struct task_struct *t)
1880{
1881}
784e0300
WD
1882static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1883 struct pt_regs *regs)
d7822b1e
MD
1884{
1885}
784e0300
WD
1886static inline void rseq_signal_deliver(struct ksignal *ksig,
1887 struct pt_regs *regs)
d7822b1e
MD
1888{
1889}
1890static inline void rseq_preempt(struct task_struct *t)
1891{
1892}
1893static inline void rseq_migrate(struct task_struct *t)
1894{
1895}
1896static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1897{
1898}
1899static inline void rseq_execve(struct task_struct *t)
1900{
1901}
1902
1903#endif
1904
73ab1cb2
TY
1905void __exit_umh(struct task_struct *tsk);
1906
1907static inline void exit_umh(struct task_struct *tsk)
1908{
1909 if (unlikely(tsk->flags & PF_UMH))
1910 __exit_umh(tsk);
1911}
1912
d7822b1e
MD
1913#ifdef CONFIG_DEBUG_RSEQ
1914
1915void rseq_syscall(struct pt_regs *regs);
1916
1917#else
1918
1919static inline void rseq_syscall(struct pt_regs *regs)
1920{
1921}
1922
1923#endif
1924
3c93a0c0
QY
1925const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
1926char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
1927int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
1928
1929const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
1930const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
1931const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
1932
1933int sched_trace_rq_cpu(struct rq *rq);
1934
1935const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
1936
1da177e4 1937#endif