sched/core: Optimize __schedule()
[linux-block.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
43#include <linux/seccomp.h>
e56d0903 44#include <linux/rcupdate.h>
05725f7e 45#include <linux/rculist.h>
23f78d4a 46#include <linux/rtmutex.h>
1da177e4 47
a3b6714e
DW
48#include <linux/time.h>
49#include <linux/param.h>
50#include <linux/resource.h>
51#include <linux/timer.h>
52#include <linux/hrtimer.h>
5c9a8750 53#include <linux/kcov.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
7d7efec3 61#include <linux/cgroup-defs.h>
a3b6714e
DW
62
63#include <asm/processor.h>
36d57ac4 64
d50dde5a
DF
65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67/*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
aab03e05
DF
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
110 */
111struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127};
128
c87e2837 129struct futex_pi_state;
286100a6 130struct robust_list_head;
bddd87c7 131struct bio_list;
5ad4e53b 132struct fs_struct;
cdd6c482 133struct perf_event_context;
73c10101 134struct blk_plug;
c4ad8f98 135struct filename;
89076bc3 136struct nameidata;
1da177e4 137
615d6e87
DB
138#define VMACACHE_BITS 2
139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
1da177e4
LT
142/*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152extern unsigned long avenrun[]; /* Load averages */
2d02494f 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
154
155#define FSHIFT 11 /* nr of bits of precision */
156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159#define EXP_5 2014 /* 1/exp(5sec/5min) */
160#define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162#define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167extern unsigned long total_forks;
168extern int nr_threads;
1da177e4
LT
169DECLARE_PER_CPU(unsigned long, process_counts);
170extern int nr_processes(void);
171extern unsigned long nr_running(void);
2ee507c4 172extern bool single_task_running(void);
1da177e4 173extern unsigned long nr_iowait(void);
8c215bd3 174extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 176
0f004f5a 177extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
178
179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
1f41906a
FW
180extern void cpu_load_update_nohz_start(void);
181extern void cpu_load_update_nohz_stop(void);
3289bdb4 182#else
1f41906a
FW
183static inline void cpu_load_update_nohz_start(void) { }
184static inline void cpu_load_update_nohz_stop(void) { }
3289bdb4 185#endif
1da177e4 186
b637a328
PM
187extern void dump_cpu_task(int cpu);
188
43ae34cb
IM
189struct seq_file;
190struct cfs_rq;
4cf86d77 191struct task_group;
43ae34cb
IM
192#ifdef CONFIG_SCHED_DEBUG
193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 195#endif
1da177e4 196
4a8342d2
LT
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
1da177e4
LT
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
4a8342d2 212/* in tsk->exit_state */
ad86622b
ON
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
abd50b39 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 216/* in tsk->state again */
af927232 217#define TASK_DEAD 64
f021a3c2 218#define TASK_WAKEKILL 128
e9c84311 219#define TASK_WAKING 256
f2530dc7 220#define TASK_PARKED 512
80ed87c8 221#define TASK_NOLOAD 1024
7dc603c9
PZ
222#define TASK_NEW 2048
223#define TASK_STATE_MAX 4096
f021a3c2 224
7dc603c9 225#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
73342151 226
e1781538
PZ
227extern char ___assert_task_state[1 - 2*!!(
228 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
229
230/* Convenience macros for the sake of set_task_state */
231#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
232#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
233#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 234
80ed87c8
PZ
235#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
236
92a1f4bc
MW
237/* Convenience macros for the sake of wake_up */
238#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 239#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
240
241/* get_task_state() */
242#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 243 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 244 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 245
f021a3c2
MW
246#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
247#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 248#define task_is_stopped_or_traced(task) \
f021a3c2 249 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 250#define task_contributes_to_load(task) \
e3c8ca83 251 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
252 (task->flags & PF_FROZEN) == 0 && \
253 (task->state & TASK_NOLOAD) == 0)
1da177e4 254
8eb23b9f
PZ
255#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
256
257#define __set_task_state(tsk, state_value) \
258 do { \
259 (tsk)->task_state_change = _THIS_IP_; \
260 (tsk)->state = (state_value); \
261 } while (0)
262#define set_task_state(tsk, state_value) \
263 do { \
264 (tsk)->task_state_change = _THIS_IP_; \
b92b8b35 265 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
266 } while (0)
267
268/*
269 * set_current_state() includes a barrier so that the write of current->state
270 * is correctly serialised wrt the caller's subsequent test of whether to
271 * actually sleep:
272 *
273 * set_current_state(TASK_UNINTERRUPTIBLE);
274 * if (do_i_need_to_sleep())
275 * schedule();
276 *
277 * If the caller does not need such serialisation then use __set_current_state()
278 */
279#define __set_current_state(state_value) \
280 do { \
281 current->task_state_change = _THIS_IP_; \
282 current->state = (state_value); \
283 } while (0)
284#define set_current_state(state_value) \
285 do { \
286 current->task_state_change = _THIS_IP_; \
b92b8b35 287 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
288 } while (0)
289
290#else
291
1da177e4
LT
292#define __set_task_state(tsk, state_value) \
293 do { (tsk)->state = (state_value); } while (0)
294#define set_task_state(tsk, state_value) \
b92b8b35 295 smp_store_mb((tsk)->state, (state_value))
1da177e4 296
498d0c57
AM
297/*
298 * set_current_state() includes a barrier so that the write of current->state
299 * is correctly serialised wrt the caller's subsequent test of whether to
300 * actually sleep:
301 *
302 * set_current_state(TASK_UNINTERRUPTIBLE);
303 * if (do_i_need_to_sleep())
304 * schedule();
305 *
306 * If the caller does not need such serialisation then use __set_current_state()
307 */
8eb23b9f 308#define __set_current_state(state_value) \
1da177e4 309 do { current->state = (state_value); } while (0)
8eb23b9f 310#define set_current_state(state_value) \
b92b8b35 311 smp_store_mb(current->state, (state_value))
1da177e4 312
8eb23b9f
PZ
313#endif
314
1da177e4
LT
315/* Task command name length */
316#define TASK_COMM_LEN 16
317
1da177e4
LT
318#include <linux/spinlock.h>
319
320/*
321 * This serializes "schedule()" and also protects
322 * the run-queue from deletions/modifications (but
323 * _adding_ to the beginning of the run-queue has
324 * a separate lock).
325 */
326extern rwlock_t tasklist_lock;
327extern spinlock_t mmlist_lock;
328
36c8b586 329struct task_struct;
1da177e4 330
db1466b3
PM
331#ifdef CONFIG_PROVE_RCU
332extern int lockdep_tasklist_lock_is_held(void);
333#endif /* #ifdef CONFIG_PROVE_RCU */
334
1da177e4
LT
335extern void sched_init(void);
336extern void sched_init_smp(void);
2d07b255 337extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 338extern void init_idle(struct task_struct *idle, int cpu);
1df21055 339extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 340
3fa0818b
RR
341extern cpumask_var_t cpu_isolated_map;
342
89f19f04 343extern int runqueue_is_locked(int cpu);
017730c1 344
3451d024 345#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 346extern void nohz_balance_enter_idle(int cpu);
69e1e811 347extern void set_cpu_sd_state_idle(void);
bc7a34b8 348extern int get_nohz_timer_target(void);
46cb4b7c 349#else
c1cc017c 350static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 351static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 352#endif
1da177e4 353
e59e2ae2 354/*
39bc89fd 355 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
356 */
357extern void show_state_filter(unsigned long state_filter);
358
359static inline void show_state(void)
360{
39bc89fd 361 show_state_filter(0);
e59e2ae2
IM
362}
363
1da177e4
LT
364extern void show_regs(struct pt_regs *);
365
366/*
367 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
368 * task), SP is the stack pointer of the first frame that should be shown in the back
369 * trace (or NULL if the entire call-chain of the task should be shown).
370 */
371extern void show_stack(struct task_struct *task, unsigned long *sp);
372
1da177e4
LT
373extern void cpu_init (void);
374extern void trap_init(void);
375extern void update_process_times(int user);
376extern void scheduler_tick(void);
9cf7243d 377extern int sched_cpu_starting(unsigned int cpu);
40190a78
TG
378extern int sched_cpu_activate(unsigned int cpu);
379extern int sched_cpu_deactivate(unsigned int cpu);
1da177e4 380
f2785ddb
TG
381#ifdef CONFIG_HOTPLUG_CPU
382extern int sched_cpu_dying(unsigned int cpu);
383#else
384# define sched_cpu_dying NULL
385#endif
1da177e4 386
82a1fcb9
IM
387extern void sched_show_task(struct task_struct *p);
388
19cc36c0 389#ifdef CONFIG_LOCKUP_DETECTOR
03e0d461 390extern void touch_softlockup_watchdog_sched(void);
8446f1d3 391extern void touch_softlockup_watchdog(void);
d6ad3e28 392extern void touch_softlockup_watchdog_sync(void);
04c9167f 393extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
394extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
395 void __user *buffer,
396 size_t *lenp, loff_t *ppos);
9c44bc03 397extern unsigned int softlockup_panic;
ac1f5912 398extern unsigned int hardlockup_panic;
004417a6 399void lockup_detector_init(void);
8446f1d3 400#else
03e0d461
TH
401static inline void touch_softlockup_watchdog_sched(void)
402{
403}
8446f1d3
IM
404static inline void touch_softlockup_watchdog(void)
405{
406}
d6ad3e28
JW
407static inline void touch_softlockup_watchdog_sync(void)
408{
409}
04c9167f
JF
410static inline void touch_all_softlockup_watchdogs(void)
411{
412}
004417a6
PZ
413static inline void lockup_detector_init(void)
414{
415}
8446f1d3
IM
416#endif
417
8b414521
MT
418#ifdef CONFIG_DETECT_HUNG_TASK
419void reset_hung_task_detector(void);
420#else
421static inline void reset_hung_task_detector(void)
422{
423}
424#endif
425
1da177e4
LT
426/* Attach to any functions which should be ignored in wchan output. */
427#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
428
429/* Linker adds these: start and end of __sched functions */
430extern char __sched_text_start[], __sched_text_end[];
431
1da177e4
LT
432/* Is this address in the __sched functions? */
433extern int in_sched_functions(unsigned long addr);
434
435#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 436extern signed long schedule_timeout(signed long timeout);
64ed93a2 437extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 438extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 439extern signed long schedule_timeout_uninterruptible(signed long timeout);
69b27baf 440extern signed long schedule_timeout_idle(signed long timeout);
1da177e4 441asmlinkage void schedule(void);
c5491ea7 442extern void schedule_preempt_disabled(void);
1da177e4 443
9cff8ade
N
444extern long io_schedule_timeout(long timeout);
445
446static inline void io_schedule(void)
447{
448 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
449}
450
9af6528e
PZ
451void __noreturn do_task_dead(void);
452
ab516013 453struct nsproxy;
acce292c 454struct user_namespace;
1da177e4 455
efc1a3b1
DH
456#ifdef CONFIG_MMU
457extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
458extern unsigned long
459arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
460 unsigned long, unsigned long);
461extern unsigned long
462arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
463 unsigned long len, unsigned long pgoff,
464 unsigned long flags);
efc1a3b1
DH
465#else
466static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
467#endif
1da177e4 468
d049f74f
KC
469#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
470#define SUID_DUMP_USER 1 /* Dump as user of process */
471#define SUID_DUMP_ROOT 2 /* Dump as root */
472
6c5d5238 473/* mm flags */
f8af4da3 474
7288e118 475/* for SUID_DUMP_* above */
3cb4a0bb 476#define MMF_DUMPABLE_BITS 2
f8af4da3 477#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 478
942be387
ON
479extern void set_dumpable(struct mm_struct *mm, int value);
480/*
481 * This returns the actual value of the suid_dumpable flag. For things
482 * that are using this for checking for privilege transitions, it must
483 * test against SUID_DUMP_USER rather than treating it as a boolean
484 * value.
485 */
486static inline int __get_dumpable(unsigned long mm_flags)
487{
488 return mm_flags & MMF_DUMPABLE_MASK;
489}
490
491static inline int get_dumpable(struct mm_struct *mm)
492{
493 return __get_dumpable(mm->flags);
494}
495
3cb4a0bb
KH
496/* coredump filter bits */
497#define MMF_DUMP_ANON_PRIVATE 2
498#define MMF_DUMP_ANON_SHARED 3
499#define MMF_DUMP_MAPPED_PRIVATE 4
500#define MMF_DUMP_MAPPED_SHARED 5
82df3973 501#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
502#define MMF_DUMP_HUGETLB_PRIVATE 7
503#define MMF_DUMP_HUGETLB_SHARED 8
5037835c
RZ
504#define MMF_DUMP_DAX_PRIVATE 9
505#define MMF_DUMP_DAX_SHARED 10
f8af4da3 506
3cb4a0bb 507#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
5037835c 508#define MMF_DUMP_FILTER_BITS 9
3cb4a0bb
KH
509#define MMF_DUMP_FILTER_MASK \
510 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
511#define MMF_DUMP_FILTER_DEFAULT \
e575f111 512 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
513 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
514
515#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
516# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
517#else
518# define MMF_DUMP_MASK_DEFAULT_ELF 0
519#endif
f8af4da3
HD
520 /* leave room for more dump flags */
521#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 522#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 523#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 524
9f68f672
ON
525#define MMF_HAS_UPROBES 19 /* has uprobes */
526#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
bb8a4b7f 527#define MMF_OOM_REAPED 21 /* mm has been already reaped */
11a410d5 528#define MMF_OOM_NOT_REAPABLE 22 /* mm couldn't be reaped */
f8ac4ec9 529
f8af4da3 530#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 531
1da177e4
LT
532struct sighand_struct {
533 atomic_t count;
534 struct k_sigaction action[_NSIG];
535 spinlock_t siglock;
b8fceee1 536 wait_queue_head_t signalfd_wqh;
1da177e4
LT
537};
538
0e464814 539struct pacct_struct {
f6ec29a4
KK
540 int ac_flag;
541 long ac_exitcode;
0e464814 542 unsigned long ac_mem;
77787bfb
KK
543 cputime_t ac_utime, ac_stime;
544 unsigned long ac_minflt, ac_majflt;
0e464814
KK
545};
546
42c4ab41
SG
547struct cpu_itimer {
548 cputime_t expires;
549 cputime_t incr;
8356b5f9
SG
550 u32 error;
551 u32 incr_error;
42c4ab41
SG
552};
553
d37f761d 554/**
9d7fb042 555 * struct prev_cputime - snaphsot of system and user cputime
d37f761d
FW
556 * @utime: time spent in user mode
557 * @stime: time spent in system mode
9d7fb042 558 * @lock: protects the above two fields
d37f761d 559 *
9d7fb042
PZ
560 * Stores previous user/system time values such that we can guarantee
561 * monotonicity.
d37f761d 562 */
9d7fb042
PZ
563struct prev_cputime {
564#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d
FW
565 cputime_t utime;
566 cputime_t stime;
9d7fb042
PZ
567 raw_spinlock_t lock;
568#endif
d37f761d
FW
569};
570
9d7fb042
PZ
571static inline void prev_cputime_init(struct prev_cputime *prev)
572{
573#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
574 prev->utime = prev->stime = 0;
575 raw_spin_lock_init(&prev->lock);
576#endif
577}
578
f06febc9
FM
579/**
580 * struct task_cputime - collected CPU time counts
581 * @utime: time spent in user mode, in &cputime_t units
582 * @stime: time spent in kernel mode, in &cputime_t units
583 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 584 *
9d7fb042
PZ
585 * This structure groups together three kinds of CPU time that are tracked for
586 * threads and thread groups. Most things considering CPU time want to group
587 * these counts together and treat all three of them in parallel.
f06febc9
FM
588 */
589struct task_cputime {
590 cputime_t utime;
591 cputime_t stime;
592 unsigned long long sum_exec_runtime;
593};
9d7fb042 594
f06febc9 595/* Alternate field names when used to cache expirations. */
f06febc9 596#define virt_exp utime
9d7fb042 597#define prof_exp stime
f06febc9
FM
598#define sched_exp sum_exec_runtime
599
4cd4c1b4
PZ
600#define INIT_CPUTIME \
601 (struct task_cputime) { \
64861634
MS
602 .utime = 0, \
603 .stime = 0, \
4cd4c1b4
PZ
604 .sum_exec_runtime = 0, \
605 }
606
971e8a98
JL
607/*
608 * This is the atomic variant of task_cputime, which can be used for
609 * storing and updating task_cputime statistics without locking.
610 */
611struct task_cputime_atomic {
612 atomic64_t utime;
613 atomic64_t stime;
614 atomic64_t sum_exec_runtime;
615};
616
617#define INIT_CPUTIME_ATOMIC \
618 (struct task_cputime_atomic) { \
619 .utime = ATOMIC64_INIT(0), \
620 .stime = ATOMIC64_INIT(0), \
621 .sum_exec_runtime = ATOMIC64_INIT(0), \
622 }
623
609ca066 624#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
a233f112 625
c99e6efe 626/*
87dcbc06
PZ
627 * Disable preemption until the scheduler is running -- use an unconditional
628 * value so that it also works on !PREEMPT_COUNT kernels.
d86ee480 629 *
87dcbc06 630 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
c99e6efe 631 */
87dcbc06 632#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
a233f112 633
c99e6efe 634/*
609ca066
PZ
635 * Initial preempt_count value; reflects the preempt_count schedule invariant
636 * which states that during context switches:
d86ee480 637 *
609ca066
PZ
638 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
639 *
640 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
641 * Note: See finish_task_switch().
c99e6efe 642 */
609ca066 643#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
c99e6efe 644
f06febc9 645/**
4cd4c1b4 646 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 647 * @cputime_atomic: atomic thread group interval timers.
d5c373eb
JL
648 * @running: true when there are timers running and
649 * @cputime_atomic receives updates.
c8d75aa4
JL
650 * @checking_timer: true when a thread in the group is in the
651 * process of checking for thread group timers.
f06febc9
FM
652 *
653 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 654 * used for thread group CPU timer calculations.
f06febc9 655 */
4cd4c1b4 656struct thread_group_cputimer {
71107445 657 struct task_cputime_atomic cputime_atomic;
d5c373eb 658 bool running;
c8d75aa4 659 bool checking_timer;
f06febc9 660};
f06febc9 661
4714d1d3 662#include <linux/rwsem.h>
5091faa4
MG
663struct autogroup;
664
1da177e4 665/*
e815f0a8 666 * NOTE! "signal_struct" does not have its own
1da177e4
LT
667 * locking, because a shared signal_struct always
668 * implies a shared sighand_struct, so locking
669 * sighand_struct is always a proper superset of
670 * the locking of signal_struct.
671 */
672struct signal_struct {
ea6d290c 673 atomic_t sigcnt;
1da177e4 674 atomic_t live;
b3ac022c 675 int nr_threads;
f44666b0 676 atomic_t oom_victims; /* # of TIF_MEDIE threads in this thread group */
0c740d0a 677 struct list_head thread_head;
1da177e4
LT
678
679 wait_queue_head_t wait_chldexit; /* for wait4() */
680
681 /* current thread group signal load-balancing target: */
36c8b586 682 struct task_struct *curr_target;
1da177e4
LT
683
684 /* shared signal handling: */
685 struct sigpending shared_pending;
686
687 /* thread group exit support */
688 int group_exit_code;
689 /* overloaded:
690 * - notify group_exit_task when ->count is equal to notify_count
691 * - everyone except group_exit_task is stopped during signal delivery
692 * of fatal signals, group_exit_task processes the signal.
693 */
1da177e4 694 int notify_count;
07dd20e0 695 struct task_struct *group_exit_task;
1da177e4
LT
696
697 /* thread group stop support, overloads group_exit_code too */
698 int group_stop_count;
699 unsigned int flags; /* see SIGNAL_* flags below */
700
ebec18a6
LP
701 /*
702 * PR_SET_CHILD_SUBREAPER marks a process, like a service
703 * manager, to re-parent orphan (double-forking) child processes
704 * to this process instead of 'init'. The service manager is
705 * able to receive SIGCHLD signals and is able to investigate
706 * the process until it calls wait(). All children of this
707 * process will inherit a flag if they should look for a
708 * child_subreaper process at exit.
709 */
710 unsigned int is_child_subreaper:1;
711 unsigned int has_child_subreaper:1;
712
1da177e4 713 /* POSIX.1b Interval Timers */
5ed67f05
PE
714 int posix_timer_id;
715 struct list_head posix_timers;
1da177e4
LT
716
717 /* ITIMER_REAL timer for the process */
2ff678b8 718 struct hrtimer real_timer;
fea9d175 719 struct pid *leader_pid;
2ff678b8 720 ktime_t it_real_incr;
1da177e4 721
42c4ab41
SG
722 /*
723 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
724 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
725 * values are defined to 0 and 1 respectively
726 */
727 struct cpu_itimer it[2];
1da177e4 728
f06febc9 729 /*
4cd4c1b4
PZ
730 * Thread group totals for process CPU timers.
731 * See thread_group_cputimer(), et al, for details.
f06febc9 732 */
4cd4c1b4 733 struct thread_group_cputimer cputimer;
f06febc9
FM
734
735 /* Earliest-expiration cache. */
736 struct task_cputime cputime_expires;
737
d027d45d 738#ifdef CONFIG_NO_HZ_FULL
f009a7a7 739 atomic_t tick_dep_mask;
d027d45d
FW
740#endif
741
f06febc9
FM
742 struct list_head cpu_timers[3];
743
ab521dc0 744 struct pid *tty_old_pgrp;
1ec320af 745
1da177e4
LT
746 /* boolean value for session group leader */
747 int leader;
748
749 struct tty_struct *tty; /* NULL if no tty */
750
5091faa4
MG
751#ifdef CONFIG_SCHED_AUTOGROUP
752 struct autogroup *autogroup;
753#endif
1da177e4
LT
754 /*
755 * Cumulative resource counters for dead threads in the group,
756 * and for reaped dead child processes forked by this group.
757 * Live threads maintain their own counters and add to these
758 * in __exit_signal, except for the group leader.
759 */
e78c3496 760 seqlock_t stats_lock;
32bd671d 761 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
762 cputime_t gtime;
763 cputime_t cgtime;
9d7fb042 764 struct prev_cputime prev_cputime;
1da177e4
LT
765 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
766 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 767 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 768 unsigned long maxrss, cmaxrss;
940389b8 769 struct task_io_accounting ioac;
1da177e4 770
32bd671d
PZ
771 /*
772 * Cumulative ns of schedule CPU time fo dead threads in the
773 * group, not including a zombie group leader, (This only differs
774 * from jiffies_to_ns(utime + stime) if sched_clock uses something
775 * other than jiffies.)
776 */
777 unsigned long long sum_sched_runtime;
778
1da177e4
LT
779 /*
780 * We don't bother to synchronize most readers of this at all,
781 * because there is no reader checking a limit that actually needs
782 * to get both rlim_cur and rlim_max atomically, and either one
783 * alone is a single word that can safely be read normally.
784 * getrlimit/setrlimit use task_lock(current->group_leader) to
785 * protect this instead of the siglock, because they really
786 * have no need to disable irqs.
787 */
788 struct rlimit rlim[RLIM_NLIMITS];
789
0e464814
KK
790#ifdef CONFIG_BSD_PROCESS_ACCT
791 struct pacct_struct pacct; /* per-process accounting information */
792#endif
ad4ecbcb 793#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
794 struct taskstats *stats;
795#endif
522ed776
MT
796#ifdef CONFIG_AUDIT
797 unsigned audit_tty;
798 struct tty_audit_buf *tty_audit_buf;
799#endif
28b83c51 800
c96fc2d8
TH
801 /*
802 * Thread is the potential origin of an oom condition; kill first on
803 * oom
804 */
805 bool oom_flag_origin;
a9c58b90
DR
806 short oom_score_adj; /* OOM kill score adjustment */
807 short oom_score_adj_min; /* OOM kill score adjustment min value.
808 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
809
810 struct mutex cred_guard_mutex; /* guard against foreign influences on
811 * credential calculations
812 * (notably. ptrace) */
1da177e4
LT
813};
814
815/*
816 * Bits in flags field of signal_struct.
817 */
818#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
819#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
820#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 821#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
822/*
823 * Pending notifications to parent.
824 */
825#define SIGNAL_CLD_STOPPED 0x00000010
826#define SIGNAL_CLD_CONTINUED 0x00000020
827#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 828
fae5fa44
ON
829#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
830
ed5d2cac
ON
831/* If true, all threads except ->group_exit_task have pending SIGKILL */
832static inline int signal_group_exit(const struct signal_struct *sig)
833{
834 return (sig->flags & SIGNAL_GROUP_EXIT) ||
835 (sig->group_exit_task != NULL);
836}
837
1da177e4
LT
838/*
839 * Some day this will be a full-fledged user tracking system..
840 */
841struct user_struct {
842 atomic_t __count; /* reference count */
843 atomic_t processes; /* How many processes does this user have? */
1da177e4 844 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 845#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
846 atomic_t inotify_watches; /* How many inotify watches does this user have? */
847 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
848#endif
4afeff85
EP
849#ifdef CONFIG_FANOTIFY
850 atomic_t fanotify_listeners;
851#endif
7ef9964e 852#ifdef CONFIG_EPOLL
52bd19f7 853 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 854#endif
970a8645 855#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
856 /* protected by mq_lock */
857 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 858#endif
1da177e4 859 unsigned long locked_shm; /* How many pages of mlocked shm ? */
712f4aad 860 unsigned long unix_inflight; /* How many files in flight in unix sockets */
759c0114 861 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
1da177e4
LT
862
863#ifdef CONFIG_KEYS
864 struct key *uid_keyring; /* UID specific keyring */
865 struct key *session_keyring; /* UID's default session keyring */
866#endif
867
868 /* Hash table maintenance information */
735de223 869 struct hlist_node uidhash_node;
7b44ab97 870 kuid_t uid;
24e377a8 871
aaac3ba9 872#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
789f90fc
PZ
873 atomic_long_t locked_vm;
874#endif
1da177e4
LT
875};
876
eb41d946 877extern int uids_sysfs_init(void);
5cb350ba 878
7b44ab97 879extern struct user_struct *find_user(kuid_t);
1da177e4
LT
880
881extern struct user_struct root_user;
882#define INIT_USER (&root_user)
883
b6dff3ec 884
1da177e4
LT
885struct backing_dev_info;
886struct reclaim_state;
887
f6db8347 888#ifdef CONFIG_SCHED_INFO
1da177e4
LT
889struct sched_info {
890 /* cumulative counters */
2d72376b 891 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 892 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
893
894 /* timestamps */
172ba844
BS
895 unsigned long long last_arrival,/* when we last ran on a cpu */
896 last_queued; /* when we were last queued to run */
1da177e4 897};
f6db8347 898#endif /* CONFIG_SCHED_INFO */
1da177e4 899
ca74e92b
SN
900#ifdef CONFIG_TASK_DELAY_ACCT
901struct task_delay_info {
902 spinlock_t lock;
903 unsigned int flags; /* Private per-task flags */
904
905 /* For each stat XXX, add following, aligned appropriately
906 *
907 * struct timespec XXX_start, XXX_end;
908 * u64 XXX_delay;
909 * u32 XXX_count;
910 *
911 * Atomicity of updates to XXX_delay, XXX_count protected by
912 * single lock above (split into XXX_lock if contention is an issue).
913 */
0ff92245
SN
914
915 /*
916 * XXX_count is incremented on every XXX operation, the delay
917 * associated with the operation is added to XXX_delay.
918 * XXX_delay contains the accumulated delay time in nanoseconds.
919 */
9667a23d 920 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
921 u64 blkio_delay; /* wait for sync block io completion */
922 u64 swapin_delay; /* wait for swapin block io completion */
923 u32 blkio_count; /* total count of the number of sync block */
924 /* io operations performed */
925 u32 swapin_count; /* total count of the number of swapin block */
926 /* io operations performed */
873b4771 927
9667a23d 928 u64 freepages_start;
873b4771
KK
929 u64 freepages_delay; /* wait for memory reclaim */
930 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 931};
52f17b6c
CS
932#endif /* CONFIG_TASK_DELAY_ACCT */
933
934static inline int sched_info_on(void)
935{
936#ifdef CONFIG_SCHEDSTATS
937 return 1;
938#elif defined(CONFIG_TASK_DELAY_ACCT)
939 extern int delayacct_on;
940 return delayacct_on;
941#else
942 return 0;
ca74e92b 943#endif
52f17b6c 944}
ca74e92b 945
cb251765
MG
946#ifdef CONFIG_SCHEDSTATS
947void force_schedstat_enabled(void);
948#endif
949
d15bcfdb
IM
950enum cpu_idle_type {
951 CPU_IDLE,
952 CPU_NOT_IDLE,
953 CPU_NEWLY_IDLE,
954 CPU_MAX_IDLE_TYPES
1da177e4
LT
955};
956
6ecdd749
YD
957/*
958 * Integer metrics need fixed point arithmetic, e.g., sched/fair
959 * has a few: load, load_avg, util_avg, freq, and capacity.
960 *
961 * We define a basic fixed point arithmetic range, and then formalize
962 * all these metrics based on that basic range.
963 */
964# define SCHED_FIXEDPOINT_SHIFT 10
965# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
966
1399fa78 967/*
ca8ce3d0 968 * Increase resolution of cpu_capacity calculations
1399fa78 969 */
6ecdd749 970#define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
ca8ce3d0 971#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 972
76751049
PZ
973/*
974 * Wake-queues are lists of tasks with a pending wakeup, whose
975 * callers have already marked the task as woken internally,
976 * and can thus carry on. A common use case is being able to
977 * do the wakeups once the corresponding user lock as been
978 * released.
979 *
980 * We hold reference to each task in the list across the wakeup,
981 * thus guaranteeing that the memory is still valid by the time
982 * the actual wakeups are performed in wake_up_q().
983 *
984 * One per task suffices, because there's never a need for a task to be
985 * in two wake queues simultaneously; it is forbidden to abandon a task
986 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
987 * already in a wake queue, the wakeup will happen soon and the second
988 * waker can just skip it.
989 *
990 * The WAKE_Q macro declares and initializes the list head.
991 * wake_up_q() does NOT reinitialize the list; it's expected to be
992 * called near the end of a function, where the fact that the queue is
993 * not used again will be easy to see by inspection.
994 *
995 * Note that this can cause spurious wakeups. schedule() callers
996 * must ensure the call is done inside a loop, confirming that the
997 * wakeup condition has in fact occurred.
998 */
999struct wake_q_node {
1000 struct wake_q_node *next;
1001};
1002
1003struct wake_q_head {
1004 struct wake_q_node *first;
1005 struct wake_q_node **lastp;
1006};
1007
1008#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1009
1010#define WAKE_Q(name) \
1011 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1012
1013extern void wake_q_add(struct wake_q_head *head,
1014 struct task_struct *task);
1015extern void wake_up_q(struct wake_q_head *head);
1016
1399fa78
NR
1017/*
1018 * sched-domains (multiprocessor balancing) declarations:
1019 */
2dd73a4f 1020#ifdef CONFIG_SMP
b5d978e0
PZ
1021#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
1022#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
1023#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
1024#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 1025#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 1026#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
1f6e6c7c 1027#define SD_ASYM_CPUCAPACITY 0x0040 /* Groups have different max cpu capacities */
bd425d4b 1028#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu capacity */
d77b3ed5 1029#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
1030#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1031#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 1032#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 1033#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 1034#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 1035#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 1036
143e1e28 1037#ifdef CONFIG_SCHED_SMT
b6220ad6 1038static inline int cpu_smt_flags(void)
143e1e28 1039{
5d4dfddd 1040 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
1041}
1042#endif
1043
1044#ifdef CONFIG_SCHED_MC
b6220ad6 1045static inline int cpu_core_flags(void)
143e1e28
VG
1046{
1047 return SD_SHARE_PKG_RESOURCES;
1048}
1049#endif
1050
1051#ifdef CONFIG_NUMA
b6220ad6 1052static inline int cpu_numa_flags(void)
143e1e28
VG
1053{
1054 return SD_NUMA;
1055}
1056#endif
532cb4c4 1057
1d3504fc
HS
1058struct sched_domain_attr {
1059 int relax_domain_level;
1060};
1061
1062#define SD_ATTR_INIT (struct sched_domain_attr) { \
1063 .relax_domain_level = -1, \
1064}
1065
60495e77
PZ
1066extern int sched_domain_level_max;
1067
5e6521ea
LZ
1068struct sched_group;
1069
1da177e4
LT
1070struct sched_domain {
1071 /* These fields must be setup */
1072 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1073 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1074 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1075 unsigned long min_interval; /* Minimum balance interval ms */
1076 unsigned long max_interval; /* Maximum balance interval ms */
1077 unsigned int busy_factor; /* less balancing by factor if busy */
1078 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1079 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1080 unsigned int busy_idx;
1081 unsigned int idle_idx;
1082 unsigned int newidle_idx;
1083 unsigned int wake_idx;
147cbb4b 1084 unsigned int forkexec_idx;
a52bfd73 1085 unsigned int smt_gain;
25f55d9d
VG
1086
1087 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1088 int flags; /* See SD_* */
60495e77 1089 int level;
1da177e4
LT
1090
1091 /* Runtime fields. */
1092 unsigned long last_balance; /* init to jiffies. units in jiffies */
1093 unsigned int balance_interval; /* initialise to 1. units in ms. */
1094 unsigned int nr_balance_failed; /* initialise to 0 */
1095
f48627e6 1096 /* idle_balance() stats */
9bd721c5 1097 u64 max_newidle_lb_cost;
f48627e6 1098 unsigned long next_decay_max_lb_cost;
2398f2c6 1099
1da177e4
LT
1100#ifdef CONFIG_SCHEDSTATS
1101 /* load_balance() stats */
480b9434
KC
1102 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1103 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1104 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1105 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1106 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1107 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1108 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1109 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1110
1111 /* Active load balancing */
480b9434
KC
1112 unsigned int alb_count;
1113 unsigned int alb_failed;
1114 unsigned int alb_pushed;
1da177e4 1115
68767a0a 1116 /* SD_BALANCE_EXEC stats */
480b9434
KC
1117 unsigned int sbe_count;
1118 unsigned int sbe_balanced;
1119 unsigned int sbe_pushed;
1da177e4 1120
68767a0a 1121 /* SD_BALANCE_FORK stats */
480b9434
KC
1122 unsigned int sbf_count;
1123 unsigned int sbf_balanced;
1124 unsigned int sbf_pushed;
68767a0a 1125
1da177e4 1126 /* try_to_wake_up() stats */
480b9434
KC
1127 unsigned int ttwu_wake_remote;
1128 unsigned int ttwu_move_affine;
1129 unsigned int ttwu_move_balance;
1da177e4 1130#endif
a5d8c348
IM
1131#ifdef CONFIG_SCHED_DEBUG
1132 char *name;
1133#endif
dce840a0
PZ
1134 union {
1135 void *private; /* used during construction */
1136 struct rcu_head rcu; /* used during destruction */
1137 };
6c99e9ad 1138
669c55e9 1139 unsigned int span_weight;
4200efd9
IM
1140 /*
1141 * Span of all CPUs in this domain.
1142 *
1143 * NOTE: this field is variable length. (Allocated dynamically
1144 * by attaching extra space to the end of the structure,
1145 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1146 */
1147 unsigned long span[0];
1da177e4
LT
1148};
1149
758b2cdc
RR
1150static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1151{
6c99e9ad 1152 return to_cpumask(sd->span);
758b2cdc
RR
1153}
1154
acc3f5d7 1155extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1156 struct sched_domain_attr *dattr_new);
029190c5 1157
acc3f5d7
RR
1158/* Allocate an array of sched domains, for partition_sched_domains(). */
1159cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1160void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1161
39be3501
PZ
1162bool cpus_share_cache(int this_cpu, int that_cpu);
1163
143e1e28 1164typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1165typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1166
1167#define SDTL_OVERLAP 0x01
1168
1169struct sd_data {
1170 struct sched_domain **__percpu sd;
1171 struct sched_group **__percpu sg;
63b2ca30 1172 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1173};
1174
1175struct sched_domain_topology_level {
1176 sched_domain_mask_f mask;
1177 sched_domain_flags_f sd_flags;
1178 int flags;
1179 int numa_level;
1180 struct sd_data data;
1181#ifdef CONFIG_SCHED_DEBUG
1182 char *name;
1183#endif
1184};
1185
143e1e28 1186extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1187extern void wake_up_if_idle(int cpu);
143e1e28
VG
1188
1189#ifdef CONFIG_SCHED_DEBUG
1190# define SD_INIT_NAME(type) .name = #type
1191#else
1192# define SD_INIT_NAME(type)
1193#endif
1194
1b427c15 1195#else /* CONFIG_SMP */
1da177e4 1196
1b427c15 1197struct sched_domain_attr;
d02c7a8c 1198
1b427c15 1199static inline void
acc3f5d7 1200partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1201 struct sched_domain_attr *dattr_new)
1202{
d02c7a8c 1203}
39be3501
PZ
1204
1205static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1206{
1207 return true;
1208}
1209
1b427c15 1210#endif /* !CONFIG_SMP */
1da177e4 1211
47fe38fc 1212
1da177e4 1213struct io_context; /* See blkdev.h */
1da177e4 1214
1da177e4 1215
383f2835 1216#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1217extern void prefetch_stack(struct task_struct *t);
383f2835
CK
1218#else
1219static inline void prefetch_stack(struct task_struct *t) { }
1220#endif
1da177e4
LT
1221
1222struct audit_context; /* See audit.c */
1223struct mempolicy;
b92ce558 1224struct pipe_inode_info;
4865ecf1 1225struct uts_namespace;
1da177e4 1226
20b8a59f 1227struct load_weight {
9dbdb155
PZ
1228 unsigned long weight;
1229 u32 inv_weight;
20b8a59f
IM
1230};
1231
9d89c257 1232/*
7b595334
YD
1233 * The load_avg/util_avg accumulates an infinite geometric series
1234 * (see __update_load_avg() in kernel/sched/fair.c).
1235 *
1236 * [load_avg definition]
1237 *
1238 * load_avg = runnable% * scale_load_down(load)
1239 *
1240 * where runnable% is the time ratio that a sched_entity is runnable.
1241 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 1242 * blocked sched_entities.
7b595334
YD
1243 *
1244 * load_avg may also take frequency scaling into account:
1245 *
1246 * load_avg = runnable% * scale_load_down(load) * freq%
1247 *
1248 * where freq% is the CPU frequency normalized to the highest frequency.
1249 *
1250 * [util_avg definition]
1251 *
1252 * util_avg = running% * SCHED_CAPACITY_SCALE
1253 *
1254 * where running% is the time ratio that a sched_entity is running on
1255 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1256 * and blocked sched_entities.
1257 *
1258 * util_avg may also factor frequency scaling and CPU capacity scaling:
1259 *
1260 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1261 *
1262 * where freq% is the same as above, and capacity% is the CPU capacity
1263 * normalized to the greatest capacity (due to uarch differences, etc).
1264 *
1265 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1266 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1267 * we therefore scale them to as large a range as necessary. This is for
1268 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1269 *
1270 * [Overflow issue]
1271 *
1272 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1273 * with the highest load (=88761), always runnable on a single cfs_rq,
1274 * and should not overflow as the number already hits PID_MAX_LIMIT.
1275 *
1276 * For all other cases (including 32-bit kernels), struct load_weight's
1277 * weight will overflow first before we do, because:
1278 *
1279 * Max(load_avg) <= Max(load.weight)
1280 *
1281 * Then it is the load_weight's responsibility to consider overflow
1282 * issues.
9d89c257 1283 */
9d85f21c 1284struct sched_avg {
9d89c257
YD
1285 u64 last_update_time, load_sum;
1286 u32 util_sum, period_contrib;
1287 unsigned long load_avg, util_avg;
9d85f21c
PT
1288};
1289
94c18227 1290#ifdef CONFIG_SCHEDSTATS
41acab88 1291struct sched_statistics {
20b8a59f 1292 u64 wait_start;
94c18227 1293 u64 wait_max;
6d082592
AV
1294 u64 wait_count;
1295 u64 wait_sum;
8f0dfc34
AV
1296 u64 iowait_count;
1297 u64 iowait_sum;
94c18227 1298
20b8a59f 1299 u64 sleep_start;
20b8a59f 1300 u64 sleep_max;
94c18227
IM
1301 s64 sum_sleep_runtime;
1302
1303 u64 block_start;
20b8a59f
IM
1304 u64 block_max;
1305 u64 exec_max;
eba1ed4b 1306 u64 slice_max;
cc367732 1307
cc367732
IM
1308 u64 nr_migrations_cold;
1309 u64 nr_failed_migrations_affine;
1310 u64 nr_failed_migrations_running;
1311 u64 nr_failed_migrations_hot;
1312 u64 nr_forced_migrations;
cc367732
IM
1313
1314 u64 nr_wakeups;
1315 u64 nr_wakeups_sync;
1316 u64 nr_wakeups_migrate;
1317 u64 nr_wakeups_local;
1318 u64 nr_wakeups_remote;
1319 u64 nr_wakeups_affine;
1320 u64 nr_wakeups_affine_attempts;
1321 u64 nr_wakeups_passive;
1322 u64 nr_wakeups_idle;
41acab88
LDM
1323};
1324#endif
1325
1326struct sched_entity {
1327 struct load_weight load; /* for load-balancing */
1328 struct rb_node run_node;
1329 struct list_head group_node;
1330 unsigned int on_rq;
1331
1332 u64 exec_start;
1333 u64 sum_exec_runtime;
1334 u64 vruntime;
1335 u64 prev_sum_exec_runtime;
1336
41acab88
LDM
1337 u64 nr_migrations;
1338
41acab88
LDM
1339#ifdef CONFIG_SCHEDSTATS
1340 struct sched_statistics statistics;
94c18227
IM
1341#endif
1342
20b8a59f 1343#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1344 int depth;
20b8a59f
IM
1345 struct sched_entity *parent;
1346 /* rq on which this entity is (to be) queued: */
1347 struct cfs_rq *cfs_rq;
1348 /* rq "owned" by this entity/group: */
1349 struct cfs_rq *my_q;
1350#endif
8bd75c77 1351
141965c7 1352#ifdef CONFIG_SMP
5a107804
JO
1353 /*
1354 * Per entity load average tracking.
1355 *
1356 * Put into separate cache line so it does not
1357 * collide with read-mostly values above.
1358 */
1359 struct sched_avg avg ____cacheline_aligned_in_smp;
9d85f21c 1360#endif
20b8a59f 1361};
70b97a7f 1362
fa717060
PZ
1363struct sched_rt_entity {
1364 struct list_head run_list;
78f2c7db 1365 unsigned long timeout;
57d2aa00 1366 unsigned long watchdog_stamp;
bee367ed 1367 unsigned int time_slice;
ff77e468
PZ
1368 unsigned short on_rq;
1369 unsigned short on_list;
6f505b16 1370
58d6c2d7 1371 struct sched_rt_entity *back;
052f1dc7 1372#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1373 struct sched_rt_entity *parent;
1374 /* rq on which this entity is (to be) queued: */
1375 struct rt_rq *rt_rq;
1376 /* rq "owned" by this entity/group: */
1377 struct rt_rq *my_q;
1378#endif
fa717060
PZ
1379};
1380
aab03e05
DF
1381struct sched_dl_entity {
1382 struct rb_node rb_node;
1383
1384 /*
1385 * Original scheduling parameters. Copied here from sched_attr
4027d080 1386 * during sched_setattr(), they will remain the same until
1387 * the next sched_setattr().
aab03e05
DF
1388 */
1389 u64 dl_runtime; /* maximum runtime for each instance */
1390 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1391 u64 dl_period; /* separation of two instances (period) */
332ac17e 1392 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1393
1394 /*
1395 * Actual scheduling parameters. Initialized with the values above,
1396 * they are continously updated during task execution. Note that
1397 * the remaining runtime could be < 0 in case we are in overrun.
1398 */
1399 s64 runtime; /* remaining runtime for this instance */
1400 u64 deadline; /* absolute deadline for this instance */
1401 unsigned int flags; /* specifying the scheduler behaviour */
1402
1403 /*
1404 * Some bool flags:
1405 *
1406 * @dl_throttled tells if we exhausted the runtime. If so, the
1407 * task has to wait for a replenishment to be performed at the
1408 * next firing of dl_timer.
1409 *
2d3d891d
DF
1410 * @dl_boosted tells if we are boosted due to DI. If so we are
1411 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1412 * exit the critical section);
1413 *
1414 * @dl_yielded tells if task gave up the cpu before consuming
1415 * all its available runtime during the last job.
aab03e05 1416 */
72f9f3fd 1417 int dl_throttled, dl_boosted, dl_yielded;
aab03e05
DF
1418
1419 /*
1420 * Bandwidth enforcement timer. Each -deadline task has its
1421 * own bandwidth to be enforced, thus we need one timer per task.
1422 */
1423 struct hrtimer dl_timer;
1424};
8bd75c77 1425
1d082fd0
PM
1426union rcu_special {
1427 struct {
8203d6d0
PM
1428 u8 blocked;
1429 u8 need_qs;
1430 u8 exp_need_qs;
1431 u8 pad; /* Otherwise the compiler can store garbage here. */
1432 } b; /* Bits. */
1433 u32 s; /* Set of bits. */
1d082fd0 1434};
86848966
PM
1435struct rcu_node;
1436
8dc85d54
PZ
1437enum perf_event_task_context {
1438 perf_invalid_context = -1,
1439 perf_hw_context = 0,
89a1e187 1440 perf_sw_context,
8dc85d54
PZ
1441 perf_nr_task_contexts,
1442};
1443
72b252ae
MG
1444/* Track pages that require TLB flushes */
1445struct tlbflush_unmap_batch {
1446 /*
1447 * Each bit set is a CPU that potentially has a TLB entry for one of
1448 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1449 */
1450 struct cpumask cpumask;
1451
1452 /* True if any bit in cpumask is set */
1453 bool flush_required;
d950c947
MG
1454
1455 /*
1456 * If true then the PTE was dirty when unmapped. The entry must be
1457 * flushed before IO is initiated or a stale TLB entry potentially
1458 * allows an update without redirtying the page.
1459 */
1460 bool writable;
72b252ae
MG
1461};
1462
1da177e4
LT
1463struct task_struct {
1464 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1465 void *stack;
1da177e4 1466 atomic_t usage;
97dc32cd
WC
1467 unsigned int flags; /* per process flags, defined below */
1468 unsigned int ptrace;
1da177e4 1469
2dd73a4f 1470#ifdef CONFIG_SMP
fa14ff4a 1471 struct llist_node wake_entry;
3ca7a440 1472 int on_cpu;
63b0e9ed 1473 unsigned int wakee_flips;
62470419 1474 unsigned long wakee_flip_decay_ts;
63b0e9ed 1475 struct task_struct *last_wakee;
ac66f547
PZ
1476
1477 int wake_cpu;
2dd73a4f 1478#endif
fd2f4419 1479 int on_rq;
50e645a8 1480
b29739f9 1481 int prio, static_prio, normal_prio;
c7aceaba 1482 unsigned int rt_priority;
5522d5d5 1483 const struct sched_class *sched_class;
20b8a59f 1484 struct sched_entity se;
fa717060 1485 struct sched_rt_entity rt;
8323f26c
PZ
1486#ifdef CONFIG_CGROUP_SCHED
1487 struct task_group *sched_task_group;
1488#endif
aab03e05 1489 struct sched_dl_entity dl;
1da177e4 1490
e107be36
AK
1491#ifdef CONFIG_PREEMPT_NOTIFIERS
1492 /* list of struct preempt_notifier: */
1493 struct hlist_head preempt_notifiers;
1494#endif
1495
6c5c9341 1496#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1497 unsigned int btrace_seq;
6c5c9341 1498#endif
1da177e4 1499
97dc32cd 1500 unsigned int policy;
29baa747 1501 int nr_cpus_allowed;
1da177e4 1502 cpumask_t cpus_allowed;
1da177e4 1503
a57eb940 1504#ifdef CONFIG_PREEMPT_RCU
e260be67 1505 int rcu_read_lock_nesting;
1d082fd0 1506 union rcu_special rcu_read_unlock_special;
f41d911f 1507 struct list_head rcu_node_entry;
a57eb940 1508 struct rcu_node *rcu_blocked_node;
28f6569a 1509#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1510#ifdef CONFIG_TASKS_RCU
1511 unsigned long rcu_tasks_nvcsw;
1512 bool rcu_tasks_holdout;
1513 struct list_head rcu_tasks_holdout_list;
176f8f7a 1514 int rcu_tasks_idle_cpu;
8315f422 1515#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1516
f6db8347 1517#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1518 struct sched_info sched_info;
1519#endif
1520
1521 struct list_head tasks;
806c09a7 1522#ifdef CONFIG_SMP
917b627d 1523 struct plist_node pushable_tasks;
1baca4ce 1524 struct rb_node pushable_dl_tasks;
806c09a7 1525#endif
1da177e4
LT
1526
1527 struct mm_struct *mm, *active_mm;
615d6e87
DB
1528 /* per-thread vma caching */
1529 u32 vmacache_seqnum;
1530 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1531#if defined(SPLIT_RSS_COUNTING)
1532 struct task_rss_stat rss_stat;
1533#endif
1da177e4 1534/* task state */
97dc32cd 1535 int exit_state;
1da177e4
LT
1536 int exit_code, exit_signal;
1537 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1538 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1539
1540 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1541 unsigned int personality;
9b89f6ba 1542
be958bdc 1543 /* scheduler bits, serialized by scheduler locks */
ca94c442 1544 unsigned sched_reset_on_fork:1;
a8e4f2ea 1545 unsigned sched_contributes_to_load:1;
ff303e66 1546 unsigned sched_migrated:1;
b7e7ade3 1547 unsigned sched_remote_wakeup:1;
be958bdc
PZ
1548 unsigned :0; /* force alignment to the next boundary */
1549
1550 /* unserialized, strictly 'current' */
1551 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1552 unsigned in_iowait:1;
7e781418
AL
1553#if !defined(TIF_RESTORE_SIGMASK)
1554 unsigned restore_sigmask:1;
1555#endif
626ebc41
TH
1556#ifdef CONFIG_MEMCG
1557 unsigned memcg_may_oom:1;
127424c8 1558#ifndef CONFIG_SLOB
6f185c29
VD
1559 unsigned memcg_kmem_skip_account:1;
1560#endif
127424c8 1561#endif
ff303e66
PZ
1562#ifdef CONFIG_COMPAT_BRK
1563 unsigned brk_randomized:1;
1564#endif
6f185c29 1565
1d4457f9
KC
1566 unsigned long atomic_flags; /* Flags needing atomic access. */
1567
f56141e3
AL
1568 struct restart_block restart_block;
1569
1da177e4
LT
1570 pid_t pid;
1571 pid_t tgid;
0a425405 1572
1314562a 1573#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1574 /* Canary value for the -fstack-protector gcc feature */
1575 unsigned long stack_canary;
1314562a 1576#endif
4d1d61a6 1577 /*
1da177e4 1578 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1579 * older sibling, respectively. (p->father can be replaced with
f470021a 1580 * p->real_parent->pid)
1da177e4 1581 */
abd63bc3
KC
1582 struct task_struct __rcu *real_parent; /* real parent process */
1583 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1584 /*
f470021a 1585 * children/sibling forms the list of my natural children
1da177e4
LT
1586 */
1587 struct list_head children; /* list of my children */
1588 struct list_head sibling; /* linkage in my parent's children list */
1589 struct task_struct *group_leader; /* threadgroup leader */
1590
f470021a
RM
1591 /*
1592 * ptraced is the list of tasks this task is using ptrace on.
1593 * This includes both natural children and PTRACE_ATTACH targets.
1594 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1595 */
1596 struct list_head ptraced;
1597 struct list_head ptrace_entry;
1598
1da177e4 1599 /* PID/PID hash table linkage. */
92476d7f 1600 struct pid_link pids[PIDTYPE_MAX];
47e65328 1601 struct list_head thread_group;
0c740d0a 1602 struct list_head thread_node;
1da177e4
LT
1603
1604 struct completion *vfork_done; /* for vfork() */
1605 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1606 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1607
c66f08be 1608 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1609 cputime_t gtime;
9d7fb042 1610 struct prev_cputime prev_cputime;
6a61671b 1611#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
b7ce2277 1612 seqcount_t vtime_seqcount;
6a61671b
FW
1613 unsigned long long vtime_snap;
1614 enum {
7098c1ea
FW
1615 /* Task is sleeping or running in a CPU with VTIME inactive */
1616 VTIME_INACTIVE = 0,
1617 /* Task runs in userspace in a CPU with VTIME active */
6a61671b 1618 VTIME_USER,
7098c1ea 1619 /* Task runs in kernelspace in a CPU with VTIME active */
6a61671b
FW
1620 VTIME_SYS,
1621 } vtime_snap_whence;
d99ca3b9 1622#endif
d027d45d
FW
1623
1624#ifdef CONFIG_NO_HZ_FULL
f009a7a7 1625 atomic_t tick_dep_mask;
d027d45d 1626#endif
1da177e4 1627 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1628 u64 start_time; /* monotonic time in nsec */
57e0be04 1629 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1630/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1631 unsigned long min_flt, maj_flt;
1632
f06febc9 1633 struct task_cputime cputime_expires;
1da177e4
LT
1634 struct list_head cpu_timers[3];
1635
1636/* process credentials */
1b0ba1c9 1637 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1638 * credentials (COW) */
1b0ba1c9 1639 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1640 * credentials (COW) */
36772092
PBG
1641 char comm[TASK_COMM_LEN]; /* executable name excluding path
1642 - access with [gs]et_task_comm (which lock
1643 it with task_lock())
221af7f8 1644 - initialized normally by setup_new_exec */
1da177e4 1645/* file system info */
756daf26 1646 struct nameidata *nameidata;
3d5b6fcc 1647#ifdef CONFIG_SYSVIPC
1da177e4
LT
1648/* ipc stuff */
1649 struct sysv_sem sysvsem;
ab602f79 1650 struct sysv_shm sysvshm;
3d5b6fcc 1651#endif
e162b39a 1652#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1653/* hung task detection */
82a1fcb9
IM
1654 unsigned long last_switch_count;
1655#endif
1da177e4
LT
1656/* filesystem information */
1657 struct fs_struct *fs;
1658/* open file information */
1659 struct files_struct *files;
1651e14e 1660/* namespaces */
ab516013 1661 struct nsproxy *nsproxy;
1da177e4
LT
1662/* signal handlers */
1663 struct signal_struct *signal;
1664 struct sighand_struct *sighand;
1665
1666 sigset_t blocked, real_blocked;
f3de272b 1667 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1668 struct sigpending pending;
1669
1670 unsigned long sas_ss_sp;
1671 size_t sas_ss_size;
2a742138 1672 unsigned sas_ss_flags;
2e01fabe 1673
67d12145 1674 struct callback_head *task_works;
e73f8959 1675
1da177e4 1676 struct audit_context *audit_context;
bfef93a5 1677#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1678 kuid_t loginuid;
4746ec5b 1679 unsigned int sessionid;
bfef93a5 1680#endif
932ecebb 1681 struct seccomp seccomp;
1da177e4
LT
1682
1683/* Thread group tracking */
1684 u32 parent_exec_id;
1685 u32 self_exec_id;
58568d2a
MX
1686/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1687 * mempolicy */
1da177e4 1688 spinlock_t alloc_lock;
1da177e4 1689
b29739f9 1690 /* Protection of the PI data structures: */
1d615482 1691 raw_spinlock_t pi_lock;
b29739f9 1692
76751049
PZ
1693 struct wake_q_node wake_q;
1694
23f78d4a
IM
1695#ifdef CONFIG_RT_MUTEXES
1696 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1697 struct rb_root pi_waiters;
1698 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1699 /* Deadlock detection and priority inheritance handling */
1700 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1701#endif
1702
408894ee
IM
1703#ifdef CONFIG_DEBUG_MUTEXES
1704 /* mutex deadlock detection */
1705 struct mutex_waiter *blocked_on;
1706#endif
de30a2b3
IM
1707#ifdef CONFIG_TRACE_IRQFLAGS
1708 unsigned int irq_events;
de30a2b3 1709 unsigned long hardirq_enable_ip;
de30a2b3 1710 unsigned long hardirq_disable_ip;
fa1452e8 1711 unsigned int hardirq_enable_event;
de30a2b3 1712 unsigned int hardirq_disable_event;
fa1452e8
HS
1713 int hardirqs_enabled;
1714 int hardirq_context;
de30a2b3 1715 unsigned long softirq_disable_ip;
de30a2b3 1716 unsigned long softirq_enable_ip;
fa1452e8 1717 unsigned int softirq_disable_event;
de30a2b3 1718 unsigned int softirq_enable_event;
fa1452e8 1719 int softirqs_enabled;
de30a2b3
IM
1720 int softirq_context;
1721#endif
fbb9ce95 1722#ifdef CONFIG_LOCKDEP
bdb9441e 1723# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1724 u64 curr_chain_key;
1725 int lockdep_depth;
fbb9ce95 1726 unsigned int lockdep_recursion;
c7aceaba 1727 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1728 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1729#endif
c6d30853
AR
1730#ifdef CONFIG_UBSAN
1731 unsigned int in_ubsan;
1732#endif
408894ee 1733
1da177e4
LT
1734/* journalling filesystem info */
1735 void *journal_info;
1736
d89d8796 1737/* stacked block device info */
bddd87c7 1738 struct bio_list *bio_list;
d89d8796 1739
73c10101
JA
1740#ifdef CONFIG_BLOCK
1741/* stack plugging */
1742 struct blk_plug *plug;
1743#endif
1744
1da177e4
LT
1745/* VM state */
1746 struct reclaim_state *reclaim_state;
1747
1da177e4
LT
1748 struct backing_dev_info *backing_dev_info;
1749
1750 struct io_context *io_context;
1751
1752 unsigned long ptrace_message;
1753 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1754 struct task_io_accounting ioac;
8f0ab514 1755#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1756 u64 acct_rss_mem1; /* accumulated rss usage */
1757 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1758 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1759#endif
1760#ifdef CONFIG_CPUSETS
58568d2a 1761 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1762 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1763 int cpuset_mem_spread_rotor;
6adef3eb 1764 int cpuset_slab_spread_rotor;
1da177e4 1765#endif
ddbcc7e8 1766#ifdef CONFIG_CGROUPS
817929ec 1767 /* Control Group info protected by css_set_lock */
2c392b8c 1768 struct css_set __rcu *cgroups;
817929ec
PM
1769 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1770 struct list_head cg_list;
ddbcc7e8 1771#endif
42b2dd0a 1772#ifdef CONFIG_FUTEX
0771dfef 1773 struct robust_list_head __user *robust_list;
34f192c6
IM
1774#ifdef CONFIG_COMPAT
1775 struct compat_robust_list_head __user *compat_robust_list;
1776#endif
c87e2837
IM
1777 struct list_head pi_state_list;
1778 struct futex_pi_state *pi_state_cache;
c7aceaba 1779#endif
cdd6c482 1780#ifdef CONFIG_PERF_EVENTS
8dc85d54 1781 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1782 struct mutex perf_event_mutex;
1783 struct list_head perf_event_list;
a63eaf34 1784#endif
8f47b187
TG
1785#ifdef CONFIG_DEBUG_PREEMPT
1786 unsigned long preempt_disable_ip;
1787#endif
c7aceaba 1788#ifdef CONFIG_NUMA
58568d2a 1789 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1790 short il_next;
207205a2 1791 short pref_node_fork;
42b2dd0a 1792#endif
cbee9f88
PZ
1793#ifdef CONFIG_NUMA_BALANCING
1794 int numa_scan_seq;
cbee9f88 1795 unsigned int numa_scan_period;
598f0ec0 1796 unsigned int numa_scan_period_max;
de1c9ce6 1797 int numa_preferred_nid;
6b9a7460 1798 unsigned long numa_migrate_retry;
cbee9f88 1799 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1800 u64 last_task_numa_placement;
1801 u64 last_sum_exec_runtime;
cbee9f88 1802 struct callback_head numa_work;
f809ca9a 1803
8c8a743c
PZ
1804 struct list_head numa_entry;
1805 struct numa_group *numa_group;
1806
745d6147 1807 /*
44dba3d5
IM
1808 * numa_faults is an array split into four regions:
1809 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1810 * in this precise order.
1811 *
1812 * faults_memory: Exponential decaying average of faults on a per-node
1813 * basis. Scheduling placement decisions are made based on these
1814 * counts. The values remain static for the duration of a PTE scan.
1815 * faults_cpu: Track the nodes the process was running on when a NUMA
1816 * hinting fault was incurred.
1817 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1818 * during the current scan window. When the scan completes, the counts
1819 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1820 */
44dba3d5 1821 unsigned long *numa_faults;
83e1d2cd 1822 unsigned long total_numa_faults;
745d6147 1823
04bb2f94
RR
1824 /*
1825 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1826 * scan window were remote/local or failed to migrate. The task scan
1827 * period is adapted based on the locality of the faults with different
1828 * weights depending on whether they were shared or private faults
04bb2f94 1829 */
074c2381 1830 unsigned long numa_faults_locality[3];
04bb2f94 1831
b32e86b4 1832 unsigned long numa_pages_migrated;
cbee9f88
PZ
1833#endif /* CONFIG_NUMA_BALANCING */
1834
72b252ae
MG
1835#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1836 struct tlbflush_unmap_batch tlb_ubc;
1837#endif
1838
e56d0903 1839 struct rcu_head rcu;
b92ce558
JA
1840
1841 /*
1842 * cache last used pipe for splice
1843 */
1844 struct pipe_inode_info *splice_pipe;
5640f768
ED
1845
1846 struct page_frag task_frag;
1847
ca74e92b
SN
1848#ifdef CONFIG_TASK_DELAY_ACCT
1849 struct task_delay_info *delays;
f4f154fd
AM
1850#endif
1851#ifdef CONFIG_FAULT_INJECTION
1852 int make_it_fail;
ca74e92b 1853#endif
9d823e8f
WF
1854 /*
1855 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1856 * balance_dirty_pages() for some dirty throttling pause
1857 */
1858 int nr_dirtied;
1859 int nr_dirtied_pause;
83712358 1860 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1861
9745512c
AV
1862#ifdef CONFIG_LATENCYTOP
1863 int latency_record_count;
1864 struct latency_record latency_record[LT_SAVECOUNT];
1865#endif
6976675d
AV
1866 /*
1867 * time slack values; these are used to round up poll() and
1868 * select() etc timeout values. These are in nanoseconds.
1869 */
da8b44d5
JS
1870 u64 timer_slack_ns;
1871 u64 default_timer_slack_ns;
f8d570a4 1872
0b24becc
AR
1873#ifdef CONFIG_KASAN
1874 unsigned int kasan_depth;
1875#endif
fb52607a 1876#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1877 /* Index of current stored address in ret_stack */
f201ae23
FW
1878 int curr_ret_stack;
1879 /* Stack of return addresses for return function tracing */
1880 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1881 /* time stamp for last schedule */
1882 unsigned long long ftrace_timestamp;
f201ae23
FW
1883 /*
1884 * Number of functions that haven't been traced
1885 * because of depth overrun.
1886 */
1887 atomic_t trace_overrun;
380c4b14
FW
1888 /* Pause for the tracing */
1889 atomic_t tracing_graph_pause;
f201ae23 1890#endif
ea4e2bc4
SR
1891#ifdef CONFIG_TRACING
1892 /* state flags for use by tracers */
1893 unsigned long trace;
b1cff0ad 1894 /* bitmask and counter of trace recursion */
261842b7
SR
1895 unsigned long trace_recursion;
1896#endif /* CONFIG_TRACING */
5c9a8750
DV
1897#ifdef CONFIG_KCOV
1898 /* Coverage collection mode enabled for this task (0 if disabled). */
1899 enum kcov_mode kcov_mode;
1900 /* Size of the kcov_area. */
1901 unsigned kcov_size;
1902 /* Buffer for coverage collection. */
1903 void *kcov_area;
1904 /* kcov desciptor wired with this task or NULL. */
1905 struct kcov *kcov;
1906#endif
6f185c29 1907#ifdef CONFIG_MEMCG
626ebc41
TH
1908 struct mem_cgroup *memcg_in_oom;
1909 gfp_t memcg_oom_gfp_mask;
1910 int memcg_oom_order;
b23afb93
TH
1911
1912 /* number of pages to reclaim on returning to userland */
1913 unsigned int memcg_nr_pages_over_high;
569b846d 1914#endif
0326f5a9
SD
1915#ifdef CONFIG_UPROBES
1916 struct uprobe_task *utask;
0326f5a9 1917#endif
cafe5635
KO
1918#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1919 unsigned int sequential_io;
1920 unsigned int sequential_io_avg;
1921#endif
8eb23b9f
PZ
1922#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1923 unsigned long task_state_change;
1924#endif
8bcbde54 1925 int pagefault_disabled;
03049269 1926#ifdef CONFIG_MMU
29c696e1 1927 struct task_struct *oom_reaper_list;
03049269 1928#endif
0c8c0f03
DH
1929/* CPU-specific state of this task */
1930 struct thread_struct thread;
1931/*
1932 * WARNING: on x86, 'thread_struct' contains a variable-sized
1933 * structure. It *MUST* be at the end of 'task_struct'.
1934 *
1935 * Do not put anything below here!
1936 */
1da177e4
LT
1937};
1938
5aaeb5c0
IM
1939#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1940extern int arch_task_struct_size __read_mostly;
1941#else
1942# define arch_task_struct_size (sizeof(struct task_struct))
1943#endif
0c8c0f03 1944
76e6eee0 1945/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1946#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1947
50605ffb
TG
1948static inline int tsk_nr_cpus_allowed(struct task_struct *p)
1949{
1950 return p->nr_cpus_allowed;
1951}
1952
6688cc05
PZ
1953#define TNF_MIGRATED 0x01
1954#define TNF_NO_GROUP 0x02
dabe1d99 1955#define TNF_SHARED 0x04
04bb2f94 1956#define TNF_FAULT_LOCAL 0x08
074c2381 1957#define TNF_MIGRATE_FAIL 0x10
6688cc05 1958
b18dc5f2
MH
1959static inline bool in_vfork(struct task_struct *tsk)
1960{
1961 bool ret;
1962
1963 /*
1964 * need RCU to access ->real_parent if CLONE_VM was used along with
1965 * CLONE_PARENT.
1966 *
1967 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
1968 * imply CLONE_VM
1969 *
1970 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
1971 * ->real_parent is not necessarily the task doing vfork(), so in
1972 * theory we can't rely on task_lock() if we want to dereference it.
1973 *
1974 * And in this case we can't trust the real_parent->mm == tsk->mm
1975 * check, it can be false negative. But we do not care, if init or
1976 * another oom-unkillable task does this it should blame itself.
1977 */
1978 rcu_read_lock();
1979 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
1980 rcu_read_unlock();
1981
1982 return ret;
1983}
1984
cbee9f88 1985#ifdef CONFIG_NUMA_BALANCING
6688cc05 1986extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1987extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1988extern void set_numabalancing_state(bool enabled);
82727018 1989extern void task_numa_free(struct task_struct *p);
10f39042
RR
1990extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1991 int src_nid, int dst_cpu);
cbee9f88 1992#else
ac8e895b 1993static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1994 int flags)
cbee9f88
PZ
1995{
1996}
e29cf08b
MG
1997static inline pid_t task_numa_group_id(struct task_struct *p)
1998{
1999 return 0;
2000}
1a687c2e
MG
2001static inline void set_numabalancing_state(bool enabled)
2002{
2003}
82727018
RR
2004static inline void task_numa_free(struct task_struct *p)
2005{
2006}
10f39042
RR
2007static inline bool should_numa_migrate_memory(struct task_struct *p,
2008 struct page *page, int src_nid, int dst_cpu)
2009{
2010 return true;
2011}
cbee9f88
PZ
2012#endif
2013
e868171a 2014static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
2015{
2016 return task->pids[PIDTYPE_PID].pid;
2017}
2018
e868171a 2019static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
2020{
2021 return task->group_leader->pids[PIDTYPE_PID].pid;
2022}
2023
6dda81f4
ON
2024/*
2025 * Without tasklist or rcu lock it is not safe to dereference
2026 * the result of task_pgrp/task_session even if task == current,
2027 * we can race with another thread doing sys_setsid/sys_setpgid.
2028 */
e868171a 2029static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
2030{
2031 return task->group_leader->pids[PIDTYPE_PGID].pid;
2032}
2033
e868171a 2034static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
2035{
2036 return task->group_leader->pids[PIDTYPE_SID].pid;
2037}
2038
7af57294
PE
2039struct pid_namespace;
2040
2041/*
2042 * the helpers to get the task's different pids as they are seen
2043 * from various namespaces
2044 *
2045 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
2046 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
2047 * current.
7af57294
PE
2048 * task_xid_nr_ns() : id seen from the ns specified;
2049 *
2050 * set_task_vxid() : assigns a virtual id to a task;
2051 *
7af57294
PE
2052 * see also pid_nr() etc in include/linux/pid.h
2053 */
52ee2dfd
ON
2054pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2055 struct pid_namespace *ns);
7af57294 2056
e868171a 2057static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
2058{
2059 return tsk->pid;
2060}
2061
52ee2dfd
ON
2062static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2063 struct pid_namespace *ns)
2064{
2065 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2066}
7af57294
PE
2067
2068static inline pid_t task_pid_vnr(struct task_struct *tsk)
2069{
52ee2dfd 2070 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
2071}
2072
2073
e868171a 2074static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
2075{
2076 return tsk->tgid;
2077}
2078
2f2a3a46 2079pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
2080
2081static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2082{
2083 return pid_vnr(task_tgid(tsk));
2084}
2085
2086
80e0b6e8 2087static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
2088static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2089{
2090 pid_t pid = 0;
2091
2092 rcu_read_lock();
2093 if (pid_alive(tsk))
2094 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2095 rcu_read_unlock();
2096
2097 return pid;
2098}
2099
2100static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2101{
2102 return task_ppid_nr_ns(tsk, &init_pid_ns);
2103}
2104
52ee2dfd
ON
2105static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2106 struct pid_namespace *ns)
7af57294 2107{
52ee2dfd 2108 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
2109}
2110
7af57294
PE
2111static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2112{
52ee2dfd 2113 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
2114}
2115
2116
52ee2dfd
ON
2117static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2118 struct pid_namespace *ns)
7af57294 2119{
52ee2dfd 2120 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
2121}
2122
7af57294
PE
2123static inline pid_t task_session_vnr(struct task_struct *tsk)
2124{
52ee2dfd 2125 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
2126}
2127
1b0f7ffd
ON
2128/* obsolete, do not use */
2129static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2130{
2131 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2132}
7af57294 2133
1da177e4
LT
2134/**
2135 * pid_alive - check that a task structure is not stale
2136 * @p: Task structure to be checked.
2137 *
2138 * Test if a process is not yet dead (at most zombie state)
2139 * If pid_alive fails, then pointers within the task structure
2140 * can be stale and must not be dereferenced.
e69f6186
YB
2141 *
2142 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 2143 */
ad36d282 2144static inline int pid_alive(const struct task_struct *p)
1da177e4 2145{
92476d7f 2146 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
2147}
2148
f400e198 2149/**
570f5241
SS
2150 * is_global_init - check if a task structure is init. Since init
2151 * is free to have sub-threads we need to check tgid.
3260259f
H
2152 * @tsk: Task structure to be checked.
2153 *
2154 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
2155 *
2156 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 2157 */
e868171a 2158static inline int is_global_init(struct task_struct *tsk)
b461cc03 2159{
570f5241 2160 return task_tgid_nr(tsk) == 1;
b461cc03 2161}
b460cbc5 2162
9ec52099
CLG
2163extern struct pid *cad_pid;
2164
1da177e4 2165extern void free_task(struct task_struct *tsk);
1da177e4 2166#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 2167
158d9ebd 2168extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
2169
2170static inline void put_task_struct(struct task_struct *t)
2171{
2172 if (atomic_dec_and_test(&t->usage))
8c7904a0 2173 __put_task_struct(t);
e56d0903 2174}
1da177e4 2175
150593bf
ON
2176struct task_struct *task_rcu_dereference(struct task_struct **ptask);
2177struct task_struct *try_get_task_struct(struct task_struct **ptask);
2178
6a61671b
FW
2179#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2180extern void task_cputime(struct task_struct *t,
2181 cputime_t *utime, cputime_t *stime);
2182extern void task_cputime_scaled(struct task_struct *t,
2183 cputime_t *utimescaled, cputime_t *stimescaled);
2184extern cputime_t task_gtime(struct task_struct *t);
2185#else
6fac4829
FW
2186static inline void task_cputime(struct task_struct *t,
2187 cputime_t *utime, cputime_t *stime)
2188{
2189 if (utime)
2190 *utime = t->utime;
2191 if (stime)
2192 *stime = t->stime;
2193}
2194
2195static inline void task_cputime_scaled(struct task_struct *t,
2196 cputime_t *utimescaled,
2197 cputime_t *stimescaled)
2198{
2199 if (utimescaled)
2200 *utimescaled = t->utimescaled;
2201 if (stimescaled)
2202 *stimescaled = t->stimescaled;
2203}
6a61671b
FW
2204
2205static inline cputime_t task_gtime(struct task_struct *t)
2206{
2207 return t->gtime;
2208}
2209#endif
e80d0a1a
FW
2210extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2211extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2212
1da177e4
LT
2213/*
2214 * Per process flags
2215 */
1da177e4 2216#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2217#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2218#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2219#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2220#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2221#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2222#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2223#define PF_DUMPCORE 0x00000200 /* dumped core */
2224#define PF_SIGNALED 0x00000400 /* killed by a signal */
2225#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2226#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2227#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2228#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2229#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2230#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2231#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2232#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2233#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2234#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2235#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2236#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2237#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2238#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2239#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2240#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2241#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2242#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2243
2244/*
2245 * Only the _current_ task can read/write to tsk->flags, but other
2246 * tasks can access tsk->flags in readonly mode for example
2247 * with tsk_used_math (like during threaded core dumping).
2248 * There is however an exception to this rule during ptrace
2249 * or during fork: the ptracer task is allowed to write to the
2250 * child->flags of its traced child (same goes for fork, the parent
2251 * can write to the child->flags), because we're guaranteed the
2252 * child is not running and in turn not changing child->flags
2253 * at the same time the parent does it.
2254 */
2255#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2256#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2257#define clear_used_math() clear_stopped_child_used_math(current)
2258#define set_used_math() set_stopped_child_used_math(current)
2259#define conditional_stopped_child_used_math(condition, child) \
2260 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2261#define conditional_used_math(condition) \
2262 conditional_stopped_child_used_math(condition, current)
2263#define copy_to_stopped_child_used_math(child) \
2264 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2265/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2266#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2267#define used_math() tsk_used_math(current)
2268
934f3072
JB
2269/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2270 * __GFP_FS is also cleared as it implies __GFP_IO.
2271 */
21caf2fc
ML
2272static inline gfp_t memalloc_noio_flags(gfp_t flags)
2273{
2274 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2275 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2276 return flags;
2277}
2278
2279static inline unsigned int memalloc_noio_save(void)
2280{
2281 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2282 current->flags |= PF_MEMALLOC_NOIO;
2283 return flags;
2284}
2285
2286static inline void memalloc_noio_restore(unsigned int flags)
2287{
2288 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2289}
2290
1d4457f9 2291/* Per-process atomic flags. */
a2b86f77 2292#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2293#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2294#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
77ed2c57 2295#define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */
2ad654bc 2296
1d4457f9 2297
e0e5070b
ZL
2298#define TASK_PFA_TEST(name, func) \
2299 static inline bool task_##func(struct task_struct *p) \
2300 { return test_bit(PFA_##name, &p->atomic_flags); }
2301#define TASK_PFA_SET(name, func) \
2302 static inline void task_set_##func(struct task_struct *p) \
2303 { set_bit(PFA_##name, &p->atomic_flags); }
2304#define TASK_PFA_CLEAR(name, func) \
2305 static inline void task_clear_##func(struct task_struct *p) \
2306 { clear_bit(PFA_##name, &p->atomic_flags); }
2307
2308TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2309TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2310
2ad654bc
ZL
2311TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2312TASK_PFA_SET(SPREAD_PAGE, spread_page)
2313TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2314
2315TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2316TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2317TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2318
77ed2c57
TH
2319TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2320TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2321
e5c1902e 2322/*
a8f072c1 2323 * task->jobctl flags
e5c1902e 2324 */
a8f072c1 2325#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2326
a8f072c1
TH
2327#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2328#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2329#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2330#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2331#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2332#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2333#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2334
b76808e6
PD
2335#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2336#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2337#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2338#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2339#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2340#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2341#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2342
fb1d910c 2343#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2344#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2345
7dd3db54 2346extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2347 unsigned long mask);
73ddff2b 2348extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2349extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2350 unsigned long mask);
39efa3ef 2351
f41d911f
PM
2352static inline void rcu_copy_process(struct task_struct *p)
2353{
8315f422 2354#ifdef CONFIG_PREEMPT_RCU
f41d911f 2355 p->rcu_read_lock_nesting = 0;
1d082fd0 2356 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2357 p->rcu_blocked_node = NULL;
f41d911f 2358 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2359#endif /* #ifdef CONFIG_PREEMPT_RCU */
2360#ifdef CONFIG_TASKS_RCU
2361 p->rcu_tasks_holdout = false;
2362 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2363 p->rcu_tasks_idle_cpu = -1;
8315f422 2364#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2365}
2366
907aed48
MG
2367static inline void tsk_restore_flags(struct task_struct *task,
2368 unsigned long orig_flags, unsigned long flags)
2369{
2370 task->flags &= ~flags;
2371 task->flags |= orig_flags & flags;
2372}
2373
f82f8042
JL
2374extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2375 const struct cpumask *trial);
7f51412a
JL
2376extern int task_can_attach(struct task_struct *p,
2377 const struct cpumask *cs_cpus_allowed);
1da177e4 2378#ifdef CONFIG_SMP
1e1b6c51
KM
2379extern void do_set_cpus_allowed(struct task_struct *p,
2380 const struct cpumask *new_mask);
2381
cd8ba7cd 2382extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2383 const struct cpumask *new_mask);
1da177e4 2384#else
1e1b6c51
KM
2385static inline void do_set_cpus_allowed(struct task_struct *p,
2386 const struct cpumask *new_mask)
2387{
2388}
cd8ba7cd 2389static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2390 const struct cpumask *new_mask)
1da177e4 2391{
96f874e2 2392 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2393 return -EINVAL;
2394 return 0;
2395}
2396#endif
e0ad9556 2397
3451d024 2398#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2399void calc_load_enter_idle(void);
2400void calc_load_exit_idle(void);
2401#else
2402static inline void calc_load_enter_idle(void) { }
2403static inline void calc_load_exit_idle(void) { }
3451d024 2404#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2405
b342501c 2406/*
c676329a
PZ
2407 * Do not use outside of architecture code which knows its limitations.
2408 *
2409 * sched_clock() has no promise of monotonicity or bounded drift between
2410 * CPUs, use (which you should not) requires disabling IRQs.
2411 *
2412 * Please use one of the three interfaces below.
b342501c 2413 */
1bbfa6f2 2414extern unsigned long long notrace sched_clock(void);
c676329a 2415/*
489a71b0 2416 * See the comment in kernel/sched/clock.c
c676329a 2417 */
545a2bf7 2418extern u64 running_clock(void);
c676329a
PZ
2419extern u64 sched_clock_cpu(int cpu);
2420
e436d800 2421
c1955a3d 2422extern void sched_clock_init(void);
3e51f33f 2423
c1955a3d 2424#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2425static inline void sched_clock_tick(void)
2426{
2427}
2428
2429static inline void sched_clock_idle_sleep_event(void)
2430{
2431}
2432
2433static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2434{
2435}
2c923e94
DL
2436
2437static inline u64 cpu_clock(int cpu)
2438{
2439 return sched_clock();
2440}
2441
2442static inline u64 local_clock(void)
2443{
2444 return sched_clock();
2445}
3e51f33f 2446#else
c676329a
PZ
2447/*
2448 * Architectures can set this to 1 if they have specified
2449 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2450 * but then during bootup it turns out that sched_clock()
2451 * is reliable after all:
2452 */
35af99e6
PZ
2453extern int sched_clock_stable(void);
2454extern void set_sched_clock_stable(void);
2455extern void clear_sched_clock_stable(void);
c676329a 2456
3e51f33f
PZ
2457extern void sched_clock_tick(void);
2458extern void sched_clock_idle_sleep_event(void);
2459extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2c923e94
DL
2460
2461/*
2462 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2463 * time source that is monotonic per cpu argument and has bounded drift
2464 * between cpus.
2465 *
2466 * ######################### BIG FAT WARNING ##########################
2467 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2468 * # go backwards !! #
2469 * ####################################################################
2470 */
2471static inline u64 cpu_clock(int cpu)
2472{
2473 return sched_clock_cpu(cpu);
2474}
2475
2476static inline u64 local_clock(void)
2477{
2478 return sched_clock_cpu(raw_smp_processor_id());
2479}
3e51f33f
PZ
2480#endif
2481
b52bfee4
VP
2482#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2483/*
2484 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2485 * The reason for this explicit opt-in is not to have perf penalty with
2486 * slow sched_clocks.
2487 */
2488extern void enable_sched_clock_irqtime(void);
2489extern void disable_sched_clock_irqtime(void);
2490#else
2491static inline void enable_sched_clock_irqtime(void) {}
2492static inline void disable_sched_clock_irqtime(void) {}
2493#endif
2494
36c8b586 2495extern unsigned long long
41b86e9c 2496task_sched_runtime(struct task_struct *task);
1da177e4
LT
2497
2498/* sched_exec is called by processes performing an exec */
2499#ifdef CONFIG_SMP
2500extern void sched_exec(void);
2501#else
2502#define sched_exec() {}
2503#endif
2504
2aa44d05
IM
2505extern void sched_clock_idle_sleep_event(void);
2506extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2507
1da177e4
LT
2508#ifdef CONFIG_HOTPLUG_CPU
2509extern void idle_task_exit(void);
2510#else
2511static inline void idle_task_exit(void) {}
2512#endif
2513
3451d024 2514#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2515extern void wake_up_nohz_cpu(int cpu);
06d8308c 2516#else
1c20091e 2517static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2518#endif
2519
ce831b38 2520#ifdef CONFIG_NO_HZ_FULL
265f22a9 2521extern u64 scheduler_tick_max_deferment(void);
06d8308c
TG
2522#endif
2523
5091faa4 2524#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2525extern void sched_autogroup_create_attach(struct task_struct *p);
2526extern void sched_autogroup_detach(struct task_struct *p);
2527extern void sched_autogroup_fork(struct signal_struct *sig);
2528extern void sched_autogroup_exit(struct signal_struct *sig);
2529#ifdef CONFIG_PROC_FS
2530extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2531extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2532#endif
2533#else
2534static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2535static inline void sched_autogroup_detach(struct task_struct *p) { }
2536static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2537static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2538#endif
2539
fa93384f 2540extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2541extern void set_user_nice(struct task_struct *p, long nice);
2542extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2543/**
2544 * task_nice - return the nice value of a given task.
2545 * @p: the task in question.
2546 *
2547 * Return: The nice value [ -20 ... 0 ... 19 ].
2548 */
2549static inline int task_nice(const struct task_struct *p)
2550{
2551 return PRIO_TO_NICE((p)->static_prio);
2552}
36c8b586
IM
2553extern int can_nice(const struct task_struct *p, const int nice);
2554extern int task_curr(const struct task_struct *p);
1da177e4 2555extern int idle_cpu(int cpu);
fe7de49f
KM
2556extern int sched_setscheduler(struct task_struct *, int,
2557 const struct sched_param *);
961ccddd 2558extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2559 const struct sched_param *);
d50dde5a
DF
2560extern int sched_setattr(struct task_struct *,
2561 const struct sched_attr *);
36c8b586 2562extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2563/**
2564 * is_idle_task - is the specified task an idle task?
fa757281 2565 * @p: the task in question.
e69f6186
YB
2566 *
2567 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2568 */
7061ca3b 2569static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2570{
2571 return p->pid == 0;
2572}
36c8b586
IM
2573extern struct task_struct *curr_task(int cpu);
2574extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2575
2576void yield(void);
2577
1da177e4
LT
2578union thread_union {
2579 struct thread_info thread_info;
2580 unsigned long stack[THREAD_SIZE/sizeof(long)];
2581};
2582
2583#ifndef __HAVE_ARCH_KSTACK_END
2584static inline int kstack_end(void *addr)
2585{
2586 /* Reliable end of stack detection:
2587 * Some APM bios versions misalign the stack
2588 */
2589 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2590}
2591#endif
2592
2593extern union thread_union init_thread_union;
2594extern struct task_struct init_task;
2595
2596extern struct mm_struct init_mm;
2597
198fe21b
PE
2598extern struct pid_namespace init_pid_ns;
2599
2600/*
2601 * find a task by one of its numerical ids
2602 *
198fe21b
PE
2603 * find_task_by_pid_ns():
2604 * finds a task by its pid in the specified namespace
228ebcbe
PE
2605 * find_task_by_vpid():
2606 * finds a task by its virtual pid
198fe21b 2607 *
e49859e7 2608 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2609 */
2610
228ebcbe
PE
2611extern struct task_struct *find_task_by_vpid(pid_t nr);
2612extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2613 struct pid_namespace *ns);
198fe21b 2614
1da177e4 2615/* per-UID process charging. */
7b44ab97 2616extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2617static inline struct user_struct *get_uid(struct user_struct *u)
2618{
2619 atomic_inc(&u->__count);
2620 return u;
2621}
2622extern void free_uid(struct user_struct *);
1da177e4
LT
2623
2624#include <asm/current.h>
2625
f0af911a 2626extern void xtime_update(unsigned long ticks);
1da177e4 2627
b3c97528
HH
2628extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2629extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2630extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2631#ifdef CONFIG_SMP
2632 extern void kick_process(struct task_struct *tsk);
2633#else
2634 static inline void kick_process(struct task_struct *tsk) { }
2635#endif
aab03e05 2636extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2637extern void sched_dead(struct task_struct *p);
1da177e4 2638
1da177e4
LT
2639extern void proc_caches_init(void);
2640extern void flush_signals(struct task_struct *);
10ab825b 2641extern void ignore_signals(struct task_struct *);
1da177e4
LT
2642extern void flush_signal_handlers(struct task_struct *, int force_default);
2643extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2644
be0e6f29 2645static inline int kernel_dequeue_signal(siginfo_t *info)
1da177e4 2646{
be0e6f29
ON
2647 struct task_struct *tsk = current;
2648 siginfo_t __info;
1da177e4
LT
2649 int ret;
2650
be0e6f29
ON
2651 spin_lock_irq(&tsk->sighand->siglock);
2652 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2653 spin_unlock_irq(&tsk->sighand->siglock);
1da177e4
LT
2654
2655 return ret;
53c8f9f1 2656}
1da177e4 2657
9a13049e
ON
2658static inline void kernel_signal_stop(void)
2659{
2660 spin_lock_irq(&current->sighand->siglock);
2661 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2662 __set_current_state(TASK_STOPPED);
2663 spin_unlock_irq(&current->sighand->siglock);
2664
2665 schedule();
2666}
2667
1da177e4
LT
2668extern void release_task(struct task_struct * p);
2669extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2670extern int force_sigsegv(int, struct task_struct *);
2671extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2672extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2673extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2674extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2675 const struct cred *, u32);
c4b92fc1
EB
2676extern int kill_pgrp(struct pid *pid, int sig, int priv);
2677extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2678extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2679extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2680extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2681extern void force_sig(int, struct task_struct *);
1da177e4 2682extern int send_sig(int, struct task_struct *, int);
09faef11 2683extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2684extern struct sigqueue *sigqueue_alloc(void);
2685extern void sigqueue_free(struct sigqueue *);
ac5c2153 2686extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2687extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2688
7e781418
AL
2689#ifdef TIF_RESTORE_SIGMASK
2690/*
2691 * Legacy restore_sigmask accessors. These are inefficient on
2692 * SMP architectures because they require atomic operations.
2693 */
2694
2695/**
2696 * set_restore_sigmask() - make sure saved_sigmask processing gets done
2697 *
2698 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
2699 * will run before returning to user mode, to process the flag. For
2700 * all callers, TIF_SIGPENDING is already set or it's no harm to set
2701 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
2702 * arch code will notice on return to user mode, in case those bits
2703 * are scarce. We set TIF_SIGPENDING here to ensure that the arch
2704 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
2705 */
2706static inline void set_restore_sigmask(void)
2707{
2708 set_thread_flag(TIF_RESTORE_SIGMASK);
2709 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2710}
2711static inline void clear_restore_sigmask(void)
2712{
2713 clear_thread_flag(TIF_RESTORE_SIGMASK);
2714}
2715static inline bool test_restore_sigmask(void)
2716{
2717 return test_thread_flag(TIF_RESTORE_SIGMASK);
2718}
2719static inline bool test_and_clear_restore_sigmask(void)
2720{
2721 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
2722}
2723
2724#else /* TIF_RESTORE_SIGMASK */
2725
2726/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
2727static inline void set_restore_sigmask(void)
2728{
2729 current->restore_sigmask = true;
2730 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2731}
2732static inline void clear_restore_sigmask(void)
2733{
2734 current->restore_sigmask = false;
2735}
2736static inline bool test_restore_sigmask(void)
2737{
2738 return current->restore_sigmask;
2739}
2740static inline bool test_and_clear_restore_sigmask(void)
2741{
2742 if (!current->restore_sigmask)
2743 return false;
2744 current->restore_sigmask = false;
2745 return true;
2746}
2747#endif
2748
51a7b448
AV
2749static inline void restore_saved_sigmask(void)
2750{
2751 if (test_and_clear_restore_sigmask())
77097ae5 2752 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2753}
2754
b7f9a11a
AV
2755static inline sigset_t *sigmask_to_save(void)
2756{
2757 sigset_t *res = &current->blocked;
2758 if (unlikely(test_restore_sigmask()))
2759 res = &current->saved_sigmask;
2760 return res;
2761}
2762
9ec52099
CLG
2763static inline int kill_cad_pid(int sig, int priv)
2764{
2765 return kill_pid(cad_pid, sig, priv);
2766}
2767
1da177e4
LT
2768/* These can be the second arg to send_sig_info/send_group_sig_info. */
2769#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2770#define SEND_SIG_PRIV ((struct siginfo *) 1)
2771#define SEND_SIG_FORCED ((struct siginfo *) 2)
2772
2a855dd0
SAS
2773/*
2774 * True if we are on the alternate signal stack.
2775 */
1da177e4
LT
2776static inline int on_sig_stack(unsigned long sp)
2777{
c876eeab
AL
2778 /*
2779 * If the signal stack is SS_AUTODISARM then, by construction, we
2780 * can't be on the signal stack unless user code deliberately set
2781 * SS_AUTODISARM when we were already on it.
2782 *
2783 * This improves reliability: if user state gets corrupted such that
2784 * the stack pointer points very close to the end of the signal stack,
2785 * then this check will enable the signal to be handled anyway.
2786 */
2787 if (current->sas_ss_flags & SS_AUTODISARM)
2788 return 0;
2789
2a855dd0
SAS
2790#ifdef CONFIG_STACK_GROWSUP
2791 return sp >= current->sas_ss_sp &&
2792 sp - current->sas_ss_sp < current->sas_ss_size;
2793#else
2794 return sp > current->sas_ss_sp &&
2795 sp - current->sas_ss_sp <= current->sas_ss_size;
2796#endif
1da177e4
LT
2797}
2798
2799static inline int sas_ss_flags(unsigned long sp)
2800{
72f15c03
RW
2801 if (!current->sas_ss_size)
2802 return SS_DISABLE;
2803
2804 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2805}
2806
2a742138
SS
2807static inline void sas_ss_reset(struct task_struct *p)
2808{
2809 p->sas_ss_sp = 0;
2810 p->sas_ss_size = 0;
2811 p->sas_ss_flags = SS_DISABLE;
2812}
2813
5a1b98d3
AV
2814static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2815{
2816 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2817#ifdef CONFIG_STACK_GROWSUP
2818 return current->sas_ss_sp;
2819#else
2820 return current->sas_ss_sp + current->sas_ss_size;
2821#endif
2822 return sp;
2823}
2824
1da177e4
LT
2825/*
2826 * Routines for handling mm_structs
2827 */
2828extern struct mm_struct * mm_alloc(void);
2829
2830/* mmdrop drops the mm and the page tables */
b3c97528 2831extern void __mmdrop(struct mm_struct *);
d2005e3f 2832static inline void mmdrop(struct mm_struct *mm)
1da177e4 2833{
6fb43d7b 2834 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2835 __mmdrop(mm);
2836}
2837
d2005e3f
ON
2838static inline bool mmget_not_zero(struct mm_struct *mm)
2839{
2840 return atomic_inc_not_zero(&mm->mm_users);
2841}
2842
1da177e4
LT
2843/* mmput gets rid of the mappings and all user-space */
2844extern void mmput(struct mm_struct *);
7ef949d7
MH
2845#ifdef CONFIG_MMU
2846/* same as above but performs the slow path from the async context. Can
ec8d7c14
MH
2847 * be called from the atomic context as well
2848 */
2849extern void mmput_async(struct mm_struct *);
7ef949d7 2850#endif
ec8d7c14 2851
1da177e4
LT
2852/* Grab a reference to a task's mm, if it is not already going away */
2853extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2854/*
2855 * Grab a reference to a task's mm, if it is not already going away
2856 * and ptrace_may_access with the mode parameter passed to it
2857 * succeeds.
2858 */
2859extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2860/* Remove the current tasks stale references to the old mm_struct */
2861extern void mm_release(struct task_struct *, struct mm_struct *);
2862
3033f14a
JT
2863#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2864extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2865 struct task_struct *, unsigned long);
2866#else
6f2c55b8 2867extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2868 struct task_struct *);
3033f14a
JT
2869
2870/* Architectures that haven't opted into copy_thread_tls get the tls argument
2871 * via pt_regs, so ignore the tls argument passed via C. */
2872static inline int copy_thread_tls(
2873 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2874 struct task_struct *p, unsigned long tls)
2875{
2876 return copy_thread(clone_flags, sp, arg, p);
2877}
2878#endif
1da177e4 2879extern void flush_thread(void);
5f56a5df
JS
2880
2881#ifdef CONFIG_HAVE_EXIT_THREAD
e6464694 2882extern void exit_thread(struct task_struct *tsk);
5f56a5df 2883#else
e6464694 2884static inline void exit_thread(struct task_struct *tsk)
5f56a5df
JS
2885{
2886}
2887#endif
1da177e4 2888
1da177e4 2889extern void exit_files(struct task_struct *);
a7e5328a 2890extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2891
1da177e4 2892extern void exit_itimers(struct signal_struct *);
cbaffba1 2893extern void flush_itimer_signals(void);
1da177e4 2894
9402c95f 2895extern void do_group_exit(int);
1da177e4 2896
c4ad8f98 2897extern int do_execve(struct filename *,
d7627467 2898 const char __user * const __user *,
da3d4c5f 2899 const char __user * const __user *);
51f39a1f
DD
2900extern int do_execveat(int, struct filename *,
2901 const char __user * const __user *,
2902 const char __user * const __user *,
2903 int);
3033f14a 2904extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 2905extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2906struct task_struct *fork_idle(int);
2aa3a7f8 2907extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2908
82b89778
AH
2909extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2910static inline void set_task_comm(struct task_struct *tsk, const char *from)
2911{
2912 __set_task_comm(tsk, from, false);
2913}
59714d65 2914extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2915
2916#ifdef CONFIG_SMP
317f3941 2917void scheduler_ipi(void);
85ba2d86 2918extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2919#else
184748cc 2920static inline void scheduler_ipi(void) { }
85ba2d86
RM
2921static inline unsigned long wait_task_inactive(struct task_struct *p,
2922 long match_state)
2923{
2924 return 1;
2925}
1da177e4
LT
2926#endif
2927
fafe870f
FW
2928#define tasklist_empty() \
2929 list_empty(&init_task.tasks)
2930
05725f7e
JP
2931#define next_task(p) \
2932 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2933
2934#define for_each_process(p) \
2935 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2936
5bb459bb 2937extern bool current_is_single_threaded(void);
d84f4f99 2938
1da177e4
LT
2939/*
2940 * Careful: do_each_thread/while_each_thread is a double loop so
2941 * 'break' will not work as expected - use goto instead.
2942 */
2943#define do_each_thread(g, t) \
2944 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2945
2946#define while_each_thread(g, t) \
2947 while ((t = next_thread(t)) != g)
2948
0c740d0a
ON
2949#define __for_each_thread(signal, t) \
2950 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2951
2952#define for_each_thread(p, t) \
2953 __for_each_thread((p)->signal, t)
2954
2955/* Careful: this is a double loop, 'break' won't work as expected. */
2956#define for_each_process_thread(p, t) \
2957 for_each_process(p) for_each_thread(p, t)
2958
7e49827c
ON
2959static inline int get_nr_threads(struct task_struct *tsk)
2960{
b3ac022c 2961 return tsk->signal->nr_threads;
7e49827c
ON
2962}
2963
087806b1
ON
2964static inline bool thread_group_leader(struct task_struct *p)
2965{
2966 return p->exit_signal >= 0;
2967}
1da177e4 2968
0804ef4b
EB
2969/* Do to the insanities of de_thread it is possible for a process
2970 * to have the pid of the thread group leader without actually being
2971 * the thread group leader. For iteration through the pids in proc
2972 * all we care about is that we have a task with the appropriate
2973 * pid, we don't actually care if we have the right task.
2974 */
e1403b8e 2975static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2976{
e1403b8e 2977 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2978}
2979
bac0abd6 2980static inline
e1403b8e 2981bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2982{
e1403b8e 2983 return p1->signal == p2->signal;
bac0abd6
PE
2984}
2985
36c8b586 2986static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2987{
05725f7e
JP
2988 return list_entry_rcu(p->thread_group.next,
2989 struct task_struct, thread_group);
47e65328
ON
2990}
2991
e868171a 2992static inline int thread_group_empty(struct task_struct *p)
1da177e4 2993{
47e65328 2994 return list_empty(&p->thread_group);
1da177e4
LT
2995}
2996
2997#define delay_group_leader(p) \
2998 (thread_group_leader(p) && !thread_group_empty(p))
2999
1da177e4 3000/*
260ea101 3001 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 3002 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 3003 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 3004 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
3005 *
3006 * Nests both inside and outside of read_lock(&tasklist_lock).
3007 * It must not be nested with write_lock_irq(&tasklist_lock),
3008 * neither inside nor outside.
3009 */
3010static inline void task_lock(struct task_struct *p)
3011{
3012 spin_lock(&p->alloc_lock);
3013}
3014
3015static inline void task_unlock(struct task_struct *p)
3016{
3017 spin_unlock(&p->alloc_lock);
3018}
3019
b8ed374e 3020extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
3021 unsigned long *flags);
3022
9388dc30
AV
3023static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
3024 unsigned long *flags)
3025{
3026 struct sighand_struct *ret;
3027
3028 ret = __lock_task_sighand(tsk, flags);
3029 (void)__cond_lock(&tsk->sighand->siglock, ret);
3030 return ret;
3031}
b8ed374e 3032
f63ee72e
ON
3033static inline void unlock_task_sighand(struct task_struct *tsk,
3034 unsigned long *flags)
3035{
3036 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
3037}
3038
77e4ef99 3039/**
7d7efec3
TH
3040 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
3041 * @tsk: task causing the changes
77e4ef99 3042 *
7d7efec3
TH
3043 * All operations which modify a threadgroup - a new thread joining the
3044 * group, death of a member thread (the assertion of PF_EXITING) and
3045 * exec(2) dethreading the process and replacing the leader - are wrapped
3046 * by threadgroup_change_{begin|end}(). This is to provide a place which
3047 * subsystems needing threadgroup stability can hook into for
3048 * synchronization.
77e4ef99 3049 */
7d7efec3 3050static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 3051{
7d7efec3
TH
3052 might_sleep();
3053 cgroup_threadgroup_change_begin(tsk);
4714d1d3 3054}
77e4ef99
TH
3055
3056/**
7d7efec3
TH
3057 * threadgroup_change_end - mark the end of changes to a threadgroup
3058 * @tsk: task causing the changes
77e4ef99 3059 *
7d7efec3 3060 * See threadgroup_change_begin().
77e4ef99 3061 */
7d7efec3 3062static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 3063{
7d7efec3 3064 cgroup_threadgroup_change_end(tsk);
4714d1d3 3065}
4714d1d3 3066
f037360f
AV
3067#ifndef __HAVE_THREAD_FUNCTIONS
3068
f7e4217b
RZ
3069#define task_thread_info(task) ((struct thread_info *)(task)->stack)
3070#define task_stack_page(task) ((task)->stack)
a1261f54 3071
10ebffde
AV
3072static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
3073{
3074 *task_thread_info(p) = *task_thread_info(org);
3075 task_thread_info(p)->task = p;
3076}
3077
6a40281a
CE
3078/*
3079 * Return the address of the last usable long on the stack.
3080 *
3081 * When the stack grows down, this is just above the thread
3082 * info struct. Going any lower will corrupt the threadinfo.
3083 *
3084 * When the stack grows up, this is the highest address.
3085 * Beyond that position, we corrupt data on the next page.
3086 */
10ebffde
AV
3087static inline unsigned long *end_of_stack(struct task_struct *p)
3088{
6a40281a
CE
3089#ifdef CONFIG_STACK_GROWSUP
3090 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
3091#else
f7e4217b 3092 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 3093#endif
10ebffde
AV
3094}
3095
f037360f 3096#endif
a70857e4
AT
3097#define task_stack_end_corrupted(task) \
3098 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 3099
8b05c7e6
FT
3100static inline int object_is_on_stack(void *obj)
3101{
3102 void *stack = task_stack_page(current);
3103
3104 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3105}
3106
b235beea 3107extern void thread_stack_cache_init(void);
8c9843e5 3108
7c9f8861
ES
3109#ifdef CONFIG_DEBUG_STACK_USAGE
3110static inline unsigned long stack_not_used(struct task_struct *p)
3111{
3112 unsigned long *n = end_of_stack(p);
3113
3114 do { /* Skip over canary */
6c31da34
HD
3115# ifdef CONFIG_STACK_GROWSUP
3116 n--;
3117# else
7c9f8861 3118 n++;
6c31da34 3119# endif
7c9f8861
ES
3120 } while (!*n);
3121
6c31da34
HD
3122# ifdef CONFIG_STACK_GROWSUP
3123 return (unsigned long)end_of_stack(p) - (unsigned long)n;
3124# else
7c9f8861 3125 return (unsigned long)n - (unsigned long)end_of_stack(p);
6c31da34 3126# endif
7c9f8861
ES
3127}
3128#endif
d4311ff1 3129extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 3130
1da177e4
LT
3131/* set thread flags in other task's structures
3132 * - see asm/thread_info.h for TIF_xxxx flags available
3133 */
3134static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3135{
a1261f54 3136 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3137}
3138
3139static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3140{
a1261f54 3141 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3142}
3143
3144static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3145{
a1261f54 3146 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3147}
3148
3149static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3150{
a1261f54 3151 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3152}
3153
3154static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3155{
a1261f54 3156 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3157}
3158
3159static inline void set_tsk_need_resched(struct task_struct *tsk)
3160{
3161 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3162}
3163
3164static inline void clear_tsk_need_resched(struct task_struct *tsk)
3165{
3166 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3167}
3168
8ae121ac
GH
3169static inline int test_tsk_need_resched(struct task_struct *tsk)
3170{
3171 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3172}
3173
690cc3ff
EB
3174static inline int restart_syscall(void)
3175{
3176 set_tsk_thread_flag(current, TIF_SIGPENDING);
3177 return -ERESTARTNOINTR;
3178}
3179
1da177e4
LT
3180static inline int signal_pending(struct task_struct *p)
3181{
3182 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3183}
f776d12d 3184
d9588725
RM
3185static inline int __fatal_signal_pending(struct task_struct *p)
3186{
3187 return unlikely(sigismember(&p->pending.signal, SIGKILL));
3188}
f776d12d
MW
3189
3190static inline int fatal_signal_pending(struct task_struct *p)
3191{
3192 return signal_pending(p) && __fatal_signal_pending(p);
3193}
3194
16882c1e
ON
3195static inline int signal_pending_state(long state, struct task_struct *p)
3196{
3197 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3198 return 0;
3199 if (!signal_pending(p))
3200 return 0;
3201
16882c1e
ON
3202 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3203}
3204
1da177e4
LT
3205/*
3206 * cond_resched() and cond_resched_lock(): latency reduction via
3207 * explicit rescheduling in places that are safe. The return
3208 * value indicates whether a reschedule was done in fact.
3209 * cond_resched_lock() will drop the spinlock before scheduling,
3210 * cond_resched_softirq() will enable bhs before scheduling.
3211 */
c3921ab7 3212extern int _cond_resched(void);
6f80bd98 3213
613afbf8 3214#define cond_resched() ({ \
3427445a 3215 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
3216 _cond_resched(); \
3217})
6f80bd98 3218
613afbf8
FW
3219extern int __cond_resched_lock(spinlock_t *lock);
3220
3221#define cond_resched_lock(lock) ({ \
3427445a 3222 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
3223 __cond_resched_lock(lock); \
3224})
3225
3226extern int __cond_resched_softirq(void);
3227
75e1056f 3228#define cond_resched_softirq() ({ \
3427445a 3229 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 3230 __cond_resched_softirq(); \
613afbf8 3231})
1da177e4 3232
f6f3c437
SH
3233static inline void cond_resched_rcu(void)
3234{
3235#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3236 rcu_read_unlock();
3237 cond_resched();
3238 rcu_read_lock();
3239#endif
3240}
3241
d1c6d149
VN
3242static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3243{
3244#ifdef CONFIG_DEBUG_PREEMPT
3245 return p->preempt_disable_ip;
3246#else
3247 return 0;
3248#endif
3249}
3250
1da177e4
LT
3251/*
3252 * Does a critical section need to be broken due to another
95c354fe
NP
3253 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3254 * but a general need for low latency)
1da177e4 3255 */
95c354fe 3256static inline int spin_needbreak(spinlock_t *lock)
1da177e4 3257{
95c354fe
NP
3258#ifdef CONFIG_PREEMPT
3259 return spin_is_contended(lock);
3260#else
1da177e4 3261 return 0;
95c354fe 3262#endif
1da177e4
LT
3263}
3264
ee761f62
TG
3265/*
3266 * Idle thread specific functions to determine the need_resched
69dd0f84 3267 * polling state.
ee761f62 3268 */
69dd0f84 3269#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
3270static inline int tsk_is_polling(struct task_struct *p)
3271{
3272 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3273}
ea811747
PZ
3274
3275static inline void __current_set_polling(void)
3a98f871
TG
3276{
3277 set_thread_flag(TIF_POLLING_NRFLAG);
3278}
3279
ea811747
PZ
3280static inline bool __must_check current_set_polling_and_test(void)
3281{
3282 __current_set_polling();
3283
3284 /*
3285 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3286 * paired by resched_curr()
ea811747 3287 */
4e857c58 3288 smp_mb__after_atomic();
ea811747
PZ
3289
3290 return unlikely(tif_need_resched());
3291}
3292
3293static inline void __current_clr_polling(void)
3a98f871
TG
3294{
3295 clear_thread_flag(TIF_POLLING_NRFLAG);
3296}
ea811747
PZ
3297
3298static inline bool __must_check current_clr_polling_and_test(void)
3299{
3300 __current_clr_polling();
3301
3302 /*
3303 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3304 * paired by resched_curr()
ea811747 3305 */
4e857c58 3306 smp_mb__after_atomic();
ea811747
PZ
3307
3308 return unlikely(tif_need_resched());
3309}
3310
ee761f62
TG
3311#else
3312static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
3313static inline void __current_set_polling(void) { }
3314static inline void __current_clr_polling(void) { }
3315
3316static inline bool __must_check current_set_polling_and_test(void)
3317{
3318 return unlikely(tif_need_resched());
3319}
3320static inline bool __must_check current_clr_polling_and_test(void)
3321{
3322 return unlikely(tif_need_resched());
3323}
ee761f62
TG
3324#endif
3325
8cb75e0c
PZ
3326static inline void current_clr_polling(void)
3327{
3328 __current_clr_polling();
3329
3330 /*
3331 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3332 * Once the bit is cleared, we'll get IPIs with every new
3333 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3334 * fold.
3335 */
8875125e 3336 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3337
3338 preempt_fold_need_resched();
3339}
3340
75f93fed
PZ
3341static __always_inline bool need_resched(void)
3342{
3343 return unlikely(tif_need_resched());
3344}
3345
f06febc9
FM
3346/*
3347 * Thread group CPU time accounting.
3348 */
4cd4c1b4 3349void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3350void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3351
7bb44ade
RM
3352/*
3353 * Reevaluate whether the task has signals pending delivery.
3354 * Wake the task if so.
3355 * This is required every time the blocked sigset_t changes.
3356 * callers must hold sighand->siglock.
3357 */
3358extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3359extern void recalc_sigpending(void);
3360
910ffdb1
ON
3361extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3362
3363static inline void signal_wake_up(struct task_struct *t, bool resume)
3364{
3365 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3366}
3367static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3368{
3369 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3370}
1da177e4
LT
3371
3372/*
3373 * Wrappers for p->thread_info->cpu access. No-op on UP.
3374 */
3375#ifdef CONFIG_SMP
3376
3377static inline unsigned int task_cpu(const struct task_struct *p)
3378{
a1261f54 3379 return task_thread_info(p)->cpu;
1da177e4
LT
3380}
3381
b32e86b4
IM
3382static inline int task_node(const struct task_struct *p)
3383{
3384 return cpu_to_node(task_cpu(p));
3385}
3386
c65cc870 3387extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3388
3389#else
3390
3391static inline unsigned int task_cpu(const struct task_struct *p)
3392{
3393 return 0;
3394}
3395
3396static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3397{
3398}
3399
3400#endif /* CONFIG_SMP */
3401
96f874e2
RR
3402extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3403extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3404
7c941438 3405#ifdef CONFIG_CGROUP_SCHED
07e06b01 3406extern struct task_group root_task_group;
8323f26c 3407#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3408
54e99124
DG
3409extern int task_can_switch_user(struct user_struct *up,
3410 struct task_struct *tsk);
3411
4b98d11b
AD
3412#ifdef CONFIG_TASK_XACCT
3413static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3414{
940389b8 3415 tsk->ioac.rchar += amt;
4b98d11b
AD
3416}
3417
3418static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3419{
940389b8 3420 tsk->ioac.wchar += amt;
4b98d11b
AD
3421}
3422
3423static inline void inc_syscr(struct task_struct *tsk)
3424{
940389b8 3425 tsk->ioac.syscr++;
4b98d11b
AD
3426}
3427
3428static inline void inc_syscw(struct task_struct *tsk)
3429{
940389b8 3430 tsk->ioac.syscw++;
4b98d11b
AD
3431}
3432#else
3433static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3434{
3435}
3436
3437static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3438{
3439}
3440
3441static inline void inc_syscr(struct task_struct *tsk)
3442{
3443}
3444
3445static inline void inc_syscw(struct task_struct *tsk)
3446{
3447}
3448#endif
3449
82455257
DH
3450#ifndef TASK_SIZE_OF
3451#define TASK_SIZE_OF(tsk) TASK_SIZE
3452#endif
3453
f98bafa0 3454#ifdef CONFIG_MEMCG
cf475ad2 3455extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3456#else
3457static inline void mm_update_next_owner(struct mm_struct *mm)
3458{
3459}
f98bafa0 3460#endif /* CONFIG_MEMCG */
cf475ad2 3461
3e10e716
JS
3462static inline unsigned long task_rlimit(const struct task_struct *tsk,
3463 unsigned int limit)
3464{
316c1608 3465 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3466}
3467
3468static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3469 unsigned int limit)
3470{
316c1608 3471 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3472}
3473
3474static inline unsigned long rlimit(unsigned int limit)
3475{
3476 return task_rlimit(current, limit);
3477}
3478
3479static inline unsigned long rlimit_max(unsigned int limit)
3480{
3481 return task_rlimit_max(current, limit);
3482}
3483
adaf9fcd
RW
3484#ifdef CONFIG_CPU_FREQ
3485struct update_util_data {
3486 void (*func)(struct update_util_data *data,
3487 u64 time, unsigned long util, unsigned long max);
3488};
3489
0bed612b
RW
3490void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
3491 void (*func)(struct update_util_data *data, u64 time,
3492 unsigned long util, unsigned long max));
3493void cpufreq_remove_update_util_hook(int cpu);
adaf9fcd
RW
3494#endif /* CONFIG_CPU_FREQ */
3495
1da177e4 3496#endif