kcsan: Avoid checking scoped accesses from nested contexts
[linux-block.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/mutex.h>
18#include <linux/plist.h>
19#include <linux/hrtimer.h>
0584df9c 20#include <linux/irqflags.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
ec1d2819 24#include <linux/refcount.h>
a3b6714e 25#include <linux/resource.h>
9745512c 26#include <linux/latencytop.h>
5eca1c10 27#include <linux/sched/prio.h>
9eacb5c7 28#include <linux/sched/types.h>
5eca1c10 29#include <linux/signal_types.h>
1446e1df 30#include <linux/syscall_user_dispatch.h>
5eca1c10
IM
31#include <linux/mm_types_task.h>
32#include <linux/task_io_accounting.h>
2b69942f 33#include <linux/posix-timers.h>
d7822b1e 34#include <linux/rseq.h>
0cd39f46 35#include <linux/seqlock.h>
dfd402a4 36#include <linux/kcsan.h>
5fbda3ec 37#include <asm/kmap_size.h>
a3b6714e 38
5eca1c10 39/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 40struct audit_context;
c7af7877 41struct backing_dev_info;
bddd87c7 42struct bio_list;
73c10101 43struct blk_plug;
a10787e6 44struct bpf_local_storage;
c7603cfa 45struct bpf_run_ctx;
3c93a0c0 46struct capture_control;
c7af7877 47struct cfs_rq;
c7af7877
IM
48struct fs_struct;
49struct futex_pi_state;
50struct io_context;
1875dc5b 51struct io_uring_task;
c7af7877 52struct mempolicy;
89076bc3 53struct nameidata;
c7af7877
IM
54struct nsproxy;
55struct perf_event_context;
56struct pid_namespace;
57struct pipe_inode_info;
58struct rcu_node;
59struct reclaim_state;
60struct robust_list_head;
3c93a0c0
QY
61struct root_domain;
62struct rq;
c7af7877
IM
63struct sched_attr;
64struct sched_param;
43ae34cb 65struct seq_file;
c7af7877
IM
66struct sighand_struct;
67struct signal_struct;
68struct task_delay_info;
4cf86d77 69struct task_group;
1da177e4 70
4a8342d2
LT
71/*
72 * Task state bitmask. NOTE! These bits are also
73 * encoded in fs/proc/array.c: get_task_state().
74 *
75 * We have two separate sets of flags: task->state
76 * is about runnability, while task->exit_state are
77 * about the task exiting. Confusing, but this way
78 * modifying one set can't modify the other one by
79 * mistake.
80 */
5eca1c10
IM
81
82/* Used in tsk->state: */
92c4bc9f
PZ
83#define TASK_RUNNING 0x0000
84#define TASK_INTERRUPTIBLE 0x0001
85#define TASK_UNINTERRUPTIBLE 0x0002
86#define __TASK_STOPPED 0x0004
87#define __TASK_TRACED 0x0008
5eca1c10 88/* Used in tsk->exit_state: */
92c4bc9f
PZ
89#define EXIT_DEAD 0x0010
90#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
91#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
92/* Used in tsk->state again: */
8ef9925b
PZ
93#define TASK_PARKED 0x0040
94#define TASK_DEAD 0x0080
95#define TASK_WAKEKILL 0x0100
96#define TASK_WAKING 0x0200
92c4bc9f
PZ
97#define TASK_NOLOAD 0x0400
98#define TASK_NEW 0x0800
cd781d0c
TG
99/* RT specific auxilliary flag to mark RT lock waiters */
100#define TASK_RTLOCK_WAIT 0x1000
101#define TASK_STATE_MAX 0x2000
5eca1c10 102
5eca1c10
IM
103/* Convenience macros for the sake of set_current_state: */
104#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
105#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
106#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
107
108#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
109
110/* Convenience macros for the sake of wake_up(): */
111#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
112
113/* get_task_state(): */
114#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
115 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
116 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
117 TASK_PARKED)
5eca1c10 118
2f064a59 119#define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
5eca1c10 120
2f064a59 121#define task_is_traced(task) ((READ_ONCE(task->__state) & __TASK_TRACED) != 0)
5eca1c10 122
2f064a59 123#define task_is_stopped(task) ((READ_ONCE(task->__state) & __TASK_STOPPED) != 0)
5eca1c10 124
2f064a59 125#define task_is_stopped_or_traced(task) ((READ_ONCE(task->__state) & (__TASK_STOPPED | __TASK_TRACED)) != 0)
5eca1c10 126
b5bf9a90
PZ
127/*
128 * Special states are those that do not use the normal wait-loop pattern. See
129 * the comment with set_special_state().
130 */
131#define is_special_task_state(state) \
1cef1150 132 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 133
85019c16
TG
134#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
135# define debug_normal_state_change(state_value) \
136 do { \
137 WARN_ON_ONCE(is_special_task_state(state_value)); \
138 current->task_state_change = _THIS_IP_; \
8eb23b9f
PZ
139 } while (0)
140
85019c16 141# define debug_special_state_change(state_value) \
b5bf9a90 142 do { \
b5bf9a90 143 WARN_ON_ONCE(!is_special_task_state(state_value)); \
b5bf9a90 144 current->task_state_change = _THIS_IP_; \
b5bf9a90 145 } while (0)
85019c16 146
5f220be2
TG
147# define debug_rtlock_wait_set_state() \
148 do { \
149 current->saved_state_change = current->task_state_change;\
150 current->task_state_change = _THIS_IP_; \
151 } while (0)
152
153# define debug_rtlock_wait_restore_state() \
154 do { \
155 current->task_state_change = current->saved_state_change;\
156 } while (0)
157
8eb23b9f 158#else
85019c16
TG
159# define debug_normal_state_change(cond) do { } while (0)
160# define debug_special_state_change(cond) do { } while (0)
5f220be2
TG
161# define debug_rtlock_wait_set_state() do { } while (0)
162# define debug_rtlock_wait_restore_state() do { } while (0)
85019c16
TG
163#endif
164
498d0c57
AM
165/*
166 * set_current_state() includes a barrier so that the write of current->state
167 * is correctly serialised wrt the caller's subsequent test of whether to
168 * actually sleep:
169 *
a2250238 170 * for (;;) {
498d0c57 171 * set_current_state(TASK_UNINTERRUPTIBLE);
58877d34
PZ
172 * if (CONDITION)
173 * break;
a2250238
PZ
174 *
175 * schedule();
176 * }
177 * __set_current_state(TASK_RUNNING);
178 *
179 * If the caller does not need such serialisation (because, for instance, the
58877d34 180 * CONDITION test and condition change and wakeup are under the same lock) then
a2250238
PZ
181 * use __set_current_state().
182 *
183 * The above is typically ordered against the wakeup, which does:
184 *
58877d34 185 * CONDITION = 1;
b5bf9a90 186 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 187 *
58877d34
PZ
188 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
189 * accessing p->state.
a2250238
PZ
190 *
191 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
192 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
193 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 194 *
b5bf9a90 195 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 196 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
197 * a problem either because that will result in one extra go around the loop
198 * and our @cond test will save the day.
498d0c57 199 *
a2250238 200 * Also see the comments of try_to_wake_up().
498d0c57 201 */
b5bf9a90 202#define __set_current_state(state_value) \
85019c16
TG
203 do { \
204 debug_normal_state_change((state_value)); \
205 WRITE_ONCE(current->__state, (state_value)); \
206 } while (0)
b5bf9a90
PZ
207
208#define set_current_state(state_value) \
85019c16
TG
209 do { \
210 debug_normal_state_change((state_value)); \
211 smp_store_mb(current->__state, (state_value)); \
212 } while (0)
b5bf9a90
PZ
213
214/*
215 * set_special_state() should be used for those states when the blocking task
216 * can not use the regular condition based wait-loop. In that case we must
85019c16
TG
217 * serialize against wakeups such that any possible in-flight TASK_RUNNING
218 * stores will not collide with our state change.
b5bf9a90
PZ
219 */
220#define set_special_state(state_value) \
221 do { \
222 unsigned long flags; /* may shadow */ \
85019c16 223 \
b5bf9a90 224 raw_spin_lock_irqsave(&current->pi_lock, flags); \
85019c16 225 debug_special_state_change((state_value)); \
2f064a59 226 WRITE_ONCE(current->__state, (state_value)); \
b5bf9a90
PZ
227 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
228 } while (0)
229
5f220be2
TG
230/*
231 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
232 *
233 * RT's spin/rwlock substitutions are state preserving. The state of the
234 * task when blocking on the lock is saved in task_struct::saved_state and
235 * restored after the lock has been acquired. These operations are
236 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
237 * lock related wakeups while the task is blocked on the lock are
238 * redirected to operate on task_struct::saved_state to ensure that these
239 * are not dropped. On restore task_struct::saved_state is set to
240 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
241 *
242 * The lock operation looks like this:
243 *
244 * current_save_and_set_rtlock_wait_state();
245 * for (;;) {
246 * if (try_lock())
247 * break;
248 * raw_spin_unlock_irq(&lock->wait_lock);
249 * schedule_rtlock();
250 * raw_spin_lock_irq(&lock->wait_lock);
251 * set_current_state(TASK_RTLOCK_WAIT);
252 * }
253 * current_restore_rtlock_saved_state();
254 */
255#define current_save_and_set_rtlock_wait_state() \
256 do { \
257 lockdep_assert_irqs_disabled(); \
258 raw_spin_lock(&current->pi_lock); \
259 current->saved_state = current->__state; \
260 debug_rtlock_wait_set_state(); \
261 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
262 raw_spin_unlock(&current->pi_lock); \
263 } while (0);
264
265#define current_restore_rtlock_saved_state() \
266 do { \
267 lockdep_assert_irqs_disabled(); \
268 raw_spin_lock(&current->pi_lock); \
269 debug_rtlock_wait_restore_state(); \
270 WRITE_ONCE(current->__state, current->saved_state); \
271 current->saved_state = TASK_RUNNING; \
272 raw_spin_unlock(&current->pi_lock); \
273 } while (0);
8eb23b9f 274
2f064a59 275#define get_current_state() READ_ONCE(current->__state)
d6c23bb3 276
5eca1c10
IM
277/* Task command name length: */
278#define TASK_COMM_LEN 16
1da177e4 279
1da177e4
LT
280extern void scheduler_tick(void);
281
5eca1c10
IM
282#define MAX_SCHEDULE_TIMEOUT LONG_MAX
283
284extern long schedule_timeout(long timeout);
285extern long schedule_timeout_interruptible(long timeout);
286extern long schedule_timeout_killable(long timeout);
287extern long schedule_timeout_uninterruptible(long timeout);
288extern long schedule_timeout_idle(long timeout);
1da177e4 289asmlinkage void schedule(void);
c5491ea7 290extern void schedule_preempt_disabled(void);
19c95f26 291asmlinkage void preempt_schedule_irq(void);
6991436c
TG
292#ifdef CONFIG_PREEMPT_RT
293 extern void schedule_rtlock(void);
294#endif
1da177e4 295
10ab5643
TH
296extern int __must_check io_schedule_prepare(void);
297extern void io_schedule_finish(int token);
9cff8ade 298extern long io_schedule_timeout(long timeout);
10ab5643 299extern void io_schedule(void);
9cff8ade 300
d37f761d 301/**
0ba42a59 302 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
303 * @utime: time spent in user mode
304 * @stime: time spent in system mode
9d7fb042 305 * @lock: protects the above two fields
d37f761d 306 *
9d7fb042
PZ
307 * Stores previous user/system time values such that we can guarantee
308 * monotonicity.
d37f761d 309 */
9d7fb042
PZ
310struct prev_cputime {
311#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
312 u64 utime;
313 u64 stime;
314 raw_spinlock_t lock;
9d7fb042 315#endif
d37f761d
FW
316};
317
bac5b6b6
FW
318enum vtime_state {
319 /* Task is sleeping or running in a CPU with VTIME inactive: */
320 VTIME_INACTIVE = 0,
14faf6fc
FW
321 /* Task is idle */
322 VTIME_IDLE,
bac5b6b6
FW
323 /* Task runs in kernelspace in a CPU with VTIME active: */
324 VTIME_SYS,
14faf6fc
FW
325 /* Task runs in userspace in a CPU with VTIME active: */
326 VTIME_USER,
e6d5bf3e
FW
327 /* Task runs as guests in a CPU with VTIME active: */
328 VTIME_GUEST,
bac5b6b6
FW
329};
330
331struct vtime {
332 seqcount_t seqcount;
333 unsigned long long starttime;
334 enum vtime_state state;
802f4a82 335 unsigned int cpu;
2a42eb95
WL
336 u64 utime;
337 u64 stime;
338 u64 gtime;
bac5b6b6
FW
339};
340
69842cba
PB
341/*
342 * Utilization clamp constraints.
343 * @UCLAMP_MIN: Minimum utilization
344 * @UCLAMP_MAX: Maximum utilization
345 * @UCLAMP_CNT: Utilization clamp constraints count
346 */
347enum uclamp_id {
348 UCLAMP_MIN = 0,
349 UCLAMP_MAX,
350 UCLAMP_CNT
351};
352
f9a25f77
MP
353#ifdef CONFIG_SMP
354extern struct root_domain def_root_domain;
355extern struct mutex sched_domains_mutex;
356#endif
357
1da177e4 358struct sched_info {
7f5f8e8d 359#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
360 /* Cumulative counters: */
361
362 /* # of times we have run on this CPU: */
363 unsigned long pcount;
364
365 /* Time spent waiting on a runqueue: */
366 unsigned long long run_delay;
367
368 /* Timestamps: */
369
370 /* When did we last run on a CPU? */
371 unsigned long long last_arrival;
372
373 /* When were we last queued to run? */
374 unsigned long long last_queued;
1da177e4 375
f6db8347 376#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 377};
1da177e4 378
6ecdd749
YD
379/*
380 * Integer metrics need fixed point arithmetic, e.g., sched/fair
381 * has a few: load, load_avg, util_avg, freq, and capacity.
382 *
383 * We define a basic fixed point arithmetic range, and then formalize
384 * all these metrics based on that basic range.
385 */
5eca1c10
IM
386# define SCHED_FIXEDPOINT_SHIFT 10
387# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 388
69842cba
PB
389/* Increase resolution of cpu_capacity calculations */
390# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
391# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
392
20b8a59f 393struct load_weight {
5eca1c10
IM
394 unsigned long weight;
395 u32 inv_weight;
20b8a59f
IM
396};
397
7f65ea42
PB
398/**
399 * struct util_est - Estimation utilization of FAIR tasks
400 * @enqueued: instantaneous estimated utilization of a task/cpu
401 * @ewma: the Exponential Weighted Moving Average (EWMA)
402 * utilization of a task
403 *
404 * Support data structure to track an Exponential Weighted Moving Average
405 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
406 * average each time a task completes an activation. Sample's weight is chosen
407 * so that the EWMA will be relatively insensitive to transient changes to the
408 * task's workload.
409 *
410 * The enqueued attribute has a slightly different meaning for tasks and cpus:
411 * - task: the task's util_avg at last task dequeue time
412 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
413 * Thus, the util_est.enqueued of a task represents the contribution on the
414 * estimated utilization of the CPU where that task is currently enqueued.
415 *
416 * Only for tasks we track a moving average of the past instantaneous
417 * estimated utilization. This allows to absorb sporadic drops in utilization
418 * of an otherwise almost periodic task.
68d7a190
DE
419 *
420 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
421 * updates. When a task is dequeued, its util_est should not be updated if its
422 * util_avg has not been updated in the meantime.
423 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
424 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
425 * for a task) it is safe to use MSB.
7f65ea42
PB
426 */
427struct util_est {
428 unsigned int enqueued;
429 unsigned int ewma;
430#define UTIL_EST_WEIGHT_SHIFT 2
68d7a190 431#define UTIL_AVG_UNCHANGED 0x80000000
317d359d 432} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 433
9d89c257 434/*
9f683953 435 * The load/runnable/util_avg accumulates an infinite geometric series
0dacee1b 436 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
7b595334
YD
437 *
438 * [load_avg definition]
439 *
440 * load_avg = runnable% * scale_load_down(load)
441 *
9f683953
VG
442 * [runnable_avg definition]
443 *
444 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
7b595334 445 *
7b595334
YD
446 * [util_avg definition]
447 *
448 * util_avg = running% * SCHED_CAPACITY_SCALE
449 *
9f683953
VG
450 * where runnable% is the time ratio that a sched_entity is runnable and
451 * running% the time ratio that a sched_entity is running.
452 *
453 * For cfs_rq, they are the aggregated values of all runnable and blocked
454 * sched_entities.
7b595334 455 *
c1b7b8d4 456 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
9f683953
VG
457 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
458 * for computing those signals (see update_rq_clock_pelt())
7b595334 459 *
23127296
VG
460 * N.B., the above ratios (runnable% and running%) themselves are in the
461 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
462 * to as large a range as necessary. This is for example reflected by
463 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
464 *
465 * [Overflow issue]
466 *
467 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
468 * with the highest load (=88761), always runnable on a single cfs_rq,
469 * and should not overflow as the number already hits PID_MAX_LIMIT.
470 *
471 * For all other cases (including 32-bit kernels), struct load_weight's
472 * weight will overflow first before we do, because:
473 *
474 * Max(load_avg) <= Max(load.weight)
475 *
476 * Then it is the load_weight's responsibility to consider overflow
477 * issues.
9d89c257 478 */
9d85f21c 479struct sched_avg {
5eca1c10
IM
480 u64 last_update_time;
481 u64 load_sum;
9f683953 482 u64 runnable_sum;
5eca1c10
IM
483 u32 util_sum;
484 u32 period_contrib;
485 unsigned long load_avg;
9f683953 486 unsigned long runnable_avg;
5eca1c10 487 unsigned long util_avg;
7f65ea42 488 struct util_est util_est;
317d359d 489} ____cacheline_aligned;
9d85f21c 490
41acab88 491struct sched_statistics {
7f5f8e8d 492#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
493 u64 wait_start;
494 u64 wait_max;
495 u64 wait_count;
496 u64 wait_sum;
497 u64 iowait_count;
498 u64 iowait_sum;
499
500 u64 sleep_start;
501 u64 sleep_max;
502 s64 sum_sleep_runtime;
503
504 u64 block_start;
505 u64 block_max;
847fc0cd
YS
506 s64 sum_block_runtime;
507
5eca1c10
IM
508 u64 exec_max;
509 u64 slice_max;
510
511 u64 nr_migrations_cold;
512 u64 nr_failed_migrations_affine;
513 u64 nr_failed_migrations_running;
514 u64 nr_failed_migrations_hot;
515 u64 nr_forced_migrations;
516
517 u64 nr_wakeups;
518 u64 nr_wakeups_sync;
519 u64 nr_wakeups_migrate;
520 u64 nr_wakeups_local;
521 u64 nr_wakeups_remote;
522 u64 nr_wakeups_affine;
523 u64 nr_wakeups_affine_attempts;
524 u64 nr_wakeups_passive;
525 u64 nr_wakeups_idle;
41acab88 526#endif
ceeadb83 527} ____cacheline_aligned;
41acab88
LDM
528
529struct sched_entity {
5eca1c10
IM
530 /* For load-balancing: */
531 struct load_weight load;
532 struct rb_node run_node;
533 struct list_head group_node;
534 unsigned int on_rq;
41acab88 535
5eca1c10
IM
536 u64 exec_start;
537 u64 sum_exec_runtime;
538 u64 vruntime;
539 u64 prev_sum_exec_runtime;
41acab88 540
5eca1c10 541 u64 nr_migrations;
41acab88 542
20b8a59f 543#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
544 int depth;
545 struct sched_entity *parent;
20b8a59f 546 /* rq on which this entity is (to be) queued: */
5eca1c10 547 struct cfs_rq *cfs_rq;
20b8a59f 548 /* rq "owned" by this entity/group: */
5eca1c10 549 struct cfs_rq *my_q;
9f683953
VG
550 /* cached value of my_q->h_nr_running */
551 unsigned long runnable_weight;
20b8a59f 552#endif
8bd75c77 553
141965c7 554#ifdef CONFIG_SMP
5a107804
JO
555 /*
556 * Per entity load average tracking.
557 *
558 * Put into separate cache line so it does not
559 * collide with read-mostly values above.
560 */
317d359d 561 struct sched_avg avg;
9d85f21c 562#endif
20b8a59f 563};
70b97a7f 564
fa717060 565struct sched_rt_entity {
5eca1c10
IM
566 struct list_head run_list;
567 unsigned long timeout;
568 unsigned long watchdog_stamp;
569 unsigned int time_slice;
570 unsigned short on_rq;
571 unsigned short on_list;
572
573 struct sched_rt_entity *back;
052f1dc7 574#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 575 struct sched_rt_entity *parent;
6f505b16 576 /* rq on which this entity is (to be) queued: */
5eca1c10 577 struct rt_rq *rt_rq;
6f505b16 578 /* rq "owned" by this entity/group: */
5eca1c10 579 struct rt_rq *my_q;
6f505b16 580#endif
3859a271 581} __randomize_layout;
fa717060 582
aab03e05 583struct sched_dl_entity {
5eca1c10 584 struct rb_node rb_node;
aab03e05
DF
585
586 /*
587 * Original scheduling parameters. Copied here from sched_attr
4027d080 588 * during sched_setattr(), they will remain the same until
589 * the next sched_setattr().
aab03e05 590 */
5eca1c10
IM
591 u64 dl_runtime; /* Maximum runtime for each instance */
592 u64 dl_deadline; /* Relative deadline of each instance */
593 u64 dl_period; /* Separation of two instances (period) */
54d6d303 594 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 595 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
596
597 /*
598 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 599 * they are continuously updated during task execution. Note that
aab03e05
DF
600 * the remaining runtime could be < 0 in case we are in overrun.
601 */
5eca1c10
IM
602 s64 runtime; /* Remaining runtime for this instance */
603 u64 deadline; /* Absolute deadline for this instance */
604 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
605
606 /*
607 * Some bool flags:
608 *
609 * @dl_throttled tells if we exhausted the runtime. If so, the
610 * task has to wait for a replenishment to be performed at the
611 * next firing of dl_timer.
612 *
2d3d891d
DF
613 * @dl_boosted tells if we are boosted due to DI. If so we are
614 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
615 * exit the critical section);
616 *
5eca1c10 617 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 618 * all its available runtime during the last job.
209a0cbd
LA
619 *
620 * @dl_non_contending tells if the task is inactive while still
621 * contributing to the active utilization. In other words, it
622 * indicates if the inactive timer has been armed and its handler
623 * has not been executed yet. This flag is useful to avoid race
624 * conditions between the inactive timer handler and the wakeup
625 * code.
34be3930
JL
626 *
627 * @dl_overrun tells if the task asked to be informed about runtime
628 * overruns.
aab03e05 629 */
aa5222e9 630 unsigned int dl_throttled : 1;
aa5222e9
DC
631 unsigned int dl_yielded : 1;
632 unsigned int dl_non_contending : 1;
34be3930 633 unsigned int dl_overrun : 1;
aab03e05
DF
634
635 /*
636 * Bandwidth enforcement timer. Each -deadline task has its
637 * own bandwidth to be enforced, thus we need one timer per task.
638 */
5eca1c10 639 struct hrtimer dl_timer;
209a0cbd
LA
640
641 /*
642 * Inactive timer, responsible for decreasing the active utilization
643 * at the "0-lag time". When a -deadline task blocks, it contributes
644 * to GRUB's active utilization until the "0-lag time", hence a
645 * timer is needed to decrease the active utilization at the correct
646 * time.
647 */
648 struct hrtimer inactive_timer;
2279f540
JL
649
650#ifdef CONFIG_RT_MUTEXES
651 /*
652 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
653 * pi_se points to the donor, otherwise points to the dl_se it belongs
654 * to (the original one/itself).
655 */
656 struct sched_dl_entity *pi_se;
657#endif
aab03e05 658};
8bd75c77 659
69842cba
PB
660#ifdef CONFIG_UCLAMP_TASK
661/* Number of utilization clamp buckets (shorter alias) */
662#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
663
664/*
665 * Utilization clamp for a scheduling entity
666 * @value: clamp value "assigned" to a se
667 * @bucket_id: bucket index corresponding to the "assigned" value
e8f14172 668 * @active: the se is currently refcounted in a rq's bucket
a509a7cd 669 * @user_defined: the requested clamp value comes from user-space
69842cba
PB
670 *
671 * The bucket_id is the index of the clamp bucket matching the clamp value
672 * which is pre-computed and stored to avoid expensive integer divisions from
673 * the fast path.
e8f14172
PB
674 *
675 * The active bit is set whenever a task has got an "effective" value assigned,
676 * which can be different from the clamp value "requested" from user-space.
677 * This allows to know a task is refcounted in the rq's bucket corresponding
678 * to the "effective" bucket_id.
a509a7cd
PB
679 *
680 * The user_defined bit is set whenever a task has got a task-specific clamp
681 * value requested from userspace, i.e. the system defaults apply to this task
682 * just as a restriction. This allows to relax default clamps when a less
683 * restrictive task-specific value has been requested, thus allowing to
684 * implement a "nice" semantic. For example, a task running with a 20%
685 * default boost can still drop its own boosting to 0%.
69842cba
PB
686 */
687struct uclamp_se {
688 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
689 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
e8f14172 690 unsigned int active : 1;
a509a7cd 691 unsigned int user_defined : 1;
69842cba
PB
692};
693#endif /* CONFIG_UCLAMP_TASK */
694
1d082fd0
PM
695union rcu_special {
696 struct {
5eca1c10
IM
697 u8 blocked;
698 u8 need_qs;
05f41571 699 u8 exp_hint; /* Hint for performance. */
276c4104 700 u8 need_mb; /* Readers need smp_mb(). */
8203d6d0 701 } b; /* Bits. */
05f41571 702 u32 s; /* Set of bits. */
1d082fd0 703};
86848966 704
8dc85d54
PZ
705enum perf_event_task_context {
706 perf_invalid_context = -1,
707 perf_hw_context = 0,
89a1e187 708 perf_sw_context,
8dc85d54
PZ
709 perf_nr_task_contexts,
710};
711
eb61baf6
IM
712struct wake_q_node {
713 struct wake_q_node *next;
714};
715
5fbda3ec
TG
716struct kmap_ctrl {
717#ifdef CONFIG_KMAP_LOCAL
718 int idx;
719 pte_t pteval[KM_MAX_IDX];
720#endif
721};
722
1da177e4 723struct task_struct {
c65eacbe
AL
724#ifdef CONFIG_THREAD_INFO_IN_TASK
725 /*
726 * For reasons of header soup (see current_thread_info()), this
727 * must be the first element of task_struct.
728 */
5eca1c10 729 struct thread_info thread_info;
c65eacbe 730#endif
2f064a59 731 unsigned int __state;
29e48ce8 732
5f220be2
TG
733#ifdef CONFIG_PREEMPT_RT
734 /* saved state for "spinlock sleepers" */
735 unsigned int saved_state;
736#endif
737
29e48ce8
KC
738 /*
739 * This begins the randomizable portion of task_struct. Only
740 * scheduling-critical items should be added above here.
741 */
742 randomized_struct_fields_start
743
5eca1c10 744 void *stack;
ec1d2819 745 refcount_t usage;
5eca1c10
IM
746 /* Per task flags (PF_*), defined further below: */
747 unsigned int flags;
748 unsigned int ptrace;
1da177e4 749
2dd73a4f 750#ifdef CONFIG_SMP
5eca1c10 751 int on_cpu;
8c4890d1 752 struct __call_single_node wake_entry;
5eca1c10
IM
753 unsigned int wakee_flips;
754 unsigned long wakee_flip_decay_ts;
755 struct task_struct *last_wakee;
ac66f547 756
32e839dd
MG
757 /*
758 * recent_used_cpu is initially set as the last CPU used by a task
759 * that wakes affine another task. Waker/wakee relationships can
760 * push tasks around a CPU where each wakeup moves to the next one.
761 * Tracking a recently used CPU allows a quick search for a recently
762 * used CPU that may be idle.
763 */
764 int recent_used_cpu;
5eca1c10 765 int wake_cpu;
2dd73a4f 766#endif
5eca1c10
IM
767 int on_rq;
768
769 int prio;
770 int static_prio;
771 int normal_prio;
772 unsigned int rt_priority;
50e645a8 773
5eca1c10
IM
774 struct sched_entity se;
775 struct sched_rt_entity rt;
8a311c74 776 struct sched_dl_entity dl;
804bccba 777 const struct sched_class *sched_class;
8a311c74
PZ
778
779#ifdef CONFIG_SCHED_CORE
780 struct rb_node core_node;
781 unsigned long core_cookie;
d2dfa17b 782 unsigned int core_occupation;
8a311c74
PZ
783#endif
784
8323f26c 785#ifdef CONFIG_CGROUP_SCHED
5eca1c10 786 struct task_group *sched_task_group;
8323f26c 787#endif
1da177e4 788
69842cba 789#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
790 /*
791 * Clamp values requested for a scheduling entity.
792 * Must be updated with task_rq_lock() held.
793 */
e8f14172 794 struct uclamp_se uclamp_req[UCLAMP_CNT];
13685c4a
QY
795 /*
796 * Effective clamp values used for a scheduling entity.
797 * Must be updated with task_rq_lock() held.
798 */
69842cba
PB
799 struct uclamp_se uclamp[UCLAMP_CNT];
800#endif
801
ceeadb83
YS
802 struct sched_statistics stats;
803
e107be36 804#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
805 /* List of struct preempt_notifier: */
806 struct hlist_head preempt_notifiers;
e107be36
AK
807#endif
808
6c5c9341 809#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 810 unsigned int btrace_seq;
6c5c9341 811#endif
1da177e4 812
5eca1c10
IM
813 unsigned int policy;
814 int nr_cpus_allowed;
3bd37062 815 const cpumask_t *cpus_ptr;
b90ca8ba 816 cpumask_t *user_cpus_ptr;
3bd37062 817 cpumask_t cpus_mask;
6d337eab 818 void *migration_pending;
74d862b6 819#ifdef CONFIG_SMP
a7c81556 820 unsigned short migration_disabled;
af449901 821#endif
a7c81556 822 unsigned short migration_flags;
1da177e4 823
a57eb940 824#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
825 int rcu_read_lock_nesting;
826 union rcu_special rcu_read_unlock_special;
827 struct list_head rcu_node_entry;
828 struct rcu_node *rcu_blocked_node;
28f6569a 829#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 830
8315f422 831#ifdef CONFIG_TASKS_RCU
5eca1c10 832 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
833 u8 rcu_tasks_holdout;
834 u8 rcu_tasks_idx;
5eca1c10 835 int rcu_tasks_idle_cpu;
ccdd29ff 836 struct list_head rcu_tasks_holdout_list;
8315f422 837#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 838
d5f177d3
PM
839#ifdef CONFIG_TASKS_TRACE_RCU
840 int trc_reader_nesting;
841 int trc_ipi_to_cpu;
276c4104 842 union rcu_special trc_reader_special;
d5f177d3
PM
843 bool trc_reader_checked;
844 struct list_head trc_holdout_list;
845#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
846
5eca1c10 847 struct sched_info sched_info;
1da177e4 848
5eca1c10 849 struct list_head tasks;
806c09a7 850#ifdef CONFIG_SMP
5eca1c10
IM
851 struct plist_node pushable_tasks;
852 struct rb_node pushable_dl_tasks;
806c09a7 853#endif
1da177e4 854
5eca1c10
IM
855 struct mm_struct *mm;
856 struct mm_struct *active_mm;
314ff785
IM
857
858 /* Per-thread vma caching: */
5eca1c10 859 struct vmacache vmacache;
314ff785 860
5eca1c10
IM
861#ifdef SPLIT_RSS_COUNTING
862 struct task_rss_stat rss_stat;
34e55232 863#endif
5eca1c10
IM
864 int exit_state;
865 int exit_code;
866 int exit_signal;
867 /* The signal sent when the parent dies: */
868 int pdeath_signal;
869 /* JOBCTL_*, siglock protected: */
870 unsigned long jobctl;
871
872 /* Used for emulating ABI behavior of previous Linux versions: */
873 unsigned int personality;
874
875 /* Scheduler bits, serialized by scheduler locks: */
876 unsigned sched_reset_on_fork:1;
877 unsigned sched_contributes_to_load:1;
878 unsigned sched_migrated:1;
eb414681
JW
879#ifdef CONFIG_PSI
880 unsigned sched_psi_wake_requeue:1;
881#endif
882
5eca1c10
IM
883 /* Force alignment to the next boundary: */
884 unsigned :0;
885
886 /* Unserialized, strictly 'current' */
887
f97bb527
PZ
888 /*
889 * This field must not be in the scheduler word above due to wakelist
890 * queueing no longer being serialized by p->on_cpu. However:
891 *
892 * p->XXX = X; ttwu()
893 * schedule() if (p->on_rq && ..) // false
894 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
895 * deactivate_task() ttwu_queue_wakelist())
896 * p->on_rq = 0; p->sched_remote_wakeup = Y;
897 *
898 * guarantees all stores of 'current' are visible before
899 * ->sched_remote_wakeup gets used, so it can be in this word.
900 */
901 unsigned sched_remote_wakeup:1;
902
5eca1c10
IM
903 /* Bit to tell LSMs we're in execve(): */
904 unsigned in_execve:1;
905 unsigned in_iowait:1;
906#ifndef TIF_RESTORE_SIGMASK
907 unsigned restore_sigmask:1;
7e781418 908#endif
626ebc41 909#ifdef CONFIG_MEMCG
29ef680a 910 unsigned in_user_fault:1;
127424c8 911#endif
ff303e66 912#ifdef CONFIG_COMPAT_BRK
5eca1c10 913 unsigned brk_randomized:1;
ff303e66 914#endif
77f88796
TH
915#ifdef CONFIG_CGROUPS
916 /* disallow userland-initiated cgroup migration */
917 unsigned no_cgroup_migration:1;
76f969e8
RG
918 /* task is frozen/stopped (used by the cgroup freezer) */
919 unsigned frozen:1;
77f88796 920#endif
d09d8df3 921#ifdef CONFIG_BLK_CGROUP
d09d8df3
JB
922 unsigned use_memdelay:1;
923#endif
1066d1b6
YS
924#ifdef CONFIG_PSI
925 /* Stalled due to lack of memory */
926 unsigned in_memstall:1;
927#endif
8e9b16c4
ST
928#ifdef CONFIG_PAGE_OWNER
929 /* Used by page_owner=on to detect recursion in page tracking. */
930 unsigned in_page_owner:1;
931#endif
b542e383
TG
932#ifdef CONFIG_EVENTFD
933 /* Recursion prevention for eventfd_signal() */
934 unsigned in_eventfd_signal:1;
935#endif
6f185c29 936
5eca1c10 937 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 938
5eca1c10 939 struct restart_block restart_block;
f56141e3 940
5eca1c10
IM
941 pid_t pid;
942 pid_t tgid;
0a425405 943
050e9baa 944#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
945 /* Canary value for the -fstack-protector GCC feature: */
946 unsigned long stack_canary;
1314562a 947#endif
4d1d61a6 948 /*
5eca1c10 949 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 950 * older sibling, respectively. (p->father can be replaced with
f470021a 951 * p->real_parent->pid)
1da177e4 952 */
5eca1c10
IM
953
954 /* Real parent process: */
955 struct task_struct __rcu *real_parent;
956
957 /* Recipient of SIGCHLD, wait4() reports: */
958 struct task_struct __rcu *parent;
959
1da177e4 960 /*
5eca1c10 961 * Children/sibling form the list of natural children:
1da177e4 962 */
5eca1c10
IM
963 struct list_head children;
964 struct list_head sibling;
965 struct task_struct *group_leader;
1da177e4 966
f470021a 967 /*
5eca1c10
IM
968 * 'ptraced' is the list of tasks this task is using ptrace() on.
969 *
f470021a 970 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 971 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 972 */
5eca1c10
IM
973 struct list_head ptraced;
974 struct list_head ptrace_entry;
f470021a 975
1da177e4 976 /* PID/PID hash table linkage. */
2c470475
EB
977 struct pid *thread_pid;
978 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
979 struct list_head thread_group;
980 struct list_head thread_node;
981
982 struct completion *vfork_done;
1da177e4 983
5eca1c10
IM
984 /* CLONE_CHILD_SETTID: */
985 int __user *set_child_tid;
1da177e4 986
5eca1c10
IM
987 /* CLONE_CHILD_CLEARTID: */
988 int __user *clear_child_tid;
989
3bfe6106
JA
990 /* PF_IO_WORKER */
991 void *pf_io_worker;
992
5eca1c10
IM
993 u64 utime;
994 u64 stime;
40565b5a 995#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
996 u64 utimescaled;
997 u64 stimescaled;
40565b5a 998#endif
5eca1c10
IM
999 u64 gtime;
1000 struct prev_cputime prev_cputime;
6a61671b 1001#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 1002 struct vtime vtime;
d99ca3b9 1003#endif
d027d45d
FW
1004
1005#ifdef CONFIG_NO_HZ_FULL
5eca1c10 1006 atomic_t tick_dep_mask;
d027d45d 1007#endif
5eca1c10
IM
1008 /* Context switch counts: */
1009 unsigned long nvcsw;
1010 unsigned long nivcsw;
1011
1012 /* Monotonic time in nsecs: */
1013 u64 start_time;
1014
1015 /* Boot based time in nsecs: */
cf25e24d 1016 u64 start_boottime;
5eca1c10
IM
1017
1018 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1019 unsigned long min_flt;
1020 unsigned long maj_flt;
1da177e4 1021
2b69942f
TG
1022 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1023 struct posix_cputimers posix_cputimers;
1da177e4 1024
1fb497dd
TG
1025#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1026 struct posix_cputimers_work posix_cputimers_work;
1027#endif
1028
5eca1c10
IM
1029 /* Process credentials: */
1030
1031 /* Tracer's credentials at attach: */
1032 const struct cred __rcu *ptracer_cred;
1033
1034 /* Objective and real subjective task credentials (COW): */
1035 const struct cred __rcu *real_cred;
1036
1037 /* Effective (overridable) subjective task credentials (COW): */
1038 const struct cred __rcu *cred;
1039
7743c48e
DH
1040#ifdef CONFIG_KEYS
1041 /* Cached requested key. */
1042 struct key *cached_requested_key;
1043#endif
1044
5eca1c10
IM
1045 /*
1046 * executable name, excluding path.
1047 *
1048 * - normally initialized setup_new_exec()
1049 * - access it with [gs]et_task_comm()
1050 * - lock it with task_lock()
1051 */
1052 char comm[TASK_COMM_LEN];
1053
1054 struct nameidata *nameidata;
1055
3d5b6fcc 1056#ifdef CONFIG_SYSVIPC
5eca1c10
IM
1057 struct sysv_sem sysvsem;
1058 struct sysv_shm sysvshm;
3d5b6fcc 1059#endif
e162b39a 1060#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 1061 unsigned long last_switch_count;
a2e51445 1062 unsigned long last_switch_time;
82a1fcb9 1063#endif
5eca1c10
IM
1064 /* Filesystem information: */
1065 struct fs_struct *fs;
1066
1067 /* Open file information: */
1068 struct files_struct *files;
1069
0f212204
JA
1070#ifdef CONFIG_IO_URING
1071 struct io_uring_task *io_uring;
1072#endif
1073
5eca1c10
IM
1074 /* Namespaces: */
1075 struct nsproxy *nsproxy;
1076
1077 /* Signal handlers: */
1078 struct signal_struct *signal;
913292c9 1079 struct sighand_struct __rcu *sighand;
5eca1c10
IM
1080 sigset_t blocked;
1081 sigset_t real_blocked;
1082 /* Restored if set_restore_sigmask() was used: */
1083 sigset_t saved_sigmask;
1084 struct sigpending pending;
1085 unsigned long sas_ss_sp;
1086 size_t sas_ss_size;
1087 unsigned int sas_ss_flags;
1088
1089 struct callback_head *task_works;
1090
4b7d248b 1091#ifdef CONFIG_AUDIT
bfef93a5 1092#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
1093 struct audit_context *audit_context;
1094#endif
5eca1c10
IM
1095 kuid_t loginuid;
1096 unsigned int sessionid;
bfef93a5 1097#endif
5eca1c10 1098 struct seccomp seccomp;
1446e1df 1099 struct syscall_user_dispatch syscall_dispatch;
5eca1c10
IM
1100
1101 /* Thread group tracking: */
d1e7fd64
EB
1102 u64 parent_exec_id;
1103 u64 self_exec_id;
1da177e4 1104
5eca1c10
IM
1105 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1106 spinlock_t alloc_lock;
1da177e4 1107
b29739f9 1108 /* Protection of the PI data structures: */
5eca1c10 1109 raw_spinlock_t pi_lock;
b29739f9 1110
5eca1c10 1111 struct wake_q_node wake_q;
76751049 1112
23f78d4a 1113#ifdef CONFIG_RT_MUTEXES
5eca1c10 1114 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 1115 struct rb_root_cached pi_waiters;
e96a7705
XP
1116 /* Updated under owner's pi_lock and rq lock */
1117 struct task_struct *pi_top_task;
5eca1c10
IM
1118 /* Deadlock detection and priority inheritance handling: */
1119 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1120#endif
1121
408894ee 1122#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
1123 /* Mutex deadlock detection: */
1124 struct mutex_waiter *blocked_on;
408894ee 1125#endif
5eca1c10 1126
312364f3
DV
1127#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1128 int non_block_count;
1129#endif
1130
de30a2b3 1131#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c 1132 struct irqtrace_events irqtrace;
de8f5e4f 1133 unsigned int hardirq_threaded;
c86e9b98 1134 u64 hardirq_chain_key;
5eca1c10
IM
1135 int softirqs_enabled;
1136 int softirq_context;
40db1739 1137 int irq_config;
de30a2b3 1138#endif
728b478d
TG
1139#ifdef CONFIG_PREEMPT_RT
1140 int softirq_disable_cnt;
1141#endif
5eca1c10 1142
fbb9ce95 1143#ifdef CONFIG_LOCKDEP
5eca1c10
IM
1144# define MAX_LOCK_DEPTH 48UL
1145 u64 curr_chain_key;
1146 int lockdep_depth;
1147 unsigned int lockdep_recursion;
1148 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 1149#endif
5eca1c10 1150
5cf53f3c 1151#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
5eca1c10 1152 unsigned int in_ubsan;
c6d30853 1153#endif
408894ee 1154
5eca1c10
IM
1155 /* Journalling filesystem info: */
1156 void *journal_info;
1da177e4 1157
5eca1c10
IM
1158 /* Stacked block device info: */
1159 struct bio_list *bio_list;
d89d8796 1160
5eca1c10
IM
1161 /* Stack plugging: */
1162 struct blk_plug *plug;
73c10101 1163
5eca1c10
IM
1164 /* VM state: */
1165 struct reclaim_state *reclaim_state;
1166
1167 struct backing_dev_info *backing_dev_info;
1da177e4 1168
5eca1c10 1169 struct io_context *io_context;
1da177e4 1170
5e1f0f09
MG
1171#ifdef CONFIG_COMPACTION
1172 struct capture_control *capture_control;
1173#endif
5eca1c10
IM
1174 /* Ptrace state: */
1175 unsigned long ptrace_message;
ae7795bc 1176 kernel_siginfo_t *last_siginfo;
1da177e4 1177
5eca1c10 1178 struct task_io_accounting ioac;
eb414681
JW
1179#ifdef CONFIG_PSI
1180 /* Pressure stall state */
1181 unsigned int psi_flags;
1182#endif
5eca1c10
IM
1183#ifdef CONFIG_TASK_XACCT
1184 /* Accumulated RSS usage: */
1185 u64 acct_rss_mem1;
1186 /* Accumulated virtual memory usage: */
1187 u64 acct_vm_mem1;
1188 /* stime + utime since last update: */
1189 u64 acct_timexpd;
1da177e4
LT
1190#endif
1191#ifdef CONFIG_CPUSETS
5eca1c10
IM
1192 /* Protected by ->alloc_lock: */
1193 nodemask_t mems_allowed;
3b03706f 1194 /* Sequence number to catch updates: */
b7505861 1195 seqcount_spinlock_t mems_allowed_seq;
5eca1c10
IM
1196 int cpuset_mem_spread_rotor;
1197 int cpuset_slab_spread_rotor;
1da177e4 1198#endif
ddbcc7e8 1199#ifdef CONFIG_CGROUPS
5eca1c10
IM
1200 /* Control Group info protected by css_set_lock: */
1201 struct css_set __rcu *cgroups;
1202 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1203 struct list_head cg_list;
ddbcc7e8 1204#endif
e6d42931 1205#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 1206 u32 closid;
d6aaba61 1207 u32 rmid;
e02737d5 1208#endif
42b2dd0a 1209#ifdef CONFIG_FUTEX
5eca1c10 1210 struct robust_list_head __user *robust_list;
34f192c6
IM
1211#ifdef CONFIG_COMPAT
1212 struct compat_robust_list_head __user *compat_robust_list;
1213#endif
5eca1c10
IM
1214 struct list_head pi_state_list;
1215 struct futex_pi_state *pi_state_cache;
3f186d97 1216 struct mutex futex_exit_mutex;
3d4775df 1217 unsigned int futex_state;
c7aceaba 1218#endif
cdd6c482 1219#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
1220 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1221 struct mutex perf_event_mutex;
1222 struct list_head perf_event_list;
a63eaf34 1223#endif
8f47b187 1224#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1225 unsigned long preempt_disable_ip;
8f47b187 1226#endif
c7aceaba 1227#ifdef CONFIG_NUMA
5eca1c10
IM
1228 /* Protected by alloc_lock: */
1229 struct mempolicy *mempolicy;
45816682 1230 short il_prev;
5eca1c10 1231 short pref_node_fork;
42b2dd0a 1232#endif
cbee9f88 1233#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1234 int numa_scan_seq;
1235 unsigned int numa_scan_period;
1236 unsigned int numa_scan_period_max;
1237 int numa_preferred_nid;
1238 unsigned long numa_migrate_retry;
1239 /* Migration stamp: */
1240 u64 node_stamp;
1241 u64 last_task_numa_placement;
1242 u64 last_sum_exec_runtime;
1243 struct callback_head numa_work;
1244
cb361d8c
JH
1245 /*
1246 * This pointer is only modified for current in syscall and
1247 * pagefault context (and for tasks being destroyed), so it can be read
1248 * from any of the following contexts:
1249 * - RCU read-side critical section
1250 * - current->numa_group from everywhere
1251 * - task's runqueue locked, task not running
1252 */
1253 struct numa_group __rcu *numa_group;
8c8a743c 1254
745d6147 1255 /*
44dba3d5
IM
1256 * numa_faults is an array split into four regions:
1257 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1258 * in this precise order.
1259 *
1260 * faults_memory: Exponential decaying average of faults on a per-node
1261 * basis. Scheduling placement decisions are made based on these
1262 * counts. The values remain static for the duration of a PTE scan.
1263 * faults_cpu: Track the nodes the process was running on when a NUMA
1264 * hinting fault was incurred.
1265 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1266 * during the current scan window. When the scan completes, the counts
1267 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1268 */
5eca1c10
IM
1269 unsigned long *numa_faults;
1270 unsigned long total_numa_faults;
745d6147 1271
04bb2f94
RR
1272 /*
1273 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1274 * scan window were remote/local or failed to migrate. The task scan
1275 * period is adapted based on the locality of the faults with different
1276 * weights depending on whether they were shared or private faults
04bb2f94 1277 */
5eca1c10 1278 unsigned long numa_faults_locality[3];
04bb2f94 1279
5eca1c10 1280 unsigned long numa_pages_migrated;
cbee9f88
PZ
1281#endif /* CONFIG_NUMA_BALANCING */
1282
d7822b1e
MD
1283#ifdef CONFIG_RSEQ
1284 struct rseq __user *rseq;
d7822b1e
MD
1285 u32 rseq_sig;
1286 /*
1287 * RmW on rseq_event_mask must be performed atomically
1288 * with respect to preemption.
1289 */
1290 unsigned long rseq_event_mask;
1291#endif
1292
5eca1c10 1293 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1294
3fbd7ee2
EB
1295 union {
1296 refcount_t rcu_users;
1297 struct rcu_head rcu;
1298 };
b92ce558 1299
5eca1c10
IM
1300 /* Cache last used pipe for splice(): */
1301 struct pipe_inode_info *splice_pipe;
5640f768 1302
5eca1c10 1303 struct page_frag task_frag;
5640f768 1304
47913d4e
IM
1305#ifdef CONFIG_TASK_DELAY_ACCT
1306 struct task_delay_info *delays;
f4f154fd 1307#endif
47913d4e 1308
f4f154fd 1309#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1310 int make_it_fail;
9049f2f6 1311 unsigned int fail_nth;
ca74e92b 1312#endif
9d823e8f 1313 /*
5eca1c10
IM
1314 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1315 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1316 */
5eca1c10
IM
1317 int nr_dirtied;
1318 int nr_dirtied_pause;
1319 /* Start of a write-and-pause period: */
1320 unsigned long dirty_paused_when;
9d823e8f 1321
9745512c 1322#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1323 int latency_record_count;
1324 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1325#endif
6976675d 1326 /*
5eca1c10 1327 * Time slack values; these are used to round up poll() and
6976675d
AV
1328 * select() etc timeout values. These are in nanoseconds.
1329 */
5eca1c10
IM
1330 u64 timer_slack_ns;
1331 u64 default_timer_slack_ns;
f8d570a4 1332
d73b4936 1333#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
5eca1c10 1334 unsigned int kasan_depth;
0b24becc 1335#endif
92c209ac 1336
dfd402a4
ME
1337#ifdef CONFIG_KCSAN
1338 struct kcsan_ctx kcsan_ctx;
92c209ac
ME
1339#ifdef CONFIG_TRACE_IRQFLAGS
1340 struct irqtrace_events kcsan_save_irqtrace;
1341#endif
dfd402a4 1342#endif
5eca1c10 1343
393824f6
PA
1344#if IS_ENABLED(CONFIG_KUNIT)
1345 struct kunit *kunit_test;
1346#endif
1347
fb52607a 1348#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1349 /* Index of current stored address in ret_stack: */
1350 int curr_ret_stack;
39eb456d 1351 int curr_ret_depth;
5eca1c10
IM
1352
1353 /* Stack of return addresses for return function tracing: */
1354 struct ftrace_ret_stack *ret_stack;
1355
1356 /* Timestamp for last schedule: */
1357 unsigned long long ftrace_timestamp;
1358
f201ae23
FW
1359 /*
1360 * Number of functions that haven't been traced
5eca1c10 1361 * because of depth overrun:
f201ae23 1362 */
5eca1c10
IM
1363 atomic_t trace_overrun;
1364
1365 /* Pause tracing: */
1366 atomic_t tracing_graph_pause;
f201ae23 1367#endif
5eca1c10 1368
ea4e2bc4 1369#ifdef CONFIG_TRACING
5eca1c10
IM
1370 /* State flags for use by tracers: */
1371 unsigned long trace;
1372
1373 /* Bitmask and counter of trace recursion: */
1374 unsigned long trace_recursion;
261842b7 1375#endif /* CONFIG_TRACING */
5eca1c10 1376
5c9a8750 1377#ifdef CONFIG_KCOV
eec028c9
AK
1378 /* See kernel/kcov.c for more details. */
1379
5eca1c10 1380 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1381 unsigned int kcov_mode;
5eca1c10
IM
1382
1383 /* Size of the kcov_area: */
1384 unsigned int kcov_size;
1385
1386 /* Buffer for coverage collection: */
1387 void *kcov_area;
1388
1389 /* KCOV descriptor wired with this task or NULL: */
1390 struct kcov *kcov;
eec028c9
AK
1391
1392 /* KCOV common handle for remote coverage collection: */
1393 u64 kcov_handle;
1394
1395 /* KCOV sequence number: */
1396 int kcov_sequence;
5ff3b30a
AK
1397
1398 /* Collect coverage from softirq context: */
1399 unsigned int kcov_softirq;
5c9a8750 1400#endif
5eca1c10 1401
6f185c29 1402#ifdef CONFIG_MEMCG
5eca1c10
IM
1403 struct mem_cgroup *memcg_in_oom;
1404 gfp_t memcg_oom_gfp_mask;
1405 int memcg_oom_order;
b23afb93 1406
5eca1c10
IM
1407 /* Number of pages to reclaim on returning to userland: */
1408 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1409
1410 /* Used by memcontrol for targeted memcg charge: */
1411 struct mem_cgroup *active_memcg;
569b846d 1412#endif
5eca1c10 1413
d09d8df3
JB
1414#ifdef CONFIG_BLK_CGROUP
1415 struct request_queue *throttle_queue;
1416#endif
1417
0326f5a9 1418#ifdef CONFIG_UPROBES
5eca1c10 1419 struct uprobe_task *utask;
0326f5a9 1420#endif
cafe5635 1421#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1422 unsigned int sequential_io;
1423 unsigned int sequential_io_avg;
cafe5635 1424#endif
5fbda3ec 1425 struct kmap_ctrl kmap_ctrl;
8eb23b9f 1426#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1427 unsigned long task_state_change;
5f220be2
TG
1428# ifdef CONFIG_PREEMPT_RT
1429 unsigned long saved_state_change;
1430# endif
8eb23b9f 1431#endif
5eca1c10 1432 int pagefault_disabled;
03049269 1433#ifdef CONFIG_MMU
5eca1c10 1434 struct task_struct *oom_reaper_list;
03049269 1435#endif
ba14a194 1436#ifdef CONFIG_VMAP_STACK
5eca1c10 1437 struct vm_struct *stack_vm_area;
ba14a194 1438#endif
68f24b08 1439#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1440 /* A live task holds one reference: */
f0b89d39 1441 refcount_t stack_refcount;
d83a7cb3
JP
1442#endif
1443#ifdef CONFIG_LIVEPATCH
1444 int patch_state;
0302e28d 1445#endif
e4e55b47
TH
1446#ifdef CONFIG_SECURITY
1447 /* Used by LSM modules for access restriction: */
1448 void *security;
68f24b08 1449#endif
a10787e6
SL
1450#ifdef CONFIG_BPF_SYSCALL
1451 /* Used by BPF task local storage */
1452 struct bpf_local_storage __rcu *bpf_storage;
c7603cfa
AN
1453 /* Used for BPF run context */
1454 struct bpf_run_ctx *bpf_ctx;
a10787e6 1455#endif
29e48ce8 1456
afaef01c
AP
1457#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1458 unsigned long lowest_stack;
c8d12627 1459 unsigned long prev_lowest_stack;
afaef01c
AP
1460#endif
1461
5567d11c 1462#ifdef CONFIG_X86_MCE
c0ab7ffc
TL
1463 void __user *mce_vaddr;
1464 __u64 mce_kflags;
5567d11c 1465 u64 mce_addr;
17fae129
TL
1466 __u64 mce_ripv : 1,
1467 mce_whole_page : 1,
1468 __mce_reserved : 62;
5567d11c 1469 struct callback_head mce_kill_me;
81065b35 1470 int mce_count;
5567d11c
PZ
1471#endif
1472
d741bf41
PZ
1473#ifdef CONFIG_KRETPROBES
1474 struct llist_head kretprobe_instances;
1475#endif
1476
58e106e7
BS
1477#ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1478 /*
1479 * If L1D flush is supported on mm context switch
1480 * then we use this callback head to queue kill work
1481 * to kill tasks that are not running on SMT disabled
1482 * cores
1483 */
1484 struct callback_head l1d_flush_kill;
1485#endif
1486
29e48ce8
KC
1487 /*
1488 * New fields for task_struct should be added above here, so that
1489 * they are included in the randomized portion of task_struct.
1490 */
1491 randomized_struct_fields_end
1492
5eca1c10
IM
1493 /* CPU-specific state of this task: */
1494 struct thread_struct thread;
1495
1496 /*
1497 * WARNING: on x86, 'thread_struct' contains a variable-sized
1498 * structure. It *MUST* be at the end of 'task_struct'.
1499 *
1500 * Do not put anything below here!
1501 */
1da177e4
LT
1502};
1503
e868171a 1504static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1505{
2c470475 1506 return task->thread_pid;
22c935f4
EB
1507}
1508
7af57294
PE
1509/*
1510 * the helpers to get the task's different pids as they are seen
1511 * from various namespaces
1512 *
1513 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1514 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1515 * current.
7af57294
PE
1516 * task_xid_nr_ns() : id seen from the ns specified;
1517 *
7af57294
PE
1518 * see also pid_nr() etc in include/linux/pid.h
1519 */
5eca1c10 1520pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1521
e868171a 1522static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1523{
1524 return tsk->pid;
1525}
1526
5eca1c10 1527static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1528{
1529 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1530}
7af57294
PE
1531
1532static inline pid_t task_pid_vnr(struct task_struct *tsk)
1533{
52ee2dfd 1534 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1535}
1536
1537
e868171a 1538static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1539{
1540 return tsk->tgid;
1541}
1542
5eca1c10
IM
1543/**
1544 * pid_alive - check that a task structure is not stale
1545 * @p: Task structure to be checked.
1546 *
1547 * Test if a process is not yet dead (at most zombie state)
1548 * If pid_alive fails, then pointers within the task structure
1549 * can be stale and must not be dereferenced.
1550 *
1551 * Return: 1 if the process is alive. 0 otherwise.
1552 */
1553static inline int pid_alive(const struct task_struct *p)
1554{
2c470475 1555 return p->thread_pid != NULL;
5eca1c10 1556}
7af57294 1557
5eca1c10 1558static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1559{
52ee2dfd 1560 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1561}
1562
7af57294
PE
1563static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1564{
52ee2dfd 1565 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1566}
1567
1568
5eca1c10 1569static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1570{
52ee2dfd 1571 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1572}
1573
7af57294
PE
1574static inline pid_t task_session_vnr(struct task_struct *tsk)
1575{
52ee2dfd 1576 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1577}
1578
dd1c1f2f
ON
1579static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1580{
6883f81a 1581 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1582}
1583
1584static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1585{
6883f81a 1586 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1587}
1588
1589static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1590{
1591 pid_t pid = 0;
1592
1593 rcu_read_lock();
1594 if (pid_alive(tsk))
1595 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1596 rcu_read_unlock();
1597
1598 return pid;
1599}
1600
1601static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1602{
1603 return task_ppid_nr_ns(tsk, &init_pid_ns);
1604}
1605
5eca1c10 1606/* Obsolete, do not use: */
1b0f7ffd
ON
1607static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1608{
1609 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1610}
7af57294 1611
06eb6184
PZ
1612#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1613#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1614
1d48b080 1615static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1616{
2f064a59 1617 unsigned int tsk_state = READ_ONCE(tsk->__state);
1593baab 1618 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1619
06eb6184
PZ
1620 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1621
06eb6184
PZ
1622 if (tsk_state == TASK_IDLE)
1623 state = TASK_REPORT_IDLE;
1624
1593baab
PZ
1625 return fls(state);
1626}
1627
1d48b080 1628static inline char task_index_to_char(unsigned int state)
1593baab 1629{
8ef9925b 1630 static const char state_char[] = "RSDTtXZPI";
1593baab 1631
06eb6184 1632 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1633
1593baab
PZ
1634 return state_char[state];
1635}
1636
1637static inline char task_state_to_char(struct task_struct *tsk)
1638{
1d48b080 1639 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1640}
1641
f400e198 1642/**
570f5241
SS
1643 * is_global_init - check if a task structure is init. Since init
1644 * is free to have sub-threads we need to check tgid.
3260259f
H
1645 * @tsk: Task structure to be checked.
1646 *
1647 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1648 *
1649 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1650 */
e868171a 1651static inline int is_global_init(struct task_struct *tsk)
b461cc03 1652{
570f5241 1653 return task_tgid_nr(tsk) == 1;
b461cc03 1654}
b460cbc5 1655
9ec52099
CLG
1656extern struct pid *cad_pid;
1657
1da177e4
LT
1658/*
1659 * Per process flags
1660 */
01ccf592 1661#define PF_VCPU 0x00000001 /* I'm a virtual CPU */
5eca1c10
IM
1662#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1663#define PF_EXITING 0x00000004 /* Getting shut down */
92307383 1664#define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
01ccf592 1665#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
5eca1c10
IM
1666#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1667#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1668#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1669#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1670#define PF_DUMPCORE 0x00000200 /* Dumped core */
1671#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1672#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1673#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1674#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1675#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1676#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1677#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1678#define PF_KSWAPD 0x00020000 /* I am kswapd */
1679#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1680#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
a37b0715
N
1681#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1682 * I am cleaning dirty pages from some other bdi. */
5eca1c10
IM
1683#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1684#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1685#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
3bd37062 1686#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1687#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1a08ae36 1688#define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
5eca1c10
IM
1689#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1690#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1691
1692/*
1693 * Only the _current_ task can read/write to tsk->flags, but other
1694 * tasks can access tsk->flags in readonly mode for example
1695 * with tsk_used_math (like during threaded core dumping).
1696 * There is however an exception to this rule during ptrace
1697 * or during fork: the ptracer task is allowed to write to the
1698 * child->flags of its traced child (same goes for fork, the parent
1699 * can write to the child->flags), because we're guaranteed the
1700 * child is not running and in turn not changing child->flags
1701 * at the same time the parent does it.
1702 */
5eca1c10
IM
1703#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1704#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1705#define clear_used_math() clear_stopped_child_used_math(current)
1706#define set_used_math() set_stopped_child_used_math(current)
1707
1da177e4
LT
1708#define conditional_stopped_child_used_math(condition, child) \
1709 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1710
1711#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1712
1da177e4
LT
1713#define copy_to_stopped_child_used_math(child) \
1714 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1715
1da177e4 1716/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1717#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1718#define used_math() tsk_used_math(current)
1da177e4 1719
83d40a61 1720static __always_inline bool is_percpu_thread(void)
62ec05dd
TG
1721{
1722#ifdef CONFIG_SMP
1723 return (current->flags & PF_NO_SETAFFINITY) &&
1724 (current->nr_cpus_allowed == 1);
1725#else
1726 return true;
1727#endif
1728}
1729
1d4457f9 1730/* Per-process atomic flags. */
5eca1c10
IM
1731#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1732#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1733#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1734#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1735#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1736#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1737#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1738#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1739
e0e5070b
ZL
1740#define TASK_PFA_TEST(name, func) \
1741 static inline bool task_##func(struct task_struct *p) \
1742 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1743
e0e5070b
ZL
1744#define TASK_PFA_SET(name, func) \
1745 static inline void task_set_##func(struct task_struct *p) \
1746 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1747
e0e5070b
ZL
1748#define TASK_PFA_CLEAR(name, func) \
1749 static inline void task_clear_##func(struct task_struct *p) \
1750 { clear_bit(PFA_##name, &p->atomic_flags); }
1751
1752TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1753TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1754
2ad654bc
ZL
1755TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1756TASK_PFA_SET(SPREAD_PAGE, spread_page)
1757TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1758
1759TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1760TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1761TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1762
356e4bff
TG
1763TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1764TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1765TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1766
71368af9
WL
1767TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1768TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1769TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1770
356e4bff
TG
1771TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1772TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1773
9137bb27
TG
1774TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1775TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1776TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1777
1778TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1779TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1780
5eca1c10 1781static inline void
717a94b5 1782current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1783{
717a94b5
N
1784 current->flags &= ~flags;
1785 current->flags |= orig_flags & flags;
907aed48
MG
1786}
1787
5eca1c10
IM
1788extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1789extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1790#ifdef CONFIG_SMP
5eca1c10
IM
1791extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1792extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
b90ca8ba
WD
1793extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1794extern void release_user_cpus_ptr(struct task_struct *p);
234b8ab6 1795extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
07ec77a1
WD
1796extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1797extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1da177e4 1798#else
5eca1c10 1799static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1800{
1801}
5eca1c10 1802static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1803{
96f874e2 1804 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1805 return -EINVAL;
1806 return 0;
1807}
b90ca8ba
WD
1808static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1809{
1810 if (src->user_cpus_ptr)
1811 return -EINVAL;
1812 return 0;
1813}
1814static inline void release_user_cpus_ptr(struct task_struct *p)
1815{
1816 WARN_ON(p->user_cpus_ptr);
1817}
234b8ab6
WD
1818
1819static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1820{
1821 return 0;
1822}
1da177e4 1823#endif
e0ad9556 1824
fa93384f 1825extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1826extern void set_user_nice(struct task_struct *p, long nice);
1827extern int task_prio(const struct task_struct *p);
5eca1c10 1828
d0ea0268
DY
1829/**
1830 * task_nice - return the nice value of a given task.
1831 * @p: the task in question.
1832 *
1833 * Return: The nice value [ -20 ... 0 ... 19 ].
1834 */
1835static inline int task_nice(const struct task_struct *p)
1836{
1837 return PRIO_TO_NICE((p)->static_prio);
1838}
5eca1c10 1839
36c8b586
IM
1840extern int can_nice(const struct task_struct *p, const int nice);
1841extern int task_curr(const struct task_struct *p);
1da177e4 1842extern int idle_cpu(int cpu);
943d355d 1843extern int available_idle_cpu(int cpu);
5eca1c10
IM
1844extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1845extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
8b700983
PZ
1846extern void sched_set_fifo(struct task_struct *p);
1847extern void sched_set_fifo_low(struct task_struct *p);
1848extern void sched_set_normal(struct task_struct *p, int nice);
5eca1c10 1849extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1850extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1851extern struct task_struct *idle_task(int cpu);
5eca1c10 1852
c4f30608
PM
1853/**
1854 * is_idle_task - is the specified task an idle task?
fa757281 1855 * @p: the task in question.
e69f6186
YB
1856 *
1857 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1858 */
c94a88f3 1859static __always_inline bool is_idle_task(const struct task_struct *p)
c4f30608 1860{
c1de45ca 1861 return !!(p->flags & PF_IDLE);
c4f30608 1862}
5eca1c10 1863
36c8b586 1864extern struct task_struct *curr_task(int cpu);
a458ae2e 1865extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1866
1867void yield(void);
1868
1da177e4 1869union thread_union {
0500871f
DH
1870#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1871 struct task_struct task;
1872#endif
c65eacbe 1873#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1874 struct thread_info thread_info;
c65eacbe 1875#endif
1da177e4
LT
1876 unsigned long stack[THREAD_SIZE/sizeof(long)];
1877};
1878
0500871f
DH
1879#ifndef CONFIG_THREAD_INFO_IN_TASK
1880extern struct thread_info init_thread_info;
1881#endif
1882
1883extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1884
f3ac6067 1885#ifdef CONFIG_THREAD_INFO_IN_TASK
bcf9033e 1886# define task_thread_info(task) (&(task)->thread_info)
f3ac6067
IM
1887#elif !defined(__HAVE_THREAD_FUNCTIONS)
1888# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1889#endif
1890
198fe21b
PE
1891/*
1892 * find a task by one of its numerical ids
1893 *
198fe21b
PE
1894 * find_task_by_pid_ns():
1895 * finds a task by its pid in the specified namespace
228ebcbe
PE
1896 * find_task_by_vpid():
1897 * finds a task by its virtual pid
198fe21b 1898 *
e49859e7 1899 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1900 */
1901
228ebcbe 1902extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1903extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1904
2ee08260
MR
1905/*
1906 * find a task by its virtual pid and get the task struct
1907 */
1908extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1909
b3c97528
HH
1910extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1911extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1912extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1913
1da177e4 1914#ifdef CONFIG_SMP
5eca1c10 1915extern void kick_process(struct task_struct *tsk);
1da177e4 1916#else
5eca1c10 1917static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1918#endif
1da177e4 1919
82b89778 1920extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1921
82b89778
AH
1922static inline void set_task_comm(struct task_struct *tsk, const char *from)
1923{
1924 __set_task_comm(tsk, from, false);
1925}
5eca1c10 1926
3756f640
AB
1927extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1928#define get_task_comm(buf, tsk) ({ \
1929 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1930 __get_task_comm(buf, sizeof(buf), tsk); \
1931})
1da177e4
LT
1932
1933#ifdef CONFIG_SMP
2a0a24eb
TG
1934static __always_inline void scheduler_ipi(void)
1935{
1936 /*
1937 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1938 * TIF_NEED_RESCHED remotely (for the first time) will also send
1939 * this IPI.
1940 */
1941 preempt_fold_need_resched();
1942}
2f064a59 1943extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1da177e4 1944#else
184748cc 1945static inline void scheduler_ipi(void) { }
2f064a59 1946static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
85ba2d86
RM
1947{
1948 return 1;
1949}
1da177e4
LT
1950#endif
1951
5eca1c10
IM
1952/*
1953 * Set thread flags in other task's structures.
1954 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1955 */
1956static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1957{
a1261f54 1958 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1959}
1960
1961static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1962{
a1261f54 1963 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1964}
1965
93ee37c2
DM
1966static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1967 bool value)
1968{
1969 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1970}
1971
1da177e4
LT
1972static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1973{
a1261f54 1974 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1975}
1976
1977static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1978{
a1261f54 1979 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1980}
1981
1982static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1983{
a1261f54 1984 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1985}
1986
1987static inline void set_tsk_need_resched(struct task_struct *tsk)
1988{
1989 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1990}
1991
1992static inline void clear_tsk_need_resched(struct task_struct *tsk)
1993{
1994 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1995}
1996
8ae121ac
GH
1997static inline int test_tsk_need_resched(struct task_struct *tsk)
1998{
1999 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2000}
2001
1da177e4
LT
2002/*
2003 * cond_resched() and cond_resched_lock(): latency reduction via
2004 * explicit rescheduling in places that are safe. The return
2005 * value indicates whether a reschedule was done in fact.
2006 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 2007 */
b965f1dd
PZI
2008#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2009extern int __cond_resched(void);
2010
2011#ifdef CONFIG_PREEMPT_DYNAMIC
2012
2013DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2014
2015static __always_inline int _cond_resched(void)
2016{
ef72661e 2017 return static_call_mod(cond_resched)();
b965f1dd
PZI
2018}
2019
35a773a0 2020#else
b965f1dd
PZI
2021
2022static inline int _cond_resched(void)
2023{
2024 return __cond_resched();
2025}
2026
2027#endif /* CONFIG_PREEMPT_DYNAMIC */
2028
2029#else
2030
35a773a0 2031static inline int _cond_resched(void) { return 0; }
b965f1dd
PZI
2032
2033#endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
6f80bd98 2034
613afbf8 2035#define cond_resched() ({ \
874f670e 2036 __might_resched(__FILE__, __LINE__, 0); \
613afbf8
FW
2037 _cond_resched(); \
2038})
6f80bd98 2039
613afbf8 2040extern int __cond_resched_lock(spinlock_t *lock);
f3d4b4b1
BG
2041extern int __cond_resched_rwlock_read(rwlock_t *lock);
2042extern int __cond_resched_rwlock_write(rwlock_t *lock);
613afbf8 2043
50e081b9
TG
2044#define MIGHT_RESCHED_RCU_SHIFT 8
2045#define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2046
3e9cc688
TG
2047#ifndef CONFIG_PREEMPT_RT
2048/*
2049 * Non RT kernels have an elevated preempt count due to the held lock,
2050 * but are not allowed to be inside a RCU read side critical section
2051 */
2052# define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2053#else
2054/*
2055 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2056 * cond_resched*lock() has to take that into account because it checks for
2057 * preempt_count() and rcu_preempt_depth().
2058 */
2059# define PREEMPT_LOCK_RESCHED_OFFSETS \
2060 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2061#endif
2062
2063#define cond_resched_lock(lock) ({ \
2064 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2065 __cond_resched_lock(lock); \
613afbf8
FW
2066})
2067
3e9cc688
TG
2068#define cond_resched_rwlock_read(lock) ({ \
2069 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2070 __cond_resched_rwlock_read(lock); \
f3d4b4b1
BG
2071})
2072
3e9cc688
TG
2073#define cond_resched_rwlock_write(lock) ({ \
2074 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2075 __cond_resched_rwlock_write(lock); \
f3d4b4b1
BG
2076})
2077
f6f3c437
SH
2078static inline void cond_resched_rcu(void)
2079{
2080#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2081 rcu_read_unlock();
2082 cond_resched();
2083 rcu_read_lock();
2084#endif
2085}
2086
1da177e4
LT
2087/*
2088 * Does a critical section need to be broken due to another
c1a280b6 2089 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
95c354fe 2090 * but a general need for low latency)
1da177e4 2091 */
95c354fe 2092static inline int spin_needbreak(spinlock_t *lock)
1da177e4 2093{
c1a280b6 2094#ifdef CONFIG_PREEMPTION
95c354fe
NP
2095 return spin_is_contended(lock);
2096#else
1da177e4 2097 return 0;
95c354fe 2098#endif
1da177e4
LT
2099}
2100
a09a689a
BG
2101/*
2102 * Check if a rwlock is contended.
2103 * Returns non-zero if there is another task waiting on the rwlock.
2104 * Returns zero if the lock is not contended or the system / underlying
2105 * rwlock implementation does not support contention detection.
2106 * Technically does not depend on CONFIG_PREEMPTION, but a general need
2107 * for low latency.
2108 */
2109static inline int rwlock_needbreak(rwlock_t *lock)
2110{
2111#ifdef CONFIG_PREEMPTION
2112 return rwlock_is_contended(lock);
2113#else
2114 return 0;
2115#endif
2116}
2117
75f93fed
PZ
2118static __always_inline bool need_resched(void)
2119{
2120 return unlikely(tif_need_resched());
2121}
2122
1da177e4
LT
2123/*
2124 * Wrappers for p->thread_info->cpu access. No-op on UP.
2125 */
2126#ifdef CONFIG_SMP
2127
2128static inline unsigned int task_cpu(const struct task_struct *p)
2129{
c546951d 2130 return READ_ONCE(task_thread_info(p)->cpu);
1da177e4
LT
2131}
2132
c65cc870 2133extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
2134
2135#else
2136
2137static inline unsigned int task_cpu(const struct task_struct *p)
2138{
2139 return 0;
2140}
2141
2142static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2143{
2144}
2145
2146#endif /* CONFIG_SMP */
2147
a1dfb631 2148extern bool sched_task_on_rq(struct task_struct *p);
42a20f86 2149extern unsigned long get_wchan(struct task_struct *p);
a1dfb631 2150
d9345c65
PX
2151/*
2152 * In order to reduce various lock holder preemption latencies provide an
2153 * interface to see if a vCPU is currently running or not.
2154 *
2155 * This allows us to terminate optimistic spin loops and block, analogous to
2156 * the native optimistic spin heuristic of testing if the lock owner task is
2157 * running or not.
2158 */
2159#ifndef vcpu_is_preempted
42fd8baa
QC
2160static inline bool vcpu_is_preempted(int cpu)
2161{
2162 return false;
2163}
d9345c65
PX
2164#endif
2165
96f874e2
RR
2166extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2167extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 2168
82455257
DH
2169#ifndef TASK_SIZE_OF
2170#define TASK_SIZE_OF(tsk) TASK_SIZE
2171#endif
2172
a5418be9
VK
2173#ifdef CONFIG_SMP
2174/* Returns effective CPU energy utilization, as seen by the scheduler */
2175unsigned long sched_cpu_util(int cpu, unsigned long max);
2176#endif /* CONFIG_SMP */
2177
d7822b1e
MD
2178#ifdef CONFIG_RSEQ
2179
2180/*
2181 * Map the event mask on the user-space ABI enum rseq_cs_flags
2182 * for direct mask checks.
2183 */
2184enum rseq_event_mask_bits {
2185 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2186 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2187 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2188};
2189
2190enum rseq_event_mask {
2191 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2192 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2193 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2194};
2195
2196static inline void rseq_set_notify_resume(struct task_struct *t)
2197{
2198 if (t->rseq)
2199 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2200}
2201
784e0300 2202void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 2203
784e0300
WD
2204static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2205 struct pt_regs *regs)
d7822b1e
MD
2206{
2207 if (current->rseq)
784e0300 2208 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2209}
2210
784e0300
WD
2211static inline void rseq_signal_deliver(struct ksignal *ksig,
2212 struct pt_regs *regs)
d7822b1e
MD
2213{
2214 preempt_disable();
2215 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2216 preempt_enable();
784e0300 2217 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2218}
2219
2220/* rseq_preempt() requires preemption to be disabled. */
2221static inline void rseq_preempt(struct task_struct *t)
2222{
2223 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2224 rseq_set_notify_resume(t);
2225}
2226
2227/* rseq_migrate() requires preemption to be disabled. */
2228static inline void rseq_migrate(struct task_struct *t)
2229{
2230 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2231 rseq_set_notify_resume(t);
2232}
2233
2234/*
2235 * If parent process has a registered restartable sequences area, the
463f550f 2236 * child inherits. Unregister rseq for a clone with CLONE_VM set.
d7822b1e
MD
2237 */
2238static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2239{
463f550f 2240 if (clone_flags & CLONE_VM) {
d7822b1e 2241 t->rseq = NULL;
d7822b1e
MD
2242 t->rseq_sig = 0;
2243 t->rseq_event_mask = 0;
2244 } else {
2245 t->rseq = current->rseq;
d7822b1e
MD
2246 t->rseq_sig = current->rseq_sig;
2247 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
2248 }
2249}
2250
2251static inline void rseq_execve(struct task_struct *t)
2252{
2253 t->rseq = NULL;
d7822b1e
MD
2254 t->rseq_sig = 0;
2255 t->rseq_event_mask = 0;
2256}
2257
2258#else
2259
2260static inline void rseq_set_notify_resume(struct task_struct *t)
2261{
2262}
784e0300
WD
2263static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2264 struct pt_regs *regs)
d7822b1e
MD
2265{
2266}
784e0300
WD
2267static inline void rseq_signal_deliver(struct ksignal *ksig,
2268 struct pt_regs *regs)
d7822b1e
MD
2269{
2270}
2271static inline void rseq_preempt(struct task_struct *t)
2272{
2273}
2274static inline void rseq_migrate(struct task_struct *t)
2275{
2276}
2277static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2278{
2279}
2280static inline void rseq_execve(struct task_struct *t)
2281{
2282}
2283
2284#endif
2285
2286#ifdef CONFIG_DEBUG_RSEQ
2287
2288void rseq_syscall(struct pt_regs *regs);
2289
2290#else
2291
2292static inline void rseq_syscall(struct pt_regs *regs)
2293{
2294}
2295
2296#endif
2297
3c93a0c0
QY
2298const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2299char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2300int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2301
2302const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2303const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2304const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2305
2306int sched_trace_rq_cpu(struct rq *rq);
51cf18c9 2307int sched_trace_rq_cpu_capacity(struct rq *rq);
9d246053 2308int sched_trace_rq_nr_running(struct rq *rq);
3c93a0c0
QY
2309
2310const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2311
6e33cad0
PZ
2312#ifdef CONFIG_SCHED_CORE
2313extern void sched_core_free(struct task_struct *tsk);
85dd3f61 2314extern void sched_core_fork(struct task_struct *p);
7ac592aa
CH
2315extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2316 unsigned long uaddr);
6e33cad0
PZ
2317#else
2318static inline void sched_core_free(struct task_struct *tsk) { }
85dd3f61 2319static inline void sched_core_fork(struct task_struct *p) { }
6e33cad0
PZ
2320#endif
2321
1da177e4 2322#endif