sched: Make might_sleep() output less confusing
[linux-2.6-block.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/mutex.h>
18#include <linux/plist.h>
19#include <linux/hrtimer.h>
0584df9c 20#include <linux/irqflags.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
ec1d2819 24#include <linux/refcount.h>
a3b6714e 25#include <linux/resource.h>
9745512c 26#include <linux/latencytop.h>
5eca1c10 27#include <linux/sched/prio.h>
9eacb5c7 28#include <linux/sched/types.h>
5eca1c10 29#include <linux/signal_types.h>
1446e1df 30#include <linux/syscall_user_dispatch.h>
5eca1c10
IM
31#include <linux/mm_types_task.h>
32#include <linux/task_io_accounting.h>
2b69942f 33#include <linux/posix-timers.h>
d7822b1e 34#include <linux/rseq.h>
0cd39f46 35#include <linux/seqlock.h>
dfd402a4 36#include <linux/kcsan.h>
5fbda3ec 37#include <asm/kmap_size.h>
a3b6714e 38
5eca1c10 39/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 40struct audit_context;
c7af7877 41struct backing_dev_info;
bddd87c7 42struct bio_list;
73c10101 43struct blk_plug;
a10787e6 44struct bpf_local_storage;
c7603cfa 45struct bpf_run_ctx;
3c93a0c0 46struct capture_control;
c7af7877 47struct cfs_rq;
c7af7877
IM
48struct fs_struct;
49struct futex_pi_state;
50struct io_context;
1875dc5b 51struct io_uring_task;
c7af7877 52struct mempolicy;
89076bc3 53struct nameidata;
c7af7877
IM
54struct nsproxy;
55struct perf_event_context;
56struct pid_namespace;
57struct pipe_inode_info;
58struct rcu_node;
59struct reclaim_state;
60struct robust_list_head;
3c93a0c0
QY
61struct root_domain;
62struct rq;
c7af7877
IM
63struct sched_attr;
64struct sched_param;
43ae34cb 65struct seq_file;
c7af7877
IM
66struct sighand_struct;
67struct signal_struct;
68struct task_delay_info;
4cf86d77 69struct task_group;
1da177e4 70
4a8342d2
LT
71/*
72 * Task state bitmask. NOTE! These bits are also
73 * encoded in fs/proc/array.c: get_task_state().
74 *
75 * We have two separate sets of flags: task->state
76 * is about runnability, while task->exit_state are
77 * about the task exiting. Confusing, but this way
78 * modifying one set can't modify the other one by
79 * mistake.
80 */
5eca1c10
IM
81
82/* Used in tsk->state: */
92c4bc9f
PZ
83#define TASK_RUNNING 0x0000
84#define TASK_INTERRUPTIBLE 0x0001
85#define TASK_UNINTERRUPTIBLE 0x0002
86#define __TASK_STOPPED 0x0004
87#define __TASK_TRACED 0x0008
5eca1c10 88/* Used in tsk->exit_state: */
92c4bc9f
PZ
89#define EXIT_DEAD 0x0010
90#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
91#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
92/* Used in tsk->state again: */
8ef9925b
PZ
93#define TASK_PARKED 0x0040
94#define TASK_DEAD 0x0080
95#define TASK_WAKEKILL 0x0100
96#define TASK_WAKING 0x0200
92c4bc9f
PZ
97#define TASK_NOLOAD 0x0400
98#define TASK_NEW 0x0800
cd781d0c
TG
99/* RT specific auxilliary flag to mark RT lock waiters */
100#define TASK_RTLOCK_WAIT 0x1000
101#define TASK_STATE_MAX 0x2000
5eca1c10 102
5eca1c10
IM
103/* Convenience macros for the sake of set_current_state: */
104#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
105#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
106#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
107
108#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
109
110/* Convenience macros for the sake of wake_up(): */
111#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
112
113/* get_task_state(): */
114#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
115 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
116 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
117 TASK_PARKED)
5eca1c10 118
2f064a59 119#define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
5eca1c10 120
2f064a59 121#define task_is_traced(task) ((READ_ONCE(task->__state) & __TASK_TRACED) != 0)
5eca1c10 122
2f064a59 123#define task_is_stopped(task) ((READ_ONCE(task->__state) & __TASK_STOPPED) != 0)
5eca1c10 124
2f064a59 125#define task_is_stopped_or_traced(task) ((READ_ONCE(task->__state) & (__TASK_STOPPED | __TASK_TRACED)) != 0)
5eca1c10 126
b5bf9a90
PZ
127/*
128 * Special states are those that do not use the normal wait-loop pattern. See
129 * the comment with set_special_state().
130 */
131#define is_special_task_state(state) \
1cef1150 132 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 133
85019c16
TG
134#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
135# define debug_normal_state_change(state_value) \
136 do { \
137 WARN_ON_ONCE(is_special_task_state(state_value)); \
138 current->task_state_change = _THIS_IP_; \
8eb23b9f
PZ
139 } while (0)
140
85019c16 141# define debug_special_state_change(state_value) \
b5bf9a90 142 do { \
b5bf9a90 143 WARN_ON_ONCE(!is_special_task_state(state_value)); \
b5bf9a90 144 current->task_state_change = _THIS_IP_; \
b5bf9a90 145 } while (0)
85019c16 146
5f220be2
TG
147# define debug_rtlock_wait_set_state() \
148 do { \
149 current->saved_state_change = current->task_state_change;\
150 current->task_state_change = _THIS_IP_; \
151 } while (0)
152
153# define debug_rtlock_wait_restore_state() \
154 do { \
155 current->task_state_change = current->saved_state_change;\
156 } while (0)
157
8eb23b9f 158#else
85019c16
TG
159# define debug_normal_state_change(cond) do { } while (0)
160# define debug_special_state_change(cond) do { } while (0)
5f220be2
TG
161# define debug_rtlock_wait_set_state() do { } while (0)
162# define debug_rtlock_wait_restore_state() do { } while (0)
85019c16
TG
163#endif
164
498d0c57
AM
165/*
166 * set_current_state() includes a barrier so that the write of current->state
167 * is correctly serialised wrt the caller's subsequent test of whether to
168 * actually sleep:
169 *
a2250238 170 * for (;;) {
498d0c57 171 * set_current_state(TASK_UNINTERRUPTIBLE);
58877d34
PZ
172 * if (CONDITION)
173 * break;
a2250238
PZ
174 *
175 * schedule();
176 * }
177 * __set_current_state(TASK_RUNNING);
178 *
179 * If the caller does not need such serialisation (because, for instance, the
58877d34 180 * CONDITION test and condition change and wakeup are under the same lock) then
a2250238
PZ
181 * use __set_current_state().
182 *
183 * The above is typically ordered against the wakeup, which does:
184 *
58877d34 185 * CONDITION = 1;
b5bf9a90 186 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 187 *
58877d34
PZ
188 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
189 * accessing p->state.
a2250238
PZ
190 *
191 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
192 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
193 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 194 *
b5bf9a90 195 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 196 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
197 * a problem either because that will result in one extra go around the loop
198 * and our @cond test will save the day.
498d0c57 199 *
a2250238 200 * Also see the comments of try_to_wake_up().
498d0c57 201 */
b5bf9a90 202#define __set_current_state(state_value) \
85019c16
TG
203 do { \
204 debug_normal_state_change((state_value)); \
205 WRITE_ONCE(current->__state, (state_value)); \
206 } while (0)
b5bf9a90
PZ
207
208#define set_current_state(state_value) \
85019c16
TG
209 do { \
210 debug_normal_state_change((state_value)); \
211 smp_store_mb(current->__state, (state_value)); \
212 } while (0)
b5bf9a90
PZ
213
214/*
215 * set_special_state() should be used for those states when the blocking task
216 * can not use the regular condition based wait-loop. In that case we must
85019c16
TG
217 * serialize against wakeups such that any possible in-flight TASK_RUNNING
218 * stores will not collide with our state change.
b5bf9a90
PZ
219 */
220#define set_special_state(state_value) \
221 do { \
222 unsigned long flags; /* may shadow */ \
85019c16 223 \
b5bf9a90 224 raw_spin_lock_irqsave(&current->pi_lock, flags); \
85019c16 225 debug_special_state_change((state_value)); \
2f064a59 226 WRITE_ONCE(current->__state, (state_value)); \
b5bf9a90
PZ
227 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
228 } while (0)
229
5f220be2
TG
230/*
231 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
232 *
233 * RT's spin/rwlock substitutions are state preserving. The state of the
234 * task when blocking on the lock is saved in task_struct::saved_state and
235 * restored after the lock has been acquired. These operations are
236 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
237 * lock related wakeups while the task is blocked on the lock are
238 * redirected to operate on task_struct::saved_state to ensure that these
239 * are not dropped. On restore task_struct::saved_state is set to
240 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
241 *
242 * The lock operation looks like this:
243 *
244 * current_save_and_set_rtlock_wait_state();
245 * for (;;) {
246 * if (try_lock())
247 * break;
248 * raw_spin_unlock_irq(&lock->wait_lock);
249 * schedule_rtlock();
250 * raw_spin_lock_irq(&lock->wait_lock);
251 * set_current_state(TASK_RTLOCK_WAIT);
252 * }
253 * current_restore_rtlock_saved_state();
254 */
255#define current_save_and_set_rtlock_wait_state() \
256 do { \
257 lockdep_assert_irqs_disabled(); \
258 raw_spin_lock(&current->pi_lock); \
259 current->saved_state = current->__state; \
260 debug_rtlock_wait_set_state(); \
261 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
262 raw_spin_unlock(&current->pi_lock); \
263 } while (0);
264
265#define current_restore_rtlock_saved_state() \
266 do { \
267 lockdep_assert_irqs_disabled(); \
268 raw_spin_lock(&current->pi_lock); \
269 debug_rtlock_wait_restore_state(); \
270 WRITE_ONCE(current->__state, current->saved_state); \
271 current->saved_state = TASK_RUNNING; \
272 raw_spin_unlock(&current->pi_lock); \
273 } while (0);
8eb23b9f 274
2f064a59 275#define get_current_state() READ_ONCE(current->__state)
d6c23bb3 276
5eca1c10
IM
277/* Task command name length: */
278#define TASK_COMM_LEN 16
1da177e4 279
1da177e4
LT
280extern void scheduler_tick(void);
281
5eca1c10
IM
282#define MAX_SCHEDULE_TIMEOUT LONG_MAX
283
284extern long schedule_timeout(long timeout);
285extern long schedule_timeout_interruptible(long timeout);
286extern long schedule_timeout_killable(long timeout);
287extern long schedule_timeout_uninterruptible(long timeout);
288extern long schedule_timeout_idle(long timeout);
1da177e4 289asmlinkage void schedule(void);
c5491ea7 290extern void schedule_preempt_disabled(void);
19c95f26 291asmlinkage void preempt_schedule_irq(void);
6991436c
TG
292#ifdef CONFIG_PREEMPT_RT
293 extern void schedule_rtlock(void);
294#endif
1da177e4 295
10ab5643
TH
296extern int __must_check io_schedule_prepare(void);
297extern void io_schedule_finish(int token);
9cff8ade 298extern long io_schedule_timeout(long timeout);
10ab5643 299extern void io_schedule(void);
9cff8ade 300
d37f761d 301/**
0ba42a59 302 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
303 * @utime: time spent in user mode
304 * @stime: time spent in system mode
9d7fb042 305 * @lock: protects the above two fields
d37f761d 306 *
9d7fb042
PZ
307 * Stores previous user/system time values such that we can guarantee
308 * monotonicity.
d37f761d 309 */
9d7fb042
PZ
310struct prev_cputime {
311#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
312 u64 utime;
313 u64 stime;
314 raw_spinlock_t lock;
9d7fb042 315#endif
d37f761d
FW
316};
317
bac5b6b6
FW
318enum vtime_state {
319 /* Task is sleeping or running in a CPU with VTIME inactive: */
320 VTIME_INACTIVE = 0,
14faf6fc
FW
321 /* Task is idle */
322 VTIME_IDLE,
bac5b6b6
FW
323 /* Task runs in kernelspace in a CPU with VTIME active: */
324 VTIME_SYS,
14faf6fc
FW
325 /* Task runs in userspace in a CPU with VTIME active: */
326 VTIME_USER,
e6d5bf3e
FW
327 /* Task runs as guests in a CPU with VTIME active: */
328 VTIME_GUEST,
bac5b6b6
FW
329};
330
331struct vtime {
332 seqcount_t seqcount;
333 unsigned long long starttime;
334 enum vtime_state state;
802f4a82 335 unsigned int cpu;
2a42eb95
WL
336 u64 utime;
337 u64 stime;
338 u64 gtime;
bac5b6b6
FW
339};
340
69842cba
PB
341/*
342 * Utilization clamp constraints.
343 * @UCLAMP_MIN: Minimum utilization
344 * @UCLAMP_MAX: Maximum utilization
345 * @UCLAMP_CNT: Utilization clamp constraints count
346 */
347enum uclamp_id {
348 UCLAMP_MIN = 0,
349 UCLAMP_MAX,
350 UCLAMP_CNT
351};
352
f9a25f77
MP
353#ifdef CONFIG_SMP
354extern struct root_domain def_root_domain;
355extern struct mutex sched_domains_mutex;
356#endif
357
1da177e4 358struct sched_info {
7f5f8e8d 359#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
360 /* Cumulative counters: */
361
362 /* # of times we have run on this CPU: */
363 unsigned long pcount;
364
365 /* Time spent waiting on a runqueue: */
366 unsigned long long run_delay;
367
368 /* Timestamps: */
369
370 /* When did we last run on a CPU? */
371 unsigned long long last_arrival;
372
373 /* When were we last queued to run? */
374 unsigned long long last_queued;
1da177e4 375
f6db8347 376#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 377};
1da177e4 378
6ecdd749
YD
379/*
380 * Integer metrics need fixed point arithmetic, e.g., sched/fair
381 * has a few: load, load_avg, util_avg, freq, and capacity.
382 *
383 * We define a basic fixed point arithmetic range, and then formalize
384 * all these metrics based on that basic range.
385 */
5eca1c10
IM
386# define SCHED_FIXEDPOINT_SHIFT 10
387# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 388
69842cba
PB
389/* Increase resolution of cpu_capacity calculations */
390# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
391# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
392
20b8a59f 393struct load_weight {
5eca1c10
IM
394 unsigned long weight;
395 u32 inv_weight;
20b8a59f
IM
396};
397
7f65ea42
PB
398/**
399 * struct util_est - Estimation utilization of FAIR tasks
400 * @enqueued: instantaneous estimated utilization of a task/cpu
401 * @ewma: the Exponential Weighted Moving Average (EWMA)
402 * utilization of a task
403 *
404 * Support data structure to track an Exponential Weighted Moving Average
405 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
406 * average each time a task completes an activation. Sample's weight is chosen
407 * so that the EWMA will be relatively insensitive to transient changes to the
408 * task's workload.
409 *
410 * The enqueued attribute has a slightly different meaning for tasks and cpus:
411 * - task: the task's util_avg at last task dequeue time
412 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
413 * Thus, the util_est.enqueued of a task represents the contribution on the
414 * estimated utilization of the CPU where that task is currently enqueued.
415 *
416 * Only for tasks we track a moving average of the past instantaneous
417 * estimated utilization. This allows to absorb sporadic drops in utilization
418 * of an otherwise almost periodic task.
68d7a190
DE
419 *
420 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
421 * updates. When a task is dequeued, its util_est should not be updated if its
422 * util_avg has not been updated in the meantime.
423 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
424 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
425 * for a task) it is safe to use MSB.
7f65ea42
PB
426 */
427struct util_est {
428 unsigned int enqueued;
429 unsigned int ewma;
430#define UTIL_EST_WEIGHT_SHIFT 2
68d7a190 431#define UTIL_AVG_UNCHANGED 0x80000000
317d359d 432} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 433
9d89c257 434/*
9f683953 435 * The load/runnable/util_avg accumulates an infinite geometric series
0dacee1b 436 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
7b595334
YD
437 *
438 * [load_avg definition]
439 *
440 * load_avg = runnable% * scale_load_down(load)
441 *
9f683953
VG
442 * [runnable_avg definition]
443 *
444 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
7b595334 445 *
7b595334
YD
446 * [util_avg definition]
447 *
448 * util_avg = running% * SCHED_CAPACITY_SCALE
449 *
9f683953
VG
450 * where runnable% is the time ratio that a sched_entity is runnable and
451 * running% the time ratio that a sched_entity is running.
452 *
453 * For cfs_rq, they are the aggregated values of all runnable and blocked
454 * sched_entities.
7b595334 455 *
c1b7b8d4 456 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
9f683953
VG
457 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
458 * for computing those signals (see update_rq_clock_pelt())
7b595334 459 *
23127296
VG
460 * N.B., the above ratios (runnable% and running%) themselves are in the
461 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
462 * to as large a range as necessary. This is for example reflected by
463 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
464 *
465 * [Overflow issue]
466 *
467 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
468 * with the highest load (=88761), always runnable on a single cfs_rq,
469 * and should not overflow as the number already hits PID_MAX_LIMIT.
470 *
471 * For all other cases (including 32-bit kernels), struct load_weight's
472 * weight will overflow first before we do, because:
473 *
474 * Max(load_avg) <= Max(load.weight)
475 *
476 * Then it is the load_weight's responsibility to consider overflow
477 * issues.
9d89c257 478 */
9d85f21c 479struct sched_avg {
5eca1c10
IM
480 u64 last_update_time;
481 u64 load_sum;
9f683953 482 u64 runnable_sum;
5eca1c10
IM
483 u32 util_sum;
484 u32 period_contrib;
485 unsigned long load_avg;
9f683953 486 unsigned long runnable_avg;
5eca1c10 487 unsigned long util_avg;
7f65ea42 488 struct util_est util_est;
317d359d 489} ____cacheline_aligned;
9d85f21c 490
41acab88 491struct sched_statistics {
7f5f8e8d 492#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
493 u64 wait_start;
494 u64 wait_max;
495 u64 wait_count;
496 u64 wait_sum;
497 u64 iowait_count;
498 u64 iowait_sum;
499
500 u64 sleep_start;
501 u64 sleep_max;
502 s64 sum_sleep_runtime;
503
504 u64 block_start;
505 u64 block_max;
506 u64 exec_max;
507 u64 slice_max;
508
509 u64 nr_migrations_cold;
510 u64 nr_failed_migrations_affine;
511 u64 nr_failed_migrations_running;
512 u64 nr_failed_migrations_hot;
513 u64 nr_forced_migrations;
514
515 u64 nr_wakeups;
516 u64 nr_wakeups_sync;
517 u64 nr_wakeups_migrate;
518 u64 nr_wakeups_local;
519 u64 nr_wakeups_remote;
520 u64 nr_wakeups_affine;
521 u64 nr_wakeups_affine_attempts;
522 u64 nr_wakeups_passive;
523 u64 nr_wakeups_idle;
41acab88 524#endif
7f5f8e8d 525};
41acab88
LDM
526
527struct sched_entity {
5eca1c10
IM
528 /* For load-balancing: */
529 struct load_weight load;
530 struct rb_node run_node;
531 struct list_head group_node;
532 unsigned int on_rq;
41acab88 533
5eca1c10
IM
534 u64 exec_start;
535 u64 sum_exec_runtime;
536 u64 vruntime;
537 u64 prev_sum_exec_runtime;
41acab88 538
5eca1c10 539 u64 nr_migrations;
41acab88 540
5eca1c10 541 struct sched_statistics statistics;
94c18227 542
20b8a59f 543#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
544 int depth;
545 struct sched_entity *parent;
20b8a59f 546 /* rq on which this entity is (to be) queued: */
5eca1c10 547 struct cfs_rq *cfs_rq;
20b8a59f 548 /* rq "owned" by this entity/group: */
5eca1c10 549 struct cfs_rq *my_q;
9f683953
VG
550 /* cached value of my_q->h_nr_running */
551 unsigned long runnable_weight;
20b8a59f 552#endif
8bd75c77 553
141965c7 554#ifdef CONFIG_SMP
5a107804
JO
555 /*
556 * Per entity load average tracking.
557 *
558 * Put into separate cache line so it does not
559 * collide with read-mostly values above.
560 */
317d359d 561 struct sched_avg avg;
9d85f21c 562#endif
20b8a59f 563};
70b97a7f 564
fa717060 565struct sched_rt_entity {
5eca1c10
IM
566 struct list_head run_list;
567 unsigned long timeout;
568 unsigned long watchdog_stamp;
569 unsigned int time_slice;
570 unsigned short on_rq;
571 unsigned short on_list;
572
573 struct sched_rt_entity *back;
052f1dc7 574#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 575 struct sched_rt_entity *parent;
6f505b16 576 /* rq on which this entity is (to be) queued: */
5eca1c10 577 struct rt_rq *rt_rq;
6f505b16 578 /* rq "owned" by this entity/group: */
5eca1c10 579 struct rt_rq *my_q;
6f505b16 580#endif
3859a271 581} __randomize_layout;
fa717060 582
aab03e05 583struct sched_dl_entity {
5eca1c10 584 struct rb_node rb_node;
aab03e05
DF
585
586 /*
587 * Original scheduling parameters. Copied here from sched_attr
4027d080 588 * during sched_setattr(), they will remain the same until
589 * the next sched_setattr().
aab03e05 590 */
5eca1c10
IM
591 u64 dl_runtime; /* Maximum runtime for each instance */
592 u64 dl_deadline; /* Relative deadline of each instance */
593 u64 dl_period; /* Separation of two instances (period) */
54d6d303 594 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 595 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
596
597 /*
598 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 599 * they are continuously updated during task execution. Note that
aab03e05
DF
600 * the remaining runtime could be < 0 in case we are in overrun.
601 */
5eca1c10
IM
602 s64 runtime; /* Remaining runtime for this instance */
603 u64 deadline; /* Absolute deadline for this instance */
604 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
605
606 /*
607 * Some bool flags:
608 *
609 * @dl_throttled tells if we exhausted the runtime. If so, the
610 * task has to wait for a replenishment to be performed at the
611 * next firing of dl_timer.
612 *
2d3d891d
DF
613 * @dl_boosted tells if we are boosted due to DI. If so we are
614 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
615 * exit the critical section);
616 *
5eca1c10 617 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 618 * all its available runtime during the last job.
209a0cbd
LA
619 *
620 * @dl_non_contending tells if the task is inactive while still
621 * contributing to the active utilization. In other words, it
622 * indicates if the inactive timer has been armed and its handler
623 * has not been executed yet. This flag is useful to avoid race
624 * conditions between the inactive timer handler and the wakeup
625 * code.
34be3930
JL
626 *
627 * @dl_overrun tells if the task asked to be informed about runtime
628 * overruns.
aab03e05 629 */
aa5222e9 630 unsigned int dl_throttled : 1;
aa5222e9
DC
631 unsigned int dl_yielded : 1;
632 unsigned int dl_non_contending : 1;
34be3930 633 unsigned int dl_overrun : 1;
aab03e05
DF
634
635 /*
636 * Bandwidth enforcement timer. Each -deadline task has its
637 * own bandwidth to be enforced, thus we need one timer per task.
638 */
5eca1c10 639 struct hrtimer dl_timer;
209a0cbd
LA
640
641 /*
642 * Inactive timer, responsible for decreasing the active utilization
643 * at the "0-lag time". When a -deadline task blocks, it contributes
644 * to GRUB's active utilization until the "0-lag time", hence a
645 * timer is needed to decrease the active utilization at the correct
646 * time.
647 */
648 struct hrtimer inactive_timer;
2279f540
JL
649
650#ifdef CONFIG_RT_MUTEXES
651 /*
652 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
653 * pi_se points to the donor, otherwise points to the dl_se it belongs
654 * to (the original one/itself).
655 */
656 struct sched_dl_entity *pi_se;
657#endif
aab03e05 658};
8bd75c77 659
69842cba
PB
660#ifdef CONFIG_UCLAMP_TASK
661/* Number of utilization clamp buckets (shorter alias) */
662#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
663
664/*
665 * Utilization clamp for a scheduling entity
666 * @value: clamp value "assigned" to a se
667 * @bucket_id: bucket index corresponding to the "assigned" value
e8f14172 668 * @active: the se is currently refcounted in a rq's bucket
a509a7cd 669 * @user_defined: the requested clamp value comes from user-space
69842cba
PB
670 *
671 * The bucket_id is the index of the clamp bucket matching the clamp value
672 * which is pre-computed and stored to avoid expensive integer divisions from
673 * the fast path.
e8f14172
PB
674 *
675 * The active bit is set whenever a task has got an "effective" value assigned,
676 * which can be different from the clamp value "requested" from user-space.
677 * This allows to know a task is refcounted in the rq's bucket corresponding
678 * to the "effective" bucket_id.
a509a7cd
PB
679 *
680 * The user_defined bit is set whenever a task has got a task-specific clamp
681 * value requested from userspace, i.e. the system defaults apply to this task
682 * just as a restriction. This allows to relax default clamps when a less
683 * restrictive task-specific value has been requested, thus allowing to
684 * implement a "nice" semantic. For example, a task running with a 20%
685 * default boost can still drop its own boosting to 0%.
69842cba
PB
686 */
687struct uclamp_se {
688 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
689 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
e8f14172 690 unsigned int active : 1;
a509a7cd 691 unsigned int user_defined : 1;
69842cba
PB
692};
693#endif /* CONFIG_UCLAMP_TASK */
694
1d082fd0
PM
695union rcu_special {
696 struct {
5eca1c10
IM
697 u8 blocked;
698 u8 need_qs;
05f41571 699 u8 exp_hint; /* Hint for performance. */
276c4104 700 u8 need_mb; /* Readers need smp_mb(). */
8203d6d0 701 } b; /* Bits. */
05f41571 702 u32 s; /* Set of bits. */
1d082fd0 703};
86848966 704
8dc85d54
PZ
705enum perf_event_task_context {
706 perf_invalid_context = -1,
707 perf_hw_context = 0,
89a1e187 708 perf_sw_context,
8dc85d54
PZ
709 perf_nr_task_contexts,
710};
711
eb61baf6
IM
712struct wake_q_node {
713 struct wake_q_node *next;
714};
715
5fbda3ec
TG
716struct kmap_ctrl {
717#ifdef CONFIG_KMAP_LOCAL
718 int idx;
719 pte_t pteval[KM_MAX_IDX];
720#endif
721};
722
1da177e4 723struct task_struct {
c65eacbe
AL
724#ifdef CONFIG_THREAD_INFO_IN_TASK
725 /*
726 * For reasons of header soup (see current_thread_info()), this
727 * must be the first element of task_struct.
728 */
5eca1c10 729 struct thread_info thread_info;
c65eacbe 730#endif
2f064a59 731 unsigned int __state;
29e48ce8 732
5f220be2
TG
733#ifdef CONFIG_PREEMPT_RT
734 /* saved state for "spinlock sleepers" */
735 unsigned int saved_state;
736#endif
737
29e48ce8
KC
738 /*
739 * This begins the randomizable portion of task_struct. Only
740 * scheduling-critical items should be added above here.
741 */
742 randomized_struct_fields_start
743
5eca1c10 744 void *stack;
ec1d2819 745 refcount_t usage;
5eca1c10
IM
746 /* Per task flags (PF_*), defined further below: */
747 unsigned int flags;
748 unsigned int ptrace;
1da177e4 749
2dd73a4f 750#ifdef CONFIG_SMP
5eca1c10 751 int on_cpu;
8c4890d1 752 struct __call_single_node wake_entry;
c65eacbe 753#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
754 /* Current CPU: */
755 unsigned int cpu;
c65eacbe 756#endif
5eca1c10
IM
757 unsigned int wakee_flips;
758 unsigned long wakee_flip_decay_ts;
759 struct task_struct *last_wakee;
ac66f547 760
32e839dd
MG
761 /*
762 * recent_used_cpu is initially set as the last CPU used by a task
763 * that wakes affine another task. Waker/wakee relationships can
764 * push tasks around a CPU where each wakeup moves to the next one.
765 * Tracking a recently used CPU allows a quick search for a recently
766 * used CPU that may be idle.
767 */
768 int recent_used_cpu;
5eca1c10 769 int wake_cpu;
2dd73a4f 770#endif
5eca1c10
IM
771 int on_rq;
772
773 int prio;
774 int static_prio;
775 int normal_prio;
776 unsigned int rt_priority;
50e645a8 777
5eca1c10
IM
778 const struct sched_class *sched_class;
779 struct sched_entity se;
780 struct sched_rt_entity rt;
8a311c74
PZ
781 struct sched_dl_entity dl;
782
783#ifdef CONFIG_SCHED_CORE
784 struct rb_node core_node;
785 unsigned long core_cookie;
d2dfa17b 786 unsigned int core_occupation;
8a311c74
PZ
787#endif
788
8323f26c 789#ifdef CONFIG_CGROUP_SCHED
5eca1c10 790 struct task_group *sched_task_group;
8323f26c 791#endif
1da177e4 792
69842cba 793#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
794 /*
795 * Clamp values requested for a scheduling entity.
796 * Must be updated with task_rq_lock() held.
797 */
e8f14172 798 struct uclamp_se uclamp_req[UCLAMP_CNT];
13685c4a
QY
799 /*
800 * Effective clamp values used for a scheduling entity.
801 * Must be updated with task_rq_lock() held.
802 */
69842cba
PB
803 struct uclamp_se uclamp[UCLAMP_CNT];
804#endif
805
e107be36 806#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
807 /* List of struct preempt_notifier: */
808 struct hlist_head preempt_notifiers;
e107be36
AK
809#endif
810
6c5c9341 811#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 812 unsigned int btrace_seq;
6c5c9341 813#endif
1da177e4 814
5eca1c10
IM
815 unsigned int policy;
816 int nr_cpus_allowed;
3bd37062 817 const cpumask_t *cpus_ptr;
b90ca8ba 818 cpumask_t *user_cpus_ptr;
3bd37062 819 cpumask_t cpus_mask;
6d337eab 820 void *migration_pending;
74d862b6 821#ifdef CONFIG_SMP
a7c81556 822 unsigned short migration_disabled;
af449901 823#endif
a7c81556 824 unsigned short migration_flags;
1da177e4 825
a57eb940 826#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
827 int rcu_read_lock_nesting;
828 union rcu_special rcu_read_unlock_special;
829 struct list_head rcu_node_entry;
830 struct rcu_node *rcu_blocked_node;
28f6569a 831#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 832
8315f422 833#ifdef CONFIG_TASKS_RCU
5eca1c10 834 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
835 u8 rcu_tasks_holdout;
836 u8 rcu_tasks_idx;
5eca1c10 837 int rcu_tasks_idle_cpu;
ccdd29ff 838 struct list_head rcu_tasks_holdout_list;
8315f422 839#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 840
d5f177d3
PM
841#ifdef CONFIG_TASKS_TRACE_RCU
842 int trc_reader_nesting;
843 int trc_ipi_to_cpu;
276c4104 844 union rcu_special trc_reader_special;
d5f177d3
PM
845 bool trc_reader_checked;
846 struct list_head trc_holdout_list;
847#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
848
5eca1c10 849 struct sched_info sched_info;
1da177e4 850
5eca1c10 851 struct list_head tasks;
806c09a7 852#ifdef CONFIG_SMP
5eca1c10
IM
853 struct plist_node pushable_tasks;
854 struct rb_node pushable_dl_tasks;
806c09a7 855#endif
1da177e4 856
5eca1c10
IM
857 struct mm_struct *mm;
858 struct mm_struct *active_mm;
314ff785
IM
859
860 /* Per-thread vma caching: */
5eca1c10 861 struct vmacache vmacache;
314ff785 862
5eca1c10
IM
863#ifdef SPLIT_RSS_COUNTING
864 struct task_rss_stat rss_stat;
34e55232 865#endif
5eca1c10
IM
866 int exit_state;
867 int exit_code;
868 int exit_signal;
869 /* The signal sent when the parent dies: */
870 int pdeath_signal;
871 /* JOBCTL_*, siglock protected: */
872 unsigned long jobctl;
873
874 /* Used for emulating ABI behavior of previous Linux versions: */
875 unsigned int personality;
876
877 /* Scheduler bits, serialized by scheduler locks: */
878 unsigned sched_reset_on_fork:1;
879 unsigned sched_contributes_to_load:1;
880 unsigned sched_migrated:1;
eb414681
JW
881#ifdef CONFIG_PSI
882 unsigned sched_psi_wake_requeue:1;
883#endif
884
5eca1c10
IM
885 /* Force alignment to the next boundary: */
886 unsigned :0;
887
888 /* Unserialized, strictly 'current' */
889
f97bb527
PZ
890 /*
891 * This field must not be in the scheduler word above due to wakelist
892 * queueing no longer being serialized by p->on_cpu. However:
893 *
894 * p->XXX = X; ttwu()
895 * schedule() if (p->on_rq && ..) // false
896 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
897 * deactivate_task() ttwu_queue_wakelist())
898 * p->on_rq = 0; p->sched_remote_wakeup = Y;
899 *
900 * guarantees all stores of 'current' are visible before
901 * ->sched_remote_wakeup gets used, so it can be in this word.
902 */
903 unsigned sched_remote_wakeup:1;
904
5eca1c10
IM
905 /* Bit to tell LSMs we're in execve(): */
906 unsigned in_execve:1;
907 unsigned in_iowait:1;
908#ifndef TIF_RESTORE_SIGMASK
909 unsigned restore_sigmask:1;
7e781418 910#endif
626ebc41 911#ifdef CONFIG_MEMCG
29ef680a 912 unsigned in_user_fault:1;
127424c8 913#endif
ff303e66 914#ifdef CONFIG_COMPAT_BRK
5eca1c10 915 unsigned brk_randomized:1;
ff303e66 916#endif
77f88796
TH
917#ifdef CONFIG_CGROUPS
918 /* disallow userland-initiated cgroup migration */
919 unsigned no_cgroup_migration:1;
76f969e8
RG
920 /* task is frozen/stopped (used by the cgroup freezer) */
921 unsigned frozen:1;
77f88796 922#endif
d09d8df3 923#ifdef CONFIG_BLK_CGROUP
d09d8df3
JB
924 unsigned use_memdelay:1;
925#endif
1066d1b6
YS
926#ifdef CONFIG_PSI
927 /* Stalled due to lack of memory */
928 unsigned in_memstall:1;
929#endif
8e9b16c4
ST
930#ifdef CONFIG_PAGE_OWNER
931 /* Used by page_owner=on to detect recursion in page tracking. */
932 unsigned in_page_owner:1;
933#endif
b542e383
TG
934#ifdef CONFIG_EVENTFD
935 /* Recursion prevention for eventfd_signal() */
936 unsigned in_eventfd_signal:1;
937#endif
6f185c29 938
5eca1c10 939 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 940
5eca1c10 941 struct restart_block restart_block;
f56141e3 942
5eca1c10
IM
943 pid_t pid;
944 pid_t tgid;
0a425405 945
050e9baa 946#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
947 /* Canary value for the -fstack-protector GCC feature: */
948 unsigned long stack_canary;
1314562a 949#endif
4d1d61a6 950 /*
5eca1c10 951 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 952 * older sibling, respectively. (p->father can be replaced with
f470021a 953 * p->real_parent->pid)
1da177e4 954 */
5eca1c10
IM
955
956 /* Real parent process: */
957 struct task_struct __rcu *real_parent;
958
959 /* Recipient of SIGCHLD, wait4() reports: */
960 struct task_struct __rcu *parent;
961
1da177e4 962 /*
5eca1c10 963 * Children/sibling form the list of natural children:
1da177e4 964 */
5eca1c10
IM
965 struct list_head children;
966 struct list_head sibling;
967 struct task_struct *group_leader;
1da177e4 968
f470021a 969 /*
5eca1c10
IM
970 * 'ptraced' is the list of tasks this task is using ptrace() on.
971 *
f470021a 972 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 973 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 974 */
5eca1c10
IM
975 struct list_head ptraced;
976 struct list_head ptrace_entry;
f470021a 977
1da177e4 978 /* PID/PID hash table linkage. */
2c470475
EB
979 struct pid *thread_pid;
980 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
981 struct list_head thread_group;
982 struct list_head thread_node;
983
984 struct completion *vfork_done;
1da177e4 985
5eca1c10
IM
986 /* CLONE_CHILD_SETTID: */
987 int __user *set_child_tid;
1da177e4 988
5eca1c10
IM
989 /* CLONE_CHILD_CLEARTID: */
990 int __user *clear_child_tid;
991
3bfe6106
JA
992 /* PF_IO_WORKER */
993 void *pf_io_worker;
994
5eca1c10
IM
995 u64 utime;
996 u64 stime;
40565b5a 997#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
998 u64 utimescaled;
999 u64 stimescaled;
40565b5a 1000#endif
5eca1c10
IM
1001 u64 gtime;
1002 struct prev_cputime prev_cputime;
6a61671b 1003#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 1004 struct vtime vtime;
d99ca3b9 1005#endif
d027d45d
FW
1006
1007#ifdef CONFIG_NO_HZ_FULL
5eca1c10 1008 atomic_t tick_dep_mask;
d027d45d 1009#endif
5eca1c10
IM
1010 /* Context switch counts: */
1011 unsigned long nvcsw;
1012 unsigned long nivcsw;
1013
1014 /* Monotonic time in nsecs: */
1015 u64 start_time;
1016
1017 /* Boot based time in nsecs: */
cf25e24d 1018 u64 start_boottime;
5eca1c10
IM
1019
1020 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1021 unsigned long min_flt;
1022 unsigned long maj_flt;
1da177e4 1023
2b69942f
TG
1024 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1025 struct posix_cputimers posix_cputimers;
1da177e4 1026
1fb497dd
TG
1027#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1028 struct posix_cputimers_work posix_cputimers_work;
1029#endif
1030
5eca1c10
IM
1031 /* Process credentials: */
1032
1033 /* Tracer's credentials at attach: */
1034 const struct cred __rcu *ptracer_cred;
1035
1036 /* Objective and real subjective task credentials (COW): */
1037 const struct cred __rcu *real_cred;
1038
1039 /* Effective (overridable) subjective task credentials (COW): */
1040 const struct cred __rcu *cred;
1041
7743c48e
DH
1042#ifdef CONFIG_KEYS
1043 /* Cached requested key. */
1044 struct key *cached_requested_key;
1045#endif
1046
5eca1c10
IM
1047 /*
1048 * executable name, excluding path.
1049 *
1050 * - normally initialized setup_new_exec()
1051 * - access it with [gs]et_task_comm()
1052 * - lock it with task_lock()
1053 */
1054 char comm[TASK_COMM_LEN];
1055
1056 struct nameidata *nameidata;
1057
3d5b6fcc 1058#ifdef CONFIG_SYSVIPC
5eca1c10
IM
1059 struct sysv_sem sysvsem;
1060 struct sysv_shm sysvshm;
3d5b6fcc 1061#endif
e162b39a 1062#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 1063 unsigned long last_switch_count;
a2e51445 1064 unsigned long last_switch_time;
82a1fcb9 1065#endif
5eca1c10
IM
1066 /* Filesystem information: */
1067 struct fs_struct *fs;
1068
1069 /* Open file information: */
1070 struct files_struct *files;
1071
0f212204
JA
1072#ifdef CONFIG_IO_URING
1073 struct io_uring_task *io_uring;
1074#endif
1075
5eca1c10
IM
1076 /* Namespaces: */
1077 struct nsproxy *nsproxy;
1078
1079 /* Signal handlers: */
1080 struct signal_struct *signal;
913292c9 1081 struct sighand_struct __rcu *sighand;
5eca1c10
IM
1082 sigset_t blocked;
1083 sigset_t real_blocked;
1084 /* Restored if set_restore_sigmask() was used: */
1085 sigset_t saved_sigmask;
1086 struct sigpending pending;
1087 unsigned long sas_ss_sp;
1088 size_t sas_ss_size;
1089 unsigned int sas_ss_flags;
1090
1091 struct callback_head *task_works;
1092
4b7d248b 1093#ifdef CONFIG_AUDIT
bfef93a5 1094#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
1095 struct audit_context *audit_context;
1096#endif
5eca1c10
IM
1097 kuid_t loginuid;
1098 unsigned int sessionid;
bfef93a5 1099#endif
5eca1c10 1100 struct seccomp seccomp;
1446e1df 1101 struct syscall_user_dispatch syscall_dispatch;
5eca1c10
IM
1102
1103 /* Thread group tracking: */
d1e7fd64
EB
1104 u64 parent_exec_id;
1105 u64 self_exec_id;
1da177e4 1106
5eca1c10
IM
1107 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1108 spinlock_t alloc_lock;
1da177e4 1109
b29739f9 1110 /* Protection of the PI data structures: */
5eca1c10 1111 raw_spinlock_t pi_lock;
b29739f9 1112
5eca1c10 1113 struct wake_q_node wake_q;
76751049 1114
23f78d4a 1115#ifdef CONFIG_RT_MUTEXES
5eca1c10 1116 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 1117 struct rb_root_cached pi_waiters;
e96a7705
XP
1118 /* Updated under owner's pi_lock and rq lock */
1119 struct task_struct *pi_top_task;
5eca1c10
IM
1120 /* Deadlock detection and priority inheritance handling: */
1121 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1122#endif
1123
408894ee 1124#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
1125 /* Mutex deadlock detection: */
1126 struct mutex_waiter *blocked_on;
408894ee 1127#endif
5eca1c10 1128
312364f3
DV
1129#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1130 int non_block_count;
1131#endif
1132
de30a2b3 1133#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c 1134 struct irqtrace_events irqtrace;
de8f5e4f 1135 unsigned int hardirq_threaded;
c86e9b98 1136 u64 hardirq_chain_key;
5eca1c10
IM
1137 int softirqs_enabled;
1138 int softirq_context;
40db1739 1139 int irq_config;
de30a2b3 1140#endif
728b478d
TG
1141#ifdef CONFIG_PREEMPT_RT
1142 int softirq_disable_cnt;
1143#endif
5eca1c10 1144
fbb9ce95 1145#ifdef CONFIG_LOCKDEP
5eca1c10
IM
1146# define MAX_LOCK_DEPTH 48UL
1147 u64 curr_chain_key;
1148 int lockdep_depth;
1149 unsigned int lockdep_recursion;
1150 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 1151#endif
5eca1c10 1152
5cf53f3c 1153#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
5eca1c10 1154 unsigned int in_ubsan;
c6d30853 1155#endif
408894ee 1156
5eca1c10
IM
1157 /* Journalling filesystem info: */
1158 void *journal_info;
1da177e4 1159
5eca1c10
IM
1160 /* Stacked block device info: */
1161 struct bio_list *bio_list;
d89d8796 1162
73c10101 1163#ifdef CONFIG_BLOCK
5eca1c10
IM
1164 /* Stack plugging: */
1165 struct blk_plug *plug;
73c10101
JA
1166#endif
1167
5eca1c10
IM
1168 /* VM state: */
1169 struct reclaim_state *reclaim_state;
1170
1171 struct backing_dev_info *backing_dev_info;
1da177e4 1172
5eca1c10 1173 struct io_context *io_context;
1da177e4 1174
5e1f0f09
MG
1175#ifdef CONFIG_COMPACTION
1176 struct capture_control *capture_control;
1177#endif
5eca1c10
IM
1178 /* Ptrace state: */
1179 unsigned long ptrace_message;
ae7795bc 1180 kernel_siginfo_t *last_siginfo;
1da177e4 1181
5eca1c10 1182 struct task_io_accounting ioac;
eb414681
JW
1183#ifdef CONFIG_PSI
1184 /* Pressure stall state */
1185 unsigned int psi_flags;
1186#endif
5eca1c10
IM
1187#ifdef CONFIG_TASK_XACCT
1188 /* Accumulated RSS usage: */
1189 u64 acct_rss_mem1;
1190 /* Accumulated virtual memory usage: */
1191 u64 acct_vm_mem1;
1192 /* stime + utime since last update: */
1193 u64 acct_timexpd;
1da177e4
LT
1194#endif
1195#ifdef CONFIG_CPUSETS
5eca1c10
IM
1196 /* Protected by ->alloc_lock: */
1197 nodemask_t mems_allowed;
3b03706f 1198 /* Sequence number to catch updates: */
b7505861 1199 seqcount_spinlock_t mems_allowed_seq;
5eca1c10
IM
1200 int cpuset_mem_spread_rotor;
1201 int cpuset_slab_spread_rotor;
1da177e4 1202#endif
ddbcc7e8 1203#ifdef CONFIG_CGROUPS
5eca1c10
IM
1204 /* Control Group info protected by css_set_lock: */
1205 struct css_set __rcu *cgroups;
1206 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1207 struct list_head cg_list;
ddbcc7e8 1208#endif
e6d42931 1209#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 1210 u32 closid;
d6aaba61 1211 u32 rmid;
e02737d5 1212#endif
42b2dd0a 1213#ifdef CONFIG_FUTEX
5eca1c10 1214 struct robust_list_head __user *robust_list;
34f192c6
IM
1215#ifdef CONFIG_COMPAT
1216 struct compat_robust_list_head __user *compat_robust_list;
1217#endif
5eca1c10
IM
1218 struct list_head pi_state_list;
1219 struct futex_pi_state *pi_state_cache;
3f186d97 1220 struct mutex futex_exit_mutex;
3d4775df 1221 unsigned int futex_state;
c7aceaba 1222#endif
cdd6c482 1223#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
1224 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1225 struct mutex perf_event_mutex;
1226 struct list_head perf_event_list;
a63eaf34 1227#endif
8f47b187 1228#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1229 unsigned long preempt_disable_ip;
8f47b187 1230#endif
c7aceaba 1231#ifdef CONFIG_NUMA
5eca1c10
IM
1232 /* Protected by alloc_lock: */
1233 struct mempolicy *mempolicy;
45816682 1234 short il_prev;
5eca1c10 1235 short pref_node_fork;
42b2dd0a 1236#endif
cbee9f88 1237#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1238 int numa_scan_seq;
1239 unsigned int numa_scan_period;
1240 unsigned int numa_scan_period_max;
1241 int numa_preferred_nid;
1242 unsigned long numa_migrate_retry;
1243 /* Migration stamp: */
1244 u64 node_stamp;
1245 u64 last_task_numa_placement;
1246 u64 last_sum_exec_runtime;
1247 struct callback_head numa_work;
1248
cb361d8c
JH
1249 /*
1250 * This pointer is only modified for current in syscall and
1251 * pagefault context (and for tasks being destroyed), so it can be read
1252 * from any of the following contexts:
1253 * - RCU read-side critical section
1254 * - current->numa_group from everywhere
1255 * - task's runqueue locked, task not running
1256 */
1257 struct numa_group __rcu *numa_group;
8c8a743c 1258
745d6147 1259 /*
44dba3d5
IM
1260 * numa_faults is an array split into four regions:
1261 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1262 * in this precise order.
1263 *
1264 * faults_memory: Exponential decaying average of faults on a per-node
1265 * basis. Scheduling placement decisions are made based on these
1266 * counts. The values remain static for the duration of a PTE scan.
1267 * faults_cpu: Track the nodes the process was running on when a NUMA
1268 * hinting fault was incurred.
1269 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1270 * during the current scan window. When the scan completes, the counts
1271 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1272 */
5eca1c10
IM
1273 unsigned long *numa_faults;
1274 unsigned long total_numa_faults;
745d6147 1275
04bb2f94
RR
1276 /*
1277 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1278 * scan window were remote/local or failed to migrate. The task scan
1279 * period is adapted based on the locality of the faults with different
1280 * weights depending on whether they were shared or private faults
04bb2f94 1281 */
5eca1c10 1282 unsigned long numa_faults_locality[3];
04bb2f94 1283
5eca1c10 1284 unsigned long numa_pages_migrated;
cbee9f88
PZ
1285#endif /* CONFIG_NUMA_BALANCING */
1286
d7822b1e
MD
1287#ifdef CONFIG_RSEQ
1288 struct rseq __user *rseq;
d7822b1e
MD
1289 u32 rseq_sig;
1290 /*
1291 * RmW on rseq_event_mask must be performed atomically
1292 * with respect to preemption.
1293 */
1294 unsigned long rseq_event_mask;
1295#endif
1296
5eca1c10 1297 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1298
3fbd7ee2
EB
1299 union {
1300 refcount_t rcu_users;
1301 struct rcu_head rcu;
1302 };
b92ce558 1303
5eca1c10
IM
1304 /* Cache last used pipe for splice(): */
1305 struct pipe_inode_info *splice_pipe;
5640f768 1306
5eca1c10 1307 struct page_frag task_frag;
5640f768 1308
47913d4e
IM
1309#ifdef CONFIG_TASK_DELAY_ACCT
1310 struct task_delay_info *delays;
f4f154fd 1311#endif
47913d4e 1312
f4f154fd 1313#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1314 int make_it_fail;
9049f2f6 1315 unsigned int fail_nth;
ca74e92b 1316#endif
9d823e8f 1317 /*
5eca1c10
IM
1318 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1319 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1320 */
5eca1c10
IM
1321 int nr_dirtied;
1322 int nr_dirtied_pause;
1323 /* Start of a write-and-pause period: */
1324 unsigned long dirty_paused_when;
9d823e8f 1325
9745512c 1326#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1327 int latency_record_count;
1328 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1329#endif
6976675d 1330 /*
5eca1c10 1331 * Time slack values; these are used to round up poll() and
6976675d
AV
1332 * select() etc timeout values. These are in nanoseconds.
1333 */
5eca1c10
IM
1334 u64 timer_slack_ns;
1335 u64 default_timer_slack_ns;
f8d570a4 1336
d73b4936 1337#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
5eca1c10 1338 unsigned int kasan_depth;
0b24becc 1339#endif
92c209ac 1340
dfd402a4
ME
1341#ifdef CONFIG_KCSAN
1342 struct kcsan_ctx kcsan_ctx;
92c209ac
ME
1343#ifdef CONFIG_TRACE_IRQFLAGS
1344 struct irqtrace_events kcsan_save_irqtrace;
1345#endif
dfd402a4 1346#endif
5eca1c10 1347
393824f6
PA
1348#if IS_ENABLED(CONFIG_KUNIT)
1349 struct kunit *kunit_test;
1350#endif
1351
fb52607a 1352#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1353 /* Index of current stored address in ret_stack: */
1354 int curr_ret_stack;
39eb456d 1355 int curr_ret_depth;
5eca1c10
IM
1356
1357 /* Stack of return addresses for return function tracing: */
1358 struct ftrace_ret_stack *ret_stack;
1359
1360 /* Timestamp for last schedule: */
1361 unsigned long long ftrace_timestamp;
1362
f201ae23
FW
1363 /*
1364 * Number of functions that haven't been traced
5eca1c10 1365 * because of depth overrun:
f201ae23 1366 */
5eca1c10
IM
1367 atomic_t trace_overrun;
1368
1369 /* Pause tracing: */
1370 atomic_t tracing_graph_pause;
f201ae23 1371#endif
5eca1c10 1372
ea4e2bc4 1373#ifdef CONFIG_TRACING
5eca1c10
IM
1374 /* State flags for use by tracers: */
1375 unsigned long trace;
1376
1377 /* Bitmask and counter of trace recursion: */
1378 unsigned long trace_recursion;
261842b7 1379#endif /* CONFIG_TRACING */
5eca1c10 1380
5c9a8750 1381#ifdef CONFIG_KCOV
eec028c9
AK
1382 /* See kernel/kcov.c for more details. */
1383
5eca1c10 1384 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1385 unsigned int kcov_mode;
5eca1c10
IM
1386
1387 /* Size of the kcov_area: */
1388 unsigned int kcov_size;
1389
1390 /* Buffer for coverage collection: */
1391 void *kcov_area;
1392
1393 /* KCOV descriptor wired with this task or NULL: */
1394 struct kcov *kcov;
eec028c9
AK
1395
1396 /* KCOV common handle for remote coverage collection: */
1397 u64 kcov_handle;
1398
1399 /* KCOV sequence number: */
1400 int kcov_sequence;
5ff3b30a
AK
1401
1402 /* Collect coverage from softirq context: */
1403 unsigned int kcov_softirq;
5c9a8750 1404#endif
5eca1c10 1405
6f185c29 1406#ifdef CONFIG_MEMCG
5eca1c10
IM
1407 struct mem_cgroup *memcg_in_oom;
1408 gfp_t memcg_oom_gfp_mask;
1409 int memcg_oom_order;
b23afb93 1410
5eca1c10
IM
1411 /* Number of pages to reclaim on returning to userland: */
1412 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1413
1414 /* Used by memcontrol for targeted memcg charge: */
1415 struct mem_cgroup *active_memcg;
569b846d 1416#endif
5eca1c10 1417
d09d8df3
JB
1418#ifdef CONFIG_BLK_CGROUP
1419 struct request_queue *throttle_queue;
1420#endif
1421
0326f5a9 1422#ifdef CONFIG_UPROBES
5eca1c10 1423 struct uprobe_task *utask;
0326f5a9 1424#endif
cafe5635 1425#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1426 unsigned int sequential_io;
1427 unsigned int sequential_io_avg;
cafe5635 1428#endif
5fbda3ec 1429 struct kmap_ctrl kmap_ctrl;
8eb23b9f 1430#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1431 unsigned long task_state_change;
5f220be2
TG
1432# ifdef CONFIG_PREEMPT_RT
1433 unsigned long saved_state_change;
1434# endif
8eb23b9f 1435#endif
5eca1c10 1436 int pagefault_disabled;
03049269 1437#ifdef CONFIG_MMU
5eca1c10 1438 struct task_struct *oom_reaper_list;
03049269 1439#endif
ba14a194 1440#ifdef CONFIG_VMAP_STACK
5eca1c10 1441 struct vm_struct *stack_vm_area;
ba14a194 1442#endif
68f24b08 1443#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1444 /* A live task holds one reference: */
f0b89d39 1445 refcount_t stack_refcount;
d83a7cb3
JP
1446#endif
1447#ifdef CONFIG_LIVEPATCH
1448 int patch_state;
0302e28d 1449#endif
e4e55b47
TH
1450#ifdef CONFIG_SECURITY
1451 /* Used by LSM modules for access restriction: */
1452 void *security;
68f24b08 1453#endif
a10787e6
SL
1454#ifdef CONFIG_BPF_SYSCALL
1455 /* Used by BPF task local storage */
1456 struct bpf_local_storage __rcu *bpf_storage;
c7603cfa
AN
1457 /* Used for BPF run context */
1458 struct bpf_run_ctx *bpf_ctx;
a10787e6 1459#endif
29e48ce8 1460
afaef01c
AP
1461#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1462 unsigned long lowest_stack;
c8d12627 1463 unsigned long prev_lowest_stack;
afaef01c
AP
1464#endif
1465
5567d11c 1466#ifdef CONFIG_X86_MCE
c0ab7ffc
TL
1467 void __user *mce_vaddr;
1468 __u64 mce_kflags;
5567d11c 1469 u64 mce_addr;
17fae129
TL
1470 __u64 mce_ripv : 1,
1471 mce_whole_page : 1,
1472 __mce_reserved : 62;
5567d11c
PZ
1473 struct callback_head mce_kill_me;
1474#endif
1475
d741bf41
PZ
1476#ifdef CONFIG_KRETPROBES
1477 struct llist_head kretprobe_instances;
1478#endif
1479
58e106e7
BS
1480#ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1481 /*
1482 * If L1D flush is supported on mm context switch
1483 * then we use this callback head to queue kill work
1484 * to kill tasks that are not running on SMT disabled
1485 * cores
1486 */
1487 struct callback_head l1d_flush_kill;
1488#endif
1489
29e48ce8
KC
1490 /*
1491 * New fields for task_struct should be added above here, so that
1492 * they are included in the randomized portion of task_struct.
1493 */
1494 randomized_struct_fields_end
1495
5eca1c10
IM
1496 /* CPU-specific state of this task: */
1497 struct thread_struct thread;
1498
1499 /*
1500 * WARNING: on x86, 'thread_struct' contains a variable-sized
1501 * structure. It *MUST* be at the end of 'task_struct'.
1502 *
1503 * Do not put anything below here!
1504 */
1da177e4
LT
1505};
1506
e868171a 1507static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1508{
2c470475 1509 return task->thread_pid;
22c935f4
EB
1510}
1511
7af57294
PE
1512/*
1513 * the helpers to get the task's different pids as they are seen
1514 * from various namespaces
1515 *
1516 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1517 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1518 * current.
7af57294
PE
1519 * task_xid_nr_ns() : id seen from the ns specified;
1520 *
7af57294
PE
1521 * see also pid_nr() etc in include/linux/pid.h
1522 */
5eca1c10 1523pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1524
e868171a 1525static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1526{
1527 return tsk->pid;
1528}
1529
5eca1c10 1530static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1531{
1532 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1533}
7af57294
PE
1534
1535static inline pid_t task_pid_vnr(struct task_struct *tsk)
1536{
52ee2dfd 1537 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1538}
1539
1540
e868171a 1541static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1542{
1543 return tsk->tgid;
1544}
1545
5eca1c10
IM
1546/**
1547 * pid_alive - check that a task structure is not stale
1548 * @p: Task structure to be checked.
1549 *
1550 * Test if a process is not yet dead (at most zombie state)
1551 * If pid_alive fails, then pointers within the task structure
1552 * can be stale and must not be dereferenced.
1553 *
1554 * Return: 1 if the process is alive. 0 otherwise.
1555 */
1556static inline int pid_alive(const struct task_struct *p)
1557{
2c470475 1558 return p->thread_pid != NULL;
5eca1c10 1559}
7af57294 1560
5eca1c10 1561static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1562{
52ee2dfd 1563 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1564}
1565
7af57294
PE
1566static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1567{
52ee2dfd 1568 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1569}
1570
1571
5eca1c10 1572static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1573{
52ee2dfd 1574 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1575}
1576
7af57294
PE
1577static inline pid_t task_session_vnr(struct task_struct *tsk)
1578{
52ee2dfd 1579 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1580}
1581
dd1c1f2f
ON
1582static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1583{
6883f81a 1584 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1585}
1586
1587static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1588{
6883f81a 1589 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1590}
1591
1592static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1593{
1594 pid_t pid = 0;
1595
1596 rcu_read_lock();
1597 if (pid_alive(tsk))
1598 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1599 rcu_read_unlock();
1600
1601 return pid;
1602}
1603
1604static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1605{
1606 return task_ppid_nr_ns(tsk, &init_pid_ns);
1607}
1608
5eca1c10 1609/* Obsolete, do not use: */
1b0f7ffd
ON
1610static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1611{
1612 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1613}
7af57294 1614
06eb6184
PZ
1615#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1616#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1617
1d48b080 1618static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1619{
2f064a59 1620 unsigned int tsk_state = READ_ONCE(tsk->__state);
1593baab 1621 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1622
06eb6184
PZ
1623 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1624
06eb6184
PZ
1625 if (tsk_state == TASK_IDLE)
1626 state = TASK_REPORT_IDLE;
1627
1593baab
PZ
1628 return fls(state);
1629}
1630
1d48b080 1631static inline char task_index_to_char(unsigned int state)
1593baab 1632{
8ef9925b 1633 static const char state_char[] = "RSDTtXZPI";
1593baab 1634
06eb6184 1635 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1636
1593baab
PZ
1637 return state_char[state];
1638}
1639
1640static inline char task_state_to_char(struct task_struct *tsk)
1641{
1d48b080 1642 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1643}
1644
f400e198 1645/**
570f5241
SS
1646 * is_global_init - check if a task structure is init. Since init
1647 * is free to have sub-threads we need to check tgid.
3260259f
H
1648 * @tsk: Task structure to be checked.
1649 *
1650 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1651 *
1652 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1653 */
e868171a 1654static inline int is_global_init(struct task_struct *tsk)
b461cc03 1655{
570f5241 1656 return task_tgid_nr(tsk) == 1;
b461cc03 1657}
b460cbc5 1658
9ec52099
CLG
1659extern struct pid *cad_pid;
1660
1da177e4
LT
1661/*
1662 * Per process flags
1663 */
01ccf592 1664#define PF_VCPU 0x00000001 /* I'm a virtual CPU */
5eca1c10
IM
1665#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1666#define PF_EXITING 0x00000004 /* Getting shut down */
01ccf592 1667#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
5eca1c10
IM
1668#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1669#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1670#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1671#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1672#define PF_DUMPCORE 0x00000200 /* Dumped core */
1673#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1674#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1675#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1676#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1677#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1678#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1679#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1680#define PF_KSWAPD 0x00020000 /* I am kswapd */
1681#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1682#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
a37b0715
N
1683#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1684 * I am cleaning dirty pages from some other bdi. */
5eca1c10
IM
1685#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1686#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1687#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
3bd37062 1688#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1689#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1a08ae36 1690#define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
5eca1c10
IM
1691#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1692#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1693
1694/*
1695 * Only the _current_ task can read/write to tsk->flags, but other
1696 * tasks can access tsk->flags in readonly mode for example
1697 * with tsk_used_math (like during threaded core dumping).
1698 * There is however an exception to this rule during ptrace
1699 * or during fork: the ptracer task is allowed to write to the
1700 * child->flags of its traced child (same goes for fork, the parent
1701 * can write to the child->flags), because we're guaranteed the
1702 * child is not running and in turn not changing child->flags
1703 * at the same time the parent does it.
1704 */
5eca1c10
IM
1705#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1706#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1707#define clear_used_math() clear_stopped_child_used_math(current)
1708#define set_used_math() set_stopped_child_used_math(current)
1709
1da177e4
LT
1710#define conditional_stopped_child_used_math(condition, child) \
1711 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1712
1713#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1714
1da177e4
LT
1715#define copy_to_stopped_child_used_math(child) \
1716 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1717
1da177e4 1718/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1719#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1720#define used_math() tsk_used_math(current)
1da177e4 1721
62ec05dd
TG
1722static inline bool is_percpu_thread(void)
1723{
1724#ifdef CONFIG_SMP
1725 return (current->flags & PF_NO_SETAFFINITY) &&
1726 (current->nr_cpus_allowed == 1);
1727#else
1728 return true;
1729#endif
1730}
1731
1d4457f9 1732/* Per-process atomic flags. */
5eca1c10
IM
1733#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1734#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1735#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1736#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1737#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1738#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1739#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1740#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1741
e0e5070b
ZL
1742#define TASK_PFA_TEST(name, func) \
1743 static inline bool task_##func(struct task_struct *p) \
1744 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1745
e0e5070b
ZL
1746#define TASK_PFA_SET(name, func) \
1747 static inline void task_set_##func(struct task_struct *p) \
1748 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1749
e0e5070b
ZL
1750#define TASK_PFA_CLEAR(name, func) \
1751 static inline void task_clear_##func(struct task_struct *p) \
1752 { clear_bit(PFA_##name, &p->atomic_flags); }
1753
1754TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1755TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1756
2ad654bc
ZL
1757TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1758TASK_PFA_SET(SPREAD_PAGE, spread_page)
1759TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1760
1761TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1762TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1763TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1764
356e4bff
TG
1765TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1766TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1767TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1768
71368af9
WL
1769TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1770TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1771TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1772
356e4bff
TG
1773TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1774TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1775
9137bb27
TG
1776TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1777TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1778TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1779
1780TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1781TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1782
5eca1c10 1783static inline void
717a94b5 1784current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1785{
717a94b5
N
1786 current->flags &= ~flags;
1787 current->flags |= orig_flags & flags;
907aed48
MG
1788}
1789
5eca1c10
IM
1790extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1791extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1792#ifdef CONFIG_SMP
5eca1c10
IM
1793extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1794extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
b90ca8ba
WD
1795extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1796extern void release_user_cpus_ptr(struct task_struct *p);
234b8ab6 1797extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
07ec77a1
WD
1798extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1799extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1da177e4 1800#else
5eca1c10 1801static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1802{
1803}
5eca1c10 1804static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1805{
96f874e2 1806 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1807 return -EINVAL;
1808 return 0;
1809}
b90ca8ba
WD
1810static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1811{
1812 if (src->user_cpus_ptr)
1813 return -EINVAL;
1814 return 0;
1815}
1816static inline void release_user_cpus_ptr(struct task_struct *p)
1817{
1818 WARN_ON(p->user_cpus_ptr);
1819}
234b8ab6
WD
1820
1821static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1822{
1823 return 0;
1824}
1da177e4 1825#endif
e0ad9556 1826
fa93384f 1827extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1828extern void set_user_nice(struct task_struct *p, long nice);
1829extern int task_prio(const struct task_struct *p);
5eca1c10 1830
d0ea0268
DY
1831/**
1832 * task_nice - return the nice value of a given task.
1833 * @p: the task in question.
1834 *
1835 * Return: The nice value [ -20 ... 0 ... 19 ].
1836 */
1837static inline int task_nice(const struct task_struct *p)
1838{
1839 return PRIO_TO_NICE((p)->static_prio);
1840}
5eca1c10 1841
36c8b586
IM
1842extern int can_nice(const struct task_struct *p, const int nice);
1843extern int task_curr(const struct task_struct *p);
1da177e4 1844extern int idle_cpu(int cpu);
943d355d 1845extern int available_idle_cpu(int cpu);
5eca1c10
IM
1846extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1847extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
8b700983
PZ
1848extern void sched_set_fifo(struct task_struct *p);
1849extern void sched_set_fifo_low(struct task_struct *p);
1850extern void sched_set_normal(struct task_struct *p, int nice);
5eca1c10 1851extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1852extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1853extern struct task_struct *idle_task(int cpu);
5eca1c10 1854
c4f30608
PM
1855/**
1856 * is_idle_task - is the specified task an idle task?
fa757281 1857 * @p: the task in question.
e69f6186
YB
1858 *
1859 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1860 */
c94a88f3 1861static __always_inline bool is_idle_task(const struct task_struct *p)
c4f30608 1862{
c1de45ca 1863 return !!(p->flags & PF_IDLE);
c4f30608 1864}
5eca1c10 1865
36c8b586 1866extern struct task_struct *curr_task(int cpu);
a458ae2e 1867extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1868
1869void yield(void);
1870
1da177e4 1871union thread_union {
0500871f
DH
1872#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1873 struct task_struct task;
1874#endif
c65eacbe 1875#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1876 struct thread_info thread_info;
c65eacbe 1877#endif
1da177e4
LT
1878 unsigned long stack[THREAD_SIZE/sizeof(long)];
1879};
1880
0500871f
DH
1881#ifndef CONFIG_THREAD_INFO_IN_TASK
1882extern struct thread_info init_thread_info;
1883#endif
1884
1885extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1886
f3ac6067
IM
1887#ifdef CONFIG_THREAD_INFO_IN_TASK
1888static inline struct thread_info *task_thread_info(struct task_struct *task)
1889{
1890 return &task->thread_info;
1891}
1892#elif !defined(__HAVE_THREAD_FUNCTIONS)
1893# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1894#endif
1895
198fe21b
PE
1896/*
1897 * find a task by one of its numerical ids
1898 *
198fe21b
PE
1899 * find_task_by_pid_ns():
1900 * finds a task by its pid in the specified namespace
228ebcbe
PE
1901 * find_task_by_vpid():
1902 * finds a task by its virtual pid
198fe21b 1903 *
e49859e7 1904 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1905 */
1906
228ebcbe 1907extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1908extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1909
2ee08260
MR
1910/*
1911 * find a task by its virtual pid and get the task struct
1912 */
1913extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1914
b3c97528
HH
1915extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1916extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1917extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1918
1da177e4 1919#ifdef CONFIG_SMP
5eca1c10 1920extern void kick_process(struct task_struct *tsk);
1da177e4 1921#else
5eca1c10 1922static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1923#endif
1da177e4 1924
82b89778 1925extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1926
82b89778
AH
1927static inline void set_task_comm(struct task_struct *tsk, const char *from)
1928{
1929 __set_task_comm(tsk, from, false);
1930}
5eca1c10 1931
3756f640
AB
1932extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1933#define get_task_comm(buf, tsk) ({ \
1934 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1935 __get_task_comm(buf, sizeof(buf), tsk); \
1936})
1da177e4
LT
1937
1938#ifdef CONFIG_SMP
2a0a24eb
TG
1939static __always_inline void scheduler_ipi(void)
1940{
1941 /*
1942 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1943 * TIF_NEED_RESCHED remotely (for the first time) will also send
1944 * this IPI.
1945 */
1946 preempt_fold_need_resched();
1947}
2f064a59 1948extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1da177e4 1949#else
184748cc 1950static inline void scheduler_ipi(void) { }
2f064a59 1951static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
85ba2d86
RM
1952{
1953 return 1;
1954}
1da177e4
LT
1955#endif
1956
5eca1c10
IM
1957/*
1958 * Set thread flags in other task's structures.
1959 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1960 */
1961static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1962{
a1261f54 1963 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1964}
1965
1966static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1967{
a1261f54 1968 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1969}
1970
93ee37c2
DM
1971static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1972 bool value)
1973{
1974 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1975}
1976
1da177e4
LT
1977static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1978{
a1261f54 1979 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1980}
1981
1982static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1983{
a1261f54 1984 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1985}
1986
1987static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1988{
a1261f54 1989 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1990}
1991
1992static inline void set_tsk_need_resched(struct task_struct *tsk)
1993{
1994 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1995}
1996
1997static inline void clear_tsk_need_resched(struct task_struct *tsk)
1998{
1999 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2000}
2001
8ae121ac
GH
2002static inline int test_tsk_need_resched(struct task_struct *tsk)
2003{
2004 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2005}
2006
1da177e4
LT
2007/*
2008 * cond_resched() and cond_resched_lock(): latency reduction via
2009 * explicit rescheduling in places that are safe. The return
2010 * value indicates whether a reschedule was done in fact.
2011 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 2012 */
b965f1dd
PZI
2013#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2014extern int __cond_resched(void);
2015
2016#ifdef CONFIG_PREEMPT_DYNAMIC
2017
2018DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2019
2020static __always_inline int _cond_resched(void)
2021{
ef72661e 2022 return static_call_mod(cond_resched)();
b965f1dd
PZI
2023}
2024
35a773a0 2025#else
b965f1dd
PZI
2026
2027static inline int _cond_resched(void)
2028{
2029 return __cond_resched();
2030}
2031
2032#endif /* CONFIG_PREEMPT_DYNAMIC */
2033
2034#else
2035
35a773a0 2036static inline int _cond_resched(void) { return 0; }
b965f1dd
PZI
2037
2038#endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
6f80bd98 2039
613afbf8 2040#define cond_resched() ({ \
874f670e 2041 __might_resched(__FILE__, __LINE__, 0); \
613afbf8
FW
2042 _cond_resched(); \
2043})
6f80bd98 2044
613afbf8 2045extern int __cond_resched_lock(spinlock_t *lock);
f3d4b4b1
BG
2046extern int __cond_resched_rwlock_read(rwlock_t *lock);
2047extern int __cond_resched_rwlock_write(rwlock_t *lock);
613afbf8 2048
874f670e
TG
2049#define cond_resched_lock(lock) ({ \
2050 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2051 __cond_resched_lock(lock); \
613afbf8
FW
2052})
2053
7b5ff4bb
TG
2054#define cond_resched_rwlock_read(lock) ({ \
2055 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2056 __cond_resched_rwlock_read(lock); \
f3d4b4b1
BG
2057})
2058
7b5ff4bb
TG
2059#define cond_resched_rwlock_write(lock) ({ \
2060 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2061 __cond_resched_rwlock_write(lock); \
f3d4b4b1
BG
2062})
2063
f6f3c437
SH
2064static inline void cond_resched_rcu(void)
2065{
2066#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2067 rcu_read_unlock();
2068 cond_resched();
2069 rcu_read_lock();
2070#endif
2071}
2072
1da177e4
LT
2073/*
2074 * Does a critical section need to be broken due to another
c1a280b6 2075 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
95c354fe 2076 * but a general need for low latency)
1da177e4 2077 */
95c354fe 2078static inline int spin_needbreak(spinlock_t *lock)
1da177e4 2079{
c1a280b6 2080#ifdef CONFIG_PREEMPTION
95c354fe
NP
2081 return spin_is_contended(lock);
2082#else
1da177e4 2083 return 0;
95c354fe 2084#endif
1da177e4
LT
2085}
2086
a09a689a
BG
2087/*
2088 * Check if a rwlock is contended.
2089 * Returns non-zero if there is another task waiting on the rwlock.
2090 * Returns zero if the lock is not contended or the system / underlying
2091 * rwlock implementation does not support contention detection.
2092 * Technically does not depend on CONFIG_PREEMPTION, but a general need
2093 * for low latency.
2094 */
2095static inline int rwlock_needbreak(rwlock_t *lock)
2096{
2097#ifdef CONFIG_PREEMPTION
2098 return rwlock_is_contended(lock);
2099#else
2100 return 0;
2101#endif
2102}
2103
75f93fed
PZ
2104static __always_inline bool need_resched(void)
2105{
2106 return unlikely(tif_need_resched());
2107}
2108
1da177e4
LT
2109/*
2110 * Wrappers for p->thread_info->cpu access. No-op on UP.
2111 */
2112#ifdef CONFIG_SMP
2113
2114static inline unsigned int task_cpu(const struct task_struct *p)
2115{
c65eacbe 2116#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 2117 return READ_ONCE(p->cpu);
c65eacbe 2118#else
c546951d 2119 return READ_ONCE(task_thread_info(p)->cpu);
c65eacbe 2120#endif
1da177e4
LT
2121}
2122
c65cc870 2123extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
2124
2125#else
2126
2127static inline unsigned int task_cpu(const struct task_struct *p)
2128{
2129 return 0;
2130}
2131
2132static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2133{
2134}
2135
2136#endif /* CONFIG_SMP */
2137
a1dfb631
MT
2138extern bool sched_task_on_rq(struct task_struct *p);
2139
d9345c65
PX
2140/*
2141 * In order to reduce various lock holder preemption latencies provide an
2142 * interface to see if a vCPU is currently running or not.
2143 *
2144 * This allows us to terminate optimistic spin loops and block, analogous to
2145 * the native optimistic spin heuristic of testing if the lock owner task is
2146 * running or not.
2147 */
2148#ifndef vcpu_is_preempted
42fd8baa
QC
2149static inline bool vcpu_is_preempted(int cpu)
2150{
2151 return false;
2152}
d9345c65
PX
2153#endif
2154
96f874e2
RR
2155extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2156extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 2157
82455257
DH
2158#ifndef TASK_SIZE_OF
2159#define TASK_SIZE_OF(tsk) TASK_SIZE
2160#endif
2161
a5418be9
VK
2162#ifdef CONFIG_SMP
2163/* Returns effective CPU energy utilization, as seen by the scheduler */
2164unsigned long sched_cpu_util(int cpu, unsigned long max);
2165#endif /* CONFIG_SMP */
2166
d7822b1e
MD
2167#ifdef CONFIG_RSEQ
2168
2169/*
2170 * Map the event mask on the user-space ABI enum rseq_cs_flags
2171 * for direct mask checks.
2172 */
2173enum rseq_event_mask_bits {
2174 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2175 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2176 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2177};
2178
2179enum rseq_event_mask {
2180 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2181 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2182 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2183};
2184
2185static inline void rseq_set_notify_resume(struct task_struct *t)
2186{
2187 if (t->rseq)
2188 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2189}
2190
784e0300 2191void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 2192
784e0300
WD
2193static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2194 struct pt_regs *regs)
d7822b1e
MD
2195{
2196 if (current->rseq)
784e0300 2197 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2198}
2199
784e0300
WD
2200static inline void rseq_signal_deliver(struct ksignal *ksig,
2201 struct pt_regs *regs)
d7822b1e
MD
2202{
2203 preempt_disable();
2204 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2205 preempt_enable();
784e0300 2206 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2207}
2208
2209/* rseq_preempt() requires preemption to be disabled. */
2210static inline void rseq_preempt(struct task_struct *t)
2211{
2212 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2213 rseq_set_notify_resume(t);
2214}
2215
2216/* rseq_migrate() requires preemption to be disabled. */
2217static inline void rseq_migrate(struct task_struct *t)
2218{
2219 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2220 rseq_set_notify_resume(t);
2221}
2222
2223/*
2224 * If parent process has a registered restartable sequences area, the
463f550f 2225 * child inherits. Unregister rseq for a clone with CLONE_VM set.
d7822b1e
MD
2226 */
2227static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2228{
463f550f 2229 if (clone_flags & CLONE_VM) {
d7822b1e 2230 t->rseq = NULL;
d7822b1e
MD
2231 t->rseq_sig = 0;
2232 t->rseq_event_mask = 0;
2233 } else {
2234 t->rseq = current->rseq;
d7822b1e
MD
2235 t->rseq_sig = current->rseq_sig;
2236 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
2237 }
2238}
2239
2240static inline void rseq_execve(struct task_struct *t)
2241{
2242 t->rseq = NULL;
d7822b1e
MD
2243 t->rseq_sig = 0;
2244 t->rseq_event_mask = 0;
2245}
2246
2247#else
2248
2249static inline void rseq_set_notify_resume(struct task_struct *t)
2250{
2251}
784e0300
WD
2252static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2253 struct pt_regs *regs)
d7822b1e
MD
2254{
2255}
784e0300
WD
2256static inline void rseq_signal_deliver(struct ksignal *ksig,
2257 struct pt_regs *regs)
d7822b1e
MD
2258{
2259}
2260static inline void rseq_preempt(struct task_struct *t)
2261{
2262}
2263static inline void rseq_migrate(struct task_struct *t)
2264{
2265}
2266static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2267{
2268}
2269static inline void rseq_execve(struct task_struct *t)
2270{
2271}
2272
2273#endif
2274
2275#ifdef CONFIG_DEBUG_RSEQ
2276
2277void rseq_syscall(struct pt_regs *regs);
2278
2279#else
2280
2281static inline void rseq_syscall(struct pt_regs *regs)
2282{
2283}
2284
2285#endif
2286
3c93a0c0
QY
2287const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2288char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2289int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2290
2291const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2292const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2293const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2294
2295int sched_trace_rq_cpu(struct rq *rq);
51cf18c9 2296int sched_trace_rq_cpu_capacity(struct rq *rq);
9d246053 2297int sched_trace_rq_nr_running(struct rq *rq);
3c93a0c0
QY
2298
2299const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2300
6e33cad0
PZ
2301#ifdef CONFIG_SCHED_CORE
2302extern void sched_core_free(struct task_struct *tsk);
85dd3f61 2303extern void sched_core_fork(struct task_struct *p);
7ac592aa
CH
2304extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2305 unsigned long uaddr);
6e33cad0
PZ
2306#else
2307static inline void sched_core_free(struct task_struct *tsk) { }
85dd3f61 2308static inline void sched_core_fork(struct task_struct *p) { }
6e33cad0
PZ
2309#endif
2310
1da177e4 2311#endif