Merge tag 'arm64_defconfig_watchdog_for_v5.4' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-block.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
ec1d2819 24#include <linux/refcount.h>
a3b6714e 25#include <linux/resource.h>
9745512c 26#include <linux/latencytop.h>
5eca1c10
IM
27#include <linux/sched/prio.h>
28#include <linux/signal_types.h>
29#include <linux/mm_types_task.h>
30#include <linux/task_io_accounting.h>
d7822b1e 31#include <linux/rseq.h>
a3b6714e 32
5eca1c10 33/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 34struct audit_context;
c7af7877 35struct backing_dev_info;
bddd87c7 36struct bio_list;
73c10101 37struct blk_plug;
3c93a0c0 38struct capture_control;
c7af7877 39struct cfs_rq;
c7af7877
IM
40struct fs_struct;
41struct futex_pi_state;
42struct io_context;
43struct mempolicy;
89076bc3 44struct nameidata;
c7af7877
IM
45struct nsproxy;
46struct perf_event_context;
47struct pid_namespace;
48struct pipe_inode_info;
49struct rcu_node;
50struct reclaim_state;
51struct robust_list_head;
3c93a0c0
QY
52struct root_domain;
53struct rq;
c7af7877
IM
54struct sched_attr;
55struct sched_param;
43ae34cb 56struct seq_file;
c7af7877
IM
57struct sighand_struct;
58struct signal_struct;
59struct task_delay_info;
4cf86d77 60struct task_group;
1da177e4 61
4a8342d2
LT
62/*
63 * Task state bitmask. NOTE! These bits are also
64 * encoded in fs/proc/array.c: get_task_state().
65 *
66 * We have two separate sets of flags: task->state
67 * is about runnability, while task->exit_state are
68 * about the task exiting. Confusing, but this way
69 * modifying one set can't modify the other one by
70 * mistake.
71 */
5eca1c10
IM
72
73/* Used in tsk->state: */
92c4bc9f
PZ
74#define TASK_RUNNING 0x0000
75#define TASK_INTERRUPTIBLE 0x0001
76#define TASK_UNINTERRUPTIBLE 0x0002
77#define __TASK_STOPPED 0x0004
78#define __TASK_TRACED 0x0008
5eca1c10 79/* Used in tsk->exit_state: */
92c4bc9f
PZ
80#define EXIT_DEAD 0x0010
81#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
82#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
83/* Used in tsk->state again: */
8ef9925b
PZ
84#define TASK_PARKED 0x0040
85#define TASK_DEAD 0x0080
86#define TASK_WAKEKILL 0x0100
87#define TASK_WAKING 0x0200
92c4bc9f
PZ
88#define TASK_NOLOAD 0x0400
89#define TASK_NEW 0x0800
90#define TASK_STATE_MAX 0x1000
5eca1c10 91
5eca1c10
IM
92/* Convenience macros for the sake of set_current_state: */
93#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
94#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
95#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
96
97#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
98
99/* Convenience macros for the sake of wake_up(): */
100#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
101
102/* get_task_state(): */
103#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
104 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
105 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
106 TASK_PARKED)
5eca1c10
IM
107
108#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
109
110#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
111
112#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
113
114#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
115 (task->flags & PF_FROZEN) == 0 && \
116 (task->state & TASK_NOLOAD) == 0)
1da177e4 117
8eb23b9f
PZ
118#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
119
b5bf9a90
PZ
120/*
121 * Special states are those that do not use the normal wait-loop pattern. See
122 * the comment with set_special_state().
123 */
124#define is_special_task_state(state) \
1cef1150 125 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 126
8eb23b9f
PZ
127#define __set_current_state(state_value) \
128 do { \
b5bf9a90 129 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f
PZ
130 current->task_state_change = _THIS_IP_; \
131 current->state = (state_value); \
132 } while (0)
b5bf9a90 133
8eb23b9f
PZ
134#define set_current_state(state_value) \
135 do { \
b5bf9a90 136 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f 137 current->task_state_change = _THIS_IP_; \
a2250238 138 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
139 } while (0)
140
b5bf9a90
PZ
141#define set_special_state(state_value) \
142 do { \
143 unsigned long flags; /* may shadow */ \
144 WARN_ON_ONCE(!is_special_task_state(state_value)); \
145 raw_spin_lock_irqsave(&current->pi_lock, flags); \
146 current->task_state_change = _THIS_IP_; \
147 current->state = (state_value); \
148 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
149 } while (0)
8eb23b9f 150#else
498d0c57
AM
151/*
152 * set_current_state() includes a barrier so that the write of current->state
153 * is correctly serialised wrt the caller's subsequent test of whether to
154 * actually sleep:
155 *
a2250238 156 * for (;;) {
498d0c57 157 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
158 * if (!need_sleep)
159 * break;
160 *
161 * schedule();
162 * }
163 * __set_current_state(TASK_RUNNING);
164 *
165 * If the caller does not need such serialisation (because, for instance, the
166 * condition test and condition change and wakeup are under the same lock) then
167 * use __set_current_state().
168 *
169 * The above is typically ordered against the wakeup, which does:
170 *
b5bf9a90
PZ
171 * need_sleep = false;
172 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 173 *
7696f991
AP
174 * where wake_up_state() executes a full memory barrier before accessing the
175 * task state.
a2250238
PZ
176 *
177 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
178 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
179 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 180 *
b5bf9a90 181 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 182 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
183 * a problem either because that will result in one extra go around the loop
184 * and our @cond test will save the day.
498d0c57 185 *
a2250238 186 * Also see the comments of try_to_wake_up().
498d0c57 187 */
b5bf9a90
PZ
188#define __set_current_state(state_value) \
189 current->state = (state_value)
190
191#define set_current_state(state_value) \
192 smp_store_mb(current->state, (state_value))
193
194/*
195 * set_special_state() should be used for those states when the blocking task
196 * can not use the regular condition based wait-loop. In that case we must
197 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
198 * will not collide with our state change.
199 */
200#define set_special_state(state_value) \
201 do { \
202 unsigned long flags; /* may shadow */ \
203 raw_spin_lock_irqsave(&current->pi_lock, flags); \
204 current->state = (state_value); \
205 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
206 } while (0)
207
8eb23b9f
PZ
208#endif
209
5eca1c10
IM
210/* Task command name length: */
211#define TASK_COMM_LEN 16
1da177e4 212
1da177e4
LT
213extern void scheduler_tick(void);
214
5eca1c10
IM
215#define MAX_SCHEDULE_TIMEOUT LONG_MAX
216
217extern long schedule_timeout(long timeout);
218extern long schedule_timeout_interruptible(long timeout);
219extern long schedule_timeout_killable(long timeout);
220extern long schedule_timeout_uninterruptible(long timeout);
221extern long schedule_timeout_idle(long timeout);
1da177e4 222asmlinkage void schedule(void);
c5491ea7 223extern void schedule_preempt_disabled(void);
1da177e4 224
10ab5643
TH
225extern int __must_check io_schedule_prepare(void);
226extern void io_schedule_finish(int token);
9cff8ade 227extern long io_schedule_timeout(long timeout);
10ab5643 228extern void io_schedule(void);
9cff8ade 229
d37f761d 230/**
0ba42a59 231 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
232 * @utime: time spent in user mode
233 * @stime: time spent in system mode
9d7fb042 234 * @lock: protects the above two fields
d37f761d 235 *
9d7fb042
PZ
236 * Stores previous user/system time values such that we can guarantee
237 * monotonicity.
d37f761d 238 */
9d7fb042
PZ
239struct prev_cputime {
240#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
241 u64 utime;
242 u64 stime;
243 raw_spinlock_t lock;
9d7fb042 244#endif
d37f761d
FW
245};
246
f06febc9
FM
247/**
248 * struct task_cputime - collected CPU time counts
5613fda9
FW
249 * @utime: time spent in user mode, in nanoseconds
250 * @stime: time spent in kernel mode, in nanoseconds
f06febc9 251 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 252 *
9d7fb042
PZ
253 * This structure groups together three kinds of CPU time that are tracked for
254 * threads and thread groups. Most things considering CPU time want to group
255 * these counts together and treat all three of them in parallel.
f06febc9
FM
256 */
257struct task_cputime {
5eca1c10
IM
258 u64 utime;
259 u64 stime;
260 unsigned long long sum_exec_runtime;
f06febc9 261};
9d7fb042 262
5eca1c10
IM
263/* Alternate field names when used on cache expirations: */
264#define virt_exp utime
265#define prof_exp stime
266#define sched_exp sum_exec_runtime
f06febc9 267
bac5b6b6
FW
268enum vtime_state {
269 /* Task is sleeping or running in a CPU with VTIME inactive: */
270 VTIME_INACTIVE = 0,
271 /* Task runs in userspace in a CPU with VTIME active: */
272 VTIME_USER,
273 /* Task runs in kernelspace in a CPU with VTIME active: */
274 VTIME_SYS,
275};
276
277struct vtime {
278 seqcount_t seqcount;
279 unsigned long long starttime;
280 enum vtime_state state;
2a42eb95
WL
281 u64 utime;
282 u64 stime;
283 u64 gtime;
bac5b6b6
FW
284};
285
69842cba
PB
286/*
287 * Utilization clamp constraints.
288 * @UCLAMP_MIN: Minimum utilization
289 * @UCLAMP_MAX: Maximum utilization
290 * @UCLAMP_CNT: Utilization clamp constraints count
291 */
292enum uclamp_id {
293 UCLAMP_MIN = 0,
294 UCLAMP_MAX,
295 UCLAMP_CNT
296};
297
1da177e4 298struct sched_info {
7f5f8e8d 299#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
300 /* Cumulative counters: */
301
302 /* # of times we have run on this CPU: */
303 unsigned long pcount;
304
305 /* Time spent waiting on a runqueue: */
306 unsigned long long run_delay;
307
308 /* Timestamps: */
309
310 /* When did we last run on a CPU? */
311 unsigned long long last_arrival;
312
313 /* When were we last queued to run? */
314 unsigned long long last_queued;
1da177e4 315
f6db8347 316#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 317};
1da177e4 318
6ecdd749
YD
319/*
320 * Integer metrics need fixed point arithmetic, e.g., sched/fair
321 * has a few: load, load_avg, util_avg, freq, and capacity.
322 *
323 * We define a basic fixed point arithmetic range, and then formalize
324 * all these metrics based on that basic range.
325 */
5eca1c10
IM
326# define SCHED_FIXEDPOINT_SHIFT 10
327# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 328
69842cba
PB
329/* Increase resolution of cpu_capacity calculations */
330# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
331# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
332
20b8a59f 333struct load_weight {
5eca1c10
IM
334 unsigned long weight;
335 u32 inv_weight;
20b8a59f
IM
336};
337
7f65ea42
PB
338/**
339 * struct util_est - Estimation utilization of FAIR tasks
340 * @enqueued: instantaneous estimated utilization of a task/cpu
341 * @ewma: the Exponential Weighted Moving Average (EWMA)
342 * utilization of a task
343 *
344 * Support data structure to track an Exponential Weighted Moving Average
345 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
346 * average each time a task completes an activation. Sample's weight is chosen
347 * so that the EWMA will be relatively insensitive to transient changes to the
348 * task's workload.
349 *
350 * The enqueued attribute has a slightly different meaning for tasks and cpus:
351 * - task: the task's util_avg at last task dequeue time
352 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
353 * Thus, the util_est.enqueued of a task represents the contribution on the
354 * estimated utilization of the CPU where that task is currently enqueued.
355 *
356 * Only for tasks we track a moving average of the past instantaneous
357 * estimated utilization. This allows to absorb sporadic drops in utilization
358 * of an otherwise almost periodic task.
359 */
360struct util_est {
361 unsigned int enqueued;
362 unsigned int ewma;
363#define UTIL_EST_WEIGHT_SHIFT 2
317d359d 364} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 365
9d89c257 366/*
7b595334
YD
367 * The load_avg/util_avg accumulates an infinite geometric series
368 * (see __update_load_avg() in kernel/sched/fair.c).
369 *
370 * [load_avg definition]
371 *
372 * load_avg = runnable% * scale_load_down(load)
373 *
374 * where runnable% is the time ratio that a sched_entity is runnable.
375 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 376 * blocked sched_entities.
7b595334 377 *
7b595334
YD
378 * [util_avg definition]
379 *
380 * util_avg = running% * SCHED_CAPACITY_SCALE
381 *
382 * where running% is the time ratio that a sched_entity is running on
383 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
384 * and blocked sched_entities.
385 *
23127296
VG
386 * load_avg and util_avg don't direcly factor frequency scaling and CPU
387 * capacity scaling. The scaling is done through the rq_clock_pelt that
388 * is used for computing those signals (see update_rq_clock_pelt())
7b595334 389 *
23127296
VG
390 * N.B., the above ratios (runnable% and running%) themselves are in the
391 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
392 * to as large a range as necessary. This is for example reflected by
393 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
394 *
395 * [Overflow issue]
396 *
397 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
398 * with the highest load (=88761), always runnable on a single cfs_rq,
399 * and should not overflow as the number already hits PID_MAX_LIMIT.
400 *
401 * For all other cases (including 32-bit kernels), struct load_weight's
402 * weight will overflow first before we do, because:
403 *
404 * Max(load_avg) <= Max(load.weight)
405 *
406 * Then it is the load_weight's responsibility to consider overflow
407 * issues.
9d89c257 408 */
9d85f21c 409struct sched_avg {
5eca1c10
IM
410 u64 last_update_time;
411 u64 load_sum;
1ea6c46a 412 u64 runnable_load_sum;
5eca1c10
IM
413 u32 util_sum;
414 u32 period_contrib;
415 unsigned long load_avg;
1ea6c46a 416 unsigned long runnable_load_avg;
5eca1c10 417 unsigned long util_avg;
7f65ea42 418 struct util_est util_est;
317d359d 419} ____cacheline_aligned;
9d85f21c 420
41acab88 421struct sched_statistics {
7f5f8e8d 422#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
423 u64 wait_start;
424 u64 wait_max;
425 u64 wait_count;
426 u64 wait_sum;
427 u64 iowait_count;
428 u64 iowait_sum;
429
430 u64 sleep_start;
431 u64 sleep_max;
432 s64 sum_sleep_runtime;
433
434 u64 block_start;
435 u64 block_max;
436 u64 exec_max;
437 u64 slice_max;
438
439 u64 nr_migrations_cold;
440 u64 nr_failed_migrations_affine;
441 u64 nr_failed_migrations_running;
442 u64 nr_failed_migrations_hot;
443 u64 nr_forced_migrations;
444
445 u64 nr_wakeups;
446 u64 nr_wakeups_sync;
447 u64 nr_wakeups_migrate;
448 u64 nr_wakeups_local;
449 u64 nr_wakeups_remote;
450 u64 nr_wakeups_affine;
451 u64 nr_wakeups_affine_attempts;
452 u64 nr_wakeups_passive;
453 u64 nr_wakeups_idle;
41acab88 454#endif
7f5f8e8d 455};
41acab88
LDM
456
457struct sched_entity {
5eca1c10
IM
458 /* For load-balancing: */
459 struct load_weight load;
1ea6c46a 460 unsigned long runnable_weight;
5eca1c10
IM
461 struct rb_node run_node;
462 struct list_head group_node;
463 unsigned int on_rq;
41acab88 464
5eca1c10
IM
465 u64 exec_start;
466 u64 sum_exec_runtime;
467 u64 vruntime;
468 u64 prev_sum_exec_runtime;
41acab88 469
5eca1c10 470 u64 nr_migrations;
41acab88 471
5eca1c10 472 struct sched_statistics statistics;
94c18227 473
20b8a59f 474#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
475 int depth;
476 struct sched_entity *parent;
20b8a59f 477 /* rq on which this entity is (to be) queued: */
5eca1c10 478 struct cfs_rq *cfs_rq;
20b8a59f 479 /* rq "owned" by this entity/group: */
5eca1c10 480 struct cfs_rq *my_q;
20b8a59f 481#endif
8bd75c77 482
141965c7 483#ifdef CONFIG_SMP
5a107804
JO
484 /*
485 * Per entity load average tracking.
486 *
487 * Put into separate cache line so it does not
488 * collide with read-mostly values above.
489 */
317d359d 490 struct sched_avg avg;
9d85f21c 491#endif
20b8a59f 492};
70b97a7f 493
fa717060 494struct sched_rt_entity {
5eca1c10
IM
495 struct list_head run_list;
496 unsigned long timeout;
497 unsigned long watchdog_stamp;
498 unsigned int time_slice;
499 unsigned short on_rq;
500 unsigned short on_list;
501
502 struct sched_rt_entity *back;
052f1dc7 503#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 504 struct sched_rt_entity *parent;
6f505b16 505 /* rq on which this entity is (to be) queued: */
5eca1c10 506 struct rt_rq *rt_rq;
6f505b16 507 /* rq "owned" by this entity/group: */
5eca1c10 508 struct rt_rq *my_q;
6f505b16 509#endif
3859a271 510} __randomize_layout;
fa717060 511
aab03e05 512struct sched_dl_entity {
5eca1c10 513 struct rb_node rb_node;
aab03e05
DF
514
515 /*
516 * Original scheduling parameters. Copied here from sched_attr
4027d080 517 * during sched_setattr(), they will remain the same until
518 * the next sched_setattr().
aab03e05 519 */
5eca1c10
IM
520 u64 dl_runtime; /* Maximum runtime for each instance */
521 u64 dl_deadline; /* Relative deadline of each instance */
522 u64 dl_period; /* Separation of two instances (period) */
54d6d303 523 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 524 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
525
526 /*
527 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 528 * they are continuously updated during task execution. Note that
aab03e05
DF
529 * the remaining runtime could be < 0 in case we are in overrun.
530 */
5eca1c10
IM
531 s64 runtime; /* Remaining runtime for this instance */
532 u64 deadline; /* Absolute deadline for this instance */
533 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
534
535 /*
536 * Some bool flags:
537 *
538 * @dl_throttled tells if we exhausted the runtime. If so, the
539 * task has to wait for a replenishment to be performed at the
540 * next firing of dl_timer.
541 *
2d3d891d
DF
542 * @dl_boosted tells if we are boosted due to DI. If so we are
543 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
544 * exit the critical section);
545 *
5eca1c10 546 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 547 * all its available runtime during the last job.
209a0cbd
LA
548 *
549 * @dl_non_contending tells if the task is inactive while still
550 * contributing to the active utilization. In other words, it
551 * indicates if the inactive timer has been armed and its handler
552 * has not been executed yet. This flag is useful to avoid race
553 * conditions between the inactive timer handler and the wakeup
554 * code.
34be3930
JL
555 *
556 * @dl_overrun tells if the task asked to be informed about runtime
557 * overruns.
aab03e05 558 */
aa5222e9
DC
559 unsigned int dl_throttled : 1;
560 unsigned int dl_boosted : 1;
561 unsigned int dl_yielded : 1;
562 unsigned int dl_non_contending : 1;
34be3930 563 unsigned int dl_overrun : 1;
aab03e05
DF
564
565 /*
566 * Bandwidth enforcement timer. Each -deadline task has its
567 * own bandwidth to be enforced, thus we need one timer per task.
568 */
5eca1c10 569 struct hrtimer dl_timer;
209a0cbd
LA
570
571 /*
572 * Inactive timer, responsible for decreasing the active utilization
573 * at the "0-lag time". When a -deadline task blocks, it contributes
574 * to GRUB's active utilization until the "0-lag time", hence a
575 * timer is needed to decrease the active utilization at the correct
576 * time.
577 */
578 struct hrtimer inactive_timer;
aab03e05 579};
8bd75c77 580
69842cba
PB
581#ifdef CONFIG_UCLAMP_TASK
582/* Number of utilization clamp buckets (shorter alias) */
583#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
584
585/*
586 * Utilization clamp for a scheduling entity
587 * @value: clamp value "assigned" to a se
588 * @bucket_id: bucket index corresponding to the "assigned" value
e8f14172 589 * @active: the se is currently refcounted in a rq's bucket
a509a7cd 590 * @user_defined: the requested clamp value comes from user-space
69842cba
PB
591 *
592 * The bucket_id is the index of the clamp bucket matching the clamp value
593 * which is pre-computed and stored to avoid expensive integer divisions from
594 * the fast path.
e8f14172
PB
595 *
596 * The active bit is set whenever a task has got an "effective" value assigned,
597 * which can be different from the clamp value "requested" from user-space.
598 * This allows to know a task is refcounted in the rq's bucket corresponding
599 * to the "effective" bucket_id.
a509a7cd
PB
600 *
601 * The user_defined bit is set whenever a task has got a task-specific clamp
602 * value requested from userspace, i.e. the system defaults apply to this task
603 * just as a restriction. This allows to relax default clamps when a less
604 * restrictive task-specific value has been requested, thus allowing to
605 * implement a "nice" semantic. For example, a task running with a 20%
606 * default boost can still drop its own boosting to 0%.
69842cba
PB
607 */
608struct uclamp_se {
609 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
610 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
e8f14172 611 unsigned int active : 1;
a509a7cd 612 unsigned int user_defined : 1;
69842cba
PB
613};
614#endif /* CONFIG_UCLAMP_TASK */
615
1d082fd0
PM
616union rcu_special {
617 struct {
5eca1c10
IM
618 u8 blocked;
619 u8 need_qs;
05f41571 620 u8 exp_hint; /* Hint for performance. */
23634ebc 621 u8 deferred_qs;
8203d6d0 622 } b; /* Bits. */
05f41571 623 u32 s; /* Set of bits. */
1d082fd0 624};
86848966 625
8dc85d54
PZ
626enum perf_event_task_context {
627 perf_invalid_context = -1,
628 perf_hw_context = 0,
89a1e187 629 perf_sw_context,
8dc85d54
PZ
630 perf_nr_task_contexts,
631};
632
eb61baf6
IM
633struct wake_q_node {
634 struct wake_q_node *next;
635};
636
1da177e4 637struct task_struct {
c65eacbe
AL
638#ifdef CONFIG_THREAD_INFO_IN_TASK
639 /*
640 * For reasons of header soup (see current_thread_info()), this
641 * must be the first element of task_struct.
642 */
5eca1c10 643 struct thread_info thread_info;
c65eacbe 644#endif
5eca1c10
IM
645 /* -1 unrunnable, 0 runnable, >0 stopped: */
646 volatile long state;
29e48ce8
KC
647
648 /*
649 * This begins the randomizable portion of task_struct. Only
650 * scheduling-critical items should be added above here.
651 */
652 randomized_struct_fields_start
653
5eca1c10 654 void *stack;
ec1d2819 655 refcount_t usage;
5eca1c10
IM
656 /* Per task flags (PF_*), defined further below: */
657 unsigned int flags;
658 unsigned int ptrace;
1da177e4 659
2dd73a4f 660#ifdef CONFIG_SMP
5eca1c10
IM
661 struct llist_node wake_entry;
662 int on_cpu;
c65eacbe 663#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
664 /* Current CPU: */
665 unsigned int cpu;
c65eacbe 666#endif
5eca1c10
IM
667 unsigned int wakee_flips;
668 unsigned long wakee_flip_decay_ts;
669 struct task_struct *last_wakee;
ac66f547 670
32e839dd
MG
671 /*
672 * recent_used_cpu is initially set as the last CPU used by a task
673 * that wakes affine another task. Waker/wakee relationships can
674 * push tasks around a CPU where each wakeup moves to the next one.
675 * Tracking a recently used CPU allows a quick search for a recently
676 * used CPU that may be idle.
677 */
678 int recent_used_cpu;
5eca1c10 679 int wake_cpu;
2dd73a4f 680#endif
5eca1c10
IM
681 int on_rq;
682
683 int prio;
684 int static_prio;
685 int normal_prio;
686 unsigned int rt_priority;
50e645a8 687
5eca1c10
IM
688 const struct sched_class *sched_class;
689 struct sched_entity se;
690 struct sched_rt_entity rt;
8323f26c 691#ifdef CONFIG_CGROUP_SCHED
5eca1c10 692 struct task_group *sched_task_group;
8323f26c 693#endif
5eca1c10 694 struct sched_dl_entity dl;
1da177e4 695
69842cba 696#ifdef CONFIG_UCLAMP_TASK
e8f14172
PB
697 /* Clamp values requested for a scheduling entity */
698 struct uclamp_se uclamp_req[UCLAMP_CNT];
699 /* Effective clamp values used for a scheduling entity */
69842cba
PB
700 struct uclamp_se uclamp[UCLAMP_CNT];
701#endif
702
e107be36 703#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
704 /* List of struct preempt_notifier: */
705 struct hlist_head preempt_notifiers;
e107be36
AK
706#endif
707
6c5c9341 708#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 709 unsigned int btrace_seq;
6c5c9341 710#endif
1da177e4 711
5eca1c10
IM
712 unsigned int policy;
713 int nr_cpus_allowed;
3bd37062
SAS
714 const cpumask_t *cpus_ptr;
715 cpumask_t cpus_mask;
1da177e4 716
a57eb940 717#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
718 int rcu_read_lock_nesting;
719 union rcu_special rcu_read_unlock_special;
720 struct list_head rcu_node_entry;
721 struct rcu_node *rcu_blocked_node;
28f6569a 722#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 723
8315f422 724#ifdef CONFIG_TASKS_RCU
5eca1c10 725 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
726 u8 rcu_tasks_holdout;
727 u8 rcu_tasks_idx;
5eca1c10 728 int rcu_tasks_idle_cpu;
ccdd29ff 729 struct list_head rcu_tasks_holdout_list;
8315f422 730#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 731
5eca1c10 732 struct sched_info sched_info;
1da177e4 733
5eca1c10 734 struct list_head tasks;
806c09a7 735#ifdef CONFIG_SMP
5eca1c10
IM
736 struct plist_node pushable_tasks;
737 struct rb_node pushable_dl_tasks;
806c09a7 738#endif
1da177e4 739
5eca1c10
IM
740 struct mm_struct *mm;
741 struct mm_struct *active_mm;
314ff785
IM
742
743 /* Per-thread vma caching: */
5eca1c10 744 struct vmacache vmacache;
314ff785 745
5eca1c10
IM
746#ifdef SPLIT_RSS_COUNTING
747 struct task_rss_stat rss_stat;
34e55232 748#endif
5eca1c10
IM
749 int exit_state;
750 int exit_code;
751 int exit_signal;
752 /* The signal sent when the parent dies: */
753 int pdeath_signal;
754 /* JOBCTL_*, siglock protected: */
755 unsigned long jobctl;
756
757 /* Used for emulating ABI behavior of previous Linux versions: */
758 unsigned int personality;
759
760 /* Scheduler bits, serialized by scheduler locks: */
761 unsigned sched_reset_on_fork:1;
762 unsigned sched_contributes_to_load:1;
763 unsigned sched_migrated:1;
764 unsigned sched_remote_wakeup:1;
eb414681
JW
765#ifdef CONFIG_PSI
766 unsigned sched_psi_wake_requeue:1;
767#endif
768
5eca1c10
IM
769 /* Force alignment to the next boundary: */
770 unsigned :0;
771
772 /* Unserialized, strictly 'current' */
773
774 /* Bit to tell LSMs we're in execve(): */
775 unsigned in_execve:1;
776 unsigned in_iowait:1;
777#ifndef TIF_RESTORE_SIGMASK
778 unsigned restore_sigmask:1;
7e781418 779#endif
626ebc41 780#ifdef CONFIG_MEMCG
29ef680a 781 unsigned in_user_fault:1;
127424c8 782#endif
ff303e66 783#ifdef CONFIG_COMPAT_BRK
5eca1c10 784 unsigned brk_randomized:1;
ff303e66 785#endif
77f88796
TH
786#ifdef CONFIG_CGROUPS
787 /* disallow userland-initiated cgroup migration */
788 unsigned no_cgroup_migration:1;
76f969e8
RG
789 /* task is frozen/stopped (used by the cgroup freezer) */
790 unsigned frozen:1;
77f88796 791#endif
d09d8df3
JB
792#ifdef CONFIG_BLK_CGROUP
793 /* to be used once the psi infrastructure lands upstream. */
794 unsigned use_memdelay:1;
795#endif
6f185c29 796
5eca1c10 797 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 798
5eca1c10 799 struct restart_block restart_block;
f56141e3 800
5eca1c10
IM
801 pid_t pid;
802 pid_t tgid;
0a425405 803
050e9baa 804#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
805 /* Canary value for the -fstack-protector GCC feature: */
806 unsigned long stack_canary;
1314562a 807#endif
4d1d61a6 808 /*
5eca1c10 809 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 810 * older sibling, respectively. (p->father can be replaced with
f470021a 811 * p->real_parent->pid)
1da177e4 812 */
5eca1c10
IM
813
814 /* Real parent process: */
815 struct task_struct __rcu *real_parent;
816
817 /* Recipient of SIGCHLD, wait4() reports: */
818 struct task_struct __rcu *parent;
819
1da177e4 820 /*
5eca1c10 821 * Children/sibling form the list of natural children:
1da177e4 822 */
5eca1c10
IM
823 struct list_head children;
824 struct list_head sibling;
825 struct task_struct *group_leader;
1da177e4 826
f470021a 827 /*
5eca1c10
IM
828 * 'ptraced' is the list of tasks this task is using ptrace() on.
829 *
f470021a 830 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 831 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 832 */
5eca1c10
IM
833 struct list_head ptraced;
834 struct list_head ptrace_entry;
f470021a 835
1da177e4 836 /* PID/PID hash table linkage. */
2c470475
EB
837 struct pid *thread_pid;
838 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
839 struct list_head thread_group;
840 struct list_head thread_node;
841
842 struct completion *vfork_done;
1da177e4 843
5eca1c10
IM
844 /* CLONE_CHILD_SETTID: */
845 int __user *set_child_tid;
1da177e4 846
5eca1c10
IM
847 /* CLONE_CHILD_CLEARTID: */
848 int __user *clear_child_tid;
849
850 u64 utime;
851 u64 stime;
40565b5a 852#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
853 u64 utimescaled;
854 u64 stimescaled;
40565b5a 855#endif
5eca1c10
IM
856 u64 gtime;
857 struct prev_cputime prev_cputime;
6a61671b 858#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 859 struct vtime vtime;
d99ca3b9 860#endif
d027d45d
FW
861
862#ifdef CONFIG_NO_HZ_FULL
5eca1c10 863 atomic_t tick_dep_mask;
d027d45d 864#endif
5eca1c10
IM
865 /* Context switch counts: */
866 unsigned long nvcsw;
867 unsigned long nivcsw;
868
869 /* Monotonic time in nsecs: */
870 u64 start_time;
871
872 /* Boot based time in nsecs: */
873 u64 real_start_time;
874
875 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
876 unsigned long min_flt;
877 unsigned long maj_flt;
1da177e4 878
b18b6a9c 879#ifdef CONFIG_POSIX_TIMERS
5eca1c10
IM
880 struct task_cputime cputime_expires;
881 struct list_head cpu_timers[3];
b18b6a9c 882#endif
1da177e4 883
5eca1c10
IM
884 /* Process credentials: */
885
886 /* Tracer's credentials at attach: */
887 const struct cred __rcu *ptracer_cred;
888
889 /* Objective and real subjective task credentials (COW): */
890 const struct cred __rcu *real_cred;
891
892 /* Effective (overridable) subjective task credentials (COW): */
893 const struct cred __rcu *cred;
894
7743c48e
DH
895#ifdef CONFIG_KEYS
896 /* Cached requested key. */
897 struct key *cached_requested_key;
898#endif
899
5eca1c10
IM
900 /*
901 * executable name, excluding path.
902 *
903 * - normally initialized setup_new_exec()
904 * - access it with [gs]et_task_comm()
905 * - lock it with task_lock()
906 */
907 char comm[TASK_COMM_LEN];
908
909 struct nameidata *nameidata;
910
3d5b6fcc 911#ifdef CONFIG_SYSVIPC
5eca1c10
IM
912 struct sysv_sem sysvsem;
913 struct sysv_shm sysvshm;
3d5b6fcc 914#endif
e162b39a 915#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 916 unsigned long last_switch_count;
a2e51445 917 unsigned long last_switch_time;
82a1fcb9 918#endif
5eca1c10
IM
919 /* Filesystem information: */
920 struct fs_struct *fs;
921
922 /* Open file information: */
923 struct files_struct *files;
924
925 /* Namespaces: */
926 struct nsproxy *nsproxy;
927
928 /* Signal handlers: */
929 struct signal_struct *signal;
930 struct sighand_struct *sighand;
931 sigset_t blocked;
932 sigset_t real_blocked;
933 /* Restored if set_restore_sigmask() was used: */
934 sigset_t saved_sigmask;
935 struct sigpending pending;
936 unsigned long sas_ss_sp;
937 size_t sas_ss_size;
938 unsigned int sas_ss_flags;
939
940 struct callback_head *task_works;
941
4b7d248b 942#ifdef CONFIG_AUDIT
bfef93a5 943#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
944 struct audit_context *audit_context;
945#endif
5eca1c10
IM
946 kuid_t loginuid;
947 unsigned int sessionid;
bfef93a5 948#endif
5eca1c10
IM
949 struct seccomp seccomp;
950
951 /* Thread group tracking: */
952 u32 parent_exec_id;
953 u32 self_exec_id;
1da177e4 954
5eca1c10
IM
955 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
956 spinlock_t alloc_lock;
1da177e4 957
b29739f9 958 /* Protection of the PI data structures: */
5eca1c10 959 raw_spinlock_t pi_lock;
b29739f9 960
5eca1c10 961 struct wake_q_node wake_q;
76751049 962
23f78d4a 963#ifdef CONFIG_RT_MUTEXES
5eca1c10 964 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 965 struct rb_root_cached pi_waiters;
e96a7705
XP
966 /* Updated under owner's pi_lock and rq lock */
967 struct task_struct *pi_top_task;
5eca1c10
IM
968 /* Deadlock detection and priority inheritance handling: */
969 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
970#endif
971
408894ee 972#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
973 /* Mutex deadlock detection: */
974 struct mutex_waiter *blocked_on;
408894ee 975#endif
5eca1c10 976
de30a2b3 977#ifdef CONFIG_TRACE_IRQFLAGS
5eca1c10
IM
978 unsigned int irq_events;
979 unsigned long hardirq_enable_ip;
980 unsigned long hardirq_disable_ip;
981 unsigned int hardirq_enable_event;
982 unsigned int hardirq_disable_event;
983 int hardirqs_enabled;
984 int hardirq_context;
985 unsigned long softirq_disable_ip;
986 unsigned long softirq_enable_ip;
987 unsigned int softirq_disable_event;
988 unsigned int softirq_enable_event;
989 int softirqs_enabled;
990 int softirq_context;
de30a2b3 991#endif
5eca1c10 992
fbb9ce95 993#ifdef CONFIG_LOCKDEP
5eca1c10
IM
994# define MAX_LOCK_DEPTH 48UL
995 u64 curr_chain_key;
996 int lockdep_depth;
997 unsigned int lockdep_recursion;
998 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 999#endif
5eca1c10 1000
c6d30853 1001#ifdef CONFIG_UBSAN
5eca1c10 1002 unsigned int in_ubsan;
c6d30853 1003#endif
408894ee 1004
5eca1c10
IM
1005 /* Journalling filesystem info: */
1006 void *journal_info;
1da177e4 1007
5eca1c10
IM
1008 /* Stacked block device info: */
1009 struct bio_list *bio_list;
d89d8796 1010
73c10101 1011#ifdef CONFIG_BLOCK
5eca1c10
IM
1012 /* Stack plugging: */
1013 struct blk_plug *plug;
73c10101
JA
1014#endif
1015
5eca1c10
IM
1016 /* VM state: */
1017 struct reclaim_state *reclaim_state;
1018
1019 struct backing_dev_info *backing_dev_info;
1da177e4 1020
5eca1c10 1021 struct io_context *io_context;
1da177e4 1022
5e1f0f09
MG
1023#ifdef CONFIG_COMPACTION
1024 struct capture_control *capture_control;
1025#endif
5eca1c10
IM
1026 /* Ptrace state: */
1027 unsigned long ptrace_message;
ae7795bc 1028 kernel_siginfo_t *last_siginfo;
1da177e4 1029
5eca1c10 1030 struct task_io_accounting ioac;
eb414681
JW
1031#ifdef CONFIG_PSI
1032 /* Pressure stall state */
1033 unsigned int psi_flags;
1034#endif
5eca1c10
IM
1035#ifdef CONFIG_TASK_XACCT
1036 /* Accumulated RSS usage: */
1037 u64 acct_rss_mem1;
1038 /* Accumulated virtual memory usage: */
1039 u64 acct_vm_mem1;
1040 /* stime + utime since last update: */
1041 u64 acct_timexpd;
1da177e4
LT
1042#endif
1043#ifdef CONFIG_CPUSETS
5eca1c10
IM
1044 /* Protected by ->alloc_lock: */
1045 nodemask_t mems_allowed;
1046 /* Seqence number to catch updates: */
1047 seqcount_t mems_allowed_seq;
1048 int cpuset_mem_spread_rotor;
1049 int cpuset_slab_spread_rotor;
1da177e4 1050#endif
ddbcc7e8 1051#ifdef CONFIG_CGROUPS
5eca1c10
IM
1052 /* Control Group info protected by css_set_lock: */
1053 struct css_set __rcu *cgroups;
1054 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1055 struct list_head cg_list;
ddbcc7e8 1056#endif
e6d42931 1057#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 1058 u32 closid;
d6aaba61 1059 u32 rmid;
e02737d5 1060#endif
42b2dd0a 1061#ifdef CONFIG_FUTEX
5eca1c10 1062 struct robust_list_head __user *robust_list;
34f192c6
IM
1063#ifdef CONFIG_COMPAT
1064 struct compat_robust_list_head __user *compat_robust_list;
1065#endif
5eca1c10
IM
1066 struct list_head pi_state_list;
1067 struct futex_pi_state *pi_state_cache;
c7aceaba 1068#endif
cdd6c482 1069#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
1070 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1071 struct mutex perf_event_mutex;
1072 struct list_head perf_event_list;
a63eaf34 1073#endif
8f47b187 1074#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1075 unsigned long preempt_disable_ip;
8f47b187 1076#endif
c7aceaba 1077#ifdef CONFIG_NUMA
5eca1c10
IM
1078 /* Protected by alloc_lock: */
1079 struct mempolicy *mempolicy;
45816682 1080 short il_prev;
5eca1c10 1081 short pref_node_fork;
42b2dd0a 1082#endif
cbee9f88 1083#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1084 int numa_scan_seq;
1085 unsigned int numa_scan_period;
1086 unsigned int numa_scan_period_max;
1087 int numa_preferred_nid;
1088 unsigned long numa_migrate_retry;
1089 /* Migration stamp: */
1090 u64 node_stamp;
1091 u64 last_task_numa_placement;
1092 u64 last_sum_exec_runtime;
1093 struct callback_head numa_work;
1094
cb361d8c
JH
1095 /*
1096 * This pointer is only modified for current in syscall and
1097 * pagefault context (and for tasks being destroyed), so it can be read
1098 * from any of the following contexts:
1099 * - RCU read-side critical section
1100 * - current->numa_group from everywhere
1101 * - task's runqueue locked, task not running
1102 */
1103 struct numa_group __rcu *numa_group;
8c8a743c 1104
745d6147 1105 /*
44dba3d5
IM
1106 * numa_faults is an array split into four regions:
1107 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1108 * in this precise order.
1109 *
1110 * faults_memory: Exponential decaying average of faults on a per-node
1111 * basis. Scheduling placement decisions are made based on these
1112 * counts. The values remain static for the duration of a PTE scan.
1113 * faults_cpu: Track the nodes the process was running on when a NUMA
1114 * hinting fault was incurred.
1115 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1116 * during the current scan window. When the scan completes, the counts
1117 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1118 */
5eca1c10
IM
1119 unsigned long *numa_faults;
1120 unsigned long total_numa_faults;
745d6147 1121
04bb2f94
RR
1122 /*
1123 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1124 * scan window were remote/local or failed to migrate. The task scan
1125 * period is adapted based on the locality of the faults with different
1126 * weights depending on whether they were shared or private faults
04bb2f94 1127 */
5eca1c10 1128 unsigned long numa_faults_locality[3];
04bb2f94 1129
5eca1c10 1130 unsigned long numa_pages_migrated;
cbee9f88
PZ
1131#endif /* CONFIG_NUMA_BALANCING */
1132
d7822b1e
MD
1133#ifdef CONFIG_RSEQ
1134 struct rseq __user *rseq;
d7822b1e
MD
1135 u32 rseq_sig;
1136 /*
1137 * RmW on rseq_event_mask must be performed atomically
1138 * with respect to preemption.
1139 */
1140 unsigned long rseq_event_mask;
1141#endif
1142
5eca1c10 1143 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1144
5eca1c10 1145 struct rcu_head rcu;
b92ce558 1146
5eca1c10
IM
1147 /* Cache last used pipe for splice(): */
1148 struct pipe_inode_info *splice_pipe;
5640f768 1149
5eca1c10 1150 struct page_frag task_frag;
5640f768 1151
47913d4e
IM
1152#ifdef CONFIG_TASK_DELAY_ACCT
1153 struct task_delay_info *delays;
f4f154fd 1154#endif
47913d4e 1155
f4f154fd 1156#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1157 int make_it_fail;
9049f2f6 1158 unsigned int fail_nth;
ca74e92b 1159#endif
9d823e8f 1160 /*
5eca1c10
IM
1161 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1162 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1163 */
5eca1c10
IM
1164 int nr_dirtied;
1165 int nr_dirtied_pause;
1166 /* Start of a write-and-pause period: */
1167 unsigned long dirty_paused_when;
9d823e8f 1168
9745512c 1169#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1170 int latency_record_count;
1171 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1172#endif
6976675d 1173 /*
5eca1c10 1174 * Time slack values; these are used to round up poll() and
6976675d
AV
1175 * select() etc timeout values. These are in nanoseconds.
1176 */
5eca1c10
IM
1177 u64 timer_slack_ns;
1178 u64 default_timer_slack_ns;
f8d570a4 1179
0b24becc 1180#ifdef CONFIG_KASAN
5eca1c10 1181 unsigned int kasan_depth;
0b24becc 1182#endif
5eca1c10 1183
fb52607a 1184#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1185 /* Index of current stored address in ret_stack: */
1186 int curr_ret_stack;
39eb456d 1187 int curr_ret_depth;
5eca1c10
IM
1188
1189 /* Stack of return addresses for return function tracing: */
1190 struct ftrace_ret_stack *ret_stack;
1191
1192 /* Timestamp for last schedule: */
1193 unsigned long long ftrace_timestamp;
1194
f201ae23
FW
1195 /*
1196 * Number of functions that haven't been traced
5eca1c10 1197 * because of depth overrun:
f201ae23 1198 */
5eca1c10
IM
1199 atomic_t trace_overrun;
1200
1201 /* Pause tracing: */
1202 atomic_t tracing_graph_pause;
f201ae23 1203#endif
5eca1c10 1204
ea4e2bc4 1205#ifdef CONFIG_TRACING
5eca1c10
IM
1206 /* State flags for use by tracers: */
1207 unsigned long trace;
1208
1209 /* Bitmask and counter of trace recursion: */
1210 unsigned long trace_recursion;
261842b7 1211#endif /* CONFIG_TRACING */
5eca1c10 1212
5c9a8750 1213#ifdef CONFIG_KCOV
5eca1c10 1214 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1215 unsigned int kcov_mode;
5eca1c10
IM
1216
1217 /* Size of the kcov_area: */
1218 unsigned int kcov_size;
1219
1220 /* Buffer for coverage collection: */
1221 void *kcov_area;
1222
1223 /* KCOV descriptor wired with this task or NULL: */
1224 struct kcov *kcov;
5c9a8750 1225#endif
5eca1c10 1226
6f185c29 1227#ifdef CONFIG_MEMCG
5eca1c10
IM
1228 struct mem_cgroup *memcg_in_oom;
1229 gfp_t memcg_oom_gfp_mask;
1230 int memcg_oom_order;
b23afb93 1231
5eca1c10
IM
1232 /* Number of pages to reclaim on returning to userland: */
1233 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1234
1235 /* Used by memcontrol for targeted memcg charge: */
1236 struct mem_cgroup *active_memcg;
569b846d 1237#endif
5eca1c10 1238
d09d8df3
JB
1239#ifdef CONFIG_BLK_CGROUP
1240 struct request_queue *throttle_queue;
1241#endif
1242
0326f5a9 1243#ifdef CONFIG_UPROBES
5eca1c10 1244 struct uprobe_task *utask;
0326f5a9 1245#endif
cafe5635 1246#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1247 unsigned int sequential_io;
1248 unsigned int sequential_io_avg;
cafe5635 1249#endif
8eb23b9f 1250#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1251 unsigned long task_state_change;
8eb23b9f 1252#endif
5eca1c10 1253 int pagefault_disabled;
03049269 1254#ifdef CONFIG_MMU
5eca1c10 1255 struct task_struct *oom_reaper_list;
03049269 1256#endif
ba14a194 1257#ifdef CONFIG_VMAP_STACK
5eca1c10 1258 struct vm_struct *stack_vm_area;
ba14a194 1259#endif
68f24b08 1260#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1261 /* A live task holds one reference: */
f0b89d39 1262 refcount_t stack_refcount;
d83a7cb3
JP
1263#endif
1264#ifdef CONFIG_LIVEPATCH
1265 int patch_state;
0302e28d 1266#endif
e4e55b47
TH
1267#ifdef CONFIG_SECURITY
1268 /* Used by LSM modules for access restriction: */
1269 void *security;
68f24b08 1270#endif
29e48ce8 1271
afaef01c
AP
1272#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1273 unsigned long lowest_stack;
c8d12627 1274 unsigned long prev_lowest_stack;
afaef01c
AP
1275#endif
1276
29e48ce8
KC
1277 /*
1278 * New fields for task_struct should be added above here, so that
1279 * they are included in the randomized portion of task_struct.
1280 */
1281 randomized_struct_fields_end
1282
5eca1c10
IM
1283 /* CPU-specific state of this task: */
1284 struct thread_struct thread;
1285
1286 /*
1287 * WARNING: on x86, 'thread_struct' contains a variable-sized
1288 * structure. It *MUST* be at the end of 'task_struct'.
1289 *
1290 * Do not put anything below here!
1291 */
1da177e4
LT
1292};
1293
e868171a 1294static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1295{
2c470475 1296 return task->thread_pid;
22c935f4
EB
1297}
1298
7af57294
PE
1299/*
1300 * the helpers to get the task's different pids as they are seen
1301 * from various namespaces
1302 *
1303 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1304 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1305 * current.
7af57294
PE
1306 * task_xid_nr_ns() : id seen from the ns specified;
1307 *
7af57294
PE
1308 * see also pid_nr() etc in include/linux/pid.h
1309 */
5eca1c10 1310pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1311
e868171a 1312static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1313{
1314 return tsk->pid;
1315}
1316
5eca1c10 1317static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1318{
1319 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1320}
7af57294
PE
1321
1322static inline pid_t task_pid_vnr(struct task_struct *tsk)
1323{
52ee2dfd 1324 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1325}
1326
1327
e868171a 1328static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1329{
1330 return tsk->tgid;
1331}
1332
5eca1c10
IM
1333/**
1334 * pid_alive - check that a task structure is not stale
1335 * @p: Task structure to be checked.
1336 *
1337 * Test if a process is not yet dead (at most zombie state)
1338 * If pid_alive fails, then pointers within the task structure
1339 * can be stale and must not be dereferenced.
1340 *
1341 * Return: 1 if the process is alive. 0 otherwise.
1342 */
1343static inline int pid_alive(const struct task_struct *p)
1344{
2c470475 1345 return p->thread_pid != NULL;
5eca1c10 1346}
7af57294 1347
5eca1c10 1348static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1349{
52ee2dfd 1350 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1351}
1352
7af57294
PE
1353static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1354{
52ee2dfd 1355 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1356}
1357
1358
5eca1c10 1359static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1360{
52ee2dfd 1361 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1362}
1363
7af57294
PE
1364static inline pid_t task_session_vnr(struct task_struct *tsk)
1365{
52ee2dfd 1366 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1367}
1368
dd1c1f2f
ON
1369static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1370{
6883f81a 1371 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1372}
1373
1374static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1375{
6883f81a 1376 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1377}
1378
1379static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1380{
1381 pid_t pid = 0;
1382
1383 rcu_read_lock();
1384 if (pid_alive(tsk))
1385 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1386 rcu_read_unlock();
1387
1388 return pid;
1389}
1390
1391static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1392{
1393 return task_ppid_nr_ns(tsk, &init_pid_ns);
1394}
1395
5eca1c10 1396/* Obsolete, do not use: */
1b0f7ffd
ON
1397static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1398{
1399 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1400}
7af57294 1401
06eb6184
PZ
1402#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1403#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1404
1d48b080 1405static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1406{
1593baab
PZ
1407 unsigned int tsk_state = READ_ONCE(tsk->state);
1408 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1409
06eb6184
PZ
1410 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1411
06eb6184
PZ
1412 if (tsk_state == TASK_IDLE)
1413 state = TASK_REPORT_IDLE;
1414
1593baab
PZ
1415 return fls(state);
1416}
1417
1d48b080 1418static inline char task_index_to_char(unsigned int state)
1593baab 1419{
8ef9925b 1420 static const char state_char[] = "RSDTtXZPI";
1593baab 1421
06eb6184 1422 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1423
1593baab
PZ
1424 return state_char[state];
1425}
1426
1427static inline char task_state_to_char(struct task_struct *tsk)
1428{
1d48b080 1429 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1430}
1431
f400e198 1432/**
570f5241
SS
1433 * is_global_init - check if a task structure is init. Since init
1434 * is free to have sub-threads we need to check tgid.
3260259f
H
1435 * @tsk: Task structure to be checked.
1436 *
1437 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1438 *
1439 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1440 */
e868171a 1441static inline int is_global_init(struct task_struct *tsk)
b461cc03 1442{
570f5241 1443 return task_tgid_nr(tsk) == 1;
b461cc03 1444}
b460cbc5 1445
9ec52099
CLG
1446extern struct pid *cad_pid;
1447
1da177e4
LT
1448/*
1449 * Per process flags
1450 */
5eca1c10
IM
1451#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1452#define PF_EXITING 0x00000004 /* Getting shut down */
1453#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1454#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1455#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1456#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1457#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1458#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1459#define PF_DUMPCORE 0x00000200 /* Dumped core */
1460#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1461#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1462#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1463#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1464#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1465#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1466#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1467#define PF_KSWAPD 0x00020000 /* I am kswapd */
1468#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1469#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
5eca1c10
IM
1470#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1471#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1472#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1473#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
eb414681 1474#define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */
73ab1cb2 1475#define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
3bd37062 1476#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1477#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
d7fefcc8 1478#define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
5eca1c10
IM
1479#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1480#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1481
1482/*
1483 * Only the _current_ task can read/write to tsk->flags, but other
1484 * tasks can access tsk->flags in readonly mode for example
1485 * with tsk_used_math (like during threaded core dumping).
1486 * There is however an exception to this rule during ptrace
1487 * or during fork: the ptracer task is allowed to write to the
1488 * child->flags of its traced child (same goes for fork, the parent
1489 * can write to the child->flags), because we're guaranteed the
1490 * child is not running and in turn not changing child->flags
1491 * at the same time the parent does it.
1492 */
5eca1c10
IM
1493#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1494#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1495#define clear_used_math() clear_stopped_child_used_math(current)
1496#define set_used_math() set_stopped_child_used_math(current)
1497
1da177e4
LT
1498#define conditional_stopped_child_used_math(condition, child) \
1499 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1500
1501#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1502
1da177e4
LT
1503#define copy_to_stopped_child_used_math(child) \
1504 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1505
1da177e4 1506/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1507#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1508#define used_math() tsk_used_math(current)
1da177e4 1509
62ec05dd
TG
1510static inline bool is_percpu_thread(void)
1511{
1512#ifdef CONFIG_SMP
1513 return (current->flags & PF_NO_SETAFFINITY) &&
1514 (current->nr_cpus_allowed == 1);
1515#else
1516 return true;
1517#endif
1518}
1519
1d4457f9 1520/* Per-process atomic flags. */
5eca1c10
IM
1521#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1522#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1523#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1524#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1525#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1526#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1527#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1528#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1529
e0e5070b
ZL
1530#define TASK_PFA_TEST(name, func) \
1531 static inline bool task_##func(struct task_struct *p) \
1532 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1533
e0e5070b
ZL
1534#define TASK_PFA_SET(name, func) \
1535 static inline void task_set_##func(struct task_struct *p) \
1536 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1537
e0e5070b
ZL
1538#define TASK_PFA_CLEAR(name, func) \
1539 static inline void task_clear_##func(struct task_struct *p) \
1540 { clear_bit(PFA_##name, &p->atomic_flags); }
1541
1542TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1543TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1544
2ad654bc
ZL
1545TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1546TASK_PFA_SET(SPREAD_PAGE, spread_page)
1547TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1548
1549TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1550TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1551TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1552
356e4bff
TG
1553TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1554TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1555TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1556
71368af9
WL
1557TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1558TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1559TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1560
356e4bff
TG
1561TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1562TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1563
9137bb27
TG
1564TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1565TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1566TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1567
1568TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1569TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1570
5eca1c10 1571static inline void
717a94b5 1572current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1573{
717a94b5
N
1574 current->flags &= ~flags;
1575 current->flags |= orig_flags & flags;
907aed48
MG
1576}
1577
5eca1c10
IM
1578extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1579extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1580#ifdef CONFIG_SMP
5eca1c10
IM
1581extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1582extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1583#else
5eca1c10 1584static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1585{
1586}
5eca1c10 1587static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1588{
96f874e2 1589 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1590 return -EINVAL;
1591 return 0;
1592}
1593#endif
e0ad9556 1594
fa93384f 1595extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1596extern void set_user_nice(struct task_struct *p, long nice);
1597extern int task_prio(const struct task_struct *p);
5eca1c10 1598
d0ea0268
DY
1599/**
1600 * task_nice - return the nice value of a given task.
1601 * @p: the task in question.
1602 *
1603 * Return: The nice value [ -20 ... 0 ... 19 ].
1604 */
1605static inline int task_nice(const struct task_struct *p)
1606{
1607 return PRIO_TO_NICE((p)->static_prio);
1608}
5eca1c10 1609
36c8b586
IM
1610extern int can_nice(const struct task_struct *p, const int nice);
1611extern int task_curr(const struct task_struct *p);
1da177e4 1612extern int idle_cpu(int cpu);
943d355d 1613extern int available_idle_cpu(int cpu);
5eca1c10
IM
1614extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1615extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1616extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1617extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1618extern struct task_struct *idle_task(int cpu);
5eca1c10 1619
c4f30608
PM
1620/**
1621 * is_idle_task - is the specified task an idle task?
fa757281 1622 * @p: the task in question.
e69f6186
YB
1623 *
1624 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1625 */
7061ca3b 1626static inline bool is_idle_task(const struct task_struct *p)
c4f30608 1627{
c1de45ca 1628 return !!(p->flags & PF_IDLE);
c4f30608 1629}
5eca1c10 1630
36c8b586 1631extern struct task_struct *curr_task(int cpu);
a458ae2e 1632extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1633
1634void yield(void);
1635
1da177e4 1636union thread_union {
0500871f
DH
1637#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1638 struct task_struct task;
1639#endif
c65eacbe 1640#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1641 struct thread_info thread_info;
c65eacbe 1642#endif
1da177e4
LT
1643 unsigned long stack[THREAD_SIZE/sizeof(long)];
1644};
1645
0500871f
DH
1646#ifndef CONFIG_THREAD_INFO_IN_TASK
1647extern struct thread_info init_thread_info;
1648#endif
1649
1650extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1651
f3ac6067
IM
1652#ifdef CONFIG_THREAD_INFO_IN_TASK
1653static inline struct thread_info *task_thread_info(struct task_struct *task)
1654{
1655 return &task->thread_info;
1656}
1657#elif !defined(__HAVE_THREAD_FUNCTIONS)
1658# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1659#endif
1660
198fe21b
PE
1661/*
1662 * find a task by one of its numerical ids
1663 *
198fe21b
PE
1664 * find_task_by_pid_ns():
1665 * finds a task by its pid in the specified namespace
228ebcbe
PE
1666 * find_task_by_vpid():
1667 * finds a task by its virtual pid
198fe21b 1668 *
e49859e7 1669 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1670 */
1671
228ebcbe 1672extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1673extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1674
2ee08260
MR
1675/*
1676 * find a task by its virtual pid and get the task struct
1677 */
1678extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1679
b3c97528
HH
1680extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1681extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1682extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1683
1da177e4 1684#ifdef CONFIG_SMP
5eca1c10 1685extern void kick_process(struct task_struct *tsk);
1da177e4 1686#else
5eca1c10 1687static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1688#endif
1da177e4 1689
82b89778 1690extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1691
82b89778
AH
1692static inline void set_task_comm(struct task_struct *tsk, const char *from)
1693{
1694 __set_task_comm(tsk, from, false);
1695}
5eca1c10 1696
3756f640
AB
1697extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1698#define get_task_comm(buf, tsk) ({ \
1699 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1700 __get_task_comm(buf, sizeof(buf), tsk); \
1701})
1da177e4
LT
1702
1703#ifdef CONFIG_SMP
317f3941 1704void scheduler_ipi(void);
85ba2d86 1705extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 1706#else
184748cc 1707static inline void scheduler_ipi(void) { }
5eca1c10 1708static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
85ba2d86
RM
1709{
1710 return 1;
1711}
1da177e4
LT
1712#endif
1713
5eca1c10
IM
1714/*
1715 * Set thread flags in other task's structures.
1716 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1717 */
1718static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1719{
a1261f54 1720 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1721}
1722
1723static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1724{
a1261f54 1725 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1726}
1727
93ee37c2
DM
1728static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1729 bool value)
1730{
1731 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1732}
1733
1da177e4
LT
1734static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1735{
a1261f54 1736 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1737}
1738
1739static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1740{
a1261f54 1741 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1742}
1743
1744static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1745{
a1261f54 1746 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1747}
1748
1749static inline void set_tsk_need_resched(struct task_struct *tsk)
1750{
1751 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1752}
1753
1754static inline void clear_tsk_need_resched(struct task_struct *tsk)
1755{
1756 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1757}
1758
8ae121ac
GH
1759static inline int test_tsk_need_resched(struct task_struct *tsk)
1760{
1761 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1762}
1763
1da177e4
LT
1764/*
1765 * cond_resched() and cond_resched_lock(): latency reduction via
1766 * explicit rescheduling in places that are safe. The return
1767 * value indicates whether a reschedule was done in fact.
1768 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 1769 */
35a773a0 1770#ifndef CONFIG_PREEMPT
c3921ab7 1771extern int _cond_resched(void);
35a773a0
PZ
1772#else
1773static inline int _cond_resched(void) { return 0; }
1774#endif
6f80bd98 1775
613afbf8 1776#define cond_resched() ({ \
3427445a 1777 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1778 _cond_resched(); \
1779})
6f80bd98 1780
613afbf8
FW
1781extern int __cond_resched_lock(spinlock_t *lock);
1782
1783#define cond_resched_lock(lock) ({ \
3427445a 1784 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1785 __cond_resched_lock(lock); \
1786})
1787
f6f3c437
SH
1788static inline void cond_resched_rcu(void)
1789{
1790#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1791 rcu_read_unlock();
1792 cond_resched();
1793 rcu_read_lock();
1794#endif
1795}
1796
1da177e4
LT
1797/*
1798 * Does a critical section need to be broken due to another
95c354fe
NP
1799 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1800 * but a general need for low latency)
1da177e4 1801 */
95c354fe 1802static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1803{
95c354fe
NP
1804#ifdef CONFIG_PREEMPT
1805 return spin_is_contended(lock);
1806#else
1da177e4 1807 return 0;
95c354fe 1808#endif
1da177e4
LT
1809}
1810
75f93fed
PZ
1811static __always_inline bool need_resched(void)
1812{
1813 return unlikely(tif_need_resched());
1814}
1815
1da177e4
LT
1816/*
1817 * Wrappers for p->thread_info->cpu access. No-op on UP.
1818 */
1819#ifdef CONFIG_SMP
1820
1821static inline unsigned int task_cpu(const struct task_struct *p)
1822{
c65eacbe 1823#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 1824 return READ_ONCE(p->cpu);
c65eacbe 1825#else
c546951d 1826 return READ_ONCE(task_thread_info(p)->cpu);
c65eacbe 1827#endif
1da177e4
LT
1828}
1829
c65cc870 1830extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
1831
1832#else
1833
1834static inline unsigned int task_cpu(const struct task_struct *p)
1835{
1836 return 0;
1837}
1838
1839static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1840{
1841}
1842
1843#endif /* CONFIG_SMP */
1844
d9345c65
PX
1845/*
1846 * In order to reduce various lock holder preemption latencies provide an
1847 * interface to see if a vCPU is currently running or not.
1848 *
1849 * This allows us to terminate optimistic spin loops and block, analogous to
1850 * the native optimistic spin heuristic of testing if the lock owner task is
1851 * running or not.
1852 */
1853#ifndef vcpu_is_preempted
1854# define vcpu_is_preempted(cpu) false
1855#endif
1856
96f874e2
RR
1857extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1858extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 1859
82455257
DH
1860#ifndef TASK_SIZE_OF
1861#define TASK_SIZE_OF(tsk) TASK_SIZE
1862#endif
1863
d7822b1e
MD
1864#ifdef CONFIG_RSEQ
1865
1866/*
1867 * Map the event mask on the user-space ABI enum rseq_cs_flags
1868 * for direct mask checks.
1869 */
1870enum rseq_event_mask_bits {
1871 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1872 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1873 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1874};
1875
1876enum rseq_event_mask {
1877 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1878 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1879 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1880};
1881
1882static inline void rseq_set_notify_resume(struct task_struct *t)
1883{
1884 if (t->rseq)
1885 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1886}
1887
784e0300 1888void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 1889
784e0300
WD
1890static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1891 struct pt_regs *regs)
d7822b1e
MD
1892{
1893 if (current->rseq)
784e0300 1894 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1895}
1896
784e0300
WD
1897static inline void rseq_signal_deliver(struct ksignal *ksig,
1898 struct pt_regs *regs)
d7822b1e
MD
1899{
1900 preempt_disable();
1901 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1902 preempt_enable();
784e0300 1903 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1904}
1905
1906/* rseq_preempt() requires preemption to be disabled. */
1907static inline void rseq_preempt(struct task_struct *t)
1908{
1909 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1910 rseq_set_notify_resume(t);
1911}
1912
1913/* rseq_migrate() requires preemption to be disabled. */
1914static inline void rseq_migrate(struct task_struct *t)
1915{
1916 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1917 rseq_set_notify_resume(t);
1918}
1919
1920/*
1921 * If parent process has a registered restartable sequences area, the
9a789fcf 1922 * child inherits. Only applies when forking a process, not a thread.
d7822b1e
MD
1923 */
1924static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1925{
1926 if (clone_flags & CLONE_THREAD) {
1927 t->rseq = NULL;
d7822b1e
MD
1928 t->rseq_sig = 0;
1929 t->rseq_event_mask = 0;
1930 } else {
1931 t->rseq = current->rseq;
d7822b1e
MD
1932 t->rseq_sig = current->rseq_sig;
1933 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
1934 }
1935}
1936
1937static inline void rseq_execve(struct task_struct *t)
1938{
1939 t->rseq = NULL;
d7822b1e
MD
1940 t->rseq_sig = 0;
1941 t->rseq_event_mask = 0;
1942}
1943
1944#else
1945
1946static inline void rseq_set_notify_resume(struct task_struct *t)
1947{
1948}
784e0300
WD
1949static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1950 struct pt_regs *regs)
d7822b1e
MD
1951{
1952}
784e0300
WD
1953static inline void rseq_signal_deliver(struct ksignal *ksig,
1954 struct pt_regs *regs)
d7822b1e
MD
1955{
1956}
1957static inline void rseq_preempt(struct task_struct *t)
1958{
1959}
1960static inline void rseq_migrate(struct task_struct *t)
1961{
1962}
1963static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1964{
1965}
1966static inline void rseq_execve(struct task_struct *t)
1967{
1968}
1969
1970#endif
1971
73ab1cb2
TY
1972void __exit_umh(struct task_struct *tsk);
1973
1974static inline void exit_umh(struct task_struct *tsk)
1975{
1976 if (unlikely(tsk->flags & PF_UMH))
1977 __exit_umh(tsk);
1978}
1979
d7822b1e
MD
1980#ifdef CONFIG_DEBUG_RSEQ
1981
1982void rseq_syscall(struct pt_regs *regs);
1983
1984#else
1985
1986static inline void rseq_syscall(struct pt_regs *regs)
1987{
1988}
1989
1990#endif
1991
3c93a0c0
QY
1992const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
1993char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
1994int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
1995
1996const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
1997const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
1998const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
1999
2000int sched_trace_rq_cpu(struct rq *rq);
2001
2002const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2003
1da177e4 2004#endif