ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs
[linux-block.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/mutex.h>
18#include <linux/plist.h>
19#include <linux/hrtimer.h>
0584df9c 20#include <linux/irqflags.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
ec1d2819 24#include <linux/refcount.h>
a3b6714e 25#include <linux/resource.h>
9745512c 26#include <linux/latencytop.h>
5eca1c10 27#include <linux/sched/prio.h>
9eacb5c7 28#include <linux/sched/types.h>
5eca1c10 29#include <linux/signal_types.h>
1446e1df 30#include <linux/syscall_user_dispatch.h>
5eca1c10
IM
31#include <linux/mm_types_task.h>
32#include <linux/task_io_accounting.h>
2b69942f 33#include <linux/posix-timers.h>
d7822b1e 34#include <linux/rseq.h>
0cd39f46 35#include <linux/seqlock.h>
dfd402a4 36#include <linux/kcsan.h>
5fbda3ec 37#include <asm/kmap_size.h>
a3b6714e 38
5eca1c10 39/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 40struct audit_context;
c7af7877 41struct backing_dev_info;
bddd87c7 42struct bio_list;
73c10101 43struct blk_plug;
a10787e6 44struct bpf_local_storage;
c7603cfa 45struct bpf_run_ctx;
3c93a0c0 46struct capture_control;
c7af7877 47struct cfs_rq;
c7af7877
IM
48struct fs_struct;
49struct futex_pi_state;
50struct io_context;
1875dc5b 51struct io_uring_task;
c7af7877 52struct mempolicy;
89076bc3 53struct nameidata;
c7af7877
IM
54struct nsproxy;
55struct perf_event_context;
56struct pid_namespace;
57struct pipe_inode_info;
58struct rcu_node;
59struct reclaim_state;
60struct robust_list_head;
3c93a0c0
QY
61struct root_domain;
62struct rq;
c7af7877
IM
63struct sched_attr;
64struct sched_param;
43ae34cb 65struct seq_file;
c7af7877
IM
66struct sighand_struct;
67struct signal_struct;
68struct task_delay_info;
4cf86d77 69struct task_group;
1da177e4 70
4a8342d2
LT
71/*
72 * Task state bitmask. NOTE! These bits are also
73 * encoded in fs/proc/array.c: get_task_state().
74 *
75 * We have two separate sets of flags: task->state
76 * is about runnability, while task->exit_state are
77 * about the task exiting. Confusing, but this way
78 * modifying one set can't modify the other one by
79 * mistake.
80 */
5eca1c10
IM
81
82/* Used in tsk->state: */
92c4bc9f
PZ
83#define TASK_RUNNING 0x0000
84#define TASK_INTERRUPTIBLE 0x0001
85#define TASK_UNINTERRUPTIBLE 0x0002
86#define __TASK_STOPPED 0x0004
87#define __TASK_TRACED 0x0008
5eca1c10 88/* Used in tsk->exit_state: */
92c4bc9f
PZ
89#define EXIT_DEAD 0x0010
90#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
91#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
92/* Used in tsk->state again: */
8ef9925b
PZ
93#define TASK_PARKED 0x0040
94#define TASK_DEAD 0x0080
95#define TASK_WAKEKILL 0x0100
96#define TASK_WAKING 0x0200
92c4bc9f
PZ
97#define TASK_NOLOAD 0x0400
98#define TASK_NEW 0x0800
cd781d0c
TG
99/* RT specific auxilliary flag to mark RT lock waiters */
100#define TASK_RTLOCK_WAIT 0x1000
101#define TASK_STATE_MAX 0x2000
5eca1c10 102
5eca1c10
IM
103/* Convenience macros for the sake of set_current_state: */
104#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
105#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
106#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
107
108#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
109
110/* Convenience macros for the sake of wake_up(): */
111#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
112
113/* get_task_state(): */
114#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
115 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
116 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
117 TASK_PARKED)
5eca1c10 118
2f064a59 119#define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
5eca1c10 120
2f064a59 121#define task_is_traced(task) ((READ_ONCE(task->__state) & __TASK_TRACED) != 0)
5eca1c10 122
2f064a59 123#define task_is_stopped(task) ((READ_ONCE(task->__state) & __TASK_STOPPED) != 0)
5eca1c10 124
2f064a59 125#define task_is_stopped_or_traced(task) ((READ_ONCE(task->__state) & (__TASK_STOPPED | __TASK_TRACED)) != 0)
5eca1c10 126
b5bf9a90
PZ
127/*
128 * Special states are those that do not use the normal wait-loop pattern. See
129 * the comment with set_special_state().
130 */
131#define is_special_task_state(state) \
1cef1150 132 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 133
85019c16
TG
134#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
135# define debug_normal_state_change(state_value) \
136 do { \
137 WARN_ON_ONCE(is_special_task_state(state_value)); \
138 current->task_state_change = _THIS_IP_; \
8eb23b9f
PZ
139 } while (0)
140
85019c16 141# define debug_special_state_change(state_value) \
b5bf9a90 142 do { \
b5bf9a90 143 WARN_ON_ONCE(!is_special_task_state(state_value)); \
b5bf9a90 144 current->task_state_change = _THIS_IP_; \
b5bf9a90 145 } while (0)
85019c16 146
5f220be2
TG
147# define debug_rtlock_wait_set_state() \
148 do { \
149 current->saved_state_change = current->task_state_change;\
150 current->task_state_change = _THIS_IP_; \
151 } while (0)
152
153# define debug_rtlock_wait_restore_state() \
154 do { \
155 current->task_state_change = current->saved_state_change;\
156 } while (0)
157
8eb23b9f 158#else
85019c16
TG
159# define debug_normal_state_change(cond) do { } while (0)
160# define debug_special_state_change(cond) do { } while (0)
5f220be2
TG
161# define debug_rtlock_wait_set_state() do { } while (0)
162# define debug_rtlock_wait_restore_state() do { } while (0)
85019c16
TG
163#endif
164
498d0c57
AM
165/*
166 * set_current_state() includes a barrier so that the write of current->state
167 * is correctly serialised wrt the caller's subsequent test of whether to
168 * actually sleep:
169 *
a2250238 170 * for (;;) {
498d0c57 171 * set_current_state(TASK_UNINTERRUPTIBLE);
58877d34
PZ
172 * if (CONDITION)
173 * break;
a2250238
PZ
174 *
175 * schedule();
176 * }
177 * __set_current_state(TASK_RUNNING);
178 *
179 * If the caller does not need such serialisation (because, for instance, the
58877d34 180 * CONDITION test and condition change and wakeup are under the same lock) then
a2250238
PZ
181 * use __set_current_state().
182 *
183 * The above is typically ordered against the wakeup, which does:
184 *
58877d34 185 * CONDITION = 1;
b5bf9a90 186 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 187 *
58877d34
PZ
188 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
189 * accessing p->state.
a2250238
PZ
190 *
191 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
192 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
193 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 194 *
b5bf9a90 195 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 196 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
197 * a problem either because that will result in one extra go around the loop
198 * and our @cond test will save the day.
498d0c57 199 *
a2250238 200 * Also see the comments of try_to_wake_up().
498d0c57 201 */
b5bf9a90 202#define __set_current_state(state_value) \
85019c16
TG
203 do { \
204 debug_normal_state_change((state_value)); \
205 WRITE_ONCE(current->__state, (state_value)); \
206 } while (0)
b5bf9a90
PZ
207
208#define set_current_state(state_value) \
85019c16
TG
209 do { \
210 debug_normal_state_change((state_value)); \
211 smp_store_mb(current->__state, (state_value)); \
212 } while (0)
b5bf9a90
PZ
213
214/*
215 * set_special_state() should be used for those states when the blocking task
216 * can not use the regular condition based wait-loop. In that case we must
85019c16
TG
217 * serialize against wakeups such that any possible in-flight TASK_RUNNING
218 * stores will not collide with our state change.
b5bf9a90
PZ
219 */
220#define set_special_state(state_value) \
221 do { \
222 unsigned long flags; /* may shadow */ \
85019c16 223 \
b5bf9a90 224 raw_spin_lock_irqsave(&current->pi_lock, flags); \
85019c16 225 debug_special_state_change((state_value)); \
2f064a59 226 WRITE_ONCE(current->__state, (state_value)); \
b5bf9a90
PZ
227 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
228 } while (0)
229
5f220be2
TG
230/*
231 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
232 *
233 * RT's spin/rwlock substitutions are state preserving. The state of the
234 * task when blocking on the lock is saved in task_struct::saved_state and
235 * restored after the lock has been acquired. These operations are
236 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
237 * lock related wakeups while the task is blocked on the lock are
238 * redirected to operate on task_struct::saved_state to ensure that these
239 * are not dropped. On restore task_struct::saved_state is set to
240 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
241 *
242 * The lock operation looks like this:
243 *
244 * current_save_and_set_rtlock_wait_state();
245 * for (;;) {
246 * if (try_lock())
247 * break;
248 * raw_spin_unlock_irq(&lock->wait_lock);
249 * schedule_rtlock();
250 * raw_spin_lock_irq(&lock->wait_lock);
251 * set_current_state(TASK_RTLOCK_WAIT);
252 * }
253 * current_restore_rtlock_saved_state();
254 */
255#define current_save_and_set_rtlock_wait_state() \
256 do { \
257 lockdep_assert_irqs_disabled(); \
258 raw_spin_lock(&current->pi_lock); \
259 current->saved_state = current->__state; \
260 debug_rtlock_wait_set_state(); \
261 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
262 raw_spin_unlock(&current->pi_lock); \
263 } while (0);
264
265#define current_restore_rtlock_saved_state() \
266 do { \
267 lockdep_assert_irqs_disabled(); \
268 raw_spin_lock(&current->pi_lock); \
269 debug_rtlock_wait_restore_state(); \
270 WRITE_ONCE(current->__state, current->saved_state); \
271 current->saved_state = TASK_RUNNING; \
272 raw_spin_unlock(&current->pi_lock); \
273 } while (0);
8eb23b9f 274
2f064a59 275#define get_current_state() READ_ONCE(current->__state)
d6c23bb3 276
3087c61e
YS
277/*
278 * Define the task command name length as enum, then it can be visible to
279 * BPF programs.
280 */
281enum {
282 TASK_COMM_LEN = 16,
283};
1da177e4 284
1da177e4
LT
285extern void scheduler_tick(void);
286
5eca1c10
IM
287#define MAX_SCHEDULE_TIMEOUT LONG_MAX
288
289extern long schedule_timeout(long timeout);
290extern long schedule_timeout_interruptible(long timeout);
291extern long schedule_timeout_killable(long timeout);
292extern long schedule_timeout_uninterruptible(long timeout);
293extern long schedule_timeout_idle(long timeout);
1da177e4 294asmlinkage void schedule(void);
c5491ea7 295extern void schedule_preempt_disabled(void);
19c95f26 296asmlinkage void preempt_schedule_irq(void);
6991436c
TG
297#ifdef CONFIG_PREEMPT_RT
298 extern void schedule_rtlock(void);
299#endif
1da177e4 300
10ab5643
TH
301extern int __must_check io_schedule_prepare(void);
302extern void io_schedule_finish(int token);
9cff8ade 303extern long io_schedule_timeout(long timeout);
10ab5643 304extern void io_schedule(void);
9cff8ade 305
d37f761d 306/**
0ba42a59 307 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
308 * @utime: time spent in user mode
309 * @stime: time spent in system mode
9d7fb042 310 * @lock: protects the above two fields
d37f761d 311 *
9d7fb042
PZ
312 * Stores previous user/system time values such that we can guarantee
313 * monotonicity.
d37f761d 314 */
9d7fb042
PZ
315struct prev_cputime {
316#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
317 u64 utime;
318 u64 stime;
319 raw_spinlock_t lock;
9d7fb042 320#endif
d37f761d
FW
321};
322
bac5b6b6
FW
323enum vtime_state {
324 /* Task is sleeping or running in a CPU with VTIME inactive: */
325 VTIME_INACTIVE = 0,
14faf6fc
FW
326 /* Task is idle */
327 VTIME_IDLE,
bac5b6b6
FW
328 /* Task runs in kernelspace in a CPU with VTIME active: */
329 VTIME_SYS,
14faf6fc
FW
330 /* Task runs in userspace in a CPU with VTIME active: */
331 VTIME_USER,
e6d5bf3e
FW
332 /* Task runs as guests in a CPU with VTIME active: */
333 VTIME_GUEST,
bac5b6b6
FW
334};
335
336struct vtime {
337 seqcount_t seqcount;
338 unsigned long long starttime;
339 enum vtime_state state;
802f4a82 340 unsigned int cpu;
2a42eb95
WL
341 u64 utime;
342 u64 stime;
343 u64 gtime;
bac5b6b6
FW
344};
345
69842cba
PB
346/*
347 * Utilization clamp constraints.
348 * @UCLAMP_MIN: Minimum utilization
349 * @UCLAMP_MAX: Maximum utilization
350 * @UCLAMP_CNT: Utilization clamp constraints count
351 */
352enum uclamp_id {
353 UCLAMP_MIN = 0,
354 UCLAMP_MAX,
355 UCLAMP_CNT
356};
357
f9a25f77
MP
358#ifdef CONFIG_SMP
359extern struct root_domain def_root_domain;
360extern struct mutex sched_domains_mutex;
361#endif
362
1da177e4 363struct sched_info {
7f5f8e8d 364#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
365 /* Cumulative counters: */
366
367 /* # of times we have run on this CPU: */
368 unsigned long pcount;
369
370 /* Time spent waiting on a runqueue: */
371 unsigned long long run_delay;
372
373 /* Timestamps: */
374
375 /* When did we last run on a CPU? */
376 unsigned long long last_arrival;
377
378 /* When were we last queued to run? */
379 unsigned long long last_queued;
1da177e4 380
f6db8347 381#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 382};
1da177e4 383
6ecdd749
YD
384/*
385 * Integer metrics need fixed point arithmetic, e.g., sched/fair
386 * has a few: load, load_avg, util_avg, freq, and capacity.
387 *
388 * We define a basic fixed point arithmetic range, and then formalize
389 * all these metrics based on that basic range.
390 */
5eca1c10
IM
391# define SCHED_FIXEDPOINT_SHIFT 10
392# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 393
69842cba
PB
394/* Increase resolution of cpu_capacity calculations */
395# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
396# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
397
20b8a59f 398struct load_weight {
5eca1c10
IM
399 unsigned long weight;
400 u32 inv_weight;
20b8a59f
IM
401};
402
7f65ea42
PB
403/**
404 * struct util_est - Estimation utilization of FAIR tasks
405 * @enqueued: instantaneous estimated utilization of a task/cpu
406 * @ewma: the Exponential Weighted Moving Average (EWMA)
407 * utilization of a task
408 *
409 * Support data structure to track an Exponential Weighted Moving Average
410 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
411 * average each time a task completes an activation. Sample's weight is chosen
412 * so that the EWMA will be relatively insensitive to transient changes to the
413 * task's workload.
414 *
415 * The enqueued attribute has a slightly different meaning for tasks and cpus:
416 * - task: the task's util_avg at last task dequeue time
417 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
418 * Thus, the util_est.enqueued of a task represents the contribution on the
419 * estimated utilization of the CPU where that task is currently enqueued.
420 *
421 * Only for tasks we track a moving average of the past instantaneous
422 * estimated utilization. This allows to absorb sporadic drops in utilization
423 * of an otherwise almost periodic task.
68d7a190
DE
424 *
425 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
426 * updates. When a task is dequeued, its util_est should not be updated if its
427 * util_avg has not been updated in the meantime.
428 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
429 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
430 * for a task) it is safe to use MSB.
7f65ea42
PB
431 */
432struct util_est {
433 unsigned int enqueued;
434 unsigned int ewma;
435#define UTIL_EST_WEIGHT_SHIFT 2
68d7a190 436#define UTIL_AVG_UNCHANGED 0x80000000
317d359d 437} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 438
9d89c257 439/*
9f683953 440 * The load/runnable/util_avg accumulates an infinite geometric series
0dacee1b 441 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
7b595334
YD
442 *
443 * [load_avg definition]
444 *
445 * load_avg = runnable% * scale_load_down(load)
446 *
9f683953
VG
447 * [runnable_avg definition]
448 *
449 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
7b595334 450 *
7b595334
YD
451 * [util_avg definition]
452 *
453 * util_avg = running% * SCHED_CAPACITY_SCALE
454 *
9f683953
VG
455 * where runnable% is the time ratio that a sched_entity is runnable and
456 * running% the time ratio that a sched_entity is running.
457 *
458 * For cfs_rq, they are the aggregated values of all runnable and blocked
459 * sched_entities.
7b595334 460 *
c1b7b8d4 461 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
9f683953
VG
462 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
463 * for computing those signals (see update_rq_clock_pelt())
7b595334 464 *
23127296
VG
465 * N.B., the above ratios (runnable% and running%) themselves are in the
466 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
467 * to as large a range as necessary. This is for example reflected by
468 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
469 *
470 * [Overflow issue]
471 *
472 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
473 * with the highest load (=88761), always runnable on a single cfs_rq,
474 * and should not overflow as the number already hits PID_MAX_LIMIT.
475 *
476 * For all other cases (including 32-bit kernels), struct load_weight's
477 * weight will overflow first before we do, because:
478 *
479 * Max(load_avg) <= Max(load.weight)
480 *
481 * Then it is the load_weight's responsibility to consider overflow
482 * issues.
9d89c257 483 */
9d85f21c 484struct sched_avg {
5eca1c10
IM
485 u64 last_update_time;
486 u64 load_sum;
9f683953 487 u64 runnable_sum;
5eca1c10
IM
488 u32 util_sum;
489 u32 period_contrib;
490 unsigned long load_avg;
9f683953 491 unsigned long runnable_avg;
5eca1c10 492 unsigned long util_avg;
7f65ea42 493 struct util_est util_est;
317d359d 494} ____cacheline_aligned;
9d85f21c 495
41acab88 496struct sched_statistics {
7f5f8e8d 497#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
498 u64 wait_start;
499 u64 wait_max;
500 u64 wait_count;
501 u64 wait_sum;
502 u64 iowait_count;
503 u64 iowait_sum;
504
505 u64 sleep_start;
506 u64 sleep_max;
507 s64 sum_sleep_runtime;
508
509 u64 block_start;
510 u64 block_max;
847fc0cd
YS
511 s64 sum_block_runtime;
512
5eca1c10
IM
513 u64 exec_max;
514 u64 slice_max;
515
516 u64 nr_migrations_cold;
517 u64 nr_failed_migrations_affine;
518 u64 nr_failed_migrations_running;
519 u64 nr_failed_migrations_hot;
520 u64 nr_forced_migrations;
521
522 u64 nr_wakeups;
523 u64 nr_wakeups_sync;
524 u64 nr_wakeups_migrate;
525 u64 nr_wakeups_local;
526 u64 nr_wakeups_remote;
527 u64 nr_wakeups_affine;
528 u64 nr_wakeups_affine_attempts;
529 u64 nr_wakeups_passive;
530 u64 nr_wakeups_idle;
4feee7d1
JD
531
532#ifdef CONFIG_SCHED_CORE
533 u64 core_forceidle_sum;
41acab88 534#endif
4feee7d1 535#endif /* CONFIG_SCHEDSTATS */
ceeadb83 536} ____cacheline_aligned;
41acab88
LDM
537
538struct sched_entity {
5eca1c10
IM
539 /* For load-balancing: */
540 struct load_weight load;
541 struct rb_node run_node;
542 struct list_head group_node;
543 unsigned int on_rq;
41acab88 544
5eca1c10
IM
545 u64 exec_start;
546 u64 sum_exec_runtime;
547 u64 vruntime;
548 u64 prev_sum_exec_runtime;
41acab88 549
5eca1c10 550 u64 nr_migrations;
41acab88 551
20b8a59f 552#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
553 int depth;
554 struct sched_entity *parent;
20b8a59f 555 /* rq on which this entity is (to be) queued: */
5eca1c10 556 struct cfs_rq *cfs_rq;
20b8a59f 557 /* rq "owned" by this entity/group: */
5eca1c10 558 struct cfs_rq *my_q;
9f683953
VG
559 /* cached value of my_q->h_nr_running */
560 unsigned long runnable_weight;
20b8a59f 561#endif
8bd75c77 562
141965c7 563#ifdef CONFIG_SMP
5a107804
JO
564 /*
565 * Per entity load average tracking.
566 *
567 * Put into separate cache line so it does not
568 * collide with read-mostly values above.
569 */
317d359d 570 struct sched_avg avg;
9d85f21c 571#endif
20b8a59f 572};
70b97a7f 573
fa717060 574struct sched_rt_entity {
5eca1c10
IM
575 struct list_head run_list;
576 unsigned long timeout;
577 unsigned long watchdog_stamp;
578 unsigned int time_slice;
579 unsigned short on_rq;
580 unsigned short on_list;
581
582 struct sched_rt_entity *back;
052f1dc7 583#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 584 struct sched_rt_entity *parent;
6f505b16 585 /* rq on which this entity is (to be) queued: */
5eca1c10 586 struct rt_rq *rt_rq;
6f505b16 587 /* rq "owned" by this entity/group: */
5eca1c10 588 struct rt_rq *my_q;
6f505b16 589#endif
3859a271 590} __randomize_layout;
fa717060 591
aab03e05 592struct sched_dl_entity {
5eca1c10 593 struct rb_node rb_node;
aab03e05
DF
594
595 /*
596 * Original scheduling parameters. Copied here from sched_attr
4027d080 597 * during sched_setattr(), they will remain the same until
598 * the next sched_setattr().
aab03e05 599 */
5eca1c10
IM
600 u64 dl_runtime; /* Maximum runtime for each instance */
601 u64 dl_deadline; /* Relative deadline of each instance */
602 u64 dl_period; /* Separation of two instances (period) */
54d6d303 603 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 604 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
605
606 /*
607 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 608 * they are continuously updated during task execution. Note that
aab03e05
DF
609 * the remaining runtime could be < 0 in case we are in overrun.
610 */
5eca1c10
IM
611 s64 runtime; /* Remaining runtime for this instance */
612 u64 deadline; /* Absolute deadline for this instance */
613 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
614
615 /*
616 * Some bool flags:
617 *
618 * @dl_throttled tells if we exhausted the runtime. If so, the
619 * task has to wait for a replenishment to be performed at the
620 * next firing of dl_timer.
621 *
5eca1c10 622 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 623 * all its available runtime during the last job.
209a0cbd
LA
624 *
625 * @dl_non_contending tells if the task is inactive while still
626 * contributing to the active utilization. In other words, it
627 * indicates if the inactive timer has been armed and its handler
628 * has not been executed yet. This flag is useful to avoid race
629 * conditions between the inactive timer handler and the wakeup
630 * code.
34be3930
JL
631 *
632 * @dl_overrun tells if the task asked to be informed about runtime
633 * overruns.
aab03e05 634 */
aa5222e9 635 unsigned int dl_throttled : 1;
aa5222e9
DC
636 unsigned int dl_yielded : 1;
637 unsigned int dl_non_contending : 1;
34be3930 638 unsigned int dl_overrun : 1;
aab03e05
DF
639
640 /*
641 * Bandwidth enforcement timer. Each -deadline task has its
642 * own bandwidth to be enforced, thus we need one timer per task.
643 */
5eca1c10 644 struct hrtimer dl_timer;
209a0cbd
LA
645
646 /*
647 * Inactive timer, responsible for decreasing the active utilization
648 * at the "0-lag time". When a -deadline task blocks, it contributes
649 * to GRUB's active utilization until the "0-lag time", hence a
650 * timer is needed to decrease the active utilization at the correct
651 * time.
652 */
653 struct hrtimer inactive_timer;
2279f540
JL
654
655#ifdef CONFIG_RT_MUTEXES
656 /*
657 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
658 * pi_se points to the donor, otherwise points to the dl_se it belongs
659 * to (the original one/itself).
660 */
661 struct sched_dl_entity *pi_se;
662#endif
aab03e05 663};
8bd75c77 664
69842cba
PB
665#ifdef CONFIG_UCLAMP_TASK
666/* Number of utilization clamp buckets (shorter alias) */
667#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
668
669/*
670 * Utilization clamp for a scheduling entity
671 * @value: clamp value "assigned" to a se
672 * @bucket_id: bucket index corresponding to the "assigned" value
e8f14172 673 * @active: the se is currently refcounted in a rq's bucket
a509a7cd 674 * @user_defined: the requested clamp value comes from user-space
69842cba
PB
675 *
676 * The bucket_id is the index of the clamp bucket matching the clamp value
677 * which is pre-computed and stored to avoid expensive integer divisions from
678 * the fast path.
e8f14172
PB
679 *
680 * The active bit is set whenever a task has got an "effective" value assigned,
681 * which can be different from the clamp value "requested" from user-space.
682 * This allows to know a task is refcounted in the rq's bucket corresponding
683 * to the "effective" bucket_id.
a509a7cd
PB
684 *
685 * The user_defined bit is set whenever a task has got a task-specific clamp
686 * value requested from userspace, i.e. the system defaults apply to this task
687 * just as a restriction. This allows to relax default clamps when a less
688 * restrictive task-specific value has been requested, thus allowing to
689 * implement a "nice" semantic. For example, a task running with a 20%
690 * default boost can still drop its own boosting to 0%.
69842cba
PB
691 */
692struct uclamp_se {
693 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
694 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
e8f14172 695 unsigned int active : 1;
a509a7cd 696 unsigned int user_defined : 1;
69842cba
PB
697};
698#endif /* CONFIG_UCLAMP_TASK */
699
1d082fd0
PM
700union rcu_special {
701 struct {
5eca1c10
IM
702 u8 blocked;
703 u8 need_qs;
05f41571 704 u8 exp_hint; /* Hint for performance. */
276c4104 705 u8 need_mb; /* Readers need smp_mb(). */
8203d6d0 706 } b; /* Bits. */
05f41571 707 u32 s; /* Set of bits. */
1d082fd0 708};
86848966 709
8dc85d54
PZ
710enum perf_event_task_context {
711 perf_invalid_context = -1,
712 perf_hw_context = 0,
89a1e187 713 perf_sw_context,
8dc85d54
PZ
714 perf_nr_task_contexts,
715};
716
eb61baf6
IM
717struct wake_q_node {
718 struct wake_q_node *next;
719};
720
5fbda3ec
TG
721struct kmap_ctrl {
722#ifdef CONFIG_KMAP_LOCAL
723 int idx;
724 pte_t pteval[KM_MAX_IDX];
725#endif
726};
727
1da177e4 728struct task_struct {
c65eacbe
AL
729#ifdef CONFIG_THREAD_INFO_IN_TASK
730 /*
731 * For reasons of header soup (see current_thread_info()), this
732 * must be the first element of task_struct.
733 */
5eca1c10 734 struct thread_info thread_info;
c65eacbe 735#endif
2f064a59 736 unsigned int __state;
29e48ce8 737
5f220be2
TG
738#ifdef CONFIG_PREEMPT_RT
739 /* saved state for "spinlock sleepers" */
740 unsigned int saved_state;
741#endif
742
29e48ce8
KC
743 /*
744 * This begins the randomizable portion of task_struct. Only
745 * scheduling-critical items should be added above here.
746 */
747 randomized_struct_fields_start
748
5eca1c10 749 void *stack;
ec1d2819 750 refcount_t usage;
5eca1c10
IM
751 /* Per task flags (PF_*), defined further below: */
752 unsigned int flags;
753 unsigned int ptrace;
1da177e4 754
2dd73a4f 755#ifdef CONFIG_SMP
5eca1c10 756 int on_cpu;
8c4890d1 757 struct __call_single_node wake_entry;
5eca1c10
IM
758 unsigned int wakee_flips;
759 unsigned long wakee_flip_decay_ts;
760 struct task_struct *last_wakee;
ac66f547 761
32e839dd
MG
762 /*
763 * recent_used_cpu is initially set as the last CPU used by a task
764 * that wakes affine another task. Waker/wakee relationships can
765 * push tasks around a CPU where each wakeup moves to the next one.
766 * Tracking a recently used CPU allows a quick search for a recently
767 * used CPU that may be idle.
768 */
769 int recent_used_cpu;
5eca1c10 770 int wake_cpu;
2dd73a4f 771#endif
5eca1c10
IM
772 int on_rq;
773
774 int prio;
775 int static_prio;
776 int normal_prio;
777 unsigned int rt_priority;
50e645a8 778
5eca1c10
IM
779 struct sched_entity se;
780 struct sched_rt_entity rt;
8a311c74 781 struct sched_dl_entity dl;
804bccba 782 const struct sched_class *sched_class;
8a311c74
PZ
783
784#ifdef CONFIG_SCHED_CORE
785 struct rb_node core_node;
786 unsigned long core_cookie;
d2dfa17b 787 unsigned int core_occupation;
8a311c74
PZ
788#endif
789
8323f26c 790#ifdef CONFIG_CGROUP_SCHED
5eca1c10 791 struct task_group *sched_task_group;
8323f26c 792#endif
1da177e4 793
69842cba 794#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
795 /*
796 * Clamp values requested for a scheduling entity.
797 * Must be updated with task_rq_lock() held.
798 */
e8f14172 799 struct uclamp_se uclamp_req[UCLAMP_CNT];
13685c4a
QY
800 /*
801 * Effective clamp values used for a scheduling entity.
802 * Must be updated with task_rq_lock() held.
803 */
69842cba
PB
804 struct uclamp_se uclamp[UCLAMP_CNT];
805#endif
806
ceeadb83
YS
807 struct sched_statistics stats;
808
e107be36 809#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
810 /* List of struct preempt_notifier: */
811 struct hlist_head preempt_notifiers;
e107be36
AK
812#endif
813
6c5c9341 814#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 815 unsigned int btrace_seq;
6c5c9341 816#endif
1da177e4 817
5eca1c10
IM
818 unsigned int policy;
819 int nr_cpus_allowed;
3bd37062 820 const cpumask_t *cpus_ptr;
b90ca8ba 821 cpumask_t *user_cpus_ptr;
3bd37062 822 cpumask_t cpus_mask;
6d337eab 823 void *migration_pending;
74d862b6 824#ifdef CONFIG_SMP
a7c81556 825 unsigned short migration_disabled;
af449901 826#endif
a7c81556 827 unsigned short migration_flags;
1da177e4 828
a57eb940 829#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
830 int rcu_read_lock_nesting;
831 union rcu_special rcu_read_unlock_special;
832 struct list_head rcu_node_entry;
833 struct rcu_node *rcu_blocked_node;
28f6569a 834#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 835
8315f422 836#ifdef CONFIG_TASKS_RCU
5eca1c10 837 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
838 u8 rcu_tasks_holdout;
839 u8 rcu_tasks_idx;
5eca1c10 840 int rcu_tasks_idle_cpu;
ccdd29ff 841 struct list_head rcu_tasks_holdout_list;
8315f422 842#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 843
d5f177d3
PM
844#ifdef CONFIG_TASKS_TRACE_RCU
845 int trc_reader_nesting;
846 int trc_ipi_to_cpu;
276c4104 847 union rcu_special trc_reader_special;
d5f177d3
PM
848 bool trc_reader_checked;
849 struct list_head trc_holdout_list;
850#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
851
5eca1c10 852 struct sched_info sched_info;
1da177e4 853
5eca1c10 854 struct list_head tasks;
806c09a7 855#ifdef CONFIG_SMP
5eca1c10
IM
856 struct plist_node pushable_tasks;
857 struct rb_node pushable_dl_tasks;
806c09a7 858#endif
1da177e4 859
5eca1c10
IM
860 struct mm_struct *mm;
861 struct mm_struct *active_mm;
314ff785
IM
862
863 /* Per-thread vma caching: */
5eca1c10 864 struct vmacache vmacache;
314ff785 865
5eca1c10
IM
866#ifdef SPLIT_RSS_COUNTING
867 struct task_rss_stat rss_stat;
34e55232 868#endif
5eca1c10
IM
869 int exit_state;
870 int exit_code;
871 int exit_signal;
872 /* The signal sent when the parent dies: */
873 int pdeath_signal;
874 /* JOBCTL_*, siglock protected: */
875 unsigned long jobctl;
876
877 /* Used for emulating ABI behavior of previous Linux versions: */
878 unsigned int personality;
879
880 /* Scheduler bits, serialized by scheduler locks: */
881 unsigned sched_reset_on_fork:1;
882 unsigned sched_contributes_to_load:1;
883 unsigned sched_migrated:1;
eb414681
JW
884#ifdef CONFIG_PSI
885 unsigned sched_psi_wake_requeue:1;
886#endif
887
5eca1c10
IM
888 /* Force alignment to the next boundary: */
889 unsigned :0;
890
891 /* Unserialized, strictly 'current' */
892
f97bb527
PZ
893 /*
894 * This field must not be in the scheduler word above due to wakelist
895 * queueing no longer being serialized by p->on_cpu. However:
896 *
897 * p->XXX = X; ttwu()
898 * schedule() if (p->on_rq && ..) // false
899 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
900 * deactivate_task() ttwu_queue_wakelist())
901 * p->on_rq = 0; p->sched_remote_wakeup = Y;
902 *
903 * guarantees all stores of 'current' are visible before
904 * ->sched_remote_wakeup gets used, so it can be in this word.
905 */
906 unsigned sched_remote_wakeup:1;
907
5eca1c10
IM
908 /* Bit to tell LSMs we're in execve(): */
909 unsigned in_execve:1;
910 unsigned in_iowait:1;
911#ifndef TIF_RESTORE_SIGMASK
912 unsigned restore_sigmask:1;
7e781418 913#endif
626ebc41 914#ifdef CONFIG_MEMCG
29ef680a 915 unsigned in_user_fault:1;
127424c8 916#endif
ff303e66 917#ifdef CONFIG_COMPAT_BRK
5eca1c10 918 unsigned brk_randomized:1;
ff303e66 919#endif
77f88796
TH
920#ifdef CONFIG_CGROUPS
921 /* disallow userland-initiated cgroup migration */
922 unsigned no_cgroup_migration:1;
76f969e8
RG
923 /* task is frozen/stopped (used by the cgroup freezer) */
924 unsigned frozen:1;
77f88796 925#endif
d09d8df3 926#ifdef CONFIG_BLK_CGROUP
d09d8df3
JB
927 unsigned use_memdelay:1;
928#endif
1066d1b6
YS
929#ifdef CONFIG_PSI
930 /* Stalled due to lack of memory */
931 unsigned in_memstall:1;
932#endif
8e9b16c4
ST
933#ifdef CONFIG_PAGE_OWNER
934 /* Used by page_owner=on to detect recursion in page tracking. */
935 unsigned in_page_owner:1;
936#endif
b542e383
TG
937#ifdef CONFIG_EVENTFD
938 /* Recursion prevention for eventfd_signal() */
939 unsigned in_eventfd_signal:1;
940#endif
a3d29e82
PZ
941#ifdef CONFIG_IOMMU_SVA
942 unsigned pasid_activated:1;
943#endif
6f185c29 944
5eca1c10 945 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 946
5eca1c10 947 struct restart_block restart_block;
f56141e3 948
5eca1c10
IM
949 pid_t pid;
950 pid_t tgid;
0a425405 951
050e9baa 952#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
953 /* Canary value for the -fstack-protector GCC feature: */
954 unsigned long stack_canary;
1314562a 955#endif
4d1d61a6 956 /*
5eca1c10 957 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 958 * older sibling, respectively. (p->father can be replaced with
f470021a 959 * p->real_parent->pid)
1da177e4 960 */
5eca1c10
IM
961
962 /* Real parent process: */
963 struct task_struct __rcu *real_parent;
964
965 /* Recipient of SIGCHLD, wait4() reports: */
966 struct task_struct __rcu *parent;
967
1da177e4 968 /*
5eca1c10 969 * Children/sibling form the list of natural children:
1da177e4 970 */
5eca1c10
IM
971 struct list_head children;
972 struct list_head sibling;
973 struct task_struct *group_leader;
1da177e4 974
f470021a 975 /*
5eca1c10
IM
976 * 'ptraced' is the list of tasks this task is using ptrace() on.
977 *
f470021a 978 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 979 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 980 */
5eca1c10
IM
981 struct list_head ptraced;
982 struct list_head ptrace_entry;
f470021a 983
1da177e4 984 /* PID/PID hash table linkage. */
2c470475
EB
985 struct pid *thread_pid;
986 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
987 struct list_head thread_group;
988 struct list_head thread_node;
989
990 struct completion *vfork_done;
1da177e4 991
5eca1c10
IM
992 /* CLONE_CHILD_SETTID: */
993 int __user *set_child_tid;
1da177e4 994
5eca1c10
IM
995 /* CLONE_CHILD_CLEARTID: */
996 int __user *clear_child_tid;
997
e32cf5df
EB
998 /* PF_KTHREAD | PF_IO_WORKER */
999 void *worker_private;
3bfe6106 1000
5eca1c10
IM
1001 u64 utime;
1002 u64 stime;
40565b5a 1003#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
1004 u64 utimescaled;
1005 u64 stimescaled;
40565b5a 1006#endif
5eca1c10
IM
1007 u64 gtime;
1008 struct prev_cputime prev_cputime;
6a61671b 1009#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 1010 struct vtime vtime;
d99ca3b9 1011#endif
d027d45d
FW
1012
1013#ifdef CONFIG_NO_HZ_FULL
5eca1c10 1014 atomic_t tick_dep_mask;
d027d45d 1015#endif
5eca1c10
IM
1016 /* Context switch counts: */
1017 unsigned long nvcsw;
1018 unsigned long nivcsw;
1019
1020 /* Monotonic time in nsecs: */
1021 u64 start_time;
1022
1023 /* Boot based time in nsecs: */
cf25e24d 1024 u64 start_boottime;
5eca1c10
IM
1025
1026 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1027 unsigned long min_flt;
1028 unsigned long maj_flt;
1da177e4 1029
2b69942f
TG
1030 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1031 struct posix_cputimers posix_cputimers;
1da177e4 1032
1fb497dd
TG
1033#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1034 struct posix_cputimers_work posix_cputimers_work;
1035#endif
1036
5eca1c10
IM
1037 /* Process credentials: */
1038
1039 /* Tracer's credentials at attach: */
1040 const struct cred __rcu *ptracer_cred;
1041
1042 /* Objective and real subjective task credentials (COW): */
1043 const struct cred __rcu *real_cred;
1044
1045 /* Effective (overridable) subjective task credentials (COW): */
1046 const struct cred __rcu *cred;
1047
7743c48e
DH
1048#ifdef CONFIG_KEYS
1049 /* Cached requested key. */
1050 struct key *cached_requested_key;
1051#endif
1052
5eca1c10
IM
1053 /*
1054 * executable name, excluding path.
1055 *
1056 * - normally initialized setup_new_exec()
1057 * - access it with [gs]et_task_comm()
1058 * - lock it with task_lock()
1059 */
1060 char comm[TASK_COMM_LEN];
1061
1062 struct nameidata *nameidata;
1063
3d5b6fcc 1064#ifdef CONFIG_SYSVIPC
5eca1c10
IM
1065 struct sysv_sem sysvsem;
1066 struct sysv_shm sysvshm;
3d5b6fcc 1067#endif
e162b39a 1068#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 1069 unsigned long last_switch_count;
a2e51445 1070 unsigned long last_switch_time;
82a1fcb9 1071#endif
5eca1c10
IM
1072 /* Filesystem information: */
1073 struct fs_struct *fs;
1074
1075 /* Open file information: */
1076 struct files_struct *files;
1077
0f212204
JA
1078#ifdef CONFIG_IO_URING
1079 struct io_uring_task *io_uring;
1080#endif
1081
5eca1c10
IM
1082 /* Namespaces: */
1083 struct nsproxy *nsproxy;
1084
1085 /* Signal handlers: */
1086 struct signal_struct *signal;
913292c9 1087 struct sighand_struct __rcu *sighand;
5eca1c10
IM
1088 sigset_t blocked;
1089 sigset_t real_blocked;
1090 /* Restored if set_restore_sigmask() was used: */
1091 sigset_t saved_sigmask;
1092 struct sigpending pending;
1093 unsigned long sas_ss_sp;
1094 size_t sas_ss_size;
1095 unsigned int sas_ss_flags;
1096
1097 struct callback_head *task_works;
1098
4b7d248b 1099#ifdef CONFIG_AUDIT
bfef93a5 1100#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
1101 struct audit_context *audit_context;
1102#endif
5eca1c10
IM
1103 kuid_t loginuid;
1104 unsigned int sessionid;
bfef93a5 1105#endif
5eca1c10 1106 struct seccomp seccomp;
1446e1df 1107 struct syscall_user_dispatch syscall_dispatch;
5eca1c10
IM
1108
1109 /* Thread group tracking: */
d1e7fd64
EB
1110 u64 parent_exec_id;
1111 u64 self_exec_id;
1da177e4 1112
5eca1c10
IM
1113 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1114 spinlock_t alloc_lock;
1da177e4 1115
b29739f9 1116 /* Protection of the PI data structures: */
5eca1c10 1117 raw_spinlock_t pi_lock;
b29739f9 1118
5eca1c10 1119 struct wake_q_node wake_q;
76751049 1120
23f78d4a 1121#ifdef CONFIG_RT_MUTEXES
5eca1c10 1122 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 1123 struct rb_root_cached pi_waiters;
e96a7705
XP
1124 /* Updated under owner's pi_lock and rq lock */
1125 struct task_struct *pi_top_task;
5eca1c10
IM
1126 /* Deadlock detection and priority inheritance handling: */
1127 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1128#endif
1129
408894ee 1130#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
1131 /* Mutex deadlock detection: */
1132 struct mutex_waiter *blocked_on;
408894ee 1133#endif
5eca1c10 1134
312364f3
DV
1135#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1136 int non_block_count;
1137#endif
1138
de30a2b3 1139#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c 1140 struct irqtrace_events irqtrace;
de8f5e4f 1141 unsigned int hardirq_threaded;
c86e9b98 1142 u64 hardirq_chain_key;
5eca1c10
IM
1143 int softirqs_enabled;
1144 int softirq_context;
40db1739 1145 int irq_config;
de30a2b3 1146#endif
728b478d
TG
1147#ifdef CONFIG_PREEMPT_RT
1148 int softirq_disable_cnt;
1149#endif
5eca1c10 1150
fbb9ce95 1151#ifdef CONFIG_LOCKDEP
5eca1c10
IM
1152# define MAX_LOCK_DEPTH 48UL
1153 u64 curr_chain_key;
1154 int lockdep_depth;
1155 unsigned int lockdep_recursion;
1156 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 1157#endif
5eca1c10 1158
5cf53f3c 1159#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
5eca1c10 1160 unsigned int in_ubsan;
c6d30853 1161#endif
408894ee 1162
5eca1c10
IM
1163 /* Journalling filesystem info: */
1164 void *journal_info;
1da177e4 1165
5eca1c10
IM
1166 /* Stacked block device info: */
1167 struct bio_list *bio_list;
d89d8796 1168
5eca1c10
IM
1169 /* Stack plugging: */
1170 struct blk_plug *plug;
73c10101 1171
5eca1c10
IM
1172 /* VM state: */
1173 struct reclaim_state *reclaim_state;
1174
1175 struct backing_dev_info *backing_dev_info;
1da177e4 1176
5eca1c10 1177 struct io_context *io_context;
1da177e4 1178
5e1f0f09
MG
1179#ifdef CONFIG_COMPACTION
1180 struct capture_control *capture_control;
1181#endif
5eca1c10
IM
1182 /* Ptrace state: */
1183 unsigned long ptrace_message;
ae7795bc 1184 kernel_siginfo_t *last_siginfo;
1da177e4 1185
5eca1c10 1186 struct task_io_accounting ioac;
eb414681
JW
1187#ifdef CONFIG_PSI
1188 /* Pressure stall state */
1189 unsigned int psi_flags;
1190#endif
5eca1c10
IM
1191#ifdef CONFIG_TASK_XACCT
1192 /* Accumulated RSS usage: */
1193 u64 acct_rss_mem1;
1194 /* Accumulated virtual memory usage: */
1195 u64 acct_vm_mem1;
1196 /* stime + utime since last update: */
1197 u64 acct_timexpd;
1da177e4
LT
1198#endif
1199#ifdef CONFIG_CPUSETS
5eca1c10
IM
1200 /* Protected by ->alloc_lock: */
1201 nodemask_t mems_allowed;
3b03706f 1202 /* Sequence number to catch updates: */
b7505861 1203 seqcount_spinlock_t mems_allowed_seq;
5eca1c10
IM
1204 int cpuset_mem_spread_rotor;
1205 int cpuset_slab_spread_rotor;
1da177e4 1206#endif
ddbcc7e8 1207#ifdef CONFIG_CGROUPS
5eca1c10
IM
1208 /* Control Group info protected by css_set_lock: */
1209 struct css_set __rcu *cgroups;
1210 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1211 struct list_head cg_list;
ddbcc7e8 1212#endif
e6d42931 1213#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 1214 u32 closid;
d6aaba61 1215 u32 rmid;
e02737d5 1216#endif
42b2dd0a 1217#ifdef CONFIG_FUTEX
5eca1c10 1218 struct robust_list_head __user *robust_list;
34f192c6
IM
1219#ifdef CONFIG_COMPAT
1220 struct compat_robust_list_head __user *compat_robust_list;
1221#endif
5eca1c10
IM
1222 struct list_head pi_state_list;
1223 struct futex_pi_state *pi_state_cache;
3f186d97 1224 struct mutex futex_exit_mutex;
3d4775df 1225 unsigned int futex_state;
c7aceaba 1226#endif
cdd6c482 1227#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
1228 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1229 struct mutex perf_event_mutex;
1230 struct list_head perf_event_list;
a63eaf34 1231#endif
8f47b187 1232#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1233 unsigned long preempt_disable_ip;
8f47b187 1234#endif
c7aceaba 1235#ifdef CONFIG_NUMA
5eca1c10
IM
1236 /* Protected by alloc_lock: */
1237 struct mempolicy *mempolicy;
45816682 1238 short il_prev;
5eca1c10 1239 short pref_node_fork;
42b2dd0a 1240#endif
cbee9f88 1241#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1242 int numa_scan_seq;
1243 unsigned int numa_scan_period;
1244 unsigned int numa_scan_period_max;
1245 int numa_preferred_nid;
1246 unsigned long numa_migrate_retry;
1247 /* Migration stamp: */
1248 u64 node_stamp;
1249 u64 last_task_numa_placement;
1250 u64 last_sum_exec_runtime;
1251 struct callback_head numa_work;
1252
cb361d8c
JH
1253 /*
1254 * This pointer is only modified for current in syscall and
1255 * pagefault context (and for tasks being destroyed), so it can be read
1256 * from any of the following contexts:
1257 * - RCU read-side critical section
1258 * - current->numa_group from everywhere
1259 * - task's runqueue locked, task not running
1260 */
1261 struct numa_group __rcu *numa_group;
8c8a743c 1262
745d6147 1263 /*
44dba3d5
IM
1264 * numa_faults is an array split into four regions:
1265 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1266 * in this precise order.
1267 *
1268 * faults_memory: Exponential decaying average of faults on a per-node
1269 * basis. Scheduling placement decisions are made based on these
1270 * counts. The values remain static for the duration of a PTE scan.
1271 * faults_cpu: Track the nodes the process was running on when a NUMA
1272 * hinting fault was incurred.
1273 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1274 * during the current scan window. When the scan completes, the counts
1275 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1276 */
5eca1c10
IM
1277 unsigned long *numa_faults;
1278 unsigned long total_numa_faults;
745d6147 1279
04bb2f94
RR
1280 /*
1281 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1282 * scan window were remote/local or failed to migrate. The task scan
1283 * period is adapted based on the locality of the faults with different
1284 * weights depending on whether they were shared or private faults
04bb2f94 1285 */
5eca1c10 1286 unsigned long numa_faults_locality[3];
04bb2f94 1287
5eca1c10 1288 unsigned long numa_pages_migrated;
cbee9f88
PZ
1289#endif /* CONFIG_NUMA_BALANCING */
1290
d7822b1e
MD
1291#ifdef CONFIG_RSEQ
1292 struct rseq __user *rseq;
d7822b1e
MD
1293 u32 rseq_sig;
1294 /*
1295 * RmW on rseq_event_mask must be performed atomically
1296 * with respect to preemption.
1297 */
1298 unsigned long rseq_event_mask;
1299#endif
1300
5eca1c10 1301 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1302
3fbd7ee2
EB
1303 union {
1304 refcount_t rcu_users;
1305 struct rcu_head rcu;
1306 };
b92ce558 1307
5eca1c10
IM
1308 /* Cache last used pipe for splice(): */
1309 struct pipe_inode_info *splice_pipe;
5640f768 1310
5eca1c10 1311 struct page_frag task_frag;
5640f768 1312
47913d4e
IM
1313#ifdef CONFIG_TASK_DELAY_ACCT
1314 struct task_delay_info *delays;
f4f154fd 1315#endif
47913d4e 1316
f4f154fd 1317#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1318 int make_it_fail;
9049f2f6 1319 unsigned int fail_nth;
ca74e92b 1320#endif
9d823e8f 1321 /*
5eca1c10
IM
1322 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1323 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1324 */
5eca1c10
IM
1325 int nr_dirtied;
1326 int nr_dirtied_pause;
1327 /* Start of a write-and-pause period: */
1328 unsigned long dirty_paused_when;
9d823e8f 1329
9745512c 1330#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1331 int latency_record_count;
1332 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1333#endif
6976675d 1334 /*
5eca1c10 1335 * Time slack values; these are used to round up poll() and
6976675d
AV
1336 * select() etc timeout values. These are in nanoseconds.
1337 */
5eca1c10
IM
1338 u64 timer_slack_ns;
1339 u64 default_timer_slack_ns;
f8d570a4 1340
d73b4936 1341#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
5eca1c10 1342 unsigned int kasan_depth;
0b24becc 1343#endif
92c209ac 1344
dfd402a4
ME
1345#ifdef CONFIG_KCSAN
1346 struct kcsan_ctx kcsan_ctx;
92c209ac
ME
1347#ifdef CONFIG_TRACE_IRQFLAGS
1348 struct irqtrace_events kcsan_save_irqtrace;
1349#endif
69562e49
ME
1350#ifdef CONFIG_KCSAN_WEAK_MEMORY
1351 int kcsan_stack_depth;
1352#endif
dfd402a4 1353#endif
5eca1c10 1354
393824f6
PA
1355#if IS_ENABLED(CONFIG_KUNIT)
1356 struct kunit *kunit_test;
1357#endif
1358
fb52607a 1359#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1360 /* Index of current stored address in ret_stack: */
1361 int curr_ret_stack;
39eb456d 1362 int curr_ret_depth;
5eca1c10
IM
1363
1364 /* Stack of return addresses for return function tracing: */
1365 struct ftrace_ret_stack *ret_stack;
1366
1367 /* Timestamp for last schedule: */
1368 unsigned long long ftrace_timestamp;
1369
f201ae23
FW
1370 /*
1371 * Number of functions that haven't been traced
5eca1c10 1372 * because of depth overrun:
f201ae23 1373 */
5eca1c10
IM
1374 atomic_t trace_overrun;
1375
1376 /* Pause tracing: */
1377 atomic_t tracing_graph_pause;
f201ae23 1378#endif
5eca1c10 1379
ea4e2bc4 1380#ifdef CONFIG_TRACING
5eca1c10
IM
1381 /* State flags for use by tracers: */
1382 unsigned long trace;
1383
1384 /* Bitmask and counter of trace recursion: */
1385 unsigned long trace_recursion;
261842b7 1386#endif /* CONFIG_TRACING */
5eca1c10 1387
5c9a8750 1388#ifdef CONFIG_KCOV
eec028c9
AK
1389 /* See kernel/kcov.c for more details. */
1390
5eca1c10 1391 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1392 unsigned int kcov_mode;
5eca1c10
IM
1393
1394 /* Size of the kcov_area: */
1395 unsigned int kcov_size;
1396
1397 /* Buffer for coverage collection: */
1398 void *kcov_area;
1399
1400 /* KCOV descriptor wired with this task or NULL: */
1401 struct kcov *kcov;
eec028c9
AK
1402
1403 /* KCOV common handle for remote coverage collection: */
1404 u64 kcov_handle;
1405
1406 /* KCOV sequence number: */
1407 int kcov_sequence;
5ff3b30a
AK
1408
1409 /* Collect coverage from softirq context: */
1410 unsigned int kcov_softirq;
5c9a8750 1411#endif
5eca1c10 1412
6f185c29 1413#ifdef CONFIG_MEMCG
5eca1c10
IM
1414 struct mem_cgroup *memcg_in_oom;
1415 gfp_t memcg_oom_gfp_mask;
1416 int memcg_oom_order;
b23afb93 1417
5eca1c10
IM
1418 /* Number of pages to reclaim on returning to userland: */
1419 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1420
1421 /* Used by memcontrol for targeted memcg charge: */
1422 struct mem_cgroup *active_memcg;
569b846d 1423#endif
5eca1c10 1424
d09d8df3
JB
1425#ifdef CONFIG_BLK_CGROUP
1426 struct request_queue *throttle_queue;
1427#endif
1428
0326f5a9 1429#ifdef CONFIG_UPROBES
5eca1c10 1430 struct uprobe_task *utask;
0326f5a9 1431#endif
cafe5635 1432#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1433 unsigned int sequential_io;
1434 unsigned int sequential_io_avg;
cafe5635 1435#endif
5fbda3ec 1436 struct kmap_ctrl kmap_ctrl;
8eb23b9f 1437#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1438 unsigned long task_state_change;
5f220be2
TG
1439# ifdef CONFIG_PREEMPT_RT
1440 unsigned long saved_state_change;
1441# endif
8eb23b9f 1442#endif
5eca1c10 1443 int pagefault_disabled;
03049269 1444#ifdef CONFIG_MMU
5eca1c10 1445 struct task_struct *oom_reaper_list;
03049269 1446#endif
ba14a194 1447#ifdef CONFIG_VMAP_STACK
5eca1c10 1448 struct vm_struct *stack_vm_area;
ba14a194 1449#endif
68f24b08 1450#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1451 /* A live task holds one reference: */
f0b89d39 1452 refcount_t stack_refcount;
d83a7cb3
JP
1453#endif
1454#ifdef CONFIG_LIVEPATCH
1455 int patch_state;
0302e28d 1456#endif
e4e55b47
TH
1457#ifdef CONFIG_SECURITY
1458 /* Used by LSM modules for access restriction: */
1459 void *security;
68f24b08 1460#endif
a10787e6
SL
1461#ifdef CONFIG_BPF_SYSCALL
1462 /* Used by BPF task local storage */
1463 struct bpf_local_storage __rcu *bpf_storage;
c7603cfa
AN
1464 /* Used for BPF run context */
1465 struct bpf_run_ctx *bpf_ctx;
a10787e6 1466#endif
29e48ce8 1467
afaef01c
AP
1468#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1469 unsigned long lowest_stack;
c8d12627 1470 unsigned long prev_lowest_stack;
afaef01c
AP
1471#endif
1472
5567d11c 1473#ifdef CONFIG_X86_MCE
c0ab7ffc
TL
1474 void __user *mce_vaddr;
1475 __u64 mce_kflags;
5567d11c 1476 u64 mce_addr;
17fae129
TL
1477 __u64 mce_ripv : 1,
1478 mce_whole_page : 1,
1479 __mce_reserved : 62;
5567d11c 1480 struct callback_head mce_kill_me;
81065b35 1481 int mce_count;
5567d11c
PZ
1482#endif
1483
d741bf41
PZ
1484#ifdef CONFIG_KRETPROBES
1485 struct llist_head kretprobe_instances;
1486#endif
54ecbe6f
MH
1487#ifdef CONFIG_RETHOOK
1488 struct llist_head rethooks;
1489#endif
d741bf41 1490
58e106e7
BS
1491#ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1492 /*
1493 * If L1D flush is supported on mm context switch
1494 * then we use this callback head to queue kill work
1495 * to kill tasks that are not running on SMT disabled
1496 * cores
1497 */
1498 struct callback_head l1d_flush_kill;
1499#endif
1500
29e48ce8
KC
1501 /*
1502 * New fields for task_struct should be added above here, so that
1503 * they are included in the randomized portion of task_struct.
1504 */
1505 randomized_struct_fields_end
1506
5eca1c10
IM
1507 /* CPU-specific state of this task: */
1508 struct thread_struct thread;
1509
1510 /*
1511 * WARNING: on x86, 'thread_struct' contains a variable-sized
1512 * structure. It *MUST* be at the end of 'task_struct'.
1513 *
1514 * Do not put anything below here!
1515 */
1da177e4
LT
1516};
1517
e868171a 1518static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1519{
2c470475 1520 return task->thread_pid;
22c935f4
EB
1521}
1522
7af57294
PE
1523/*
1524 * the helpers to get the task's different pids as they are seen
1525 * from various namespaces
1526 *
1527 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1528 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1529 * current.
7af57294
PE
1530 * task_xid_nr_ns() : id seen from the ns specified;
1531 *
7af57294
PE
1532 * see also pid_nr() etc in include/linux/pid.h
1533 */
5eca1c10 1534pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1535
e868171a 1536static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1537{
1538 return tsk->pid;
1539}
1540
5eca1c10 1541static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1542{
1543 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1544}
7af57294
PE
1545
1546static inline pid_t task_pid_vnr(struct task_struct *tsk)
1547{
52ee2dfd 1548 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1549}
1550
1551
e868171a 1552static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1553{
1554 return tsk->tgid;
1555}
1556
5eca1c10
IM
1557/**
1558 * pid_alive - check that a task structure is not stale
1559 * @p: Task structure to be checked.
1560 *
1561 * Test if a process is not yet dead (at most zombie state)
1562 * If pid_alive fails, then pointers within the task structure
1563 * can be stale and must not be dereferenced.
1564 *
1565 * Return: 1 if the process is alive. 0 otherwise.
1566 */
1567static inline int pid_alive(const struct task_struct *p)
1568{
2c470475 1569 return p->thread_pid != NULL;
5eca1c10 1570}
7af57294 1571
5eca1c10 1572static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1573{
52ee2dfd 1574 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1575}
1576
7af57294
PE
1577static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1578{
52ee2dfd 1579 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1580}
1581
1582
5eca1c10 1583static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1584{
52ee2dfd 1585 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1586}
1587
7af57294
PE
1588static inline pid_t task_session_vnr(struct task_struct *tsk)
1589{
52ee2dfd 1590 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1591}
1592
dd1c1f2f
ON
1593static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1594{
6883f81a 1595 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1596}
1597
1598static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1599{
6883f81a 1600 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1601}
1602
1603static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1604{
1605 pid_t pid = 0;
1606
1607 rcu_read_lock();
1608 if (pid_alive(tsk))
1609 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1610 rcu_read_unlock();
1611
1612 return pid;
1613}
1614
1615static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1616{
1617 return task_ppid_nr_ns(tsk, &init_pid_ns);
1618}
1619
5eca1c10 1620/* Obsolete, do not use: */
1b0f7ffd
ON
1621static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1622{
1623 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1624}
7af57294 1625
06eb6184
PZ
1626#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1627#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1628
fa2c3254
VS
1629static inline unsigned int __task_state_index(unsigned int tsk_state,
1630 unsigned int tsk_exit_state)
20435d84 1631{
fa2c3254 1632 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
20435d84 1633
06eb6184
PZ
1634 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1635
06eb6184
PZ
1636 if (tsk_state == TASK_IDLE)
1637 state = TASK_REPORT_IDLE;
1638
25795ef6
VS
1639 /*
1640 * We're lying here, but rather than expose a completely new task state
1641 * to userspace, we can make this appear as if the task has gone through
1642 * a regular rt_mutex_lock() call.
1643 */
1644 if (tsk_state == TASK_RTLOCK_WAIT)
1645 state = TASK_UNINTERRUPTIBLE;
1646
1593baab
PZ
1647 return fls(state);
1648}
1649
fa2c3254
VS
1650static inline unsigned int task_state_index(struct task_struct *tsk)
1651{
1652 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1653}
1654
1d48b080 1655static inline char task_index_to_char(unsigned int state)
1593baab 1656{
8ef9925b 1657 static const char state_char[] = "RSDTtXZPI";
1593baab 1658
06eb6184 1659 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1660
1593baab
PZ
1661 return state_char[state];
1662}
1663
1664static inline char task_state_to_char(struct task_struct *tsk)
1665{
1d48b080 1666 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1667}
1668
f400e198 1669/**
570f5241
SS
1670 * is_global_init - check if a task structure is init. Since init
1671 * is free to have sub-threads we need to check tgid.
3260259f
H
1672 * @tsk: Task structure to be checked.
1673 *
1674 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1675 *
1676 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1677 */
e868171a 1678static inline int is_global_init(struct task_struct *tsk)
b461cc03 1679{
570f5241 1680 return task_tgid_nr(tsk) == 1;
b461cc03 1681}
b460cbc5 1682
9ec52099
CLG
1683extern struct pid *cad_pid;
1684
1da177e4
LT
1685/*
1686 * Per process flags
1687 */
01ccf592 1688#define PF_VCPU 0x00000001 /* I'm a virtual CPU */
5eca1c10
IM
1689#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1690#define PF_EXITING 0x00000004 /* Getting shut down */
92307383 1691#define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
01ccf592 1692#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
5eca1c10
IM
1693#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1694#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1695#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1696#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1697#define PF_DUMPCORE 0x00000200 /* Dumped core */
1698#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1699#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1700#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1701#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
5eca1c10
IM
1702#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1703#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1704#define PF_KSWAPD 0x00020000 /* I am kswapd */
1705#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1706#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
a37b0715
N
1707#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1708 * I am cleaning dirty pages from some other bdi. */
5eca1c10
IM
1709#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1710#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
3bd37062 1711#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1712#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1a08ae36 1713#define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
5eca1c10
IM
1714#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1715#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1716
1717/*
1718 * Only the _current_ task can read/write to tsk->flags, but other
1719 * tasks can access tsk->flags in readonly mode for example
1720 * with tsk_used_math (like during threaded core dumping).
1721 * There is however an exception to this rule during ptrace
1722 * or during fork: the ptracer task is allowed to write to the
1723 * child->flags of its traced child (same goes for fork, the parent
1724 * can write to the child->flags), because we're guaranteed the
1725 * child is not running and in turn not changing child->flags
1726 * at the same time the parent does it.
1727 */
5eca1c10
IM
1728#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1729#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1730#define clear_used_math() clear_stopped_child_used_math(current)
1731#define set_used_math() set_stopped_child_used_math(current)
1732
1da177e4
LT
1733#define conditional_stopped_child_used_math(condition, child) \
1734 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1735
1736#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1737
1da177e4
LT
1738#define copy_to_stopped_child_used_math(child) \
1739 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1740
1da177e4 1741/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1742#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1743#define used_math() tsk_used_math(current)
1da177e4 1744
83d40a61 1745static __always_inline bool is_percpu_thread(void)
62ec05dd
TG
1746{
1747#ifdef CONFIG_SMP
1748 return (current->flags & PF_NO_SETAFFINITY) &&
1749 (current->nr_cpus_allowed == 1);
1750#else
1751 return true;
1752#endif
1753}
1754
1d4457f9 1755/* Per-process atomic flags. */
5eca1c10
IM
1756#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1757#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1758#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1759#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1760#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1761#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1762#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1763#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1764
e0e5070b
ZL
1765#define TASK_PFA_TEST(name, func) \
1766 static inline bool task_##func(struct task_struct *p) \
1767 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1768
e0e5070b
ZL
1769#define TASK_PFA_SET(name, func) \
1770 static inline void task_set_##func(struct task_struct *p) \
1771 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1772
e0e5070b
ZL
1773#define TASK_PFA_CLEAR(name, func) \
1774 static inline void task_clear_##func(struct task_struct *p) \
1775 { clear_bit(PFA_##name, &p->atomic_flags); }
1776
1777TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1778TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1779
2ad654bc
ZL
1780TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1781TASK_PFA_SET(SPREAD_PAGE, spread_page)
1782TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1783
1784TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1785TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1786TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1787
356e4bff
TG
1788TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1789TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1790TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1791
71368af9
WL
1792TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1793TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1794TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1795
356e4bff
TG
1796TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1797TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1798
9137bb27
TG
1799TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1800TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1801TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1802
1803TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1804TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1805
5eca1c10 1806static inline void
717a94b5 1807current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1808{
717a94b5
N
1809 current->flags &= ~flags;
1810 current->flags |= orig_flags & flags;
907aed48
MG
1811}
1812
5eca1c10
IM
1813extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1814extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1815#ifdef CONFIG_SMP
5eca1c10
IM
1816extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1817extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
b90ca8ba
WD
1818extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1819extern void release_user_cpus_ptr(struct task_struct *p);
234b8ab6 1820extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
07ec77a1
WD
1821extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1822extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1da177e4 1823#else
5eca1c10 1824static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1825{
1826}
5eca1c10 1827static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1828{
96f874e2 1829 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1830 return -EINVAL;
1831 return 0;
1832}
b90ca8ba
WD
1833static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1834{
1835 if (src->user_cpus_ptr)
1836 return -EINVAL;
1837 return 0;
1838}
1839static inline void release_user_cpus_ptr(struct task_struct *p)
1840{
1841 WARN_ON(p->user_cpus_ptr);
1842}
234b8ab6
WD
1843
1844static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1845{
1846 return 0;
1847}
1da177e4 1848#endif
e0ad9556 1849
fa93384f 1850extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1851extern void set_user_nice(struct task_struct *p, long nice);
1852extern int task_prio(const struct task_struct *p);
5eca1c10 1853
d0ea0268
DY
1854/**
1855 * task_nice - return the nice value of a given task.
1856 * @p: the task in question.
1857 *
1858 * Return: The nice value [ -20 ... 0 ... 19 ].
1859 */
1860static inline int task_nice(const struct task_struct *p)
1861{
1862 return PRIO_TO_NICE((p)->static_prio);
1863}
5eca1c10 1864
36c8b586
IM
1865extern int can_nice(const struct task_struct *p, const int nice);
1866extern int task_curr(const struct task_struct *p);
1da177e4 1867extern int idle_cpu(int cpu);
943d355d 1868extern int available_idle_cpu(int cpu);
5eca1c10
IM
1869extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1870extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
8b700983
PZ
1871extern void sched_set_fifo(struct task_struct *p);
1872extern void sched_set_fifo_low(struct task_struct *p);
1873extern void sched_set_normal(struct task_struct *p, int nice);
5eca1c10 1874extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1875extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1876extern struct task_struct *idle_task(int cpu);
5eca1c10 1877
c4f30608
PM
1878/**
1879 * is_idle_task - is the specified task an idle task?
fa757281 1880 * @p: the task in question.
e69f6186
YB
1881 *
1882 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1883 */
c94a88f3 1884static __always_inline bool is_idle_task(const struct task_struct *p)
c4f30608 1885{
c1de45ca 1886 return !!(p->flags & PF_IDLE);
c4f30608 1887}
5eca1c10 1888
36c8b586 1889extern struct task_struct *curr_task(int cpu);
a458ae2e 1890extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1891
1892void yield(void);
1893
1da177e4 1894union thread_union {
0500871f
DH
1895#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1896 struct task_struct task;
1897#endif
c65eacbe 1898#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1899 struct thread_info thread_info;
c65eacbe 1900#endif
1da177e4
LT
1901 unsigned long stack[THREAD_SIZE/sizeof(long)];
1902};
1903
0500871f
DH
1904#ifndef CONFIG_THREAD_INFO_IN_TASK
1905extern struct thread_info init_thread_info;
1906#endif
1907
1908extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1909
f3ac6067 1910#ifdef CONFIG_THREAD_INFO_IN_TASK
bcf9033e 1911# define task_thread_info(task) (&(task)->thread_info)
f3ac6067
IM
1912#elif !defined(__HAVE_THREAD_FUNCTIONS)
1913# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1914#endif
1915
198fe21b
PE
1916/*
1917 * find a task by one of its numerical ids
1918 *
198fe21b
PE
1919 * find_task_by_pid_ns():
1920 * finds a task by its pid in the specified namespace
228ebcbe
PE
1921 * find_task_by_vpid():
1922 * finds a task by its virtual pid
198fe21b 1923 *
e49859e7 1924 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1925 */
1926
228ebcbe 1927extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1928extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1929
2ee08260
MR
1930/*
1931 * find a task by its virtual pid and get the task struct
1932 */
1933extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1934
b3c97528
HH
1935extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1936extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1937extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1938
1da177e4 1939#ifdef CONFIG_SMP
5eca1c10 1940extern void kick_process(struct task_struct *tsk);
1da177e4 1941#else
5eca1c10 1942static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1943#endif
1da177e4 1944
82b89778 1945extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1946
82b89778
AH
1947static inline void set_task_comm(struct task_struct *tsk, const char *from)
1948{
1949 __set_task_comm(tsk, from, false);
1950}
5eca1c10 1951
3756f640
AB
1952extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1953#define get_task_comm(buf, tsk) ({ \
1954 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1955 __get_task_comm(buf, sizeof(buf), tsk); \
1956})
1da177e4
LT
1957
1958#ifdef CONFIG_SMP
2a0a24eb
TG
1959static __always_inline void scheduler_ipi(void)
1960{
1961 /*
1962 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1963 * TIF_NEED_RESCHED remotely (for the first time) will also send
1964 * this IPI.
1965 */
1966 preempt_fold_need_resched();
1967}
2f064a59 1968extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1da177e4 1969#else
184748cc 1970static inline void scheduler_ipi(void) { }
2f064a59 1971static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
85ba2d86
RM
1972{
1973 return 1;
1974}
1da177e4
LT
1975#endif
1976
5eca1c10
IM
1977/*
1978 * Set thread flags in other task's structures.
1979 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1980 */
1981static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1982{
a1261f54 1983 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1984}
1985
1986static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1987{
a1261f54 1988 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1989}
1990
93ee37c2
DM
1991static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1992 bool value)
1993{
1994 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1995}
1996
1da177e4
LT
1997static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1998{
a1261f54 1999 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2000}
2001
2002static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2003{
a1261f54 2004 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2005}
2006
2007static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2008{
a1261f54 2009 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2010}
2011
2012static inline void set_tsk_need_resched(struct task_struct *tsk)
2013{
2014 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2015}
2016
2017static inline void clear_tsk_need_resched(struct task_struct *tsk)
2018{
2019 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2020}
2021
8ae121ac
GH
2022static inline int test_tsk_need_resched(struct task_struct *tsk)
2023{
2024 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2025}
2026
1da177e4
LT
2027/*
2028 * cond_resched() and cond_resched_lock(): latency reduction via
2029 * explicit rescheduling in places that are safe. The return
2030 * value indicates whether a reschedule was done in fact.
2031 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 2032 */
b965f1dd
PZI
2033#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2034extern int __cond_resched(void);
2035
99cf983c 2036#if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
b965f1dd
PZI
2037
2038DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2039
2040static __always_inline int _cond_resched(void)
2041{
ef72661e 2042 return static_call_mod(cond_resched)();
b965f1dd
PZI
2043}
2044
99cf983c
MR
2045#elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2046extern int dynamic_cond_resched(void);
2047
2048static __always_inline int _cond_resched(void)
2049{
2050 return dynamic_cond_resched();
2051}
2052
35a773a0 2053#else
b965f1dd
PZI
2054
2055static inline int _cond_resched(void)
2056{
2057 return __cond_resched();
2058}
2059
2060#endif /* CONFIG_PREEMPT_DYNAMIC */
2061
2062#else
2063
35a773a0 2064static inline int _cond_resched(void) { return 0; }
b965f1dd
PZI
2065
2066#endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
6f80bd98 2067
613afbf8 2068#define cond_resched() ({ \
874f670e 2069 __might_resched(__FILE__, __LINE__, 0); \
613afbf8
FW
2070 _cond_resched(); \
2071})
6f80bd98 2072
613afbf8 2073extern int __cond_resched_lock(spinlock_t *lock);
f3d4b4b1
BG
2074extern int __cond_resched_rwlock_read(rwlock_t *lock);
2075extern int __cond_resched_rwlock_write(rwlock_t *lock);
613afbf8 2076
50e081b9
TG
2077#define MIGHT_RESCHED_RCU_SHIFT 8
2078#define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2079
3e9cc688
TG
2080#ifndef CONFIG_PREEMPT_RT
2081/*
2082 * Non RT kernels have an elevated preempt count due to the held lock,
2083 * but are not allowed to be inside a RCU read side critical section
2084 */
2085# define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2086#else
2087/*
2088 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2089 * cond_resched*lock() has to take that into account because it checks for
2090 * preempt_count() and rcu_preempt_depth().
2091 */
2092# define PREEMPT_LOCK_RESCHED_OFFSETS \
2093 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2094#endif
2095
2096#define cond_resched_lock(lock) ({ \
2097 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2098 __cond_resched_lock(lock); \
613afbf8
FW
2099})
2100
3e9cc688
TG
2101#define cond_resched_rwlock_read(lock) ({ \
2102 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2103 __cond_resched_rwlock_read(lock); \
f3d4b4b1
BG
2104})
2105
3e9cc688
TG
2106#define cond_resched_rwlock_write(lock) ({ \
2107 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2108 __cond_resched_rwlock_write(lock); \
f3d4b4b1
BG
2109})
2110
f6f3c437
SH
2111static inline void cond_resched_rcu(void)
2112{
2113#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2114 rcu_read_unlock();
2115 cond_resched();
2116 rcu_read_lock();
2117#endif
2118}
2119
1da177e4
LT
2120/*
2121 * Does a critical section need to be broken due to another
c1a280b6 2122 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
95c354fe 2123 * but a general need for low latency)
1da177e4 2124 */
95c354fe 2125static inline int spin_needbreak(spinlock_t *lock)
1da177e4 2126{
c1a280b6 2127#ifdef CONFIG_PREEMPTION
95c354fe
NP
2128 return spin_is_contended(lock);
2129#else
1da177e4 2130 return 0;
95c354fe 2131#endif
1da177e4
LT
2132}
2133
a09a689a
BG
2134/*
2135 * Check if a rwlock is contended.
2136 * Returns non-zero if there is another task waiting on the rwlock.
2137 * Returns zero if the lock is not contended or the system / underlying
2138 * rwlock implementation does not support contention detection.
2139 * Technically does not depend on CONFIG_PREEMPTION, but a general need
2140 * for low latency.
2141 */
2142static inline int rwlock_needbreak(rwlock_t *lock)
2143{
2144#ifdef CONFIG_PREEMPTION
2145 return rwlock_is_contended(lock);
2146#else
2147 return 0;
2148#endif
2149}
2150
75f93fed
PZ
2151static __always_inline bool need_resched(void)
2152{
2153 return unlikely(tif_need_resched());
2154}
2155
1da177e4
LT
2156/*
2157 * Wrappers for p->thread_info->cpu access. No-op on UP.
2158 */
2159#ifdef CONFIG_SMP
2160
2161static inline unsigned int task_cpu(const struct task_struct *p)
2162{
c546951d 2163 return READ_ONCE(task_thread_info(p)->cpu);
1da177e4
LT
2164}
2165
c65cc870 2166extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
2167
2168#else
2169
2170static inline unsigned int task_cpu(const struct task_struct *p)
2171{
2172 return 0;
2173}
2174
2175static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2176{
2177}
2178
2179#endif /* CONFIG_SMP */
2180
a1dfb631 2181extern bool sched_task_on_rq(struct task_struct *p);
42a20f86 2182extern unsigned long get_wchan(struct task_struct *p);
a1dfb631 2183
d9345c65
PX
2184/*
2185 * In order to reduce various lock holder preemption latencies provide an
2186 * interface to see if a vCPU is currently running or not.
2187 *
2188 * This allows us to terminate optimistic spin loops and block, analogous to
2189 * the native optimistic spin heuristic of testing if the lock owner task is
2190 * running or not.
2191 */
2192#ifndef vcpu_is_preempted
42fd8baa
QC
2193static inline bool vcpu_is_preempted(int cpu)
2194{
2195 return false;
2196}
d9345c65
PX
2197#endif
2198
96f874e2
RR
2199extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2200extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 2201
82455257
DH
2202#ifndef TASK_SIZE_OF
2203#define TASK_SIZE_OF(tsk) TASK_SIZE
2204#endif
2205
a5418be9 2206#ifdef CONFIG_SMP
c0bed69d
KW
2207static inline bool owner_on_cpu(struct task_struct *owner)
2208{
2209 /*
2210 * As lock holder preemption issue, we both skip spinning if
2211 * task is not on cpu or its cpu is preempted
2212 */
4cf75fd4 2213 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
c0bed69d
KW
2214}
2215
a5418be9
VK
2216/* Returns effective CPU energy utilization, as seen by the scheduler */
2217unsigned long sched_cpu_util(int cpu, unsigned long max);
2218#endif /* CONFIG_SMP */
2219
d7822b1e
MD
2220#ifdef CONFIG_RSEQ
2221
2222/*
2223 * Map the event mask on the user-space ABI enum rseq_cs_flags
2224 * for direct mask checks.
2225 */
2226enum rseq_event_mask_bits {
2227 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2228 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2229 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2230};
2231
2232enum rseq_event_mask {
2233 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2234 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2235 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2236};
2237
2238static inline void rseq_set_notify_resume(struct task_struct *t)
2239{
2240 if (t->rseq)
2241 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2242}
2243
784e0300 2244void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 2245
784e0300
WD
2246static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2247 struct pt_regs *regs)
d7822b1e
MD
2248{
2249 if (current->rseq)
784e0300 2250 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2251}
2252
784e0300
WD
2253static inline void rseq_signal_deliver(struct ksignal *ksig,
2254 struct pt_regs *regs)
d7822b1e
MD
2255{
2256 preempt_disable();
2257 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2258 preempt_enable();
784e0300 2259 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2260}
2261
2262/* rseq_preempt() requires preemption to be disabled. */
2263static inline void rseq_preempt(struct task_struct *t)
2264{
2265 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2266 rseq_set_notify_resume(t);
2267}
2268
2269/* rseq_migrate() requires preemption to be disabled. */
2270static inline void rseq_migrate(struct task_struct *t)
2271{
2272 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2273 rseq_set_notify_resume(t);
2274}
2275
2276/*
2277 * If parent process has a registered restartable sequences area, the
463f550f 2278 * child inherits. Unregister rseq for a clone with CLONE_VM set.
d7822b1e
MD
2279 */
2280static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2281{
463f550f 2282 if (clone_flags & CLONE_VM) {
d7822b1e 2283 t->rseq = NULL;
d7822b1e
MD
2284 t->rseq_sig = 0;
2285 t->rseq_event_mask = 0;
2286 } else {
2287 t->rseq = current->rseq;
d7822b1e
MD
2288 t->rseq_sig = current->rseq_sig;
2289 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
2290 }
2291}
2292
2293static inline void rseq_execve(struct task_struct *t)
2294{
2295 t->rseq = NULL;
d7822b1e
MD
2296 t->rseq_sig = 0;
2297 t->rseq_event_mask = 0;
2298}
2299
2300#else
2301
2302static inline void rseq_set_notify_resume(struct task_struct *t)
2303{
2304}
784e0300
WD
2305static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2306 struct pt_regs *regs)
d7822b1e
MD
2307{
2308}
784e0300
WD
2309static inline void rseq_signal_deliver(struct ksignal *ksig,
2310 struct pt_regs *regs)
d7822b1e
MD
2311{
2312}
2313static inline void rseq_preempt(struct task_struct *t)
2314{
2315}
2316static inline void rseq_migrate(struct task_struct *t)
2317{
2318}
2319static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2320{
2321}
2322static inline void rseq_execve(struct task_struct *t)
2323{
2324}
2325
2326#endif
2327
2328#ifdef CONFIG_DEBUG_RSEQ
2329
2330void rseq_syscall(struct pt_regs *regs);
2331
2332#else
2333
2334static inline void rseq_syscall(struct pt_regs *regs)
2335{
2336}
2337
2338#endif
2339
3c93a0c0
QY
2340const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2341char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2342int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2343
2344const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2345const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2346const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2347
2348int sched_trace_rq_cpu(struct rq *rq);
51cf18c9 2349int sched_trace_rq_cpu_capacity(struct rq *rq);
9d246053 2350int sched_trace_rq_nr_running(struct rq *rq);
3c93a0c0
QY
2351
2352const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2353
6e33cad0
PZ
2354#ifdef CONFIG_SCHED_CORE
2355extern void sched_core_free(struct task_struct *tsk);
85dd3f61 2356extern void sched_core_fork(struct task_struct *p);
7ac592aa
CH
2357extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2358 unsigned long uaddr);
6e33cad0
PZ
2359#else
2360static inline void sched_core_free(struct task_struct *tsk) { }
85dd3f61 2361static inline void sched_core_fork(struct task_struct *p) { }
6e33cad0
PZ
2362#endif
2363
1da177e4 2364#endif