mm, oom_adj: make sure processes sharing mm have same view of oom_score_adj
[linux-block.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
43#include <linux/seccomp.h>
e56d0903 44#include <linux/rcupdate.h>
05725f7e 45#include <linux/rculist.h>
23f78d4a 46#include <linux/rtmutex.h>
1da177e4 47
a3b6714e
DW
48#include <linux/time.h>
49#include <linux/param.h>
50#include <linux/resource.h>
51#include <linux/timer.h>
52#include <linux/hrtimer.h>
5c9a8750 53#include <linux/kcov.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
7d7efec3 61#include <linux/cgroup-defs.h>
a3b6714e
DW
62
63#include <asm/processor.h>
36d57ac4 64
d50dde5a
DF
65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67/*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
aab03e05
DF
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
110 */
111struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127};
128
c87e2837 129struct futex_pi_state;
286100a6 130struct robust_list_head;
bddd87c7 131struct bio_list;
5ad4e53b 132struct fs_struct;
cdd6c482 133struct perf_event_context;
73c10101 134struct blk_plug;
c4ad8f98 135struct filename;
89076bc3 136struct nameidata;
1da177e4 137
615d6e87
DB
138#define VMACACHE_BITS 2
139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
1da177e4
LT
142/*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152extern unsigned long avenrun[]; /* Load averages */
2d02494f 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
154
155#define FSHIFT 11 /* nr of bits of precision */
156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159#define EXP_5 2014 /* 1/exp(5sec/5min) */
160#define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162#define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167extern unsigned long total_forks;
168extern int nr_threads;
1da177e4
LT
169DECLARE_PER_CPU(unsigned long, process_counts);
170extern int nr_processes(void);
171extern unsigned long nr_running(void);
2ee507c4 172extern bool single_task_running(void);
1da177e4 173extern unsigned long nr_iowait(void);
8c215bd3 174extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 176
0f004f5a 177extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
178
179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
1f41906a
FW
180extern void cpu_load_update_nohz_start(void);
181extern void cpu_load_update_nohz_stop(void);
3289bdb4 182#else
1f41906a
FW
183static inline void cpu_load_update_nohz_start(void) { }
184static inline void cpu_load_update_nohz_stop(void) { }
3289bdb4 185#endif
1da177e4 186
b637a328
PM
187extern void dump_cpu_task(int cpu);
188
43ae34cb
IM
189struct seq_file;
190struct cfs_rq;
4cf86d77 191struct task_group;
43ae34cb
IM
192#ifdef CONFIG_SCHED_DEBUG
193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 195#endif
1da177e4 196
4a8342d2
LT
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
1da177e4
LT
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
4a8342d2 212/* in tsk->exit_state */
ad86622b
ON
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
abd50b39 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 216/* in tsk->state again */
af927232 217#define TASK_DEAD 64
f021a3c2 218#define TASK_WAKEKILL 128
e9c84311 219#define TASK_WAKING 256
f2530dc7 220#define TASK_PARKED 512
80ed87c8 221#define TASK_NOLOAD 1024
7dc603c9
PZ
222#define TASK_NEW 2048
223#define TASK_STATE_MAX 4096
f021a3c2 224
7dc603c9 225#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
73342151 226
e1781538
PZ
227extern char ___assert_task_state[1 - 2*!!(
228 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
229
230/* Convenience macros for the sake of set_task_state */
231#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
232#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
233#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 234
80ed87c8
PZ
235#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
236
92a1f4bc
MW
237/* Convenience macros for the sake of wake_up */
238#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 239#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
240
241/* get_task_state() */
242#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 243 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 244 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 245
f021a3c2
MW
246#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
247#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 248#define task_is_stopped_or_traced(task) \
f021a3c2 249 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 250#define task_contributes_to_load(task) \
e3c8ca83 251 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
252 (task->flags & PF_FROZEN) == 0 && \
253 (task->state & TASK_NOLOAD) == 0)
1da177e4 254
8eb23b9f
PZ
255#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
256
257#define __set_task_state(tsk, state_value) \
258 do { \
259 (tsk)->task_state_change = _THIS_IP_; \
260 (tsk)->state = (state_value); \
261 } while (0)
262#define set_task_state(tsk, state_value) \
263 do { \
264 (tsk)->task_state_change = _THIS_IP_; \
b92b8b35 265 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
266 } while (0)
267
268/*
269 * set_current_state() includes a barrier so that the write of current->state
270 * is correctly serialised wrt the caller's subsequent test of whether to
271 * actually sleep:
272 *
273 * set_current_state(TASK_UNINTERRUPTIBLE);
274 * if (do_i_need_to_sleep())
275 * schedule();
276 *
277 * If the caller does not need such serialisation then use __set_current_state()
278 */
279#define __set_current_state(state_value) \
280 do { \
281 current->task_state_change = _THIS_IP_; \
282 current->state = (state_value); \
283 } while (0)
284#define set_current_state(state_value) \
285 do { \
286 current->task_state_change = _THIS_IP_; \
b92b8b35 287 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
288 } while (0)
289
290#else
291
1da177e4
LT
292#define __set_task_state(tsk, state_value) \
293 do { (tsk)->state = (state_value); } while (0)
294#define set_task_state(tsk, state_value) \
b92b8b35 295 smp_store_mb((tsk)->state, (state_value))
1da177e4 296
498d0c57
AM
297/*
298 * set_current_state() includes a barrier so that the write of current->state
299 * is correctly serialised wrt the caller's subsequent test of whether to
300 * actually sleep:
301 *
302 * set_current_state(TASK_UNINTERRUPTIBLE);
303 * if (do_i_need_to_sleep())
304 * schedule();
305 *
306 * If the caller does not need such serialisation then use __set_current_state()
307 */
8eb23b9f 308#define __set_current_state(state_value) \
1da177e4 309 do { current->state = (state_value); } while (0)
8eb23b9f 310#define set_current_state(state_value) \
b92b8b35 311 smp_store_mb(current->state, (state_value))
1da177e4 312
8eb23b9f
PZ
313#endif
314
1da177e4
LT
315/* Task command name length */
316#define TASK_COMM_LEN 16
317
1da177e4
LT
318#include <linux/spinlock.h>
319
320/*
321 * This serializes "schedule()" and also protects
322 * the run-queue from deletions/modifications (but
323 * _adding_ to the beginning of the run-queue has
324 * a separate lock).
325 */
326extern rwlock_t tasklist_lock;
327extern spinlock_t mmlist_lock;
328
36c8b586 329struct task_struct;
1da177e4 330
db1466b3
PM
331#ifdef CONFIG_PROVE_RCU
332extern int lockdep_tasklist_lock_is_held(void);
333#endif /* #ifdef CONFIG_PROVE_RCU */
334
1da177e4
LT
335extern void sched_init(void);
336extern void sched_init_smp(void);
2d07b255 337extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 338extern void init_idle(struct task_struct *idle, int cpu);
1df21055 339extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 340
3fa0818b
RR
341extern cpumask_var_t cpu_isolated_map;
342
89f19f04 343extern int runqueue_is_locked(int cpu);
017730c1 344
3451d024 345#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 346extern void nohz_balance_enter_idle(int cpu);
69e1e811 347extern void set_cpu_sd_state_idle(void);
bc7a34b8 348extern int get_nohz_timer_target(void);
46cb4b7c 349#else
c1cc017c 350static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 351static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 352#endif
1da177e4 353
e59e2ae2 354/*
39bc89fd 355 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
356 */
357extern void show_state_filter(unsigned long state_filter);
358
359static inline void show_state(void)
360{
39bc89fd 361 show_state_filter(0);
e59e2ae2
IM
362}
363
1da177e4
LT
364extern void show_regs(struct pt_regs *);
365
366/*
367 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
368 * task), SP is the stack pointer of the first frame that should be shown in the back
369 * trace (or NULL if the entire call-chain of the task should be shown).
370 */
371extern void show_stack(struct task_struct *task, unsigned long *sp);
372
1da177e4
LT
373extern void cpu_init (void);
374extern void trap_init(void);
375extern void update_process_times(int user);
376extern void scheduler_tick(void);
9cf7243d 377extern int sched_cpu_starting(unsigned int cpu);
40190a78
TG
378extern int sched_cpu_activate(unsigned int cpu);
379extern int sched_cpu_deactivate(unsigned int cpu);
1da177e4 380
f2785ddb
TG
381#ifdef CONFIG_HOTPLUG_CPU
382extern int sched_cpu_dying(unsigned int cpu);
383#else
384# define sched_cpu_dying NULL
385#endif
1da177e4 386
82a1fcb9
IM
387extern void sched_show_task(struct task_struct *p);
388
19cc36c0 389#ifdef CONFIG_LOCKUP_DETECTOR
03e0d461 390extern void touch_softlockup_watchdog_sched(void);
8446f1d3 391extern void touch_softlockup_watchdog(void);
d6ad3e28 392extern void touch_softlockup_watchdog_sync(void);
04c9167f 393extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
394extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
395 void __user *buffer,
396 size_t *lenp, loff_t *ppos);
9c44bc03 397extern unsigned int softlockup_panic;
ac1f5912 398extern unsigned int hardlockup_panic;
004417a6 399void lockup_detector_init(void);
8446f1d3 400#else
03e0d461
TH
401static inline void touch_softlockup_watchdog_sched(void)
402{
403}
8446f1d3
IM
404static inline void touch_softlockup_watchdog(void)
405{
406}
d6ad3e28
JW
407static inline void touch_softlockup_watchdog_sync(void)
408{
409}
04c9167f
JF
410static inline void touch_all_softlockup_watchdogs(void)
411{
412}
004417a6
PZ
413static inline void lockup_detector_init(void)
414{
415}
8446f1d3
IM
416#endif
417
8b414521
MT
418#ifdef CONFIG_DETECT_HUNG_TASK
419void reset_hung_task_detector(void);
420#else
421static inline void reset_hung_task_detector(void)
422{
423}
424#endif
425
1da177e4
LT
426/* Attach to any functions which should be ignored in wchan output. */
427#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
428
429/* Linker adds these: start and end of __sched functions */
430extern char __sched_text_start[], __sched_text_end[];
431
1da177e4
LT
432/* Is this address in the __sched functions? */
433extern int in_sched_functions(unsigned long addr);
434
435#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 436extern signed long schedule_timeout(signed long timeout);
64ed93a2 437extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 438extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 439extern signed long schedule_timeout_uninterruptible(signed long timeout);
69b27baf 440extern signed long schedule_timeout_idle(signed long timeout);
1da177e4 441asmlinkage void schedule(void);
c5491ea7 442extern void schedule_preempt_disabled(void);
1da177e4 443
9cff8ade
N
444extern long io_schedule_timeout(long timeout);
445
446static inline void io_schedule(void)
447{
448 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
449}
450
ab516013 451struct nsproxy;
acce292c 452struct user_namespace;
1da177e4 453
efc1a3b1
DH
454#ifdef CONFIG_MMU
455extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
456extern unsigned long
457arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
458 unsigned long, unsigned long);
459extern unsigned long
460arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
461 unsigned long len, unsigned long pgoff,
462 unsigned long flags);
efc1a3b1
DH
463#else
464static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
465#endif
1da177e4 466
d049f74f
KC
467#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
468#define SUID_DUMP_USER 1 /* Dump as user of process */
469#define SUID_DUMP_ROOT 2 /* Dump as root */
470
6c5d5238 471/* mm flags */
f8af4da3 472
7288e118 473/* for SUID_DUMP_* above */
3cb4a0bb 474#define MMF_DUMPABLE_BITS 2
f8af4da3 475#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 476
942be387
ON
477extern void set_dumpable(struct mm_struct *mm, int value);
478/*
479 * This returns the actual value of the suid_dumpable flag. For things
480 * that are using this for checking for privilege transitions, it must
481 * test against SUID_DUMP_USER rather than treating it as a boolean
482 * value.
483 */
484static inline int __get_dumpable(unsigned long mm_flags)
485{
486 return mm_flags & MMF_DUMPABLE_MASK;
487}
488
489static inline int get_dumpable(struct mm_struct *mm)
490{
491 return __get_dumpable(mm->flags);
492}
493
3cb4a0bb
KH
494/* coredump filter bits */
495#define MMF_DUMP_ANON_PRIVATE 2
496#define MMF_DUMP_ANON_SHARED 3
497#define MMF_DUMP_MAPPED_PRIVATE 4
498#define MMF_DUMP_MAPPED_SHARED 5
82df3973 499#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
500#define MMF_DUMP_HUGETLB_PRIVATE 7
501#define MMF_DUMP_HUGETLB_SHARED 8
5037835c
RZ
502#define MMF_DUMP_DAX_PRIVATE 9
503#define MMF_DUMP_DAX_SHARED 10
f8af4da3 504
3cb4a0bb 505#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
5037835c 506#define MMF_DUMP_FILTER_BITS 9
3cb4a0bb
KH
507#define MMF_DUMP_FILTER_MASK \
508 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
509#define MMF_DUMP_FILTER_DEFAULT \
e575f111 510 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
511 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
512
513#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
514# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
515#else
516# define MMF_DUMP_MASK_DEFAULT_ELF 0
517#endif
f8af4da3
HD
518 /* leave room for more dump flags */
519#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 520#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 521#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 522
9f68f672
ON
523#define MMF_HAS_UPROBES 19 /* has uprobes */
524#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
bb8a4b7f 525#define MMF_OOM_REAPED 21 /* mm has been already reaped */
f8ac4ec9 526
f8af4da3 527#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 528
1da177e4
LT
529struct sighand_struct {
530 atomic_t count;
531 struct k_sigaction action[_NSIG];
532 spinlock_t siglock;
b8fceee1 533 wait_queue_head_t signalfd_wqh;
1da177e4
LT
534};
535
0e464814 536struct pacct_struct {
f6ec29a4
KK
537 int ac_flag;
538 long ac_exitcode;
0e464814 539 unsigned long ac_mem;
77787bfb
KK
540 cputime_t ac_utime, ac_stime;
541 unsigned long ac_minflt, ac_majflt;
0e464814
KK
542};
543
42c4ab41
SG
544struct cpu_itimer {
545 cputime_t expires;
546 cputime_t incr;
8356b5f9
SG
547 u32 error;
548 u32 incr_error;
42c4ab41
SG
549};
550
d37f761d 551/**
9d7fb042 552 * struct prev_cputime - snaphsot of system and user cputime
d37f761d
FW
553 * @utime: time spent in user mode
554 * @stime: time spent in system mode
9d7fb042 555 * @lock: protects the above two fields
d37f761d 556 *
9d7fb042
PZ
557 * Stores previous user/system time values such that we can guarantee
558 * monotonicity.
d37f761d 559 */
9d7fb042
PZ
560struct prev_cputime {
561#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d
FW
562 cputime_t utime;
563 cputime_t stime;
9d7fb042
PZ
564 raw_spinlock_t lock;
565#endif
d37f761d
FW
566};
567
9d7fb042
PZ
568static inline void prev_cputime_init(struct prev_cputime *prev)
569{
570#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
571 prev->utime = prev->stime = 0;
572 raw_spin_lock_init(&prev->lock);
573#endif
574}
575
f06febc9
FM
576/**
577 * struct task_cputime - collected CPU time counts
578 * @utime: time spent in user mode, in &cputime_t units
579 * @stime: time spent in kernel mode, in &cputime_t units
580 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 581 *
9d7fb042
PZ
582 * This structure groups together three kinds of CPU time that are tracked for
583 * threads and thread groups. Most things considering CPU time want to group
584 * these counts together and treat all three of them in parallel.
f06febc9
FM
585 */
586struct task_cputime {
587 cputime_t utime;
588 cputime_t stime;
589 unsigned long long sum_exec_runtime;
590};
9d7fb042 591
f06febc9 592/* Alternate field names when used to cache expirations. */
f06febc9 593#define virt_exp utime
9d7fb042 594#define prof_exp stime
f06febc9
FM
595#define sched_exp sum_exec_runtime
596
4cd4c1b4
PZ
597#define INIT_CPUTIME \
598 (struct task_cputime) { \
64861634
MS
599 .utime = 0, \
600 .stime = 0, \
4cd4c1b4
PZ
601 .sum_exec_runtime = 0, \
602 }
603
971e8a98
JL
604/*
605 * This is the atomic variant of task_cputime, which can be used for
606 * storing and updating task_cputime statistics without locking.
607 */
608struct task_cputime_atomic {
609 atomic64_t utime;
610 atomic64_t stime;
611 atomic64_t sum_exec_runtime;
612};
613
614#define INIT_CPUTIME_ATOMIC \
615 (struct task_cputime_atomic) { \
616 .utime = ATOMIC64_INIT(0), \
617 .stime = ATOMIC64_INIT(0), \
618 .sum_exec_runtime = ATOMIC64_INIT(0), \
619 }
620
609ca066 621#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
a233f112 622
c99e6efe 623/*
87dcbc06
PZ
624 * Disable preemption until the scheduler is running -- use an unconditional
625 * value so that it also works on !PREEMPT_COUNT kernels.
d86ee480 626 *
87dcbc06 627 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
c99e6efe 628 */
87dcbc06 629#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
a233f112 630
c99e6efe 631/*
609ca066
PZ
632 * Initial preempt_count value; reflects the preempt_count schedule invariant
633 * which states that during context switches:
d86ee480 634 *
609ca066
PZ
635 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
636 *
637 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
638 * Note: See finish_task_switch().
c99e6efe 639 */
609ca066 640#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
c99e6efe 641
f06febc9 642/**
4cd4c1b4 643 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 644 * @cputime_atomic: atomic thread group interval timers.
d5c373eb
JL
645 * @running: true when there are timers running and
646 * @cputime_atomic receives updates.
c8d75aa4
JL
647 * @checking_timer: true when a thread in the group is in the
648 * process of checking for thread group timers.
f06febc9
FM
649 *
650 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 651 * used for thread group CPU timer calculations.
f06febc9 652 */
4cd4c1b4 653struct thread_group_cputimer {
71107445 654 struct task_cputime_atomic cputime_atomic;
d5c373eb 655 bool running;
c8d75aa4 656 bool checking_timer;
f06febc9 657};
f06febc9 658
4714d1d3 659#include <linux/rwsem.h>
5091faa4
MG
660struct autogroup;
661
1da177e4 662/*
e815f0a8 663 * NOTE! "signal_struct" does not have its own
1da177e4
LT
664 * locking, because a shared signal_struct always
665 * implies a shared sighand_struct, so locking
666 * sighand_struct is always a proper superset of
667 * the locking of signal_struct.
668 */
669struct signal_struct {
ea6d290c 670 atomic_t sigcnt;
1da177e4 671 atomic_t live;
b3ac022c 672 int nr_threads;
f44666b0 673 atomic_t oom_victims; /* # of TIF_MEDIE threads in this thread group */
0c740d0a 674 struct list_head thread_head;
1da177e4
LT
675
676 wait_queue_head_t wait_chldexit; /* for wait4() */
677
678 /* current thread group signal load-balancing target: */
36c8b586 679 struct task_struct *curr_target;
1da177e4
LT
680
681 /* shared signal handling: */
682 struct sigpending shared_pending;
683
684 /* thread group exit support */
685 int group_exit_code;
686 /* overloaded:
687 * - notify group_exit_task when ->count is equal to notify_count
688 * - everyone except group_exit_task is stopped during signal delivery
689 * of fatal signals, group_exit_task processes the signal.
690 */
1da177e4 691 int notify_count;
07dd20e0 692 struct task_struct *group_exit_task;
1da177e4
LT
693
694 /* thread group stop support, overloads group_exit_code too */
695 int group_stop_count;
696 unsigned int flags; /* see SIGNAL_* flags below */
697
ebec18a6
LP
698 /*
699 * PR_SET_CHILD_SUBREAPER marks a process, like a service
700 * manager, to re-parent orphan (double-forking) child processes
701 * to this process instead of 'init'. The service manager is
702 * able to receive SIGCHLD signals and is able to investigate
703 * the process until it calls wait(). All children of this
704 * process will inherit a flag if they should look for a
705 * child_subreaper process at exit.
706 */
707 unsigned int is_child_subreaper:1;
708 unsigned int has_child_subreaper:1;
709
1da177e4 710 /* POSIX.1b Interval Timers */
5ed67f05
PE
711 int posix_timer_id;
712 struct list_head posix_timers;
1da177e4
LT
713
714 /* ITIMER_REAL timer for the process */
2ff678b8 715 struct hrtimer real_timer;
fea9d175 716 struct pid *leader_pid;
2ff678b8 717 ktime_t it_real_incr;
1da177e4 718
42c4ab41
SG
719 /*
720 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
721 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
722 * values are defined to 0 and 1 respectively
723 */
724 struct cpu_itimer it[2];
1da177e4 725
f06febc9 726 /*
4cd4c1b4
PZ
727 * Thread group totals for process CPU timers.
728 * See thread_group_cputimer(), et al, for details.
f06febc9 729 */
4cd4c1b4 730 struct thread_group_cputimer cputimer;
f06febc9
FM
731
732 /* Earliest-expiration cache. */
733 struct task_cputime cputime_expires;
734
d027d45d 735#ifdef CONFIG_NO_HZ_FULL
f009a7a7 736 atomic_t tick_dep_mask;
d027d45d
FW
737#endif
738
f06febc9
FM
739 struct list_head cpu_timers[3];
740
ab521dc0 741 struct pid *tty_old_pgrp;
1ec320af 742
1da177e4
LT
743 /* boolean value for session group leader */
744 int leader;
745
746 struct tty_struct *tty; /* NULL if no tty */
747
5091faa4
MG
748#ifdef CONFIG_SCHED_AUTOGROUP
749 struct autogroup *autogroup;
750#endif
1da177e4
LT
751 /*
752 * Cumulative resource counters for dead threads in the group,
753 * and for reaped dead child processes forked by this group.
754 * Live threads maintain their own counters and add to these
755 * in __exit_signal, except for the group leader.
756 */
e78c3496 757 seqlock_t stats_lock;
32bd671d 758 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
759 cputime_t gtime;
760 cputime_t cgtime;
9d7fb042 761 struct prev_cputime prev_cputime;
1da177e4
LT
762 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
763 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 764 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 765 unsigned long maxrss, cmaxrss;
940389b8 766 struct task_io_accounting ioac;
1da177e4 767
32bd671d
PZ
768 /*
769 * Cumulative ns of schedule CPU time fo dead threads in the
770 * group, not including a zombie group leader, (This only differs
771 * from jiffies_to_ns(utime + stime) if sched_clock uses something
772 * other than jiffies.)
773 */
774 unsigned long long sum_sched_runtime;
775
1da177e4
LT
776 /*
777 * We don't bother to synchronize most readers of this at all,
778 * because there is no reader checking a limit that actually needs
779 * to get both rlim_cur and rlim_max atomically, and either one
780 * alone is a single word that can safely be read normally.
781 * getrlimit/setrlimit use task_lock(current->group_leader) to
782 * protect this instead of the siglock, because they really
783 * have no need to disable irqs.
784 */
785 struct rlimit rlim[RLIM_NLIMITS];
786
0e464814
KK
787#ifdef CONFIG_BSD_PROCESS_ACCT
788 struct pacct_struct pacct; /* per-process accounting information */
789#endif
ad4ecbcb 790#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
791 struct taskstats *stats;
792#endif
522ed776
MT
793#ifdef CONFIG_AUDIT
794 unsigned audit_tty;
795 struct tty_audit_buf *tty_audit_buf;
796#endif
28b83c51 797
c96fc2d8
TH
798 /*
799 * Thread is the potential origin of an oom condition; kill first on
800 * oom
801 */
802 bool oom_flag_origin;
a9c58b90
DR
803 short oom_score_adj; /* OOM kill score adjustment */
804 short oom_score_adj_min; /* OOM kill score adjustment min value.
805 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
806
807 struct mutex cred_guard_mutex; /* guard against foreign influences on
808 * credential calculations
809 * (notably. ptrace) */
1da177e4
LT
810};
811
812/*
813 * Bits in flags field of signal_struct.
814 */
815#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
816#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
817#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 818#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
819/*
820 * Pending notifications to parent.
821 */
822#define SIGNAL_CLD_STOPPED 0x00000010
823#define SIGNAL_CLD_CONTINUED 0x00000020
824#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 825
fae5fa44
ON
826#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
827
ed5d2cac
ON
828/* If true, all threads except ->group_exit_task have pending SIGKILL */
829static inline int signal_group_exit(const struct signal_struct *sig)
830{
831 return (sig->flags & SIGNAL_GROUP_EXIT) ||
832 (sig->group_exit_task != NULL);
833}
834
1da177e4
LT
835/*
836 * Some day this will be a full-fledged user tracking system..
837 */
838struct user_struct {
839 atomic_t __count; /* reference count */
840 atomic_t processes; /* How many processes does this user have? */
1da177e4 841 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 842#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
843 atomic_t inotify_watches; /* How many inotify watches does this user have? */
844 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
845#endif
4afeff85
EP
846#ifdef CONFIG_FANOTIFY
847 atomic_t fanotify_listeners;
848#endif
7ef9964e 849#ifdef CONFIG_EPOLL
52bd19f7 850 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 851#endif
970a8645 852#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
853 /* protected by mq_lock */
854 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 855#endif
1da177e4 856 unsigned long locked_shm; /* How many pages of mlocked shm ? */
712f4aad 857 unsigned long unix_inflight; /* How many files in flight in unix sockets */
759c0114 858 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
1da177e4
LT
859
860#ifdef CONFIG_KEYS
861 struct key *uid_keyring; /* UID specific keyring */
862 struct key *session_keyring; /* UID's default session keyring */
863#endif
864
865 /* Hash table maintenance information */
735de223 866 struct hlist_node uidhash_node;
7b44ab97 867 kuid_t uid;
24e377a8 868
aaac3ba9 869#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
789f90fc
PZ
870 atomic_long_t locked_vm;
871#endif
1da177e4
LT
872};
873
eb41d946 874extern int uids_sysfs_init(void);
5cb350ba 875
7b44ab97 876extern struct user_struct *find_user(kuid_t);
1da177e4
LT
877
878extern struct user_struct root_user;
879#define INIT_USER (&root_user)
880
b6dff3ec 881
1da177e4
LT
882struct backing_dev_info;
883struct reclaim_state;
884
f6db8347 885#ifdef CONFIG_SCHED_INFO
1da177e4
LT
886struct sched_info {
887 /* cumulative counters */
2d72376b 888 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 889 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
890
891 /* timestamps */
172ba844
BS
892 unsigned long long last_arrival,/* when we last ran on a cpu */
893 last_queued; /* when we were last queued to run */
1da177e4 894};
f6db8347 895#endif /* CONFIG_SCHED_INFO */
1da177e4 896
ca74e92b
SN
897#ifdef CONFIG_TASK_DELAY_ACCT
898struct task_delay_info {
899 spinlock_t lock;
900 unsigned int flags; /* Private per-task flags */
901
902 /* For each stat XXX, add following, aligned appropriately
903 *
904 * struct timespec XXX_start, XXX_end;
905 * u64 XXX_delay;
906 * u32 XXX_count;
907 *
908 * Atomicity of updates to XXX_delay, XXX_count protected by
909 * single lock above (split into XXX_lock if contention is an issue).
910 */
0ff92245
SN
911
912 /*
913 * XXX_count is incremented on every XXX operation, the delay
914 * associated with the operation is added to XXX_delay.
915 * XXX_delay contains the accumulated delay time in nanoseconds.
916 */
9667a23d 917 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
918 u64 blkio_delay; /* wait for sync block io completion */
919 u64 swapin_delay; /* wait for swapin block io completion */
920 u32 blkio_count; /* total count of the number of sync block */
921 /* io operations performed */
922 u32 swapin_count; /* total count of the number of swapin block */
923 /* io operations performed */
873b4771 924
9667a23d 925 u64 freepages_start;
873b4771
KK
926 u64 freepages_delay; /* wait for memory reclaim */
927 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 928};
52f17b6c
CS
929#endif /* CONFIG_TASK_DELAY_ACCT */
930
931static inline int sched_info_on(void)
932{
933#ifdef CONFIG_SCHEDSTATS
934 return 1;
935#elif defined(CONFIG_TASK_DELAY_ACCT)
936 extern int delayacct_on;
937 return delayacct_on;
938#else
939 return 0;
ca74e92b 940#endif
52f17b6c 941}
ca74e92b 942
cb251765
MG
943#ifdef CONFIG_SCHEDSTATS
944void force_schedstat_enabled(void);
945#endif
946
d15bcfdb
IM
947enum cpu_idle_type {
948 CPU_IDLE,
949 CPU_NOT_IDLE,
950 CPU_NEWLY_IDLE,
951 CPU_MAX_IDLE_TYPES
1da177e4
LT
952};
953
6ecdd749
YD
954/*
955 * Integer metrics need fixed point arithmetic, e.g., sched/fair
956 * has a few: load, load_avg, util_avg, freq, and capacity.
957 *
958 * We define a basic fixed point arithmetic range, and then formalize
959 * all these metrics based on that basic range.
960 */
961# define SCHED_FIXEDPOINT_SHIFT 10
962# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
963
1399fa78 964/*
ca8ce3d0 965 * Increase resolution of cpu_capacity calculations
1399fa78 966 */
6ecdd749 967#define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
ca8ce3d0 968#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 969
76751049
PZ
970/*
971 * Wake-queues are lists of tasks with a pending wakeup, whose
972 * callers have already marked the task as woken internally,
973 * and can thus carry on. A common use case is being able to
974 * do the wakeups once the corresponding user lock as been
975 * released.
976 *
977 * We hold reference to each task in the list across the wakeup,
978 * thus guaranteeing that the memory is still valid by the time
979 * the actual wakeups are performed in wake_up_q().
980 *
981 * One per task suffices, because there's never a need for a task to be
982 * in two wake queues simultaneously; it is forbidden to abandon a task
983 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
984 * already in a wake queue, the wakeup will happen soon and the second
985 * waker can just skip it.
986 *
987 * The WAKE_Q macro declares and initializes the list head.
988 * wake_up_q() does NOT reinitialize the list; it's expected to be
989 * called near the end of a function, where the fact that the queue is
990 * not used again will be easy to see by inspection.
991 *
992 * Note that this can cause spurious wakeups. schedule() callers
993 * must ensure the call is done inside a loop, confirming that the
994 * wakeup condition has in fact occurred.
995 */
996struct wake_q_node {
997 struct wake_q_node *next;
998};
999
1000struct wake_q_head {
1001 struct wake_q_node *first;
1002 struct wake_q_node **lastp;
1003};
1004
1005#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1006
1007#define WAKE_Q(name) \
1008 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1009
1010extern void wake_q_add(struct wake_q_head *head,
1011 struct task_struct *task);
1012extern void wake_up_q(struct wake_q_head *head);
1013
1399fa78
NR
1014/*
1015 * sched-domains (multiprocessor balancing) declarations:
1016 */
2dd73a4f 1017#ifdef CONFIG_SMP
b5d978e0
PZ
1018#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
1019#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
1020#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
1021#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 1022#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 1023#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 1024#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 1025#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
1026#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1027#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 1028#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 1029#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 1030#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 1031#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 1032
143e1e28 1033#ifdef CONFIG_SCHED_SMT
b6220ad6 1034static inline int cpu_smt_flags(void)
143e1e28 1035{
5d4dfddd 1036 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
1037}
1038#endif
1039
1040#ifdef CONFIG_SCHED_MC
b6220ad6 1041static inline int cpu_core_flags(void)
143e1e28
VG
1042{
1043 return SD_SHARE_PKG_RESOURCES;
1044}
1045#endif
1046
1047#ifdef CONFIG_NUMA
b6220ad6 1048static inline int cpu_numa_flags(void)
143e1e28
VG
1049{
1050 return SD_NUMA;
1051}
1052#endif
532cb4c4 1053
1d3504fc
HS
1054struct sched_domain_attr {
1055 int relax_domain_level;
1056};
1057
1058#define SD_ATTR_INIT (struct sched_domain_attr) { \
1059 .relax_domain_level = -1, \
1060}
1061
60495e77
PZ
1062extern int sched_domain_level_max;
1063
5e6521ea
LZ
1064struct sched_group;
1065
1da177e4
LT
1066struct sched_domain {
1067 /* These fields must be setup */
1068 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1069 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1070 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1071 unsigned long min_interval; /* Minimum balance interval ms */
1072 unsigned long max_interval; /* Maximum balance interval ms */
1073 unsigned int busy_factor; /* less balancing by factor if busy */
1074 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1075 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1076 unsigned int busy_idx;
1077 unsigned int idle_idx;
1078 unsigned int newidle_idx;
1079 unsigned int wake_idx;
147cbb4b 1080 unsigned int forkexec_idx;
a52bfd73 1081 unsigned int smt_gain;
25f55d9d
VG
1082
1083 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1084 int flags; /* See SD_* */
60495e77 1085 int level;
1da177e4
LT
1086
1087 /* Runtime fields. */
1088 unsigned long last_balance; /* init to jiffies. units in jiffies */
1089 unsigned int balance_interval; /* initialise to 1. units in ms. */
1090 unsigned int nr_balance_failed; /* initialise to 0 */
1091
f48627e6 1092 /* idle_balance() stats */
9bd721c5 1093 u64 max_newidle_lb_cost;
f48627e6 1094 unsigned long next_decay_max_lb_cost;
2398f2c6 1095
1da177e4
LT
1096#ifdef CONFIG_SCHEDSTATS
1097 /* load_balance() stats */
480b9434
KC
1098 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1099 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1100 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1101 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1102 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1103 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1104 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1105 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1106
1107 /* Active load balancing */
480b9434
KC
1108 unsigned int alb_count;
1109 unsigned int alb_failed;
1110 unsigned int alb_pushed;
1da177e4 1111
68767a0a 1112 /* SD_BALANCE_EXEC stats */
480b9434
KC
1113 unsigned int sbe_count;
1114 unsigned int sbe_balanced;
1115 unsigned int sbe_pushed;
1da177e4 1116
68767a0a 1117 /* SD_BALANCE_FORK stats */
480b9434
KC
1118 unsigned int sbf_count;
1119 unsigned int sbf_balanced;
1120 unsigned int sbf_pushed;
68767a0a 1121
1da177e4 1122 /* try_to_wake_up() stats */
480b9434
KC
1123 unsigned int ttwu_wake_remote;
1124 unsigned int ttwu_move_affine;
1125 unsigned int ttwu_move_balance;
1da177e4 1126#endif
a5d8c348
IM
1127#ifdef CONFIG_SCHED_DEBUG
1128 char *name;
1129#endif
dce840a0
PZ
1130 union {
1131 void *private; /* used during construction */
1132 struct rcu_head rcu; /* used during destruction */
1133 };
6c99e9ad 1134
669c55e9 1135 unsigned int span_weight;
4200efd9
IM
1136 /*
1137 * Span of all CPUs in this domain.
1138 *
1139 * NOTE: this field is variable length. (Allocated dynamically
1140 * by attaching extra space to the end of the structure,
1141 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1142 */
1143 unsigned long span[0];
1da177e4
LT
1144};
1145
758b2cdc
RR
1146static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1147{
6c99e9ad 1148 return to_cpumask(sd->span);
758b2cdc
RR
1149}
1150
acc3f5d7 1151extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1152 struct sched_domain_attr *dattr_new);
029190c5 1153
acc3f5d7
RR
1154/* Allocate an array of sched domains, for partition_sched_domains(). */
1155cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1156void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1157
39be3501
PZ
1158bool cpus_share_cache(int this_cpu, int that_cpu);
1159
143e1e28 1160typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1161typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1162
1163#define SDTL_OVERLAP 0x01
1164
1165struct sd_data {
1166 struct sched_domain **__percpu sd;
1167 struct sched_group **__percpu sg;
63b2ca30 1168 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1169};
1170
1171struct sched_domain_topology_level {
1172 sched_domain_mask_f mask;
1173 sched_domain_flags_f sd_flags;
1174 int flags;
1175 int numa_level;
1176 struct sd_data data;
1177#ifdef CONFIG_SCHED_DEBUG
1178 char *name;
1179#endif
1180};
1181
143e1e28 1182extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1183extern void wake_up_if_idle(int cpu);
143e1e28
VG
1184
1185#ifdef CONFIG_SCHED_DEBUG
1186# define SD_INIT_NAME(type) .name = #type
1187#else
1188# define SD_INIT_NAME(type)
1189#endif
1190
1b427c15 1191#else /* CONFIG_SMP */
1da177e4 1192
1b427c15 1193struct sched_domain_attr;
d02c7a8c 1194
1b427c15 1195static inline void
acc3f5d7 1196partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1197 struct sched_domain_attr *dattr_new)
1198{
d02c7a8c 1199}
39be3501
PZ
1200
1201static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1202{
1203 return true;
1204}
1205
1b427c15 1206#endif /* !CONFIG_SMP */
1da177e4 1207
47fe38fc 1208
1da177e4 1209struct io_context; /* See blkdev.h */
1da177e4 1210
1da177e4 1211
383f2835 1212#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1213extern void prefetch_stack(struct task_struct *t);
383f2835
CK
1214#else
1215static inline void prefetch_stack(struct task_struct *t) { }
1216#endif
1da177e4
LT
1217
1218struct audit_context; /* See audit.c */
1219struct mempolicy;
b92ce558 1220struct pipe_inode_info;
4865ecf1 1221struct uts_namespace;
1da177e4 1222
20b8a59f 1223struct load_weight {
9dbdb155
PZ
1224 unsigned long weight;
1225 u32 inv_weight;
20b8a59f
IM
1226};
1227
9d89c257 1228/*
7b595334
YD
1229 * The load_avg/util_avg accumulates an infinite geometric series
1230 * (see __update_load_avg() in kernel/sched/fair.c).
1231 *
1232 * [load_avg definition]
1233 *
1234 * load_avg = runnable% * scale_load_down(load)
1235 *
1236 * where runnable% is the time ratio that a sched_entity is runnable.
1237 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 1238 * blocked sched_entities.
7b595334
YD
1239 *
1240 * load_avg may also take frequency scaling into account:
1241 *
1242 * load_avg = runnable% * scale_load_down(load) * freq%
1243 *
1244 * where freq% is the CPU frequency normalized to the highest frequency.
1245 *
1246 * [util_avg definition]
1247 *
1248 * util_avg = running% * SCHED_CAPACITY_SCALE
1249 *
1250 * where running% is the time ratio that a sched_entity is running on
1251 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1252 * and blocked sched_entities.
1253 *
1254 * util_avg may also factor frequency scaling and CPU capacity scaling:
1255 *
1256 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1257 *
1258 * where freq% is the same as above, and capacity% is the CPU capacity
1259 * normalized to the greatest capacity (due to uarch differences, etc).
1260 *
1261 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1262 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1263 * we therefore scale them to as large a range as necessary. This is for
1264 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1265 *
1266 * [Overflow issue]
1267 *
1268 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1269 * with the highest load (=88761), always runnable on a single cfs_rq,
1270 * and should not overflow as the number already hits PID_MAX_LIMIT.
1271 *
1272 * For all other cases (including 32-bit kernels), struct load_weight's
1273 * weight will overflow first before we do, because:
1274 *
1275 * Max(load_avg) <= Max(load.weight)
1276 *
1277 * Then it is the load_weight's responsibility to consider overflow
1278 * issues.
9d89c257 1279 */
9d85f21c 1280struct sched_avg {
9d89c257
YD
1281 u64 last_update_time, load_sum;
1282 u32 util_sum, period_contrib;
1283 unsigned long load_avg, util_avg;
9d85f21c
PT
1284};
1285
94c18227 1286#ifdef CONFIG_SCHEDSTATS
41acab88 1287struct sched_statistics {
20b8a59f 1288 u64 wait_start;
94c18227 1289 u64 wait_max;
6d082592
AV
1290 u64 wait_count;
1291 u64 wait_sum;
8f0dfc34
AV
1292 u64 iowait_count;
1293 u64 iowait_sum;
94c18227 1294
20b8a59f 1295 u64 sleep_start;
20b8a59f 1296 u64 sleep_max;
94c18227
IM
1297 s64 sum_sleep_runtime;
1298
1299 u64 block_start;
20b8a59f
IM
1300 u64 block_max;
1301 u64 exec_max;
eba1ed4b 1302 u64 slice_max;
cc367732 1303
cc367732
IM
1304 u64 nr_migrations_cold;
1305 u64 nr_failed_migrations_affine;
1306 u64 nr_failed_migrations_running;
1307 u64 nr_failed_migrations_hot;
1308 u64 nr_forced_migrations;
cc367732
IM
1309
1310 u64 nr_wakeups;
1311 u64 nr_wakeups_sync;
1312 u64 nr_wakeups_migrate;
1313 u64 nr_wakeups_local;
1314 u64 nr_wakeups_remote;
1315 u64 nr_wakeups_affine;
1316 u64 nr_wakeups_affine_attempts;
1317 u64 nr_wakeups_passive;
1318 u64 nr_wakeups_idle;
41acab88
LDM
1319};
1320#endif
1321
1322struct sched_entity {
1323 struct load_weight load; /* for load-balancing */
1324 struct rb_node run_node;
1325 struct list_head group_node;
1326 unsigned int on_rq;
1327
1328 u64 exec_start;
1329 u64 sum_exec_runtime;
1330 u64 vruntime;
1331 u64 prev_sum_exec_runtime;
1332
41acab88
LDM
1333 u64 nr_migrations;
1334
41acab88
LDM
1335#ifdef CONFIG_SCHEDSTATS
1336 struct sched_statistics statistics;
94c18227
IM
1337#endif
1338
20b8a59f 1339#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1340 int depth;
20b8a59f
IM
1341 struct sched_entity *parent;
1342 /* rq on which this entity is (to be) queued: */
1343 struct cfs_rq *cfs_rq;
1344 /* rq "owned" by this entity/group: */
1345 struct cfs_rq *my_q;
1346#endif
8bd75c77 1347
141965c7 1348#ifdef CONFIG_SMP
5a107804
JO
1349 /*
1350 * Per entity load average tracking.
1351 *
1352 * Put into separate cache line so it does not
1353 * collide with read-mostly values above.
1354 */
1355 struct sched_avg avg ____cacheline_aligned_in_smp;
9d85f21c 1356#endif
20b8a59f 1357};
70b97a7f 1358
fa717060
PZ
1359struct sched_rt_entity {
1360 struct list_head run_list;
78f2c7db 1361 unsigned long timeout;
57d2aa00 1362 unsigned long watchdog_stamp;
bee367ed 1363 unsigned int time_slice;
ff77e468
PZ
1364 unsigned short on_rq;
1365 unsigned short on_list;
6f505b16 1366
58d6c2d7 1367 struct sched_rt_entity *back;
052f1dc7 1368#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1369 struct sched_rt_entity *parent;
1370 /* rq on which this entity is (to be) queued: */
1371 struct rt_rq *rt_rq;
1372 /* rq "owned" by this entity/group: */
1373 struct rt_rq *my_q;
1374#endif
fa717060
PZ
1375};
1376
aab03e05
DF
1377struct sched_dl_entity {
1378 struct rb_node rb_node;
1379
1380 /*
1381 * Original scheduling parameters. Copied here from sched_attr
4027d080 1382 * during sched_setattr(), they will remain the same until
1383 * the next sched_setattr().
aab03e05
DF
1384 */
1385 u64 dl_runtime; /* maximum runtime for each instance */
1386 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1387 u64 dl_period; /* separation of two instances (period) */
332ac17e 1388 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1389
1390 /*
1391 * Actual scheduling parameters. Initialized with the values above,
1392 * they are continously updated during task execution. Note that
1393 * the remaining runtime could be < 0 in case we are in overrun.
1394 */
1395 s64 runtime; /* remaining runtime for this instance */
1396 u64 deadline; /* absolute deadline for this instance */
1397 unsigned int flags; /* specifying the scheduler behaviour */
1398
1399 /*
1400 * Some bool flags:
1401 *
1402 * @dl_throttled tells if we exhausted the runtime. If so, the
1403 * task has to wait for a replenishment to be performed at the
1404 * next firing of dl_timer.
1405 *
2d3d891d
DF
1406 * @dl_boosted tells if we are boosted due to DI. If so we are
1407 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1408 * exit the critical section);
1409 *
1410 * @dl_yielded tells if task gave up the cpu before consuming
1411 * all its available runtime during the last job.
aab03e05 1412 */
72f9f3fd 1413 int dl_throttled, dl_boosted, dl_yielded;
aab03e05
DF
1414
1415 /*
1416 * Bandwidth enforcement timer. Each -deadline task has its
1417 * own bandwidth to be enforced, thus we need one timer per task.
1418 */
1419 struct hrtimer dl_timer;
1420};
8bd75c77 1421
1d082fd0
PM
1422union rcu_special {
1423 struct {
8203d6d0
PM
1424 u8 blocked;
1425 u8 need_qs;
1426 u8 exp_need_qs;
1427 u8 pad; /* Otherwise the compiler can store garbage here. */
1428 } b; /* Bits. */
1429 u32 s; /* Set of bits. */
1d082fd0 1430};
86848966
PM
1431struct rcu_node;
1432
8dc85d54
PZ
1433enum perf_event_task_context {
1434 perf_invalid_context = -1,
1435 perf_hw_context = 0,
89a1e187 1436 perf_sw_context,
8dc85d54
PZ
1437 perf_nr_task_contexts,
1438};
1439
72b252ae
MG
1440/* Track pages that require TLB flushes */
1441struct tlbflush_unmap_batch {
1442 /*
1443 * Each bit set is a CPU that potentially has a TLB entry for one of
1444 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1445 */
1446 struct cpumask cpumask;
1447
1448 /* True if any bit in cpumask is set */
1449 bool flush_required;
d950c947
MG
1450
1451 /*
1452 * If true then the PTE was dirty when unmapped. The entry must be
1453 * flushed before IO is initiated or a stale TLB entry potentially
1454 * allows an update without redirtying the page.
1455 */
1456 bool writable;
72b252ae
MG
1457};
1458
1da177e4
LT
1459struct task_struct {
1460 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1461 void *stack;
1da177e4 1462 atomic_t usage;
97dc32cd
WC
1463 unsigned int flags; /* per process flags, defined below */
1464 unsigned int ptrace;
1da177e4 1465
2dd73a4f 1466#ifdef CONFIG_SMP
fa14ff4a 1467 struct llist_node wake_entry;
3ca7a440 1468 int on_cpu;
63b0e9ed 1469 unsigned int wakee_flips;
62470419 1470 unsigned long wakee_flip_decay_ts;
63b0e9ed 1471 struct task_struct *last_wakee;
ac66f547
PZ
1472
1473 int wake_cpu;
2dd73a4f 1474#endif
fd2f4419 1475 int on_rq;
50e645a8 1476
b29739f9 1477 int prio, static_prio, normal_prio;
c7aceaba 1478 unsigned int rt_priority;
5522d5d5 1479 const struct sched_class *sched_class;
20b8a59f 1480 struct sched_entity se;
fa717060 1481 struct sched_rt_entity rt;
8323f26c
PZ
1482#ifdef CONFIG_CGROUP_SCHED
1483 struct task_group *sched_task_group;
1484#endif
aab03e05 1485 struct sched_dl_entity dl;
1da177e4 1486
e107be36
AK
1487#ifdef CONFIG_PREEMPT_NOTIFIERS
1488 /* list of struct preempt_notifier: */
1489 struct hlist_head preempt_notifiers;
1490#endif
1491
6c5c9341 1492#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1493 unsigned int btrace_seq;
6c5c9341 1494#endif
1da177e4 1495
97dc32cd 1496 unsigned int policy;
29baa747 1497 int nr_cpus_allowed;
1da177e4 1498 cpumask_t cpus_allowed;
1da177e4 1499
a57eb940 1500#ifdef CONFIG_PREEMPT_RCU
e260be67 1501 int rcu_read_lock_nesting;
1d082fd0 1502 union rcu_special rcu_read_unlock_special;
f41d911f 1503 struct list_head rcu_node_entry;
a57eb940 1504 struct rcu_node *rcu_blocked_node;
28f6569a 1505#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1506#ifdef CONFIG_TASKS_RCU
1507 unsigned long rcu_tasks_nvcsw;
1508 bool rcu_tasks_holdout;
1509 struct list_head rcu_tasks_holdout_list;
176f8f7a 1510 int rcu_tasks_idle_cpu;
8315f422 1511#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1512
f6db8347 1513#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1514 struct sched_info sched_info;
1515#endif
1516
1517 struct list_head tasks;
806c09a7 1518#ifdef CONFIG_SMP
917b627d 1519 struct plist_node pushable_tasks;
1baca4ce 1520 struct rb_node pushable_dl_tasks;
806c09a7 1521#endif
1da177e4
LT
1522
1523 struct mm_struct *mm, *active_mm;
615d6e87
DB
1524 /* per-thread vma caching */
1525 u32 vmacache_seqnum;
1526 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1527#if defined(SPLIT_RSS_COUNTING)
1528 struct task_rss_stat rss_stat;
1529#endif
1da177e4 1530/* task state */
97dc32cd 1531 int exit_state;
1da177e4
LT
1532 int exit_code, exit_signal;
1533 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1534 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1535
1536 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1537 unsigned int personality;
9b89f6ba 1538
be958bdc 1539 /* scheduler bits, serialized by scheduler locks */
ca94c442 1540 unsigned sched_reset_on_fork:1;
a8e4f2ea 1541 unsigned sched_contributes_to_load:1;
ff303e66 1542 unsigned sched_migrated:1;
b7e7ade3 1543 unsigned sched_remote_wakeup:1;
be958bdc
PZ
1544 unsigned :0; /* force alignment to the next boundary */
1545
1546 /* unserialized, strictly 'current' */
1547 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1548 unsigned in_iowait:1;
626ebc41
TH
1549#ifdef CONFIG_MEMCG
1550 unsigned memcg_may_oom:1;
127424c8 1551#ifndef CONFIG_SLOB
6f185c29
VD
1552 unsigned memcg_kmem_skip_account:1;
1553#endif
127424c8 1554#endif
ff303e66
PZ
1555#ifdef CONFIG_COMPAT_BRK
1556 unsigned brk_randomized:1;
1557#endif
6f185c29 1558
1d4457f9
KC
1559 unsigned long atomic_flags; /* Flags needing atomic access. */
1560
f56141e3
AL
1561 struct restart_block restart_block;
1562
1da177e4
LT
1563 pid_t pid;
1564 pid_t tgid;
0a425405 1565
1314562a 1566#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1567 /* Canary value for the -fstack-protector gcc feature */
1568 unsigned long stack_canary;
1314562a 1569#endif
4d1d61a6 1570 /*
1da177e4 1571 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1572 * older sibling, respectively. (p->father can be replaced with
f470021a 1573 * p->real_parent->pid)
1da177e4 1574 */
abd63bc3
KC
1575 struct task_struct __rcu *real_parent; /* real parent process */
1576 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1577 /*
f470021a 1578 * children/sibling forms the list of my natural children
1da177e4
LT
1579 */
1580 struct list_head children; /* list of my children */
1581 struct list_head sibling; /* linkage in my parent's children list */
1582 struct task_struct *group_leader; /* threadgroup leader */
1583
f470021a
RM
1584 /*
1585 * ptraced is the list of tasks this task is using ptrace on.
1586 * This includes both natural children and PTRACE_ATTACH targets.
1587 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1588 */
1589 struct list_head ptraced;
1590 struct list_head ptrace_entry;
1591
1da177e4 1592 /* PID/PID hash table linkage. */
92476d7f 1593 struct pid_link pids[PIDTYPE_MAX];
47e65328 1594 struct list_head thread_group;
0c740d0a 1595 struct list_head thread_node;
1da177e4
LT
1596
1597 struct completion *vfork_done; /* for vfork() */
1598 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1599 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1600
c66f08be 1601 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1602 cputime_t gtime;
9d7fb042 1603 struct prev_cputime prev_cputime;
6a61671b 1604#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
b7ce2277 1605 seqcount_t vtime_seqcount;
6a61671b
FW
1606 unsigned long long vtime_snap;
1607 enum {
7098c1ea
FW
1608 /* Task is sleeping or running in a CPU with VTIME inactive */
1609 VTIME_INACTIVE = 0,
1610 /* Task runs in userspace in a CPU with VTIME active */
6a61671b 1611 VTIME_USER,
7098c1ea 1612 /* Task runs in kernelspace in a CPU with VTIME active */
6a61671b
FW
1613 VTIME_SYS,
1614 } vtime_snap_whence;
d99ca3b9 1615#endif
d027d45d
FW
1616
1617#ifdef CONFIG_NO_HZ_FULL
f009a7a7 1618 atomic_t tick_dep_mask;
d027d45d 1619#endif
1da177e4 1620 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1621 u64 start_time; /* monotonic time in nsec */
57e0be04 1622 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1623/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1624 unsigned long min_flt, maj_flt;
1625
f06febc9 1626 struct task_cputime cputime_expires;
1da177e4
LT
1627 struct list_head cpu_timers[3];
1628
1629/* process credentials */
1b0ba1c9 1630 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1631 * credentials (COW) */
1b0ba1c9 1632 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1633 * credentials (COW) */
36772092
PBG
1634 char comm[TASK_COMM_LEN]; /* executable name excluding path
1635 - access with [gs]et_task_comm (which lock
1636 it with task_lock())
221af7f8 1637 - initialized normally by setup_new_exec */
1da177e4 1638/* file system info */
756daf26 1639 struct nameidata *nameidata;
3d5b6fcc 1640#ifdef CONFIG_SYSVIPC
1da177e4
LT
1641/* ipc stuff */
1642 struct sysv_sem sysvsem;
ab602f79 1643 struct sysv_shm sysvshm;
3d5b6fcc 1644#endif
e162b39a 1645#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1646/* hung task detection */
82a1fcb9
IM
1647 unsigned long last_switch_count;
1648#endif
1da177e4
LT
1649/* filesystem information */
1650 struct fs_struct *fs;
1651/* open file information */
1652 struct files_struct *files;
1651e14e 1653/* namespaces */
ab516013 1654 struct nsproxy *nsproxy;
1da177e4
LT
1655/* signal handlers */
1656 struct signal_struct *signal;
1657 struct sighand_struct *sighand;
1658
1659 sigset_t blocked, real_blocked;
f3de272b 1660 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1661 struct sigpending pending;
1662
1663 unsigned long sas_ss_sp;
1664 size_t sas_ss_size;
2a742138 1665 unsigned sas_ss_flags;
2e01fabe 1666
67d12145 1667 struct callback_head *task_works;
e73f8959 1668
1da177e4 1669 struct audit_context *audit_context;
bfef93a5 1670#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1671 kuid_t loginuid;
4746ec5b 1672 unsigned int sessionid;
bfef93a5 1673#endif
932ecebb 1674 struct seccomp seccomp;
1da177e4
LT
1675
1676/* Thread group tracking */
1677 u32 parent_exec_id;
1678 u32 self_exec_id;
58568d2a
MX
1679/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1680 * mempolicy */
1da177e4 1681 spinlock_t alloc_lock;
1da177e4 1682
b29739f9 1683 /* Protection of the PI data structures: */
1d615482 1684 raw_spinlock_t pi_lock;
b29739f9 1685
76751049
PZ
1686 struct wake_q_node wake_q;
1687
23f78d4a
IM
1688#ifdef CONFIG_RT_MUTEXES
1689 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1690 struct rb_root pi_waiters;
1691 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1692 /* Deadlock detection and priority inheritance handling */
1693 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1694#endif
1695
408894ee
IM
1696#ifdef CONFIG_DEBUG_MUTEXES
1697 /* mutex deadlock detection */
1698 struct mutex_waiter *blocked_on;
1699#endif
de30a2b3
IM
1700#ifdef CONFIG_TRACE_IRQFLAGS
1701 unsigned int irq_events;
de30a2b3 1702 unsigned long hardirq_enable_ip;
de30a2b3 1703 unsigned long hardirq_disable_ip;
fa1452e8 1704 unsigned int hardirq_enable_event;
de30a2b3 1705 unsigned int hardirq_disable_event;
fa1452e8
HS
1706 int hardirqs_enabled;
1707 int hardirq_context;
de30a2b3 1708 unsigned long softirq_disable_ip;
de30a2b3 1709 unsigned long softirq_enable_ip;
fa1452e8 1710 unsigned int softirq_disable_event;
de30a2b3 1711 unsigned int softirq_enable_event;
fa1452e8 1712 int softirqs_enabled;
de30a2b3
IM
1713 int softirq_context;
1714#endif
fbb9ce95 1715#ifdef CONFIG_LOCKDEP
bdb9441e 1716# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1717 u64 curr_chain_key;
1718 int lockdep_depth;
fbb9ce95 1719 unsigned int lockdep_recursion;
c7aceaba 1720 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1721 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1722#endif
c6d30853
AR
1723#ifdef CONFIG_UBSAN
1724 unsigned int in_ubsan;
1725#endif
408894ee 1726
1da177e4
LT
1727/* journalling filesystem info */
1728 void *journal_info;
1729
d89d8796 1730/* stacked block device info */
bddd87c7 1731 struct bio_list *bio_list;
d89d8796 1732
73c10101
JA
1733#ifdef CONFIG_BLOCK
1734/* stack plugging */
1735 struct blk_plug *plug;
1736#endif
1737
1da177e4
LT
1738/* VM state */
1739 struct reclaim_state *reclaim_state;
1740
1da177e4
LT
1741 struct backing_dev_info *backing_dev_info;
1742
1743 struct io_context *io_context;
1744
1745 unsigned long ptrace_message;
1746 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1747 struct task_io_accounting ioac;
8f0ab514 1748#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1749 u64 acct_rss_mem1; /* accumulated rss usage */
1750 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1751 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1752#endif
1753#ifdef CONFIG_CPUSETS
58568d2a 1754 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1755 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1756 int cpuset_mem_spread_rotor;
6adef3eb 1757 int cpuset_slab_spread_rotor;
1da177e4 1758#endif
ddbcc7e8 1759#ifdef CONFIG_CGROUPS
817929ec 1760 /* Control Group info protected by css_set_lock */
2c392b8c 1761 struct css_set __rcu *cgroups;
817929ec
PM
1762 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1763 struct list_head cg_list;
ddbcc7e8 1764#endif
42b2dd0a 1765#ifdef CONFIG_FUTEX
0771dfef 1766 struct robust_list_head __user *robust_list;
34f192c6
IM
1767#ifdef CONFIG_COMPAT
1768 struct compat_robust_list_head __user *compat_robust_list;
1769#endif
c87e2837
IM
1770 struct list_head pi_state_list;
1771 struct futex_pi_state *pi_state_cache;
c7aceaba 1772#endif
cdd6c482 1773#ifdef CONFIG_PERF_EVENTS
8dc85d54 1774 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1775 struct mutex perf_event_mutex;
1776 struct list_head perf_event_list;
a63eaf34 1777#endif
8f47b187
TG
1778#ifdef CONFIG_DEBUG_PREEMPT
1779 unsigned long preempt_disable_ip;
1780#endif
c7aceaba 1781#ifdef CONFIG_NUMA
58568d2a 1782 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1783 short il_next;
207205a2 1784 short pref_node_fork;
42b2dd0a 1785#endif
cbee9f88
PZ
1786#ifdef CONFIG_NUMA_BALANCING
1787 int numa_scan_seq;
cbee9f88 1788 unsigned int numa_scan_period;
598f0ec0 1789 unsigned int numa_scan_period_max;
de1c9ce6 1790 int numa_preferred_nid;
6b9a7460 1791 unsigned long numa_migrate_retry;
cbee9f88 1792 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1793 u64 last_task_numa_placement;
1794 u64 last_sum_exec_runtime;
cbee9f88 1795 struct callback_head numa_work;
f809ca9a 1796
8c8a743c
PZ
1797 struct list_head numa_entry;
1798 struct numa_group *numa_group;
1799
745d6147 1800 /*
44dba3d5
IM
1801 * numa_faults is an array split into four regions:
1802 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1803 * in this precise order.
1804 *
1805 * faults_memory: Exponential decaying average of faults on a per-node
1806 * basis. Scheduling placement decisions are made based on these
1807 * counts. The values remain static for the duration of a PTE scan.
1808 * faults_cpu: Track the nodes the process was running on when a NUMA
1809 * hinting fault was incurred.
1810 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1811 * during the current scan window. When the scan completes, the counts
1812 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1813 */
44dba3d5 1814 unsigned long *numa_faults;
83e1d2cd 1815 unsigned long total_numa_faults;
745d6147 1816
04bb2f94
RR
1817 /*
1818 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1819 * scan window were remote/local or failed to migrate. The task scan
1820 * period is adapted based on the locality of the faults with different
1821 * weights depending on whether they were shared or private faults
04bb2f94 1822 */
074c2381 1823 unsigned long numa_faults_locality[3];
04bb2f94 1824
b32e86b4 1825 unsigned long numa_pages_migrated;
cbee9f88
PZ
1826#endif /* CONFIG_NUMA_BALANCING */
1827
72b252ae
MG
1828#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1829 struct tlbflush_unmap_batch tlb_ubc;
1830#endif
1831
e56d0903 1832 struct rcu_head rcu;
b92ce558
JA
1833
1834 /*
1835 * cache last used pipe for splice
1836 */
1837 struct pipe_inode_info *splice_pipe;
5640f768
ED
1838
1839 struct page_frag task_frag;
1840
ca74e92b
SN
1841#ifdef CONFIG_TASK_DELAY_ACCT
1842 struct task_delay_info *delays;
f4f154fd
AM
1843#endif
1844#ifdef CONFIG_FAULT_INJECTION
1845 int make_it_fail;
ca74e92b 1846#endif
9d823e8f
WF
1847 /*
1848 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1849 * balance_dirty_pages() for some dirty throttling pause
1850 */
1851 int nr_dirtied;
1852 int nr_dirtied_pause;
83712358 1853 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1854
9745512c
AV
1855#ifdef CONFIG_LATENCYTOP
1856 int latency_record_count;
1857 struct latency_record latency_record[LT_SAVECOUNT];
1858#endif
6976675d
AV
1859 /*
1860 * time slack values; these are used to round up poll() and
1861 * select() etc timeout values. These are in nanoseconds.
1862 */
da8b44d5
JS
1863 u64 timer_slack_ns;
1864 u64 default_timer_slack_ns;
f8d570a4 1865
0b24becc
AR
1866#ifdef CONFIG_KASAN
1867 unsigned int kasan_depth;
1868#endif
fb52607a 1869#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1870 /* Index of current stored address in ret_stack */
f201ae23
FW
1871 int curr_ret_stack;
1872 /* Stack of return addresses for return function tracing */
1873 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1874 /* time stamp for last schedule */
1875 unsigned long long ftrace_timestamp;
f201ae23
FW
1876 /*
1877 * Number of functions that haven't been traced
1878 * because of depth overrun.
1879 */
1880 atomic_t trace_overrun;
380c4b14
FW
1881 /* Pause for the tracing */
1882 atomic_t tracing_graph_pause;
f201ae23 1883#endif
ea4e2bc4
SR
1884#ifdef CONFIG_TRACING
1885 /* state flags for use by tracers */
1886 unsigned long trace;
b1cff0ad 1887 /* bitmask and counter of trace recursion */
261842b7
SR
1888 unsigned long trace_recursion;
1889#endif /* CONFIG_TRACING */
5c9a8750
DV
1890#ifdef CONFIG_KCOV
1891 /* Coverage collection mode enabled for this task (0 if disabled). */
1892 enum kcov_mode kcov_mode;
1893 /* Size of the kcov_area. */
1894 unsigned kcov_size;
1895 /* Buffer for coverage collection. */
1896 void *kcov_area;
1897 /* kcov desciptor wired with this task or NULL. */
1898 struct kcov *kcov;
1899#endif
6f185c29 1900#ifdef CONFIG_MEMCG
626ebc41
TH
1901 struct mem_cgroup *memcg_in_oom;
1902 gfp_t memcg_oom_gfp_mask;
1903 int memcg_oom_order;
b23afb93
TH
1904
1905 /* number of pages to reclaim on returning to userland */
1906 unsigned int memcg_nr_pages_over_high;
569b846d 1907#endif
0326f5a9
SD
1908#ifdef CONFIG_UPROBES
1909 struct uprobe_task *utask;
0326f5a9 1910#endif
cafe5635
KO
1911#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1912 unsigned int sequential_io;
1913 unsigned int sequential_io_avg;
1914#endif
8eb23b9f
PZ
1915#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1916 unsigned long task_state_change;
1917#endif
8bcbde54 1918 int pagefault_disabled;
03049269 1919#ifdef CONFIG_MMU
29c696e1 1920 struct task_struct *oom_reaper_list;
03049269 1921#endif
0c8c0f03
DH
1922/* CPU-specific state of this task */
1923 struct thread_struct thread;
1924/*
1925 * WARNING: on x86, 'thread_struct' contains a variable-sized
1926 * structure. It *MUST* be at the end of 'task_struct'.
1927 *
1928 * Do not put anything below here!
1929 */
1da177e4
LT
1930};
1931
5aaeb5c0
IM
1932#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1933extern int arch_task_struct_size __read_mostly;
1934#else
1935# define arch_task_struct_size (sizeof(struct task_struct))
1936#endif
0c8c0f03 1937
76e6eee0 1938/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1939#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1940
50605ffb
TG
1941static inline int tsk_nr_cpus_allowed(struct task_struct *p)
1942{
1943 return p->nr_cpus_allowed;
1944}
1945
6688cc05
PZ
1946#define TNF_MIGRATED 0x01
1947#define TNF_NO_GROUP 0x02
dabe1d99 1948#define TNF_SHARED 0x04
04bb2f94 1949#define TNF_FAULT_LOCAL 0x08
074c2381 1950#define TNF_MIGRATE_FAIL 0x10
6688cc05 1951
cbee9f88 1952#ifdef CONFIG_NUMA_BALANCING
6688cc05 1953extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1954extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1955extern void set_numabalancing_state(bool enabled);
82727018 1956extern void task_numa_free(struct task_struct *p);
10f39042
RR
1957extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1958 int src_nid, int dst_cpu);
cbee9f88 1959#else
ac8e895b 1960static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1961 int flags)
cbee9f88
PZ
1962{
1963}
e29cf08b
MG
1964static inline pid_t task_numa_group_id(struct task_struct *p)
1965{
1966 return 0;
1967}
1a687c2e
MG
1968static inline void set_numabalancing_state(bool enabled)
1969{
1970}
82727018
RR
1971static inline void task_numa_free(struct task_struct *p)
1972{
1973}
10f39042
RR
1974static inline bool should_numa_migrate_memory(struct task_struct *p,
1975 struct page *page, int src_nid, int dst_cpu)
1976{
1977 return true;
1978}
cbee9f88
PZ
1979#endif
1980
e868171a 1981static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1982{
1983 return task->pids[PIDTYPE_PID].pid;
1984}
1985
e868171a 1986static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1987{
1988 return task->group_leader->pids[PIDTYPE_PID].pid;
1989}
1990
6dda81f4
ON
1991/*
1992 * Without tasklist or rcu lock it is not safe to dereference
1993 * the result of task_pgrp/task_session even if task == current,
1994 * we can race with another thread doing sys_setsid/sys_setpgid.
1995 */
e868171a 1996static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1997{
1998 return task->group_leader->pids[PIDTYPE_PGID].pid;
1999}
2000
e868171a 2001static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
2002{
2003 return task->group_leader->pids[PIDTYPE_SID].pid;
2004}
2005
7af57294
PE
2006struct pid_namespace;
2007
2008/*
2009 * the helpers to get the task's different pids as they are seen
2010 * from various namespaces
2011 *
2012 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
2013 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
2014 * current.
7af57294
PE
2015 * task_xid_nr_ns() : id seen from the ns specified;
2016 *
2017 * set_task_vxid() : assigns a virtual id to a task;
2018 *
7af57294
PE
2019 * see also pid_nr() etc in include/linux/pid.h
2020 */
52ee2dfd
ON
2021pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2022 struct pid_namespace *ns);
7af57294 2023
e868171a 2024static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
2025{
2026 return tsk->pid;
2027}
2028
52ee2dfd
ON
2029static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2030 struct pid_namespace *ns)
2031{
2032 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2033}
7af57294
PE
2034
2035static inline pid_t task_pid_vnr(struct task_struct *tsk)
2036{
52ee2dfd 2037 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
2038}
2039
2040
e868171a 2041static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
2042{
2043 return tsk->tgid;
2044}
2045
2f2a3a46 2046pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
2047
2048static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2049{
2050 return pid_vnr(task_tgid(tsk));
2051}
2052
2053
80e0b6e8 2054static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
2055static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2056{
2057 pid_t pid = 0;
2058
2059 rcu_read_lock();
2060 if (pid_alive(tsk))
2061 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2062 rcu_read_unlock();
2063
2064 return pid;
2065}
2066
2067static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2068{
2069 return task_ppid_nr_ns(tsk, &init_pid_ns);
2070}
2071
52ee2dfd
ON
2072static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2073 struct pid_namespace *ns)
7af57294 2074{
52ee2dfd 2075 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
2076}
2077
7af57294
PE
2078static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2079{
52ee2dfd 2080 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
2081}
2082
2083
52ee2dfd
ON
2084static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2085 struct pid_namespace *ns)
7af57294 2086{
52ee2dfd 2087 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
2088}
2089
7af57294
PE
2090static inline pid_t task_session_vnr(struct task_struct *tsk)
2091{
52ee2dfd 2092 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
2093}
2094
1b0f7ffd
ON
2095/* obsolete, do not use */
2096static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2097{
2098 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2099}
7af57294 2100
1da177e4
LT
2101/**
2102 * pid_alive - check that a task structure is not stale
2103 * @p: Task structure to be checked.
2104 *
2105 * Test if a process is not yet dead (at most zombie state)
2106 * If pid_alive fails, then pointers within the task structure
2107 * can be stale and must not be dereferenced.
e69f6186
YB
2108 *
2109 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 2110 */
ad36d282 2111static inline int pid_alive(const struct task_struct *p)
1da177e4 2112{
92476d7f 2113 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
2114}
2115
f400e198 2116/**
570f5241
SS
2117 * is_global_init - check if a task structure is init. Since init
2118 * is free to have sub-threads we need to check tgid.
3260259f
H
2119 * @tsk: Task structure to be checked.
2120 *
2121 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
2122 *
2123 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 2124 */
e868171a 2125static inline int is_global_init(struct task_struct *tsk)
b461cc03 2126{
570f5241 2127 return task_tgid_nr(tsk) == 1;
b461cc03 2128}
b460cbc5 2129
9ec52099
CLG
2130extern struct pid *cad_pid;
2131
1da177e4 2132extern void free_task(struct task_struct *tsk);
1da177e4 2133#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 2134
158d9ebd 2135extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
2136
2137static inline void put_task_struct(struct task_struct *t)
2138{
2139 if (atomic_dec_and_test(&t->usage))
8c7904a0 2140 __put_task_struct(t);
e56d0903 2141}
1da177e4 2142
150593bf
ON
2143struct task_struct *task_rcu_dereference(struct task_struct **ptask);
2144struct task_struct *try_get_task_struct(struct task_struct **ptask);
2145
6a61671b
FW
2146#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2147extern void task_cputime(struct task_struct *t,
2148 cputime_t *utime, cputime_t *stime);
2149extern void task_cputime_scaled(struct task_struct *t,
2150 cputime_t *utimescaled, cputime_t *stimescaled);
2151extern cputime_t task_gtime(struct task_struct *t);
2152#else
6fac4829
FW
2153static inline void task_cputime(struct task_struct *t,
2154 cputime_t *utime, cputime_t *stime)
2155{
2156 if (utime)
2157 *utime = t->utime;
2158 if (stime)
2159 *stime = t->stime;
2160}
2161
2162static inline void task_cputime_scaled(struct task_struct *t,
2163 cputime_t *utimescaled,
2164 cputime_t *stimescaled)
2165{
2166 if (utimescaled)
2167 *utimescaled = t->utimescaled;
2168 if (stimescaled)
2169 *stimescaled = t->stimescaled;
2170}
6a61671b
FW
2171
2172static inline cputime_t task_gtime(struct task_struct *t)
2173{
2174 return t->gtime;
2175}
2176#endif
e80d0a1a
FW
2177extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2178extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2179
1da177e4
LT
2180/*
2181 * Per process flags
2182 */
1da177e4 2183#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2184#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2185#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2186#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2187#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2188#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2189#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2190#define PF_DUMPCORE 0x00000200 /* dumped core */
2191#define PF_SIGNALED 0x00000400 /* killed by a signal */
2192#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2193#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2194#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2195#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2196#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2197#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2198#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2199#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2200#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2201#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2202#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2203#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2204#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2205#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2206#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2207#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2208#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2209#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2210
2211/*
2212 * Only the _current_ task can read/write to tsk->flags, but other
2213 * tasks can access tsk->flags in readonly mode for example
2214 * with tsk_used_math (like during threaded core dumping).
2215 * There is however an exception to this rule during ptrace
2216 * or during fork: the ptracer task is allowed to write to the
2217 * child->flags of its traced child (same goes for fork, the parent
2218 * can write to the child->flags), because we're guaranteed the
2219 * child is not running and in turn not changing child->flags
2220 * at the same time the parent does it.
2221 */
2222#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2223#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2224#define clear_used_math() clear_stopped_child_used_math(current)
2225#define set_used_math() set_stopped_child_used_math(current)
2226#define conditional_stopped_child_used_math(condition, child) \
2227 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2228#define conditional_used_math(condition) \
2229 conditional_stopped_child_used_math(condition, current)
2230#define copy_to_stopped_child_used_math(child) \
2231 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2232/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2233#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2234#define used_math() tsk_used_math(current)
2235
934f3072
JB
2236/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2237 * __GFP_FS is also cleared as it implies __GFP_IO.
2238 */
21caf2fc
ML
2239static inline gfp_t memalloc_noio_flags(gfp_t flags)
2240{
2241 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2242 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2243 return flags;
2244}
2245
2246static inline unsigned int memalloc_noio_save(void)
2247{
2248 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2249 current->flags |= PF_MEMALLOC_NOIO;
2250 return flags;
2251}
2252
2253static inline void memalloc_noio_restore(unsigned int flags)
2254{
2255 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2256}
2257
1d4457f9 2258/* Per-process atomic flags. */
a2b86f77 2259#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2260#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2261#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
77ed2c57 2262#define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */
2ad654bc 2263
1d4457f9 2264
e0e5070b
ZL
2265#define TASK_PFA_TEST(name, func) \
2266 static inline bool task_##func(struct task_struct *p) \
2267 { return test_bit(PFA_##name, &p->atomic_flags); }
2268#define TASK_PFA_SET(name, func) \
2269 static inline void task_set_##func(struct task_struct *p) \
2270 { set_bit(PFA_##name, &p->atomic_flags); }
2271#define TASK_PFA_CLEAR(name, func) \
2272 static inline void task_clear_##func(struct task_struct *p) \
2273 { clear_bit(PFA_##name, &p->atomic_flags); }
2274
2275TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2276TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2277
2ad654bc
ZL
2278TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2279TASK_PFA_SET(SPREAD_PAGE, spread_page)
2280TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2281
2282TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2283TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2284TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2285
77ed2c57
TH
2286TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2287TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2288
e5c1902e 2289/*
a8f072c1 2290 * task->jobctl flags
e5c1902e 2291 */
a8f072c1 2292#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2293
a8f072c1
TH
2294#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2295#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2296#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2297#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2298#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2299#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2300#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2301
b76808e6
PD
2302#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2303#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2304#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2305#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2306#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2307#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2308#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2309
fb1d910c 2310#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2311#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2312
7dd3db54 2313extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2314 unsigned long mask);
73ddff2b 2315extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2316extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2317 unsigned long mask);
39efa3ef 2318
f41d911f
PM
2319static inline void rcu_copy_process(struct task_struct *p)
2320{
8315f422 2321#ifdef CONFIG_PREEMPT_RCU
f41d911f 2322 p->rcu_read_lock_nesting = 0;
1d082fd0 2323 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2324 p->rcu_blocked_node = NULL;
f41d911f 2325 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2326#endif /* #ifdef CONFIG_PREEMPT_RCU */
2327#ifdef CONFIG_TASKS_RCU
2328 p->rcu_tasks_holdout = false;
2329 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2330 p->rcu_tasks_idle_cpu = -1;
8315f422 2331#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2332}
2333
907aed48
MG
2334static inline void tsk_restore_flags(struct task_struct *task,
2335 unsigned long orig_flags, unsigned long flags)
2336{
2337 task->flags &= ~flags;
2338 task->flags |= orig_flags & flags;
2339}
2340
f82f8042
JL
2341extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2342 const struct cpumask *trial);
7f51412a
JL
2343extern int task_can_attach(struct task_struct *p,
2344 const struct cpumask *cs_cpus_allowed);
1da177e4 2345#ifdef CONFIG_SMP
1e1b6c51
KM
2346extern void do_set_cpus_allowed(struct task_struct *p,
2347 const struct cpumask *new_mask);
2348
cd8ba7cd 2349extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2350 const struct cpumask *new_mask);
1da177e4 2351#else
1e1b6c51
KM
2352static inline void do_set_cpus_allowed(struct task_struct *p,
2353 const struct cpumask *new_mask)
2354{
2355}
cd8ba7cd 2356static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2357 const struct cpumask *new_mask)
1da177e4 2358{
96f874e2 2359 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2360 return -EINVAL;
2361 return 0;
2362}
2363#endif
e0ad9556 2364
3451d024 2365#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2366void calc_load_enter_idle(void);
2367void calc_load_exit_idle(void);
2368#else
2369static inline void calc_load_enter_idle(void) { }
2370static inline void calc_load_exit_idle(void) { }
3451d024 2371#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2372
b342501c 2373/*
c676329a
PZ
2374 * Do not use outside of architecture code which knows its limitations.
2375 *
2376 * sched_clock() has no promise of monotonicity or bounded drift between
2377 * CPUs, use (which you should not) requires disabling IRQs.
2378 *
2379 * Please use one of the three interfaces below.
b342501c 2380 */
1bbfa6f2 2381extern unsigned long long notrace sched_clock(void);
c676329a 2382/*
489a71b0 2383 * See the comment in kernel/sched/clock.c
c676329a 2384 */
545a2bf7 2385extern u64 running_clock(void);
c676329a
PZ
2386extern u64 sched_clock_cpu(int cpu);
2387
e436d800 2388
c1955a3d 2389extern void sched_clock_init(void);
3e51f33f 2390
c1955a3d 2391#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2392static inline void sched_clock_tick(void)
2393{
2394}
2395
2396static inline void sched_clock_idle_sleep_event(void)
2397{
2398}
2399
2400static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2401{
2402}
2c923e94
DL
2403
2404static inline u64 cpu_clock(int cpu)
2405{
2406 return sched_clock();
2407}
2408
2409static inline u64 local_clock(void)
2410{
2411 return sched_clock();
2412}
3e51f33f 2413#else
c676329a
PZ
2414/*
2415 * Architectures can set this to 1 if they have specified
2416 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2417 * but then during bootup it turns out that sched_clock()
2418 * is reliable after all:
2419 */
35af99e6
PZ
2420extern int sched_clock_stable(void);
2421extern void set_sched_clock_stable(void);
2422extern void clear_sched_clock_stable(void);
c676329a 2423
3e51f33f
PZ
2424extern void sched_clock_tick(void);
2425extern void sched_clock_idle_sleep_event(void);
2426extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2c923e94
DL
2427
2428/*
2429 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2430 * time source that is monotonic per cpu argument and has bounded drift
2431 * between cpus.
2432 *
2433 * ######################### BIG FAT WARNING ##########################
2434 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2435 * # go backwards !! #
2436 * ####################################################################
2437 */
2438static inline u64 cpu_clock(int cpu)
2439{
2440 return sched_clock_cpu(cpu);
2441}
2442
2443static inline u64 local_clock(void)
2444{
2445 return sched_clock_cpu(raw_smp_processor_id());
2446}
3e51f33f
PZ
2447#endif
2448
b52bfee4
VP
2449#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2450/*
2451 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2452 * The reason for this explicit opt-in is not to have perf penalty with
2453 * slow sched_clocks.
2454 */
2455extern void enable_sched_clock_irqtime(void);
2456extern void disable_sched_clock_irqtime(void);
2457#else
2458static inline void enable_sched_clock_irqtime(void) {}
2459static inline void disable_sched_clock_irqtime(void) {}
2460#endif
2461
36c8b586 2462extern unsigned long long
41b86e9c 2463task_sched_runtime(struct task_struct *task);
1da177e4
LT
2464
2465/* sched_exec is called by processes performing an exec */
2466#ifdef CONFIG_SMP
2467extern void sched_exec(void);
2468#else
2469#define sched_exec() {}
2470#endif
2471
2aa44d05
IM
2472extern void sched_clock_idle_sleep_event(void);
2473extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2474
1da177e4
LT
2475#ifdef CONFIG_HOTPLUG_CPU
2476extern void idle_task_exit(void);
2477#else
2478static inline void idle_task_exit(void) {}
2479#endif
2480
3451d024 2481#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2482extern void wake_up_nohz_cpu(int cpu);
06d8308c 2483#else
1c20091e 2484static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2485#endif
2486
ce831b38 2487#ifdef CONFIG_NO_HZ_FULL
265f22a9 2488extern u64 scheduler_tick_max_deferment(void);
06d8308c
TG
2489#endif
2490
5091faa4 2491#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2492extern void sched_autogroup_create_attach(struct task_struct *p);
2493extern void sched_autogroup_detach(struct task_struct *p);
2494extern void sched_autogroup_fork(struct signal_struct *sig);
2495extern void sched_autogroup_exit(struct signal_struct *sig);
2496#ifdef CONFIG_PROC_FS
2497extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2498extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2499#endif
2500#else
2501static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2502static inline void sched_autogroup_detach(struct task_struct *p) { }
2503static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2504static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2505#endif
2506
fa93384f 2507extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2508extern void set_user_nice(struct task_struct *p, long nice);
2509extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2510/**
2511 * task_nice - return the nice value of a given task.
2512 * @p: the task in question.
2513 *
2514 * Return: The nice value [ -20 ... 0 ... 19 ].
2515 */
2516static inline int task_nice(const struct task_struct *p)
2517{
2518 return PRIO_TO_NICE((p)->static_prio);
2519}
36c8b586
IM
2520extern int can_nice(const struct task_struct *p, const int nice);
2521extern int task_curr(const struct task_struct *p);
1da177e4 2522extern int idle_cpu(int cpu);
fe7de49f
KM
2523extern int sched_setscheduler(struct task_struct *, int,
2524 const struct sched_param *);
961ccddd 2525extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2526 const struct sched_param *);
d50dde5a
DF
2527extern int sched_setattr(struct task_struct *,
2528 const struct sched_attr *);
36c8b586 2529extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2530/**
2531 * is_idle_task - is the specified task an idle task?
fa757281 2532 * @p: the task in question.
e69f6186
YB
2533 *
2534 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2535 */
7061ca3b 2536static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2537{
2538 return p->pid == 0;
2539}
36c8b586
IM
2540extern struct task_struct *curr_task(int cpu);
2541extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2542
2543void yield(void);
2544
1da177e4
LT
2545union thread_union {
2546 struct thread_info thread_info;
2547 unsigned long stack[THREAD_SIZE/sizeof(long)];
2548};
2549
2550#ifndef __HAVE_ARCH_KSTACK_END
2551static inline int kstack_end(void *addr)
2552{
2553 /* Reliable end of stack detection:
2554 * Some APM bios versions misalign the stack
2555 */
2556 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2557}
2558#endif
2559
2560extern union thread_union init_thread_union;
2561extern struct task_struct init_task;
2562
2563extern struct mm_struct init_mm;
2564
198fe21b
PE
2565extern struct pid_namespace init_pid_ns;
2566
2567/*
2568 * find a task by one of its numerical ids
2569 *
198fe21b
PE
2570 * find_task_by_pid_ns():
2571 * finds a task by its pid in the specified namespace
228ebcbe
PE
2572 * find_task_by_vpid():
2573 * finds a task by its virtual pid
198fe21b 2574 *
e49859e7 2575 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2576 */
2577
228ebcbe
PE
2578extern struct task_struct *find_task_by_vpid(pid_t nr);
2579extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2580 struct pid_namespace *ns);
198fe21b 2581
1da177e4 2582/* per-UID process charging. */
7b44ab97 2583extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2584static inline struct user_struct *get_uid(struct user_struct *u)
2585{
2586 atomic_inc(&u->__count);
2587 return u;
2588}
2589extern void free_uid(struct user_struct *);
1da177e4
LT
2590
2591#include <asm/current.h>
2592
f0af911a 2593extern void xtime_update(unsigned long ticks);
1da177e4 2594
b3c97528
HH
2595extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2596extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2597extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2598#ifdef CONFIG_SMP
2599 extern void kick_process(struct task_struct *tsk);
2600#else
2601 static inline void kick_process(struct task_struct *tsk) { }
2602#endif
aab03e05 2603extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2604extern void sched_dead(struct task_struct *p);
1da177e4 2605
1da177e4
LT
2606extern void proc_caches_init(void);
2607extern void flush_signals(struct task_struct *);
10ab825b 2608extern void ignore_signals(struct task_struct *);
1da177e4
LT
2609extern void flush_signal_handlers(struct task_struct *, int force_default);
2610extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2611
be0e6f29 2612static inline int kernel_dequeue_signal(siginfo_t *info)
1da177e4 2613{
be0e6f29
ON
2614 struct task_struct *tsk = current;
2615 siginfo_t __info;
1da177e4
LT
2616 int ret;
2617
be0e6f29
ON
2618 spin_lock_irq(&tsk->sighand->siglock);
2619 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2620 spin_unlock_irq(&tsk->sighand->siglock);
1da177e4
LT
2621
2622 return ret;
53c8f9f1 2623}
1da177e4 2624
9a13049e
ON
2625static inline void kernel_signal_stop(void)
2626{
2627 spin_lock_irq(&current->sighand->siglock);
2628 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2629 __set_current_state(TASK_STOPPED);
2630 spin_unlock_irq(&current->sighand->siglock);
2631
2632 schedule();
2633}
2634
1da177e4
LT
2635extern void release_task(struct task_struct * p);
2636extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2637extern int force_sigsegv(int, struct task_struct *);
2638extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2639extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2640extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2641extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2642 const struct cred *, u32);
c4b92fc1
EB
2643extern int kill_pgrp(struct pid *pid, int sig, int priv);
2644extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2645extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2646extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2647extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2648extern void force_sig(int, struct task_struct *);
1da177e4 2649extern int send_sig(int, struct task_struct *, int);
09faef11 2650extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2651extern struct sigqueue *sigqueue_alloc(void);
2652extern void sigqueue_free(struct sigqueue *);
ac5c2153 2653extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2654extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2655
51a7b448
AV
2656static inline void restore_saved_sigmask(void)
2657{
2658 if (test_and_clear_restore_sigmask())
77097ae5 2659 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2660}
2661
b7f9a11a
AV
2662static inline sigset_t *sigmask_to_save(void)
2663{
2664 sigset_t *res = &current->blocked;
2665 if (unlikely(test_restore_sigmask()))
2666 res = &current->saved_sigmask;
2667 return res;
2668}
2669
9ec52099
CLG
2670static inline int kill_cad_pid(int sig, int priv)
2671{
2672 return kill_pid(cad_pid, sig, priv);
2673}
2674
1da177e4
LT
2675/* These can be the second arg to send_sig_info/send_group_sig_info. */
2676#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2677#define SEND_SIG_PRIV ((struct siginfo *) 1)
2678#define SEND_SIG_FORCED ((struct siginfo *) 2)
2679
2a855dd0
SAS
2680/*
2681 * True if we are on the alternate signal stack.
2682 */
1da177e4
LT
2683static inline int on_sig_stack(unsigned long sp)
2684{
c876eeab
AL
2685 /*
2686 * If the signal stack is SS_AUTODISARM then, by construction, we
2687 * can't be on the signal stack unless user code deliberately set
2688 * SS_AUTODISARM when we were already on it.
2689 *
2690 * This improves reliability: if user state gets corrupted such that
2691 * the stack pointer points very close to the end of the signal stack,
2692 * then this check will enable the signal to be handled anyway.
2693 */
2694 if (current->sas_ss_flags & SS_AUTODISARM)
2695 return 0;
2696
2a855dd0
SAS
2697#ifdef CONFIG_STACK_GROWSUP
2698 return sp >= current->sas_ss_sp &&
2699 sp - current->sas_ss_sp < current->sas_ss_size;
2700#else
2701 return sp > current->sas_ss_sp &&
2702 sp - current->sas_ss_sp <= current->sas_ss_size;
2703#endif
1da177e4
LT
2704}
2705
2706static inline int sas_ss_flags(unsigned long sp)
2707{
72f15c03
RW
2708 if (!current->sas_ss_size)
2709 return SS_DISABLE;
2710
2711 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2712}
2713
2a742138
SS
2714static inline void sas_ss_reset(struct task_struct *p)
2715{
2716 p->sas_ss_sp = 0;
2717 p->sas_ss_size = 0;
2718 p->sas_ss_flags = SS_DISABLE;
2719}
2720
5a1b98d3
AV
2721static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2722{
2723 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2724#ifdef CONFIG_STACK_GROWSUP
2725 return current->sas_ss_sp;
2726#else
2727 return current->sas_ss_sp + current->sas_ss_size;
2728#endif
2729 return sp;
2730}
2731
1da177e4
LT
2732/*
2733 * Routines for handling mm_structs
2734 */
2735extern struct mm_struct * mm_alloc(void);
2736
2737/* mmdrop drops the mm and the page tables */
b3c97528 2738extern void __mmdrop(struct mm_struct *);
d2005e3f 2739static inline void mmdrop(struct mm_struct *mm)
1da177e4 2740{
6fb43d7b 2741 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2742 __mmdrop(mm);
2743}
2744
d2005e3f
ON
2745static inline bool mmget_not_zero(struct mm_struct *mm)
2746{
2747 return atomic_inc_not_zero(&mm->mm_users);
2748}
2749
1da177e4
LT
2750/* mmput gets rid of the mappings and all user-space */
2751extern void mmput(struct mm_struct *);
7ef949d7
MH
2752#ifdef CONFIG_MMU
2753/* same as above but performs the slow path from the async context. Can
ec8d7c14
MH
2754 * be called from the atomic context as well
2755 */
2756extern void mmput_async(struct mm_struct *);
7ef949d7 2757#endif
ec8d7c14 2758
1da177e4
LT
2759/* Grab a reference to a task's mm, if it is not already going away */
2760extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2761/*
2762 * Grab a reference to a task's mm, if it is not already going away
2763 * and ptrace_may_access with the mode parameter passed to it
2764 * succeeds.
2765 */
2766extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2767/* Remove the current tasks stale references to the old mm_struct */
2768extern void mm_release(struct task_struct *, struct mm_struct *);
2769
3033f14a
JT
2770#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2771extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2772 struct task_struct *, unsigned long);
2773#else
6f2c55b8 2774extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2775 struct task_struct *);
3033f14a
JT
2776
2777/* Architectures that haven't opted into copy_thread_tls get the tls argument
2778 * via pt_regs, so ignore the tls argument passed via C. */
2779static inline int copy_thread_tls(
2780 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2781 struct task_struct *p, unsigned long tls)
2782{
2783 return copy_thread(clone_flags, sp, arg, p);
2784}
2785#endif
1da177e4 2786extern void flush_thread(void);
5f56a5df
JS
2787
2788#ifdef CONFIG_HAVE_EXIT_THREAD
e6464694 2789extern void exit_thread(struct task_struct *tsk);
5f56a5df 2790#else
e6464694 2791static inline void exit_thread(struct task_struct *tsk)
5f56a5df
JS
2792{
2793}
2794#endif
1da177e4 2795
1da177e4 2796extern void exit_files(struct task_struct *);
a7e5328a 2797extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2798
1da177e4 2799extern void exit_itimers(struct signal_struct *);
cbaffba1 2800extern void flush_itimer_signals(void);
1da177e4 2801
9402c95f 2802extern void do_group_exit(int);
1da177e4 2803
c4ad8f98 2804extern int do_execve(struct filename *,
d7627467 2805 const char __user * const __user *,
da3d4c5f 2806 const char __user * const __user *);
51f39a1f
DD
2807extern int do_execveat(int, struct filename *,
2808 const char __user * const __user *,
2809 const char __user * const __user *,
2810 int);
3033f14a 2811extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 2812extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2813struct task_struct *fork_idle(int);
2aa3a7f8 2814extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2815
82b89778
AH
2816extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2817static inline void set_task_comm(struct task_struct *tsk, const char *from)
2818{
2819 __set_task_comm(tsk, from, false);
2820}
59714d65 2821extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2822
2823#ifdef CONFIG_SMP
317f3941 2824void scheduler_ipi(void);
85ba2d86 2825extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2826#else
184748cc 2827static inline void scheduler_ipi(void) { }
85ba2d86
RM
2828static inline unsigned long wait_task_inactive(struct task_struct *p,
2829 long match_state)
2830{
2831 return 1;
2832}
1da177e4
LT
2833#endif
2834
fafe870f
FW
2835#define tasklist_empty() \
2836 list_empty(&init_task.tasks)
2837
05725f7e
JP
2838#define next_task(p) \
2839 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2840
2841#define for_each_process(p) \
2842 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2843
5bb459bb 2844extern bool current_is_single_threaded(void);
d84f4f99 2845
1da177e4
LT
2846/*
2847 * Careful: do_each_thread/while_each_thread is a double loop so
2848 * 'break' will not work as expected - use goto instead.
2849 */
2850#define do_each_thread(g, t) \
2851 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2852
2853#define while_each_thread(g, t) \
2854 while ((t = next_thread(t)) != g)
2855
0c740d0a
ON
2856#define __for_each_thread(signal, t) \
2857 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2858
2859#define for_each_thread(p, t) \
2860 __for_each_thread((p)->signal, t)
2861
2862/* Careful: this is a double loop, 'break' won't work as expected. */
2863#define for_each_process_thread(p, t) \
2864 for_each_process(p) for_each_thread(p, t)
2865
7e49827c
ON
2866static inline int get_nr_threads(struct task_struct *tsk)
2867{
b3ac022c 2868 return tsk->signal->nr_threads;
7e49827c
ON
2869}
2870
087806b1
ON
2871static inline bool thread_group_leader(struct task_struct *p)
2872{
2873 return p->exit_signal >= 0;
2874}
1da177e4 2875
0804ef4b
EB
2876/* Do to the insanities of de_thread it is possible for a process
2877 * to have the pid of the thread group leader without actually being
2878 * the thread group leader. For iteration through the pids in proc
2879 * all we care about is that we have a task with the appropriate
2880 * pid, we don't actually care if we have the right task.
2881 */
e1403b8e 2882static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2883{
e1403b8e 2884 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2885}
2886
bac0abd6 2887static inline
e1403b8e 2888bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2889{
e1403b8e 2890 return p1->signal == p2->signal;
bac0abd6
PE
2891}
2892
36c8b586 2893static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2894{
05725f7e
JP
2895 return list_entry_rcu(p->thread_group.next,
2896 struct task_struct, thread_group);
47e65328
ON
2897}
2898
e868171a 2899static inline int thread_group_empty(struct task_struct *p)
1da177e4 2900{
47e65328 2901 return list_empty(&p->thread_group);
1da177e4
LT
2902}
2903
2904#define delay_group_leader(p) \
2905 (thread_group_leader(p) && !thread_group_empty(p))
2906
1da177e4 2907/*
260ea101 2908 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2909 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2910 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2911 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2912 *
2913 * Nests both inside and outside of read_lock(&tasklist_lock).
2914 * It must not be nested with write_lock_irq(&tasklist_lock),
2915 * neither inside nor outside.
2916 */
2917static inline void task_lock(struct task_struct *p)
2918{
2919 spin_lock(&p->alloc_lock);
2920}
2921
2922static inline void task_unlock(struct task_struct *p)
2923{
2924 spin_unlock(&p->alloc_lock);
2925}
2926
b8ed374e 2927extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2928 unsigned long *flags);
2929
9388dc30
AV
2930static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2931 unsigned long *flags)
2932{
2933 struct sighand_struct *ret;
2934
2935 ret = __lock_task_sighand(tsk, flags);
2936 (void)__cond_lock(&tsk->sighand->siglock, ret);
2937 return ret;
2938}
b8ed374e 2939
f63ee72e
ON
2940static inline void unlock_task_sighand(struct task_struct *tsk,
2941 unsigned long *flags)
2942{
2943 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2944}
2945
77e4ef99 2946/**
7d7efec3
TH
2947 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2948 * @tsk: task causing the changes
77e4ef99 2949 *
7d7efec3
TH
2950 * All operations which modify a threadgroup - a new thread joining the
2951 * group, death of a member thread (the assertion of PF_EXITING) and
2952 * exec(2) dethreading the process and replacing the leader - are wrapped
2953 * by threadgroup_change_{begin|end}(). This is to provide a place which
2954 * subsystems needing threadgroup stability can hook into for
2955 * synchronization.
77e4ef99 2956 */
7d7efec3 2957static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2958{
7d7efec3
TH
2959 might_sleep();
2960 cgroup_threadgroup_change_begin(tsk);
4714d1d3 2961}
77e4ef99
TH
2962
2963/**
7d7efec3
TH
2964 * threadgroup_change_end - mark the end of changes to a threadgroup
2965 * @tsk: task causing the changes
77e4ef99 2966 *
7d7efec3 2967 * See threadgroup_change_begin().
77e4ef99 2968 */
7d7efec3 2969static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2970{
7d7efec3 2971 cgroup_threadgroup_change_end(tsk);
4714d1d3 2972}
4714d1d3 2973
f037360f
AV
2974#ifndef __HAVE_THREAD_FUNCTIONS
2975
f7e4217b
RZ
2976#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2977#define task_stack_page(task) ((task)->stack)
a1261f54 2978
10ebffde
AV
2979static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2980{
2981 *task_thread_info(p) = *task_thread_info(org);
2982 task_thread_info(p)->task = p;
2983}
2984
6a40281a
CE
2985/*
2986 * Return the address of the last usable long on the stack.
2987 *
2988 * When the stack grows down, this is just above the thread
2989 * info struct. Going any lower will corrupt the threadinfo.
2990 *
2991 * When the stack grows up, this is the highest address.
2992 * Beyond that position, we corrupt data on the next page.
2993 */
10ebffde
AV
2994static inline unsigned long *end_of_stack(struct task_struct *p)
2995{
6a40281a
CE
2996#ifdef CONFIG_STACK_GROWSUP
2997 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2998#else
f7e4217b 2999 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 3000#endif
10ebffde
AV
3001}
3002
f037360f 3003#endif
a70857e4
AT
3004#define task_stack_end_corrupted(task) \
3005 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 3006
8b05c7e6
FT
3007static inline int object_is_on_stack(void *obj)
3008{
3009 void *stack = task_stack_page(current);
3010
3011 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3012}
3013
b235beea 3014extern void thread_stack_cache_init(void);
8c9843e5 3015
7c9f8861
ES
3016#ifdef CONFIG_DEBUG_STACK_USAGE
3017static inline unsigned long stack_not_used(struct task_struct *p)
3018{
3019 unsigned long *n = end_of_stack(p);
3020
3021 do { /* Skip over canary */
6c31da34
HD
3022# ifdef CONFIG_STACK_GROWSUP
3023 n--;
3024# else
7c9f8861 3025 n++;
6c31da34 3026# endif
7c9f8861
ES
3027 } while (!*n);
3028
6c31da34
HD
3029# ifdef CONFIG_STACK_GROWSUP
3030 return (unsigned long)end_of_stack(p) - (unsigned long)n;
3031# else
7c9f8861 3032 return (unsigned long)n - (unsigned long)end_of_stack(p);
6c31da34 3033# endif
7c9f8861
ES
3034}
3035#endif
d4311ff1 3036extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 3037
1da177e4
LT
3038/* set thread flags in other task's structures
3039 * - see asm/thread_info.h for TIF_xxxx flags available
3040 */
3041static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3042{
a1261f54 3043 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3044}
3045
3046static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3047{
a1261f54 3048 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3049}
3050
3051static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3052{
a1261f54 3053 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3054}
3055
3056static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3057{
a1261f54 3058 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3059}
3060
3061static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3062{
a1261f54 3063 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3064}
3065
3066static inline void set_tsk_need_resched(struct task_struct *tsk)
3067{
3068 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3069}
3070
3071static inline void clear_tsk_need_resched(struct task_struct *tsk)
3072{
3073 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3074}
3075
8ae121ac
GH
3076static inline int test_tsk_need_resched(struct task_struct *tsk)
3077{
3078 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3079}
3080
690cc3ff
EB
3081static inline int restart_syscall(void)
3082{
3083 set_tsk_thread_flag(current, TIF_SIGPENDING);
3084 return -ERESTARTNOINTR;
3085}
3086
1da177e4
LT
3087static inline int signal_pending(struct task_struct *p)
3088{
3089 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3090}
f776d12d 3091
d9588725
RM
3092static inline int __fatal_signal_pending(struct task_struct *p)
3093{
3094 return unlikely(sigismember(&p->pending.signal, SIGKILL));
3095}
f776d12d
MW
3096
3097static inline int fatal_signal_pending(struct task_struct *p)
3098{
3099 return signal_pending(p) && __fatal_signal_pending(p);
3100}
3101
16882c1e
ON
3102static inline int signal_pending_state(long state, struct task_struct *p)
3103{
3104 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3105 return 0;
3106 if (!signal_pending(p))
3107 return 0;
3108
16882c1e
ON
3109 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3110}
3111
1da177e4
LT
3112/*
3113 * cond_resched() and cond_resched_lock(): latency reduction via
3114 * explicit rescheduling in places that are safe. The return
3115 * value indicates whether a reschedule was done in fact.
3116 * cond_resched_lock() will drop the spinlock before scheduling,
3117 * cond_resched_softirq() will enable bhs before scheduling.
3118 */
c3921ab7 3119extern int _cond_resched(void);
6f80bd98 3120
613afbf8 3121#define cond_resched() ({ \
3427445a 3122 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
3123 _cond_resched(); \
3124})
6f80bd98 3125
613afbf8
FW
3126extern int __cond_resched_lock(spinlock_t *lock);
3127
3128#define cond_resched_lock(lock) ({ \
3427445a 3129 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
3130 __cond_resched_lock(lock); \
3131})
3132
3133extern int __cond_resched_softirq(void);
3134
75e1056f 3135#define cond_resched_softirq() ({ \
3427445a 3136 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 3137 __cond_resched_softirq(); \
613afbf8 3138})
1da177e4 3139
f6f3c437
SH
3140static inline void cond_resched_rcu(void)
3141{
3142#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3143 rcu_read_unlock();
3144 cond_resched();
3145 rcu_read_lock();
3146#endif
3147}
3148
1da177e4
LT
3149/*
3150 * Does a critical section need to be broken due to another
95c354fe
NP
3151 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3152 * but a general need for low latency)
1da177e4 3153 */
95c354fe 3154static inline int spin_needbreak(spinlock_t *lock)
1da177e4 3155{
95c354fe
NP
3156#ifdef CONFIG_PREEMPT
3157 return spin_is_contended(lock);
3158#else
1da177e4 3159 return 0;
95c354fe 3160#endif
1da177e4
LT
3161}
3162
ee761f62
TG
3163/*
3164 * Idle thread specific functions to determine the need_resched
69dd0f84 3165 * polling state.
ee761f62 3166 */
69dd0f84 3167#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
3168static inline int tsk_is_polling(struct task_struct *p)
3169{
3170 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3171}
ea811747
PZ
3172
3173static inline void __current_set_polling(void)
3a98f871
TG
3174{
3175 set_thread_flag(TIF_POLLING_NRFLAG);
3176}
3177
ea811747
PZ
3178static inline bool __must_check current_set_polling_and_test(void)
3179{
3180 __current_set_polling();
3181
3182 /*
3183 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3184 * paired by resched_curr()
ea811747 3185 */
4e857c58 3186 smp_mb__after_atomic();
ea811747
PZ
3187
3188 return unlikely(tif_need_resched());
3189}
3190
3191static inline void __current_clr_polling(void)
3a98f871
TG
3192{
3193 clear_thread_flag(TIF_POLLING_NRFLAG);
3194}
ea811747
PZ
3195
3196static inline bool __must_check current_clr_polling_and_test(void)
3197{
3198 __current_clr_polling();
3199
3200 /*
3201 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3202 * paired by resched_curr()
ea811747 3203 */
4e857c58 3204 smp_mb__after_atomic();
ea811747
PZ
3205
3206 return unlikely(tif_need_resched());
3207}
3208
ee761f62
TG
3209#else
3210static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
3211static inline void __current_set_polling(void) { }
3212static inline void __current_clr_polling(void) { }
3213
3214static inline bool __must_check current_set_polling_and_test(void)
3215{
3216 return unlikely(tif_need_resched());
3217}
3218static inline bool __must_check current_clr_polling_and_test(void)
3219{
3220 return unlikely(tif_need_resched());
3221}
ee761f62
TG
3222#endif
3223
8cb75e0c
PZ
3224static inline void current_clr_polling(void)
3225{
3226 __current_clr_polling();
3227
3228 /*
3229 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3230 * Once the bit is cleared, we'll get IPIs with every new
3231 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3232 * fold.
3233 */
8875125e 3234 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3235
3236 preempt_fold_need_resched();
3237}
3238
75f93fed
PZ
3239static __always_inline bool need_resched(void)
3240{
3241 return unlikely(tif_need_resched());
3242}
3243
f06febc9
FM
3244/*
3245 * Thread group CPU time accounting.
3246 */
4cd4c1b4 3247void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3248void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3249
7bb44ade
RM
3250/*
3251 * Reevaluate whether the task has signals pending delivery.
3252 * Wake the task if so.
3253 * This is required every time the blocked sigset_t changes.
3254 * callers must hold sighand->siglock.
3255 */
3256extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3257extern void recalc_sigpending(void);
3258
910ffdb1
ON
3259extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3260
3261static inline void signal_wake_up(struct task_struct *t, bool resume)
3262{
3263 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3264}
3265static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3266{
3267 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3268}
1da177e4
LT
3269
3270/*
3271 * Wrappers for p->thread_info->cpu access. No-op on UP.
3272 */
3273#ifdef CONFIG_SMP
3274
3275static inline unsigned int task_cpu(const struct task_struct *p)
3276{
a1261f54 3277 return task_thread_info(p)->cpu;
1da177e4
LT
3278}
3279
b32e86b4
IM
3280static inline int task_node(const struct task_struct *p)
3281{
3282 return cpu_to_node(task_cpu(p));
3283}
3284
c65cc870 3285extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3286
3287#else
3288
3289static inline unsigned int task_cpu(const struct task_struct *p)
3290{
3291 return 0;
3292}
3293
3294static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3295{
3296}
3297
3298#endif /* CONFIG_SMP */
3299
96f874e2
RR
3300extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3301extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3302
7c941438 3303#ifdef CONFIG_CGROUP_SCHED
07e06b01 3304extern struct task_group root_task_group;
8323f26c 3305#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3306
54e99124
DG
3307extern int task_can_switch_user(struct user_struct *up,
3308 struct task_struct *tsk);
3309
4b98d11b
AD
3310#ifdef CONFIG_TASK_XACCT
3311static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3312{
940389b8 3313 tsk->ioac.rchar += amt;
4b98d11b
AD
3314}
3315
3316static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3317{
940389b8 3318 tsk->ioac.wchar += amt;
4b98d11b
AD
3319}
3320
3321static inline void inc_syscr(struct task_struct *tsk)
3322{
940389b8 3323 tsk->ioac.syscr++;
4b98d11b
AD
3324}
3325
3326static inline void inc_syscw(struct task_struct *tsk)
3327{
940389b8 3328 tsk->ioac.syscw++;
4b98d11b
AD
3329}
3330#else
3331static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3332{
3333}
3334
3335static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3336{
3337}
3338
3339static inline void inc_syscr(struct task_struct *tsk)
3340{
3341}
3342
3343static inline void inc_syscw(struct task_struct *tsk)
3344{
3345}
3346#endif
3347
82455257
DH
3348#ifndef TASK_SIZE_OF
3349#define TASK_SIZE_OF(tsk) TASK_SIZE
3350#endif
3351
f98bafa0 3352#ifdef CONFIG_MEMCG
cf475ad2 3353extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3354#else
3355static inline void mm_update_next_owner(struct mm_struct *mm)
3356{
3357}
f98bafa0 3358#endif /* CONFIG_MEMCG */
cf475ad2 3359
3e10e716
JS
3360static inline unsigned long task_rlimit(const struct task_struct *tsk,
3361 unsigned int limit)
3362{
316c1608 3363 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3364}
3365
3366static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3367 unsigned int limit)
3368{
316c1608 3369 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3370}
3371
3372static inline unsigned long rlimit(unsigned int limit)
3373{
3374 return task_rlimit(current, limit);
3375}
3376
3377static inline unsigned long rlimit_max(unsigned int limit)
3378{
3379 return task_rlimit_max(current, limit);
3380}
3381
adaf9fcd
RW
3382#ifdef CONFIG_CPU_FREQ
3383struct update_util_data {
3384 void (*func)(struct update_util_data *data,
3385 u64 time, unsigned long util, unsigned long max);
3386};
3387
0bed612b
RW
3388void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
3389 void (*func)(struct update_util_data *data, u64 time,
3390 unsigned long util, unsigned long max));
3391void cpufreq_remove_update_util_hook(int cpu);
adaf9fcd
RW
3392#endif /* CONFIG_CPU_FREQ */
3393
1da177e4 3394#endif