x86/mm: Fix kern_addr_valid() to cope with existing but not present entries
[linux-2.6-block.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/mutex.h>
18#include <linux/plist.h>
19#include <linux/hrtimer.h>
0584df9c 20#include <linux/irqflags.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
ec1d2819 24#include <linux/refcount.h>
a3b6714e 25#include <linux/resource.h>
9745512c 26#include <linux/latencytop.h>
5eca1c10 27#include <linux/sched/prio.h>
9eacb5c7 28#include <linux/sched/types.h>
5eca1c10 29#include <linux/signal_types.h>
1446e1df 30#include <linux/syscall_user_dispatch.h>
5eca1c10
IM
31#include <linux/mm_types_task.h>
32#include <linux/task_io_accounting.h>
2b69942f 33#include <linux/posix-timers.h>
d7822b1e 34#include <linux/rseq.h>
0cd39f46 35#include <linux/seqlock.h>
dfd402a4 36#include <linux/kcsan.h>
5fbda3ec 37#include <asm/kmap_size.h>
a3b6714e 38
5eca1c10 39/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 40struct audit_context;
c7af7877 41struct backing_dev_info;
bddd87c7 42struct bio_list;
73c10101 43struct blk_plug;
a10787e6 44struct bpf_local_storage;
3c93a0c0 45struct capture_control;
c7af7877 46struct cfs_rq;
c7af7877
IM
47struct fs_struct;
48struct futex_pi_state;
49struct io_context;
1875dc5b 50struct io_uring_task;
c7af7877 51struct mempolicy;
89076bc3 52struct nameidata;
c7af7877
IM
53struct nsproxy;
54struct perf_event_context;
55struct pid_namespace;
56struct pipe_inode_info;
57struct rcu_node;
58struct reclaim_state;
59struct robust_list_head;
3c93a0c0
QY
60struct root_domain;
61struct rq;
c7af7877
IM
62struct sched_attr;
63struct sched_param;
43ae34cb 64struct seq_file;
c7af7877
IM
65struct sighand_struct;
66struct signal_struct;
67struct task_delay_info;
4cf86d77 68struct task_group;
1da177e4 69
4a8342d2
LT
70/*
71 * Task state bitmask. NOTE! These bits are also
72 * encoded in fs/proc/array.c: get_task_state().
73 *
74 * We have two separate sets of flags: task->state
75 * is about runnability, while task->exit_state are
76 * about the task exiting. Confusing, but this way
77 * modifying one set can't modify the other one by
78 * mistake.
79 */
5eca1c10
IM
80
81/* Used in tsk->state: */
92c4bc9f
PZ
82#define TASK_RUNNING 0x0000
83#define TASK_INTERRUPTIBLE 0x0001
84#define TASK_UNINTERRUPTIBLE 0x0002
85#define __TASK_STOPPED 0x0004
86#define __TASK_TRACED 0x0008
5eca1c10 87/* Used in tsk->exit_state: */
92c4bc9f
PZ
88#define EXIT_DEAD 0x0010
89#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
90#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
91/* Used in tsk->state again: */
8ef9925b
PZ
92#define TASK_PARKED 0x0040
93#define TASK_DEAD 0x0080
94#define TASK_WAKEKILL 0x0100
95#define TASK_WAKING 0x0200
92c4bc9f
PZ
96#define TASK_NOLOAD 0x0400
97#define TASK_NEW 0x0800
cd781d0c
TG
98/* RT specific auxilliary flag to mark RT lock waiters */
99#define TASK_RTLOCK_WAIT 0x1000
100#define TASK_STATE_MAX 0x2000
5eca1c10 101
5eca1c10
IM
102/* Convenience macros for the sake of set_current_state: */
103#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
104#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
105#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
106
107#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
108
109/* Convenience macros for the sake of wake_up(): */
110#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
111
112/* get_task_state(): */
113#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
114 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
115 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
116 TASK_PARKED)
5eca1c10 117
2f064a59 118#define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
5eca1c10 119
2f064a59 120#define task_is_traced(task) ((READ_ONCE(task->__state) & __TASK_TRACED) != 0)
5eca1c10 121
2f064a59 122#define task_is_stopped(task) ((READ_ONCE(task->__state) & __TASK_STOPPED) != 0)
5eca1c10 123
2f064a59 124#define task_is_stopped_or_traced(task) ((READ_ONCE(task->__state) & (__TASK_STOPPED | __TASK_TRACED)) != 0)
5eca1c10 125
b5bf9a90
PZ
126/*
127 * Special states are those that do not use the normal wait-loop pattern. See
128 * the comment with set_special_state().
129 */
130#define is_special_task_state(state) \
1cef1150 131 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 132
85019c16
TG
133#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
134# define debug_normal_state_change(state_value) \
135 do { \
136 WARN_ON_ONCE(is_special_task_state(state_value)); \
137 current->task_state_change = _THIS_IP_; \
8eb23b9f
PZ
138 } while (0)
139
85019c16 140# define debug_special_state_change(state_value) \
b5bf9a90 141 do { \
b5bf9a90 142 WARN_ON_ONCE(!is_special_task_state(state_value)); \
b5bf9a90 143 current->task_state_change = _THIS_IP_; \
b5bf9a90 144 } while (0)
85019c16 145
5f220be2
TG
146# define debug_rtlock_wait_set_state() \
147 do { \
148 current->saved_state_change = current->task_state_change;\
149 current->task_state_change = _THIS_IP_; \
150 } while (0)
151
152# define debug_rtlock_wait_restore_state() \
153 do { \
154 current->task_state_change = current->saved_state_change;\
155 } while (0)
156
8eb23b9f 157#else
85019c16
TG
158# define debug_normal_state_change(cond) do { } while (0)
159# define debug_special_state_change(cond) do { } while (0)
5f220be2
TG
160# define debug_rtlock_wait_set_state() do { } while (0)
161# define debug_rtlock_wait_restore_state() do { } while (0)
85019c16
TG
162#endif
163
498d0c57
AM
164/*
165 * set_current_state() includes a barrier so that the write of current->state
166 * is correctly serialised wrt the caller's subsequent test of whether to
167 * actually sleep:
168 *
a2250238 169 * for (;;) {
498d0c57 170 * set_current_state(TASK_UNINTERRUPTIBLE);
58877d34
PZ
171 * if (CONDITION)
172 * break;
a2250238
PZ
173 *
174 * schedule();
175 * }
176 * __set_current_state(TASK_RUNNING);
177 *
178 * If the caller does not need such serialisation (because, for instance, the
58877d34 179 * CONDITION test and condition change and wakeup are under the same lock) then
a2250238
PZ
180 * use __set_current_state().
181 *
182 * The above is typically ordered against the wakeup, which does:
183 *
58877d34 184 * CONDITION = 1;
b5bf9a90 185 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 186 *
58877d34
PZ
187 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
188 * accessing p->state.
a2250238
PZ
189 *
190 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
191 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
192 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 193 *
b5bf9a90 194 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 195 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
196 * a problem either because that will result in one extra go around the loop
197 * and our @cond test will save the day.
498d0c57 198 *
a2250238 199 * Also see the comments of try_to_wake_up().
498d0c57 200 */
b5bf9a90 201#define __set_current_state(state_value) \
85019c16
TG
202 do { \
203 debug_normal_state_change((state_value)); \
204 WRITE_ONCE(current->__state, (state_value)); \
205 } while (0)
b5bf9a90
PZ
206
207#define set_current_state(state_value) \
85019c16
TG
208 do { \
209 debug_normal_state_change((state_value)); \
210 smp_store_mb(current->__state, (state_value)); \
211 } while (0)
b5bf9a90
PZ
212
213/*
214 * set_special_state() should be used for those states when the blocking task
215 * can not use the regular condition based wait-loop. In that case we must
85019c16
TG
216 * serialize against wakeups such that any possible in-flight TASK_RUNNING
217 * stores will not collide with our state change.
b5bf9a90
PZ
218 */
219#define set_special_state(state_value) \
220 do { \
221 unsigned long flags; /* may shadow */ \
85019c16 222 \
b5bf9a90 223 raw_spin_lock_irqsave(&current->pi_lock, flags); \
85019c16 224 debug_special_state_change((state_value)); \
2f064a59 225 WRITE_ONCE(current->__state, (state_value)); \
b5bf9a90
PZ
226 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
227 } while (0)
228
5f220be2
TG
229/*
230 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
231 *
232 * RT's spin/rwlock substitutions are state preserving. The state of the
233 * task when blocking on the lock is saved in task_struct::saved_state and
234 * restored after the lock has been acquired. These operations are
235 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
236 * lock related wakeups while the task is blocked on the lock are
237 * redirected to operate on task_struct::saved_state to ensure that these
238 * are not dropped. On restore task_struct::saved_state is set to
239 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
240 *
241 * The lock operation looks like this:
242 *
243 * current_save_and_set_rtlock_wait_state();
244 * for (;;) {
245 * if (try_lock())
246 * break;
247 * raw_spin_unlock_irq(&lock->wait_lock);
248 * schedule_rtlock();
249 * raw_spin_lock_irq(&lock->wait_lock);
250 * set_current_state(TASK_RTLOCK_WAIT);
251 * }
252 * current_restore_rtlock_saved_state();
253 */
254#define current_save_and_set_rtlock_wait_state() \
255 do { \
256 lockdep_assert_irqs_disabled(); \
257 raw_spin_lock(&current->pi_lock); \
258 current->saved_state = current->__state; \
259 debug_rtlock_wait_set_state(); \
260 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
261 raw_spin_unlock(&current->pi_lock); \
262 } while (0);
263
264#define current_restore_rtlock_saved_state() \
265 do { \
266 lockdep_assert_irqs_disabled(); \
267 raw_spin_lock(&current->pi_lock); \
268 debug_rtlock_wait_restore_state(); \
269 WRITE_ONCE(current->__state, current->saved_state); \
270 current->saved_state = TASK_RUNNING; \
271 raw_spin_unlock(&current->pi_lock); \
272 } while (0);
8eb23b9f 273
2f064a59 274#define get_current_state() READ_ONCE(current->__state)
d6c23bb3 275
5eca1c10
IM
276/* Task command name length: */
277#define TASK_COMM_LEN 16
1da177e4 278
1da177e4
LT
279extern void scheduler_tick(void);
280
5eca1c10
IM
281#define MAX_SCHEDULE_TIMEOUT LONG_MAX
282
283extern long schedule_timeout(long timeout);
284extern long schedule_timeout_interruptible(long timeout);
285extern long schedule_timeout_killable(long timeout);
286extern long schedule_timeout_uninterruptible(long timeout);
287extern long schedule_timeout_idle(long timeout);
1da177e4 288asmlinkage void schedule(void);
c5491ea7 289extern void schedule_preempt_disabled(void);
19c95f26 290asmlinkage void preempt_schedule_irq(void);
6991436c
TG
291#ifdef CONFIG_PREEMPT_RT
292 extern void schedule_rtlock(void);
293#endif
1da177e4 294
10ab5643
TH
295extern int __must_check io_schedule_prepare(void);
296extern void io_schedule_finish(int token);
9cff8ade 297extern long io_schedule_timeout(long timeout);
10ab5643 298extern void io_schedule(void);
9cff8ade 299
d37f761d 300/**
0ba42a59 301 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
302 * @utime: time spent in user mode
303 * @stime: time spent in system mode
9d7fb042 304 * @lock: protects the above two fields
d37f761d 305 *
9d7fb042
PZ
306 * Stores previous user/system time values such that we can guarantee
307 * monotonicity.
d37f761d 308 */
9d7fb042
PZ
309struct prev_cputime {
310#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
311 u64 utime;
312 u64 stime;
313 raw_spinlock_t lock;
9d7fb042 314#endif
d37f761d
FW
315};
316
bac5b6b6
FW
317enum vtime_state {
318 /* Task is sleeping or running in a CPU with VTIME inactive: */
319 VTIME_INACTIVE = 0,
14faf6fc
FW
320 /* Task is idle */
321 VTIME_IDLE,
bac5b6b6
FW
322 /* Task runs in kernelspace in a CPU with VTIME active: */
323 VTIME_SYS,
14faf6fc
FW
324 /* Task runs in userspace in a CPU with VTIME active: */
325 VTIME_USER,
e6d5bf3e
FW
326 /* Task runs as guests in a CPU with VTIME active: */
327 VTIME_GUEST,
bac5b6b6
FW
328};
329
330struct vtime {
331 seqcount_t seqcount;
332 unsigned long long starttime;
333 enum vtime_state state;
802f4a82 334 unsigned int cpu;
2a42eb95
WL
335 u64 utime;
336 u64 stime;
337 u64 gtime;
bac5b6b6
FW
338};
339
69842cba
PB
340/*
341 * Utilization clamp constraints.
342 * @UCLAMP_MIN: Minimum utilization
343 * @UCLAMP_MAX: Maximum utilization
344 * @UCLAMP_CNT: Utilization clamp constraints count
345 */
346enum uclamp_id {
347 UCLAMP_MIN = 0,
348 UCLAMP_MAX,
349 UCLAMP_CNT
350};
351
f9a25f77
MP
352#ifdef CONFIG_SMP
353extern struct root_domain def_root_domain;
354extern struct mutex sched_domains_mutex;
355#endif
356
1da177e4 357struct sched_info {
7f5f8e8d 358#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
359 /* Cumulative counters: */
360
361 /* # of times we have run on this CPU: */
362 unsigned long pcount;
363
364 /* Time spent waiting on a runqueue: */
365 unsigned long long run_delay;
366
367 /* Timestamps: */
368
369 /* When did we last run on a CPU? */
370 unsigned long long last_arrival;
371
372 /* When were we last queued to run? */
373 unsigned long long last_queued;
1da177e4 374
f6db8347 375#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 376};
1da177e4 377
6ecdd749
YD
378/*
379 * Integer metrics need fixed point arithmetic, e.g., sched/fair
380 * has a few: load, load_avg, util_avg, freq, and capacity.
381 *
382 * We define a basic fixed point arithmetic range, and then formalize
383 * all these metrics based on that basic range.
384 */
5eca1c10
IM
385# define SCHED_FIXEDPOINT_SHIFT 10
386# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 387
69842cba
PB
388/* Increase resolution of cpu_capacity calculations */
389# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
390# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
391
20b8a59f 392struct load_weight {
5eca1c10
IM
393 unsigned long weight;
394 u32 inv_weight;
20b8a59f
IM
395};
396
7f65ea42
PB
397/**
398 * struct util_est - Estimation utilization of FAIR tasks
399 * @enqueued: instantaneous estimated utilization of a task/cpu
400 * @ewma: the Exponential Weighted Moving Average (EWMA)
401 * utilization of a task
402 *
403 * Support data structure to track an Exponential Weighted Moving Average
404 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
405 * average each time a task completes an activation. Sample's weight is chosen
406 * so that the EWMA will be relatively insensitive to transient changes to the
407 * task's workload.
408 *
409 * The enqueued attribute has a slightly different meaning for tasks and cpus:
410 * - task: the task's util_avg at last task dequeue time
411 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
412 * Thus, the util_est.enqueued of a task represents the contribution on the
413 * estimated utilization of the CPU where that task is currently enqueued.
414 *
415 * Only for tasks we track a moving average of the past instantaneous
416 * estimated utilization. This allows to absorb sporadic drops in utilization
417 * of an otherwise almost periodic task.
68d7a190
DE
418 *
419 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
420 * updates. When a task is dequeued, its util_est should not be updated if its
421 * util_avg has not been updated in the meantime.
422 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
423 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
424 * for a task) it is safe to use MSB.
7f65ea42
PB
425 */
426struct util_est {
427 unsigned int enqueued;
428 unsigned int ewma;
429#define UTIL_EST_WEIGHT_SHIFT 2
68d7a190 430#define UTIL_AVG_UNCHANGED 0x80000000
317d359d 431} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 432
9d89c257 433/*
9f683953 434 * The load/runnable/util_avg accumulates an infinite geometric series
0dacee1b 435 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
7b595334
YD
436 *
437 * [load_avg definition]
438 *
439 * load_avg = runnable% * scale_load_down(load)
440 *
9f683953
VG
441 * [runnable_avg definition]
442 *
443 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
7b595334 444 *
7b595334
YD
445 * [util_avg definition]
446 *
447 * util_avg = running% * SCHED_CAPACITY_SCALE
448 *
9f683953
VG
449 * where runnable% is the time ratio that a sched_entity is runnable and
450 * running% the time ratio that a sched_entity is running.
451 *
452 * For cfs_rq, they are the aggregated values of all runnable and blocked
453 * sched_entities.
7b595334 454 *
c1b7b8d4 455 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
9f683953
VG
456 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
457 * for computing those signals (see update_rq_clock_pelt())
7b595334 458 *
23127296
VG
459 * N.B., the above ratios (runnable% and running%) themselves are in the
460 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
461 * to as large a range as necessary. This is for example reflected by
462 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
463 *
464 * [Overflow issue]
465 *
466 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
467 * with the highest load (=88761), always runnable on a single cfs_rq,
468 * and should not overflow as the number already hits PID_MAX_LIMIT.
469 *
470 * For all other cases (including 32-bit kernels), struct load_weight's
471 * weight will overflow first before we do, because:
472 *
473 * Max(load_avg) <= Max(load.weight)
474 *
475 * Then it is the load_weight's responsibility to consider overflow
476 * issues.
9d89c257 477 */
9d85f21c 478struct sched_avg {
5eca1c10
IM
479 u64 last_update_time;
480 u64 load_sum;
9f683953 481 u64 runnable_sum;
5eca1c10
IM
482 u32 util_sum;
483 u32 period_contrib;
484 unsigned long load_avg;
9f683953 485 unsigned long runnable_avg;
5eca1c10 486 unsigned long util_avg;
7f65ea42 487 struct util_est util_est;
317d359d 488} ____cacheline_aligned;
9d85f21c 489
41acab88 490struct sched_statistics {
7f5f8e8d 491#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
492 u64 wait_start;
493 u64 wait_max;
494 u64 wait_count;
495 u64 wait_sum;
496 u64 iowait_count;
497 u64 iowait_sum;
498
499 u64 sleep_start;
500 u64 sleep_max;
501 s64 sum_sleep_runtime;
502
503 u64 block_start;
504 u64 block_max;
505 u64 exec_max;
506 u64 slice_max;
507
508 u64 nr_migrations_cold;
509 u64 nr_failed_migrations_affine;
510 u64 nr_failed_migrations_running;
511 u64 nr_failed_migrations_hot;
512 u64 nr_forced_migrations;
513
514 u64 nr_wakeups;
515 u64 nr_wakeups_sync;
516 u64 nr_wakeups_migrate;
517 u64 nr_wakeups_local;
518 u64 nr_wakeups_remote;
519 u64 nr_wakeups_affine;
520 u64 nr_wakeups_affine_attempts;
521 u64 nr_wakeups_passive;
522 u64 nr_wakeups_idle;
41acab88 523#endif
7f5f8e8d 524};
41acab88
LDM
525
526struct sched_entity {
5eca1c10
IM
527 /* For load-balancing: */
528 struct load_weight load;
529 struct rb_node run_node;
530 struct list_head group_node;
531 unsigned int on_rq;
41acab88 532
5eca1c10
IM
533 u64 exec_start;
534 u64 sum_exec_runtime;
535 u64 vruntime;
536 u64 prev_sum_exec_runtime;
41acab88 537
5eca1c10 538 u64 nr_migrations;
41acab88 539
5eca1c10 540 struct sched_statistics statistics;
94c18227 541
20b8a59f 542#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
543 int depth;
544 struct sched_entity *parent;
20b8a59f 545 /* rq on which this entity is (to be) queued: */
5eca1c10 546 struct cfs_rq *cfs_rq;
20b8a59f 547 /* rq "owned" by this entity/group: */
5eca1c10 548 struct cfs_rq *my_q;
9f683953
VG
549 /* cached value of my_q->h_nr_running */
550 unsigned long runnable_weight;
20b8a59f 551#endif
8bd75c77 552
141965c7 553#ifdef CONFIG_SMP
5a107804
JO
554 /*
555 * Per entity load average tracking.
556 *
557 * Put into separate cache line so it does not
558 * collide with read-mostly values above.
559 */
317d359d 560 struct sched_avg avg;
9d85f21c 561#endif
20b8a59f 562};
70b97a7f 563
fa717060 564struct sched_rt_entity {
5eca1c10
IM
565 struct list_head run_list;
566 unsigned long timeout;
567 unsigned long watchdog_stamp;
568 unsigned int time_slice;
569 unsigned short on_rq;
570 unsigned short on_list;
571
572 struct sched_rt_entity *back;
052f1dc7 573#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 574 struct sched_rt_entity *parent;
6f505b16 575 /* rq on which this entity is (to be) queued: */
5eca1c10 576 struct rt_rq *rt_rq;
6f505b16 577 /* rq "owned" by this entity/group: */
5eca1c10 578 struct rt_rq *my_q;
6f505b16 579#endif
3859a271 580} __randomize_layout;
fa717060 581
aab03e05 582struct sched_dl_entity {
5eca1c10 583 struct rb_node rb_node;
aab03e05
DF
584
585 /*
586 * Original scheduling parameters. Copied here from sched_attr
4027d080 587 * during sched_setattr(), they will remain the same until
588 * the next sched_setattr().
aab03e05 589 */
5eca1c10
IM
590 u64 dl_runtime; /* Maximum runtime for each instance */
591 u64 dl_deadline; /* Relative deadline of each instance */
592 u64 dl_period; /* Separation of two instances (period) */
54d6d303 593 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 594 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
595
596 /*
597 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 598 * they are continuously updated during task execution. Note that
aab03e05
DF
599 * the remaining runtime could be < 0 in case we are in overrun.
600 */
5eca1c10
IM
601 s64 runtime; /* Remaining runtime for this instance */
602 u64 deadline; /* Absolute deadline for this instance */
603 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
604
605 /*
606 * Some bool flags:
607 *
608 * @dl_throttled tells if we exhausted the runtime. If so, the
609 * task has to wait for a replenishment to be performed at the
610 * next firing of dl_timer.
611 *
2d3d891d
DF
612 * @dl_boosted tells if we are boosted due to DI. If so we are
613 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
614 * exit the critical section);
615 *
5eca1c10 616 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 617 * all its available runtime during the last job.
209a0cbd
LA
618 *
619 * @dl_non_contending tells if the task is inactive while still
620 * contributing to the active utilization. In other words, it
621 * indicates if the inactive timer has been armed and its handler
622 * has not been executed yet. This flag is useful to avoid race
623 * conditions between the inactive timer handler and the wakeup
624 * code.
34be3930
JL
625 *
626 * @dl_overrun tells if the task asked to be informed about runtime
627 * overruns.
aab03e05 628 */
aa5222e9 629 unsigned int dl_throttled : 1;
aa5222e9
DC
630 unsigned int dl_yielded : 1;
631 unsigned int dl_non_contending : 1;
34be3930 632 unsigned int dl_overrun : 1;
aab03e05
DF
633
634 /*
635 * Bandwidth enforcement timer. Each -deadline task has its
636 * own bandwidth to be enforced, thus we need one timer per task.
637 */
5eca1c10 638 struct hrtimer dl_timer;
209a0cbd
LA
639
640 /*
641 * Inactive timer, responsible for decreasing the active utilization
642 * at the "0-lag time". When a -deadline task blocks, it contributes
643 * to GRUB's active utilization until the "0-lag time", hence a
644 * timer is needed to decrease the active utilization at the correct
645 * time.
646 */
647 struct hrtimer inactive_timer;
2279f540
JL
648
649#ifdef CONFIG_RT_MUTEXES
650 /*
651 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
652 * pi_se points to the donor, otherwise points to the dl_se it belongs
653 * to (the original one/itself).
654 */
655 struct sched_dl_entity *pi_se;
656#endif
aab03e05 657};
8bd75c77 658
69842cba
PB
659#ifdef CONFIG_UCLAMP_TASK
660/* Number of utilization clamp buckets (shorter alias) */
661#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
662
663/*
664 * Utilization clamp for a scheduling entity
665 * @value: clamp value "assigned" to a se
666 * @bucket_id: bucket index corresponding to the "assigned" value
e8f14172 667 * @active: the se is currently refcounted in a rq's bucket
a509a7cd 668 * @user_defined: the requested clamp value comes from user-space
69842cba
PB
669 *
670 * The bucket_id is the index of the clamp bucket matching the clamp value
671 * which is pre-computed and stored to avoid expensive integer divisions from
672 * the fast path.
e8f14172
PB
673 *
674 * The active bit is set whenever a task has got an "effective" value assigned,
675 * which can be different from the clamp value "requested" from user-space.
676 * This allows to know a task is refcounted in the rq's bucket corresponding
677 * to the "effective" bucket_id.
a509a7cd
PB
678 *
679 * The user_defined bit is set whenever a task has got a task-specific clamp
680 * value requested from userspace, i.e. the system defaults apply to this task
681 * just as a restriction. This allows to relax default clamps when a less
682 * restrictive task-specific value has been requested, thus allowing to
683 * implement a "nice" semantic. For example, a task running with a 20%
684 * default boost can still drop its own boosting to 0%.
69842cba
PB
685 */
686struct uclamp_se {
687 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
688 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
e8f14172 689 unsigned int active : 1;
a509a7cd 690 unsigned int user_defined : 1;
69842cba
PB
691};
692#endif /* CONFIG_UCLAMP_TASK */
693
1d082fd0
PM
694union rcu_special {
695 struct {
5eca1c10
IM
696 u8 blocked;
697 u8 need_qs;
05f41571 698 u8 exp_hint; /* Hint for performance. */
276c4104 699 u8 need_mb; /* Readers need smp_mb(). */
8203d6d0 700 } b; /* Bits. */
05f41571 701 u32 s; /* Set of bits. */
1d082fd0 702};
86848966 703
8dc85d54
PZ
704enum perf_event_task_context {
705 perf_invalid_context = -1,
706 perf_hw_context = 0,
89a1e187 707 perf_sw_context,
8dc85d54
PZ
708 perf_nr_task_contexts,
709};
710
eb61baf6
IM
711struct wake_q_node {
712 struct wake_q_node *next;
713};
714
5fbda3ec
TG
715struct kmap_ctrl {
716#ifdef CONFIG_KMAP_LOCAL
717 int idx;
718 pte_t pteval[KM_MAX_IDX];
719#endif
720};
721
1da177e4 722struct task_struct {
c65eacbe
AL
723#ifdef CONFIG_THREAD_INFO_IN_TASK
724 /*
725 * For reasons of header soup (see current_thread_info()), this
726 * must be the first element of task_struct.
727 */
5eca1c10 728 struct thread_info thread_info;
c65eacbe 729#endif
2f064a59 730 unsigned int __state;
29e48ce8 731
5f220be2
TG
732#ifdef CONFIG_PREEMPT_RT
733 /* saved state for "spinlock sleepers" */
734 unsigned int saved_state;
735#endif
736
29e48ce8
KC
737 /*
738 * This begins the randomizable portion of task_struct. Only
739 * scheduling-critical items should be added above here.
740 */
741 randomized_struct_fields_start
742
5eca1c10 743 void *stack;
ec1d2819 744 refcount_t usage;
5eca1c10
IM
745 /* Per task flags (PF_*), defined further below: */
746 unsigned int flags;
747 unsigned int ptrace;
1da177e4 748
2dd73a4f 749#ifdef CONFIG_SMP
5eca1c10 750 int on_cpu;
8c4890d1 751 struct __call_single_node wake_entry;
c65eacbe 752#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
753 /* Current CPU: */
754 unsigned int cpu;
c65eacbe 755#endif
5eca1c10
IM
756 unsigned int wakee_flips;
757 unsigned long wakee_flip_decay_ts;
758 struct task_struct *last_wakee;
ac66f547 759
32e839dd
MG
760 /*
761 * recent_used_cpu is initially set as the last CPU used by a task
762 * that wakes affine another task. Waker/wakee relationships can
763 * push tasks around a CPU where each wakeup moves to the next one.
764 * Tracking a recently used CPU allows a quick search for a recently
765 * used CPU that may be idle.
766 */
767 int recent_used_cpu;
5eca1c10 768 int wake_cpu;
2dd73a4f 769#endif
5eca1c10
IM
770 int on_rq;
771
772 int prio;
773 int static_prio;
774 int normal_prio;
775 unsigned int rt_priority;
50e645a8 776
5eca1c10
IM
777 const struct sched_class *sched_class;
778 struct sched_entity se;
779 struct sched_rt_entity rt;
8a311c74
PZ
780 struct sched_dl_entity dl;
781
782#ifdef CONFIG_SCHED_CORE
783 struct rb_node core_node;
784 unsigned long core_cookie;
d2dfa17b 785 unsigned int core_occupation;
8a311c74
PZ
786#endif
787
8323f26c 788#ifdef CONFIG_CGROUP_SCHED
5eca1c10 789 struct task_group *sched_task_group;
8323f26c 790#endif
1da177e4 791
69842cba 792#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
793 /*
794 * Clamp values requested for a scheduling entity.
795 * Must be updated with task_rq_lock() held.
796 */
e8f14172 797 struct uclamp_se uclamp_req[UCLAMP_CNT];
13685c4a
QY
798 /*
799 * Effective clamp values used for a scheduling entity.
800 * Must be updated with task_rq_lock() held.
801 */
69842cba
PB
802 struct uclamp_se uclamp[UCLAMP_CNT];
803#endif
804
e107be36 805#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
806 /* List of struct preempt_notifier: */
807 struct hlist_head preempt_notifiers;
e107be36
AK
808#endif
809
6c5c9341 810#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 811 unsigned int btrace_seq;
6c5c9341 812#endif
1da177e4 813
5eca1c10
IM
814 unsigned int policy;
815 int nr_cpus_allowed;
3bd37062 816 const cpumask_t *cpus_ptr;
b90ca8ba 817 cpumask_t *user_cpus_ptr;
3bd37062 818 cpumask_t cpus_mask;
6d337eab 819 void *migration_pending;
74d862b6 820#ifdef CONFIG_SMP
a7c81556 821 unsigned short migration_disabled;
af449901 822#endif
a7c81556 823 unsigned short migration_flags;
1da177e4 824
a57eb940 825#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
826 int rcu_read_lock_nesting;
827 union rcu_special rcu_read_unlock_special;
828 struct list_head rcu_node_entry;
829 struct rcu_node *rcu_blocked_node;
28f6569a 830#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 831
8315f422 832#ifdef CONFIG_TASKS_RCU
5eca1c10 833 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
834 u8 rcu_tasks_holdout;
835 u8 rcu_tasks_idx;
5eca1c10 836 int rcu_tasks_idle_cpu;
ccdd29ff 837 struct list_head rcu_tasks_holdout_list;
8315f422 838#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 839
d5f177d3
PM
840#ifdef CONFIG_TASKS_TRACE_RCU
841 int trc_reader_nesting;
842 int trc_ipi_to_cpu;
276c4104 843 union rcu_special trc_reader_special;
d5f177d3
PM
844 bool trc_reader_checked;
845 struct list_head trc_holdout_list;
846#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
847
5eca1c10 848 struct sched_info sched_info;
1da177e4 849
5eca1c10 850 struct list_head tasks;
806c09a7 851#ifdef CONFIG_SMP
5eca1c10
IM
852 struct plist_node pushable_tasks;
853 struct rb_node pushable_dl_tasks;
806c09a7 854#endif
1da177e4 855
5eca1c10
IM
856 struct mm_struct *mm;
857 struct mm_struct *active_mm;
314ff785
IM
858
859 /* Per-thread vma caching: */
5eca1c10 860 struct vmacache vmacache;
314ff785 861
5eca1c10
IM
862#ifdef SPLIT_RSS_COUNTING
863 struct task_rss_stat rss_stat;
34e55232 864#endif
5eca1c10
IM
865 int exit_state;
866 int exit_code;
867 int exit_signal;
868 /* The signal sent when the parent dies: */
869 int pdeath_signal;
870 /* JOBCTL_*, siglock protected: */
871 unsigned long jobctl;
872
873 /* Used for emulating ABI behavior of previous Linux versions: */
874 unsigned int personality;
875
876 /* Scheduler bits, serialized by scheduler locks: */
877 unsigned sched_reset_on_fork:1;
878 unsigned sched_contributes_to_load:1;
879 unsigned sched_migrated:1;
eb414681
JW
880#ifdef CONFIG_PSI
881 unsigned sched_psi_wake_requeue:1;
882#endif
883
5eca1c10
IM
884 /* Force alignment to the next boundary: */
885 unsigned :0;
886
887 /* Unserialized, strictly 'current' */
888
f97bb527
PZ
889 /*
890 * This field must not be in the scheduler word above due to wakelist
891 * queueing no longer being serialized by p->on_cpu. However:
892 *
893 * p->XXX = X; ttwu()
894 * schedule() if (p->on_rq && ..) // false
895 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
896 * deactivate_task() ttwu_queue_wakelist())
897 * p->on_rq = 0; p->sched_remote_wakeup = Y;
898 *
899 * guarantees all stores of 'current' are visible before
900 * ->sched_remote_wakeup gets used, so it can be in this word.
901 */
902 unsigned sched_remote_wakeup:1;
903
5eca1c10
IM
904 /* Bit to tell LSMs we're in execve(): */
905 unsigned in_execve:1;
906 unsigned in_iowait:1;
907#ifndef TIF_RESTORE_SIGMASK
908 unsigned restore_sigmask:1;
7e781418 909#endif
626ebc41 910#ifdef CONFIG_MEMCG
29ef680a 911 unsigned in_user_fault:1;
127424c8 912#endif
ff303e66 913#ifdef CONFIG_COMPAT_BRK
5eca1c10 914 unsigned brk_randomized:1;
ff303e66 915#endif
77f88796
TH
916#ifdef CONFIG_CGROUPS
917 /* disallow userland-initiated cgroup migration */
918 unsigned no_cgroup_migration:1;
76f969e8
RG
919 /* task is frozen/stopped (used by the cgroup freezer) */
920 unsigned frozen:1;
77f88796 921#endif
d09d8df3 922#ifdef CONFIG_BLK_CGROUP
d09d8df3
JB
923 unsigned use_memdelay:1;
924#endif
1066d1b6
YS
925#ifdef CONFIG_PSI
926 /* Stalled due to lack of memory */
927 unsigned in_memstall:1;
928#endif
8e9b16c4
ST
929#ifdef CONFIG_PAGE_OWNER
930 /* Used by page_owner=on to detect recursion in page tracking. */
931 unsigned in_page_owner:1;
932#endif
b542e383
TG
933#ifdef CONFIG_EVENTFD
934 /* Recursion prevention for eventfd_signal() */
935 unsigned in_eventfd_signal:1;
936#endif
6f185c29 937
5eca1c10 938 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 939
5eca1c10 940 struct restart_block restart_block;
f56141e3 941
5eca1c10
IM
942 pid_t pid;
943 pid_t tgid;
0a425405 944
050e9baa 945#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
946 /* Canary value for the -fstack-protector GCC feature: */
947 unsigned long stack_canary;
1314562a 948#endif
4d1d61a6 949 /*
5eca1c10 950 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 951 * older sibling, respectively. (p->father can be replaced with
f470021a 952 * p->real_parent->pid)
1da177e4 953 */
5eca1c10
IM
954
955 /* Real parent process: */
956 struct task_struct __rcu *real_parent;
957
958 /* Recipient of SIGCHLD, wait4() reports: */
959 struct task_struct __rcu *parent;
960
1da177e4 961 /*
5eca1c10 962 * Children/sibling form the list of natural children:
1da177e4 963 */
5eca1c10
IM
964 struct list_head children;
965 struct list_head sibling;
966 struct task_struct *group_leader;
1da177e4 967
f470021a 968 /*
5eca1c10
IM
969 * 'ptraced' is the list of tasks this task is using ptrace() on.
970 *
f470021a 971 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 972 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 973 */
5eca1c10
IM
974 struct list_head ptraced;
975 struct list_head ptrace_entry;
f470021a 976
1da177e4 977 /* PID/PID hash table linkage. */
2c470475
EB
978 struct pid *thread_pid;
979 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
980 struct list_head thread_group;
981 struct list_head thread_node;
982
983 struct completion *vfork_done;
1da177e4 984
5eca1c10
IM
985 /* CLONE_CHILD_SETTID: */
986 int __user *set_child_tid;
1da177e4 987
5eca1c10
IM
988 /* CLONE_CHILD_CLEARTID: */
989 int __user *clear_child_tid;
990
3bfe6106
JA
991 /* PF_IO_WORKER */
992 void *pf_io_worker;
993
5eca1c10
IM
994 u64 utime;
995 u64 stime;
40565b5a 996#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
997 u64 utimescaled;
998 u64 stimescaled;
40565b5a 999#endif
5eca1c10
IM
1000 u64 gtime;
1001 struct prev_cputime prev_cputime;
6a61671b 1002#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 1003 struct vtime vtime;
d99ca3b9 1004#endif
d027d45d
FW
1005
1006#ifdef CONFIG_NO_HZ_FULL
5eca1c10 1007 atomic_t tick_dep_mask;
d027d45d 1008#endif
5eca1c10
IM
1009 /* Context switch counts: */
1010 unsigned long nvcsw;
1011 unsigned long nivcsw;
1012
1013 /* Monotonic time in nsecs: */
1014 u64 start_time;
1015
1016 /* Boot based time in nsecs: */
cf25e24d 1017 u64 start_boottime;
5eca1c10
IM
1018
1019 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1020 unsigned long min_flt;
1021 unsigned long maj_flt;
1da177e4 1022
2b69942f
TG
1023 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1024 struct posix_cputimers posix_cputimers;
1da177e4 1025
1fb497dd
TG
1026#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1027 struct posix_cputimers_work posix_cputimers_work;
1028#endif
1029
5eca1c10
IM
1030 /* Process credentials: */
1031
1032 /* Tracer's credentials at attach: */
1033 const struct cred __rcu *ptracer_cred;
1034
1035 /* Objective and real subjective task credentials (COW): */
1036 const struct cred __rcu *real_cred;
1037
1038 /* Effective (overridable) subjective task credentials (COW): */
1039 const struct cred __rcu *cred;
1040
7743c48e
DH
1041#ifdef CONFIG_KEYS
1042 /* Cached requested key. */
1043 struct key *cached_requested_key;
1044#endif
1045
5eca1c10
IM
1046 /*
1047 * executable name, excluding path.
1048 *
1049 * - normally initialized setup_new_exec()
1050 * - access it with [gs]et_task_comm()
1051 * - lock it with task_lock()
1052 */
1053 char comm[TASK_COMM_LEN];
1054
1055 struct nameidata *nameidata;
1056
3d5b6fcc 1057#ifdef CONFIG_SYSVIPC
5eca1c10
IM
1058 struct sysv_sem sysvsem;
1059 struct sysv_shm sysvshm;
3d5b6fcc 1060#endif
e162b39a 1061#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 1062 unsigned long last_switch_count;
a2e51445 1063 unsigned long last_switch_time;
82a1fcb9 1064#endif
5eca1c10
IM
1065 /* Filesystem information: */
1066 struct fs_struct *fs;
1067
1068 /* Open file information: */
1069 struct files_struct *files;
1070
0f212204
JA
1071#ifdef CONFIG_IO_URING
1072 struct io_uring_task *io_uring;
1073#endif
1074
5eca1c10
IM
1075 /* Namespaces: */
1076 struct nsproxy *nsproxy;
1077
1078 /* Signal handlers: */
1079 struct signal_struct *signal;
913292c9 1080 struct sighand_struct __rcu *sighand;
5eca1c10
IM
1081 sigset_t blocked;
1082 sigset_t real_blocked;
1083 /* Restored if set_restore_sigmask() was used: */
1084 sigset_t saved_sigmask;
1085 struct sigpending pending;
1086 unsigned long sas_ss_sp;
1087 size_t sas_ss_size;
1088 unsigned int sas_ss_flags;
1089
1090 struct callback_head *task_works;
1091
4b7d248b 1092#ifdef CONFIG_AUDIT
bfef93a5 1093#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
1094 struct audit_context *audit_context;
1095#endif
5eca1c10
IM
1096 kuid_t loginuid;
1097 unsigned int sessionid;
bfef93a5 1098#endif
5eca1c10 1099 struct seccomp seccomp;
1446e1df 1100 struct syscall_user_dispatch syscall_dispatch;
5eca1c10
IM
1101
1102 /* Thread group tracking: */
d1e7fd64
EB
1103 u64 parent_exec_id;
1104 u64 self_exec_id;
1da177e4 1105
5eca1c10
IM
1106 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1107 spinlock_t alloc_lock;
1da177e4 1108
b29739f9 1109 /* Protection of the PI data structures: */
5eca1c10 1110 raw_spinlock_t pi_lock;
b29739f9 1111
5eca1c10 1112 struct wake_q_node wake_q;
76751049 1113
23f78d4a 1114#ifdef CONFIG_RT_MUTEXES
5eca1c10 1115 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 1116 struct rb_root_cached pi_waiters;
e96a7705
XP
1117 /* Updated under owner's pi_lock and rq lock */
1118 struct task_struct *pi_top_task;
5eca1c10
IM
1119 /* Deadlock detection and priority inheritance handling: */
1120 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1121#endif
1122
408894ee 1123#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
1124 /* Mutex deadlock detection: */
1125 struct mutex_waiter *blocked_on;
408894ee 1126#endif
5eca1c10 1127
312364f3
DV
1128#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1129 int non_block_count;
1130#endif
1131
de30a2b3 1132#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c 1133 struct irqtrace_events irqtrace;
de8f5e4f 1134 unsigned int hardirq_threaded;
c86e9b98 1135 u64 hardirq_chain_key;
5eca1c10
IM
1136 int softirqs_enabled;
1137 int softirq_context;
40db1739 1138 int irq_config;
de30a2b3 1139#endif
728b478d
TG
1140#ifdef CONFIG_PREEMPT_RT
1141 int softirq_disable_cnt;
1142#endif
5eca1c10 1143
fbb9ce95 1144#ifdef CONFIG_LOCKDEP
5eca1c10
IM
1145# define MAX_LOCK_DEPTH 48UL
1146 u64 curr_chain_key;
1147 int lockdep_depth;
1148 unsigned int lockdep_recursion;
1149 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 1150#endif
5eca1c10 1151
5cf53f3c 1152#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
5eca1c10 1153 unsigned int in_ubsan;
c6d30853 1154#endif
408894ee 1155
5eca1c10
IM
1156 /* Journalling filesystem info: */
1157 void *journal_info;
1da177e4 1158
5eca1c10
IM
1159 /* Stacked block device info: */
1160 struct bio_list *bio_list;
d89d8796 1161
73c10101 1162#ifdef CONFIG_BLOCK
5eca1c10
IM
1163 /* Stack plugging: */
1164 struct blk_plug *plug;
73c10101
JA
1165#endif
1166
5eca1c10
IM
1167 /* VM state: */
1168 struct reclaim_state *reclaim_state;
1169
1170 struct backing_dev_info *backing_dev_info;
1da177e4 1171
5eca1c10 1172 struct io_context *io_context;
1da177e4 1173
5e1f0f09
MG
1174#ifdef CONFIG_COMPACTION
1175 struct capture_control *capture_control;
1176#endif
5eca1c10
IM
1177 /* Ptrace state: */
1178 unsigned long ptrace_message;
ae7795bc 1179 kernel_siginfo_t *last_siginfo;
1da177e4 1180
5eca1c10 1181 struct task_io_accounting ioac;
eb414681
JW
1182#ifdef CONFIG_PSI
1183 /* Pressure stall state */
1184 unsigned int psi_flags;
1185#endif
5eca1c10
IM
1186#ifdef CONFIG_TASK_XACCT
1187 /* Accumulated RSS usage: */
1188 u64 acct_rss_mem1;
1189 /* Accumulated virtual memory usage: */
1190 u64 acct_vm_mem1;
1191 /* stime + utime since last update: */
1192 u64 acct_timexpd;
1da177e4
LT
1193#endif
1194#ifdef CONFIG_CPUSETS
5eca1c10
IM
1195 /* Protected by ->alloc_lock: */
1196 nodemask_t mems_allowed;
3b03706f 1197 /* Sequence number to catch updates: */
b7505861 1198 seqcount_spinlock_t mems_allowed_seq;
5eca1c10
IM
1199 int cpuset_mem_spread_rotor;
1200 int cpuset_slab_spread_rotor;
1da177e4 1201#endif
ddbcc7e8 1202#ifdef CONFIG_CGROUPS
5eca1c10
IM
1203 /* Control Group info protected by css_set_lock: */
1204 struct css_set __rcu *cgroups;
1205 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1206 struct list_head cg_list;
ddbcc7e8 1207#endif
e6d42931 1208#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 1209 u32 closid;
d6aaba61 1210 u32 rmid;
e02737d5 1211#endif
42b2dd0a 1212#ifdef CONFIG_FUTEX
5eca1c10 1213 struct robust_list_head __user *robust_list;
34f192c6
IM
1214#ifdef CONFIG_COMPAT
1215 struct compat_robust_list_head __user *compat_robust_list;
1216#endif
5eca1c10
IM
1217 struct list_head pi_state_list;
1218 struct futex_pi_state *pi_state_cache;
3f186d97 1219 struct mutex futex_exit_mutex;
3d4775df 1220 unsigned int futex_state;
c7aceaba 1221#endif
cdd6c482 1222#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
1223 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1224 struct mutex perf_event_mutex;
1225 struct list_head perf_event_list;
a63eaf34 1226#endif
8f47b187 1227#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1228 unsigned long preempt_disable_ip;
8f47b187 1229#endif
c7aceaba 1230#ifdef CONFIG_NUMA
5eca1c10
IM
1231 /* Protected by alloc_lock: */
1232 struct mempolicy *mempolicy;
45816682 1233 short il_prev;
5eca1c10 1234 short pref_node_fork;
42b2dd0a 1235#endif
cbee9f88 1236#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1237 int numa_scan_seq;
1238 unsigned int numa_scan_period;
1239 unsigned int numa_scan_period_max;
1240 int numa_preferred_nid;
1241 unsigned long numa_migrate_retry;
1242 /* Migration stamp: */
1243 u64 node_stamp;
1244 u64 last_task_numa_placement;
1245 u64 last_sum_exec_runtime;
1246 struct callback_head numa_work;
1247
cb361d8c
JH
1248 /*
1249 * This pointer is only modified for current in syscall and
1250 * pagefault context (and for tasks being destroyed), so it can be read
1251 * from any of the following contexts:
1252 * - RCU read-side critical section
1253 * - current->numa_group from everywhere
1254 * - task's runqueue locked, task not running
1255 */
1256 struct numa_group __rcu *numa_group;
8c8a743c 1257
745d6147 1258 /*
44dba3d5
IM
1259 * numa_faults is an array split into four regions:
1260 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1261 * in this precise order.
1262 *
1263 * faults_memory: Exponential decaying average of faults on a per-node
1264 * basis. Scheduling placement decisions are made based on these
1265 * counts. The values remain static for the duration of a PTE scan.
1266 * faults_cpu: Track the nodes the process was running on when a NUMA
1267 * hinting fault was incurred.
1268 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1269 * during the current scan window. When the scan completes, the counts
1270 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1271 */
5eca1c10
IM
1272 unsigned long *numa_faults;
1273 unsigned long total_numa_faults;
745d6147 1274
04bb2f94
RR
1275 /*
1276 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1277 * scan window were remote/local or failed to migrate. The task scan
1278 * period is adapted based on the locality of the faults with different
1279 * weights depending on whether they were shared or private faults
04bb2f94 1280 */
5eca1c10 1281 unsigned long numa_faults_locality[3];
04bb2f94 1282
5eca1c10 1283 unsigned long numa_pages_migrated;
cbee9f88
PZ
1284#endif /* CONFIG_NUMA_BALANCING */
1285
d7822b1e
MD
1286#ifdef CONFIG_RSEQ
1287 struct rseq __user *rseq;
d7822b1e
MD
1288 u32 rseq_sig;
1289 /*
1290 * RmW on rseq_event_mask must be performed atomically
1291 * with respect to preemption.
1292 */
1293 unsigned long rseq_event_mask;
1294#endif
1295
5eca1c10 1296 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1297
3fbd7ee2
EB
1298 union {
1299 refcount_t rcu_users;
1300 struct rcu_head rcu;
1301 };
b92ce558 1302
5eca1c10
IM
1303 /* Cache last used pipe for splice(): */
1304 struct pipe_inode_info *splice_pipe;
5640f768 1305
5eca1c10 1306 struct page_frag task_frag;
5640f768 1307
47913d4e
IM
1308#ifdef CONFIG_TASK_DELAY_ACCT
1309 struct task_delay_info *delays;
f4f154fd 1310#endif
47913d4e 1311
f4f154fd 1312#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1313 int make_it_fail;
9049f2f6 1314 unsigned int fail_nth;
ca74e92b 1315#endif
9d823e8f 1316 /*
5eca1c10
IM
1317 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1318 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1319 */
5eca1c10
IM
1320 int nr_dirtied;
1321 int nr_dirtied_pause;
1322 /* Start of a write-and-pause period: */
1323 unsigned long dirty_paused_when;
9d823e8f 1324
9745512c 1325#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1326 int latency_record_count;
1327 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1328#endif
6976675d 1329 /*
5eca1c10 1330 * Time slack values; these are used to round up poll() and
6976675d
AV
1331 * select() etc timeout values. These are in nanoseconds.
1332 */
5eca1c10
IM
1333 u64 timer_slack_ns;
1334 u64 default_timer_slack_ns;
f8d570a4 1335
d73b4936 1336#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
5eca1c10 1337 unsigned int kasan_depth;
0b24becc 1338#endif
92c209ac 1339
dfd402a4
ME
1340#ifdef CONFIG_KCSAN
1341 struct kcsan_ctx kcsan_ctx;
92c209ac
ME
1342#ifdef CONFIG_TRACE_IRQFLAGS
1343 struct irqtrace_events kcsan_save_irqtrace;
1344#endif
dfd402a4 1345#endif
5eca1c10 1346
393824f6
PA
1347#if IS_ENABLED(CONFIG_KUNIT)
1348 struct kunit *kunit_test;
1349#endif
1350
fb52607a 1351#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1352 /* Index of current stored address in ret_stack: */
1353 int curr_ret_stack;
39eb456d 1354 int curr_ret_depth;
5eca1c10
IM
1355
1356 /* Stack of return addresses for return function tracing: */
1357 struct ftrace_ret_stack *ret_stack;
1358
1359 /* Timestamp for last schedule: */
1360 unsigned long long ftrace_timestamp;
1361
f201ae23
FW
1362 /*
1363 * Number of functions that haven't been traced
5eca1c10 1364 * because of depth overrun:
f201ae23 1365 */
5eca1c10
IM
1366 atomic_t trace_overrun;
1367
1368 /* Pause tracing: */
1369 atomic_t tracing_graph_pause;
f201ae23 1370#endif
5eca1c10 1371
ea4e2bc4 1372#ifdef CONFIG_TRACING
5eca1c10
IM
1373 /* State flags for use by tracers: */
1374 unsigned long trace;
1375
1376 /* Bitmask and counter of trace recursion: */
1377 unsigned long trace_recursion;
261842b7 1378#endif /* CONFIG_TRACING */
5eca1c10 1379
5c9a8750 1380#ifdef CONFIG_KCOV
eec028c9
AK
1381 /* See kernel/kcov.c for more details. */
1382
5eca1c10 1383 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1384 unsigned int kcov_mode;
5eca1c10
IM
1385
1386 /* Size of the kcov_area: */
1387 unsigned int kcov_size;
1388
1389 /* Buffer for coverage collection: */
1390 void *kcov_area;
1391
1392 /* KCOV descriptor wired with this task or NULL: */
1393 struct kcov *kcov;
eec028c9
AK
1394
1395 /* KCOV common handle for remote coverage collection: */
1396 u64 kcov_handle;
1397
1398 /* KCOV sequence number: */
1399 int kcov_sequence;
5ff3b30a
AK
1400
1401 /* Collect coverage from softirq context: */
1402 unsigned int kcov_softirq;
5c9a8750 1403#endif
5eca1c10 1404
6f185c29 1405#ifdef CONFIG_MEMCG
5eca1c10
IM
1406 struct mem_cgroup *memcg_in_oom;
1407 gfp_t memcg_oom_gfp_mask;
1408 int memcg_oom_order;
b23afb93 1409
5eca1c10
IM
1410 /* Number of pages to reclaim on returning to userland: */
1411 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1412
1413 /* Used by memcontrol for targeted memcg charge: */
1414 struct mem_cgroup *active_memcg;
569b846d 1415#endif
5eca1c10 1416
d09d8df3
JB
1417#ifdef CONFIG_BLK_CGROUP
1418 struct request_queue *throttle_queue;
1419#endif
1420
0326f5a9 1421#ifdef CONFIG_UPROBES
5eca1c10 1422 struct uprobe_task *utask;
0326f5a9 1423#endif
cafe5635 1424#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1425 unsigned int sequential_io;
1426 unsigned int sequential_io_avg;
cafe5635 1427#endif
5fbda3ec 1428 struct kmap_ctrl kmap_ctrl;
8eb23b9f 1429#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1430 unsigned long task_state_change;
5f220be2
TG
1431# ifdef CONFIG_PREEMPT_RT
1432 unsigned long saved_state_change;
1433# endif
8eb23b9f 1434#endif
5eca1c10 1435 int pagefault_disabled;
03049269 1436#ifdef CONFIG_MMU
5eca1c10 1437 struct task_struct *oom_reaper_list;
03049269 1438#endif
ba14a194 1439#ifdef CONFIG_VMAP_STACK
5eca1c10 1440 struct vm_struct *stack_vm_area;
ba14a194 1441#endif
68f24b08 1442#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1443 /* A live task holds one reference: */
f0b89d39 1444 refcount_t stack_refcount;
d83a7cb3
JP
1445#endif
1446#ifdef CONFIG_LIVEPATCH
1447 int patch_state;
0302e28d 1448#endif
e4e55b47
TH
1449#ifdef CONFIG_SECURITY
1450 /* Used by LSM modules for access restriction: */
1451 void *security;
68f24b08 1452#endif
a10787e6
SL
1453#ifdef CONFIG_BPF_SYSCALL
1454 /* Used by BPF task local storage */
1455 struct bpf_local_storage __rcu *bpf_storage;
1456#endif
29e48ce8 1457
afaef01c
AP
1458#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1459 unsigned long lowest_stack;
c8d12627 1460 unsigned long prev_lowest_stack;
afaef01c
AP
1461#endif
1462
5567d11c 1463#ifdef CONFIG_X86_MCE
c0ab7ffc
TL
1464 void __user *mce_vaddr;
1465 __u64 mce_kflags;
5567d11c 1466 u64 mce_addr;
17fae129
TL
1467 __u64 mce_ripv : 1,
1468 mce_whole_page : 1,
1469 __mce_reserved : 62;
5567d11c
PZ
1470 struct callback_head mce_kill_me;
1471#endif
1472
d741bf41
PZ
1473#ifdef CONFIG_KRETPROBES
1474 struct llist_head kretprobe_instances;
1475#endif
1476
58e106e7
BS
1477#ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1478 /*
1479 * If L1D flush is supported on mm context switch
1480 * then we use this callback head to queue kill work
1481 * to kill tasks that are not running on SMT disabled
1482 * cores
1483 */
1484 struct callback_head l1d_flush_kill;
1485#endif
1486
29e48ce8
KC
1487 /*
1488 * New fields for task_struct should be added above here, so that
1489 * they are included in the randomized portion of task_struct.
1490 */
1491 randomized_struct_fields_end
1492
5eca1c10
IM
1493 /* CPU-specific state of this task: */
1494 struct thread_struct thread;
1495
1496 /*
1497 * WARNING: on x86, 'thread_struct' contains a variable-sized
1498 * structure. It *MUST* be at the end of 'task_struct'.
1499 *
1500 * Do not put anything below here!
1501 */
1da177e4
LT
1502};
1503
e868171a 1504static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1505{
2c470475 1506 return task->thread_pid;
22c935f4
EB
1507}
1508
7af57294
PE
1509/*
1510 * the helpers to get the task's different pids as they are seen
1511 * from various namespaces
1512 *
1513 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1514 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1515 * current.
7af57294
PE
1516 * task_xid_nr_ns() : id seen from the ns specified;
1517 *
7af57294
PE
1518 * see also pid_nr() etc in include/linux/pid.h
1519 */
5eca1c10 1520pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1521
e868171a 1522static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1523{
1524 return tsk->pid;
1525}
1526
5eca1c10 1527static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1528{
1529 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1530}
7af57294
PE
1531
1532static inline pid_t task_pid_vnr(struct task_struct *tsk)
1533{
52ee2dfd 1534 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1535}
1536
1537
e868171a 1538static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1539{
1540 return tsk->tgid;
1541}
1542
5eca1c10
IM
1543/**
1544 * pid_alive - check that a task structure is not stale
1545 * @p: Task structure to be checked.
1546 *
1547 * Test if a process is not yet dead (at most zombie state)
1548 * If pid_alive fails, then pointers within the task structure
1549 * can be stale and must not be dereferenced.
1550 *
1551 * Return: 1 if the process is alive. 0 otherwise.
1552 */
1553static inline int pid_alive(const struct task_struct *p)
1554{
2c470475 1555 return p->thread_pid != NULL;
5eca1c10 1556}
7af57294 1557
5eca1c10 1558static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1559{
52ee2dfd 1560 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1561}
1562
7af57294
PE
1563static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1564{
52ee2dfd 1565 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1566}
1567
1568
5eca1c10 1569static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1570{
52ee2dfd 1571 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1572}
1573
7af57294
PE
1574static inline pid_t task_session_vnr(struct task_struct *tsk)
1575{
52ee2dfd 1576 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1577}
1578
dd1c1f2f
ON
1579static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1580{
6883f81a 1581 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1582}
1583
1584static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1585{
6883f81a 1586 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1587}
1588
1589static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1590{
1591 pid_t pid = 0;
1592
1593 rcu_read_lock();
1594 if (pid_alive(tsk))
1595 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1596 rcu_read_unlock();
1597
1598 return pid;
1599}
1600
1601static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1602{
1603 return task_ppid_nr_ns(tsk, &init_pid_ns);
1604}
1605
5eca1c10 1606/* Obsolete, do not use: */
1b0f7ffd
ON
1607static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1608{
1609 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1610}
7af57294 1611
06eb6184
PZ
1612#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1613#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1614
1d48b080 1615static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1616{
2f064a59 1617 unsigned int tsk_state = READ_ONCE(tsk->__state);
1593baab 1618 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1619
06eb6184
PZ
1620 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1621
06eb6184
PZ
1622 if (tsk_state == TASK_IDLE)
1623 state = TASK_REPORT_IDLE;
1624
1593baab
PZ
1625 return fls(state);
1626}
1627
1d48b080 1628static inline char task_index_to_char(unsigned int state)
1593baab 1629{
8ef9925b 1630 static const char state_char[] = "RSDTtXZPI";
1593baab 1631
06eb6184 1632 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1633
1593baab
PZ
1634 return state_char[state];
1635}
1636
1637static inline char task_state_to_char(struct task_struct *tsk)
1638{
1d48b080 1639 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1640}
1641
f400e198 1642/**
570f5241
SS
1643 * is_global_init - check if a task structure is init. Since init
1644 * is free to have sub-threads we need to check tgid.
3260259f
H
1645 * @tsk: Task structure to be checked.
1646 *
1647 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1648 *
1649 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1650 */
e868171a 1651static inline int is_global_init(struct task_struct *tsk)
b461cc03 1652{
570f5241 1653 return task_tgid_nr(tsk) == 1;
b461cc03 1654}
b460cbc5 1655
9ec52099
CLG
1656extern struct pid *cad_pid;
1657
1da177e4
LT
1658/*
1659 * Per process flags
1660 */
01ccf592 1661#define PF_VCPU 0x00000001 /* I'm a virtual CPU */
5eca1c10
IM
1662#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1663#define PF_EXITING 0x00000004 /* Getting shut down */
01ccf592 1664#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
5eca1c10
IM
1665#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1666#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1667#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1668#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1669#define PF_DUMPCORE 0x00000200 /* Dumped core */
1670#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1671#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1672#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1673#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1674#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1675#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1676#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1677#define PF_KSWAPD 0x00020000 /* I am kswapd */
1678#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1679#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
a37b0715
N
1680#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1681 * I am cleaning dirty pages from some other bdi. */
5eca1c10
IM
1682#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1683#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1684#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
3bd37062 1685#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1686#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1a08ae36 1687#define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
5eca1c10
IM
1688#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1689#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1690
1691/*
1692 * Only the _current_ task can read/write to tsk->flags, but other
1693 * tasks can access tsk->flags in readonly mode for example
1694 * with tsk_used_math (like during threaded core dumping).
1695 * There is however an exception to this rule during ptrace
1696 * or during fork: the ptracer task is allowed to write to the
1697 * child->flags of its traced child (same goes for fork, the parent
1698 * can write to the child->flags), because we're guaranteed the
1699 * child is not running and in turn not changing child->flags
1700 * at the same time the parent does it.
1701 */
5eca1c10
IM
1702#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1703#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1704#define clear_used_math() clear_stopped_child_used_math(current)
1705#define set_used_math() set_stopped_child_used_math(current)
1706
1da177e4
LT
1707#define conditional_stopped_child_used_math(condition, child) \
1708 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1709
1710#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1711
1da177e4
LT
1712#define copy_to_stopped_child_used_math(child) \
1713 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1714
1da177e4 1715/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1716#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1717#define used_math() tsk_used_math(current)
1da177e4 1718
62ec05dd
TG
1719static inline bool is_percpu_thread(void)
1720{
1721#ifdef CONFIG_SMP
1722 return (current->flags & PF_NO_SETAFFINITY) &&
1723 (current->nr_cpus_allowed == 1);
1724#else
1725 return true;
1726#endif
1727}
1728
1d4457f9 1729/* Per-process atomic flags. */
5eca1c10
IM
1730#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1731#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1732#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1733#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1734#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1735#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1736#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1737#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1738
e0e5070b
ZL
1739#define TASK_PFA_TEST(name, func) \
1740 static inline bool task_##func(struct task_struct *p) \
1741 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1742
e0e5070b
ZL
1743#define TASK_PFA_SET(name, func) \
1744 static inline void task_set_##func(struct task_struct *p) \
1745 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1746
e0e5070b
ZL
1747#define TASK_PFA_CLEAR(name, func) \
1748 static inline void task_clear_##func(struct task_struct *p) \
1749 { clear_bit(PFA_##name, &p->atomic_flags); }
1750
1751TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1752TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1753
2ad654bc
ZL
1754TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1755TASK_PFA_SET(SPREAD_PAGE, spread_page)
1756TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1757
1758TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1759TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1760TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1761
356e4bff
TG
1762TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1763TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1764TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1765
71368af9
WL
1766TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1767TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1768TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1769
356e4bff
TG
1770TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1771TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1772
9137bb27
TG
1773TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1774TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1775TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1776
1777TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1778TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1779
5eca1c10 1780static inline void
717a94b5 1781current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1782{
717a94b5
N
1783 current->flags &= ~flags;
1784 current->flags |= orig_flags & flags;
907aed48
MG
1785}
1786
5eca1c10
IM
1787extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1788extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1789#ifdef CONFIG_SMP
5eca1c10
IM
1790extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1791extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
b90ca8ba
WD
1792extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1793extern void release_user_cpus_ptr(struct task_struct *p);
234b8ab6 1794extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
07ec77a1
WD
1795extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1796extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1da177e4 1797#else
5eca1c10 1798static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1799{
1800}
5eca1c10 1801static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1802{
96f874e2 1803 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1804 return -EINVAL;
1805 return 0;
1806}
b90ca8ba
WD
1807static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1808{
1809 if (src->user_cpus_ptr)
1810 return -EINVAL;
1811 return 0;
1812}
1813static inline void release_user_cpus_ptr(struct task_struct *p)
1814{
1815 WARN_ON(p->user_cpus_ptr);
1816}
234b8ab6
WD
1817
1818static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1819{
1820 return 0;
1821}
1da177e4 1822#endif
e0ad9556 1823
fa93384f 1824extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1825extern void set_user_nice(struct task_struct *p, long nice);
1826extern int task_prio(const struct task_struct *p);
5eca1c10 1827
d0ea0268
DY
1828/**
1829 * task_nice - return the nice value of a given task.
1830 * @p: the task in question.
1831 *
1832 * Return: The nice value [ -20 ... 0 ... 19 ].
1833 */
1834static inline int task_nice(const struct task_struct *p)
1835{
1836 return PRIO_TO_NICE((p)->static_prio);
1837}
5eca1c10 1838
36c8b586
IM
1839extern int can_nice(const struct task_struct *p, const int nice);
1840extern int task_curr(const struct task_struct *p);
1da177e4 1841extern int idle_cpu(int cpu);
943d355d 1842extern int available_idle_cpu(int cpu);
5eca1c10
IM
1843extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1844extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
8b700983
PZ
1845extern void sched_set_fifo(struct task_struct *p);
1846extern void sched_set_fifo_low(struct task_struct *p);
1847extern void sched_set_normal(struct task_struct *p, int nice);
5eca1c10 1848extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1849extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1850extern struct task_struct *idle_task(int cpu);
5eca1c10 1851
c4f30608
PM
1852/**
1853 * is_idle_task - is the specified task an idle task?
fa757281 1854 * @p: the task in question.
e69f6186
YB
1855 *
1856 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1857 */
c94a88f3 1858static __always_inline bool is_idle_task(const struct task_struct *p)
c4f30608 1859{
c1de45ca 1860 return !!(p->flags & PF_IDLE);
c4f30608 1861}
5eca1c10 1862
36c8b586 1863extern struct task_struct *curr_task(int cpu);
a458ae2e 1864extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1865
1866void yield(void);
1867
1da177e4 1868union thread_union {
0500871f
DH
1869#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1870 struct task_struct task;
1871#endif
c65eacbe 1872#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1873 struct thread_info thread_info;
c65eacbe 1874#endif
1da177e4
LT
1875 unsigned long stack[THREAD_SIZE/sizeof(long)];
1876};
1877
0500871f
DH
1878#ifndef CONFIG_THREAD_INFO_IN_TASK
1879extern struct thread_info init_thread_info;
1880#endif
1881
1882extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1883
f3ac6067
IM
1884#ifdef CONFIG_THREAD_INFO_IN_TASK
1885static inline struct thread_info *task_thread_info(struct task_struct *task)
1886{
1887 return &task->thread_info;
1888}
1889#elif !defined(__HAVE_THREAD_FUNCTIONS)
1890# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1891#endif
1892
198fe21b
PE
1893/*
1894 * find a task by one of its numerical ids
1895 *
198fe21b
PE
1896 * find_task_by_pid_ns():
1897 * finds a task by its pid in the specified namespace
228ebcbe
PE
1898 * find_task_by_vpid():
1899 * finds a task by its virtual pid
198fe21b 1900 *
e49859e7 1901 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1902 */
1903
228ebcbe 1904extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1905extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1906
2ee08260
MR
1907/*
1908 * find a task by its virtual pid and get the task struct
1909 */
1910extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1911
b3c97528
HH
1912extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1913extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1914extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1915
1da177e4 1916#ifdef CONFIG_SMP
5eca1c10 1917extern void kick_process(struct task_struct *tsk);
1da177e4 1918#else
5eca1c10 1919static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1920#endif
1da177e4 1921
82b89778 1922extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1923
82b89778
AH
1924static inline void set_task_comm(struct task_struct *tsk, const char *from)
1925{
1926 __set_task_comm(tsk, from, false);
1927}
5eca1c10 1928
3756f640
AB
1929extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1930#define get_task_comm(buf, tsk) ({ \
1931 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1932 __get_task_comm(buf, sizeof(buf), tsk); \
1933})
1da177e4
LT
1934
1935#ifdef CONFIG_SMP
2a0a24eb
TG
1936static __always_inline void scheduler_ipi(void)
1937{
1938 /*
1939 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1940 * TIF_NEED_RESCHED remotely (for the first time) will also send
1941 * this IPI.
1942 */
1943 preempt_fold_need_resched();
1944}
2f064a59 1945extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1da177e4 1946#else
184748cc 1947static inline void scheduler_ipi(void) { }
2f064a59 1948static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
85ba2d86
RM
1949{
1950 return 1;
1951}
1da177e4
LT
1952#endif
1953
5eca1c10
IM
1954/*
1955 * Set thread flags in other task's structures.
1956 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1957 */
1958static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1959{
a1261f54 1960 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1961}
1962
1963static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1964{
a1261f54 1965 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1966}
1967
93ee37c2
DM
1968static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1969 bool value)
1970{
1971 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1972}
1973
1da177e4
LT
1974static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1975{
a1261f54 1976 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1977}
1978
1979static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1980{
a1261f54 1981 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1982}
1983
1984static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1985{
a1261f54 1986 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1987}
1988
1989static inline void set_tsk_need_resched(struct task_struct *tsk)
1990{
1991 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1992}
1993
1994static inline void clear_tsk_need_resched(struct task_struct *tsk)
1995{
1996 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1997}
1998
8ae121ac
GH
1999static inline int test_tsk_need_resched(struct task_struct *tsk)
2000{
2001 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2002}
2003
1da177e4
LT
2004/*
2005 * cond_resched() and cond_resched_lock(): latency reduction via
2006 * explicit rescheduling in places that are safe. The return
2007 * value indicates whether a reschedule was done in fact.
2008 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 2009 */
b965f1dd
PZI
2010#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2011extern int __cond_resched(void);
2012
2013#ifdef CONFIG_PREEMPT_DYNAMIC
2014
2015DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2016
2017static __always_inline int _cond_resched(void)
2018{
ef72661e 2019 return static_call_mod(cond_resched)();
b965f1dd
PZI
2020}
2021
35a773a0 2022#else
b965f1dd
PZI
2023
2024static inline int _cond_resched(void)
2025{
2026 return __cond_resched();
2027}
2028
2029#endif /* CONFIG_PREEMPT_DYNAMIC */
2030
2031#else
2032
35a773a0 2033static inline int _cond_resched(void) { return 0; }
b965f1dd
PZI
2034
2035#endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
6f80bd98 2036
613afbf8 2037#define cond_resched() ({ \
3427445a 2038 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
2039 _cond_resched(); \
2040})
6f80bd98 2041
613afbf8 2042extern int __cond_resched_lock(spinlock_t *lock);
f3d4b4b1
BG
2043extern int __cond_resched_rwlock_read(rwlock_t *lock);
2044extern int __cond_resched_rwlock_write(rwlock_t *lock);
613afbf8
FW
2045
2046#define cond_resched_lock(lock) ({ \
3427445a 2047 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
2048 __cond_resched_lock(lock); \
2049})
2050
f3d4b4b1
BG
2051#define cond_resched_rwlock_read(lock) ({ \
2052 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2053 __cond_resched_rwlock_read(lock); \
2054})
2055
2056#define cond_resched_rwlock_write(lock) ({ \
2057 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2058 __cond_resched_rwlock_write(lock); \
2059})
2060
f6f3c437
SH
2061static inline void cond_resched_rcu(void)
2062{
2063#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2064 rcu_read_unlock();
2065 cond_resched();
2066 rcu_read_lock();
2067#endif
2068}
2069
1da177e4
LT
2070/*
2071 * Does a critical section need to be broken due to another
c1a280b6 2072 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
95c354fe 2073 * but a general need for low latency)
1da177e4 2074 */
95c354fe 2075static inline int spin_needbreak(spinlock_t *lock)
1da177e4 2076{
c1a280b6 2077#ifdef CONFIG_PREEMPTION
95c354fe
NP
2078 return spin_is_contended(lock);
2079#else
1da177e4 2080 return 0;
95c354fe 2081#endif
1da177e4
LT
2082}
2083
a09a689a
BG
2084/*
2085 * Check if a rwlock is contended.
2086 * Returns non-zero if there is another task waiting on the rwlock.
2087 * Returns zero if the lock is not contended or the system / underlying
2088 * rwlock implementation does not support contention detection.
2089 * Technically does not depend on CONFIG_PREEMPTION, but a general need
2090 * for low latency.
2091 */
2092static inline int rwlock_needbreak(rwlock_t *lock)
2093{
2094#ifdef CONFIG_PREEMPTION
2095 return rwlock_is_contended(lock);
2096#else
2097 return 0;
2098#endif
2099}
2100
75f93fed
PZ
2101static __always_inline bool need_resched(void)
2102{
2103 return unlikely(tif_need_resched());
2104}
2105
1da177e4
LT
2106/*
2107 * Wrappers for p->thread_info->cpu access. No-op on UP.
2108 */
2109#ifdef CONFIG_SMP
2110
2111static inline unsigned int task_cpu(const struct task_struct *p)
2112{
c65eacbe 2113#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 2114 return READ_ONCE(p->cpu);
c65eacbe 2115#else
c546951d 2116 return READ_ONCE(task_thread_info(p)->cpu);
c65eacbe 2117#endif
1da177e4
LT
2118}
2119
c65cc870 2120extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
2121
2122#else
2123
2124static inline unsigned int task_cpu(const struct task_struct *p)
2125{
2126 return 0;
2127}
2128
2129static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2130{
2131}
2132
2133#endif /* CONFIG_SMP */
2134
a1dfb631
MT
2135extern bool sched_task_on_rq(struct task_struct *p);
2136
d9345c65
PX
2137/*
2138 * In order to reduce various lock holder preemption latencies provide an
2139 * interface to see if a vCPU is currently running or not.
2140 *
2141 * This allows us to terminate optimistic spin loops and block, analogous to
2142 * the native optimistic spin heuristic of testing if the lock owner task is
2143 * running or not.
2144 */
2145#ifndef vcpu_is_preempted
42fd8baa
QC
2146static inline bool vcpu_is_preempted(int cpu)
2147{
2148 return false;
2149}
d9345c65
PX
2150#endif
2151
96f874e2
RR
2152extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2153extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 2154
82455257
DH
2155#ifndef TASK_SIZE_OF
2156#define TASK_SIZE_OF(tsk) TASK_SIZE
2157#endif
2158
a5418be9
VK
2159#ifdef CONFIG_SMP
2160/* Returns effective CPU energy utilization, as seen by the scheduler */
2161unsigned long sched_cpu_util(int cpu, unsigned long max);
2162#endif /* CONFIG_SMP */
2163
d7822b1e
MD
2164#ifdef CONFIG_RSEQ
2165
2166/*
2167 * Map the event mask on the user-space ABI enum rseq_cs_flags
2168 * for direct mask checks.
2169 */
2170enum rseq_event_mask_bits {
2171 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2172 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2173 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2174};
2175
2176enum rseq_event_mask {
2177 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2178 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2179 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2180};
2181
2182static inline void rseq_set_notify_resume(struct task_struct *t)
2183{
2184 if (t->rseq)
2185 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2186}
2187
784e0300 2188void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 2189
784e0300
WD
2190static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2191 struct pt_regs *regs)
d7822b1e
MD
2192{
2193 if (current->rseq)
784e0300 2194 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2195}
2196
784e0300
WD
2197static inline void rseq_signal_deliver(struct ksignal *ksig,
2198 struct pt_regs *regs)
d7822b1e
MD
2199{
2200 preempt_disable();
2201 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2202 preempt_enable();
784e0300 2203 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2204}
2205
2206/* rseq_preempt() requires preemption to be disabled. */
2207static inline void rseq_preempt(struct task_struct *t)
2208{
2209 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2210 rseq_set_notify_resume(t);
2211}
2212
2213/* rseq_migrate() requires preemption to be disabled. */
2214static inline void rseq_migrate(struct task_struct *t)
2215{
2216 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2217 rseq_set_notify_resume(t);
2218}
2219
2220/*
2221 * If parent process has a registered restartable sequences area, the
463f550f 2222 * child inherits. Unregister rseq for a clone with CLONE_VM set.
d7822b1e
MD
2223 */
2224static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2225{
463f550f 2226 if (clone_flags & CLONE_VM) {
d7822b1e 2227 t->rseq = NULL;
d7822b1e
MD
2228 t->rseq_sig = 0;
2229 t->rseq_event_mask = 0;
2230 } else {
2231 t->rseq = current->rseq;
d7822b1e
MD
2232 t->rseq_sig = current->rseq_sig;
2233 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
2234 }
2235}
2236
2237static inline void rseq_execve(struct task_struct *t)
2238{
2239 t->rseq = NULL;
d7822b1e
MD
2240 t->rseq_sig = 0;
2241 t->rseq_event_mask = 0;
2242}
2243
2244#else
2245
2246static inline void rseq_set_notify_resume(struct task_struct *t)
2247{
2248}
784e0300
WD
2249static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2250 struct pt_regs *regs)
d7822b1e
MD
2251{
2252}
784e0300
WD
2253static inline void rseq_signal_deliver(struct ksignal *ksig,
2254 struct pt_regs *regs)
d7822b1e
MD
2255{
2256}
2257static inline void rseq_preempt(struct task_struct *t)
2258{
2259}
2260static inline void rseq_migrate(struct task_struct *t)
2261{
2262}
2263static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2264{
2265}
2266static inline void rseq_execve(struct task_struct *t)
2267{
2268}
2269
2270#endif
2271
2272#ifdef CONFIG_DEBUG_RSEQ
2273
2274void rseq_syscall(struct pt_regs *regs);
2275
2276#else
2277
2278static inline void rseq_syscall(struct pt_regs *regs)
2279{
2280}
2281
2282#endif
2283
3c93a0c0
QY
2284const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2285char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2286int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2287
2288const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2289const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2290const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2291
2292int sched_trace_rq_cpu(struct rq *rq);
51cf18c9 2293int sched_trace_rq_cpu_capacity(struct rq *rq);
9d246053 2294int sched_trace_rq_nr_running(struct rq *rq);
3c93a0c0
QY
2295
2296const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2297
6e33cad0
PZ
2298#ifdef CONFIG_SCHED_CORE
2299extern void sched_core_free(struct task_struct *tsk);
85dd3f61 2300extern void sched_core_fork(struct task_struct *p);
7ac592aa
CH
2301extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2302 unsigned long uaddr);
6e33cad0
PZ
2303#else
2304static inline void sched_core_free(struct task_struct *tsk) { }
85dd3f61 2305static inline void sched_core_fork(struct task_struct *p) { }
6e33cad0
PZ
2306#endif
2307
1da177e4 2308#endif