sched: Introduce sched_class::pick_task()
[linux-2.6-block.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/mutex.h>
18#include <linux/plist.h>
19#include <linux/hrtimer.h>
0584df9c 20#include <linux/irqflags.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
ec1d2819 24#include <linux/refcount.h>
a3b6714e 25#include <linux/resource.h>
9745512c 26#include <linux/latencytop.h>
5eca1c10 27#include <linux/sched/prio.h>
9eacb5c7 28#include <linux/sched/types.h>
5eca1c10 29#include <linux/signal_types.h>
1446e1df 30#include <linux/syscall_user_dispatch.h>
5eca1c10
IM
31#include <linux/mm_types_task.h>
32#include <linux/task_io_accounting.h>
2b69942f 33#include <linux/posix-timers.h>
d7822b1e 34#include <linux/rseq.h>
0cd39f46 35#include <linux/seqlock.h>
dfd402a4 36#include <linux/kcsan.h>
5fbda3ec 37#include <asm/kmap_size.h>
a3b6714e 38
5eca1c10 39/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 40struct audit_context;
c7af7877 41struct backing_dev_info;
bddd87c7 42struct bio_list;
73c10101 43struct blk_plug;
a10787e6 44struct bpf_local_storage;
3c93a0c0 45struct capture_control;
c7af7877 46struct cfs_rq;
c7af7877
IM
47struct fs_struct;
48struct futex_pi_state;
49struct io_context;
1875dc5b 50struct io_uring_task;
c7af7877 51struct mempolicy;
89076bc3 52struct nameidata;
c7af7877
IM
53struct nsproxy;
54struct perf_event_context;
55struct pid_namespace;
56struct pipe_inode_info;
57struct rcu_node;
58struct reclaim_state;
59struct robust_list_head;
3c93a0c0
QY
60struct root_domain;
61struct rq;
c7af7877
IM
62struct sched_attr;
63struct sched_param;
43ae34cb 64struct seq_file;
c7af7877
IM
65struct sighand_struct;
66struct signal_struct;
67struct task_delay_info;
4cf86d77 68struct task_group;
1da177e4 69
4a8342d2
LT
70/*
71 * Task state bitmask. NOTE! These bits are also
72 * encoded in fs/proc/array.c: get_task_state().
73 *
74 * We have two separate sets of flags: task->state
75 * is about runnability, while task->exit_state are
76 * about the task exiting. Confusing, but this way
77 * modifying one set can't modify the other one by
78 * mistake.
79 */
5eca1c10
IM
80
81/* Used in tsk->state: */
92c4bc9f
PZ
82#define TASK_RUNNING 0x0000
83#define TASK_INTERRUPTIBLE 0x0001
84#define TASK_UNINTERRUPTIBLE 0x0002
85#define __TASK_STOPPED 0x0004
86#define __TASK_TRACED 0x0008
5eca1c10 87/* Used in tsk->exit_state: */
92c4bc9f
PZ
88#define EXIT_DEAD 0x0010
89#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
90#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
91/* Used in tsk->state again: */
8ef9925b
PZ
92#define TASK_PARKED 0x0040
93#define TASK_DEAD 0x0080
94#define TASK_WAKEKILL 0x0100
95#define TASK_WAKING 0x0200
92c4bc9f
PZ
96#define TASK_NOLOAD 0x0400
97#define TASK_NEW 0x0800
98#define TASK_STATE_MAX 0x1000
5eca1c10 99
5eca1c10
IM
100/* Convenience macros for the sake of set_current_state: */
101#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
102#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
103#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
104
105#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
106
107/* Convenience macros for the sake of wake_up(): */
108#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
109
110/* get_task_state(): */
111#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
112 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
113 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
114 TASK_PARKED)
5eca1c10
IM
115
116#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
117
118#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
119
120#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
121
8eb23b9f
PZ
122#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
123
b5bf9a90
PZ
124/*
125 * Special states are those that do not use the normal wait-loop pattern. See
126 * the comment with set_special_state().
127 */
128#define is_special_task_state(state) \
1cef1150 129 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 130
8eb23b9f
PZ
131#define __set_current_state(state_value) \
132 do { \
b5bf9a90 133 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f
PZ
134 current->task_state_change = _THIS_IP_; \
135 current->state = (state_value); \
136 } while (0)
b5bf9a90 137
8eb23b9f
PZ
138#define set_current_state(state_value) \
139 do { \
b5bf9a90 140 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f 141 current->task_state_change = _THIS_IP_; \
a2250238 142 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
143 } while (0)
144
b5bf9a90
PZ
145#define set_special_state(state_value) \
146 do { \
147 unsigned long flags; /* may shadow */ \
148 WARN_ON_ONCE(!is_special_task_state(state_value)); \
149 raw_spin_lock_irqsave(&current->pi_lock, flags); \
150 current->task_state_change = _THIS_IP_; \
151 current->state = (state_value); \
152 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
153 } while (0)
8eb23b9f 154#else
498d0c57
AM
155/*
156 * set_current_state() includes a barrier so that the write of current->state
157 * is correctly serialised wrt the caller's subsequent test of whether to
158 * actually sleep:
159 *
a2250238 160 * for (;;) {
498d0c57 161 * set_current_state(TASK_UNINTERRUPTIBLE);
58877d34
PZ
162 * if (CONDITION)
163 * break;
a2250238
PZ
164 *
165 * schedule();
166 * }
167 * __set_current_state(TASK_RUNNING);
168 *
169 * If the caller does not need such serialisation (because, for instance, the
58877d34 170 * CONDITION test and condition change and wakeup are under the same lock) then
a2250238
PZ
171 * use __set_current_state().
172 *
173 * The above is typically ordered against the wakeup, which does:
174 *
58877d34 175 * CONDITION = 1;
b5bf9a90 176 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 177 *
58877d34
PZ
178 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
179 * accessing p->state.
a2250238
PZ
180 *
181 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
182 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
183 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 184 *
b5bf9a90 185 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 186 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
187 * a problem either because that will result in one extra go around the loop
188 * and our @cond test will save the day.
498d0c57 189 *
a2250238 190 * Also see the comments of try_to_wake_up().
498d0c57 191 */
b5bf9a90
PZ
192#define __set_current_state(state_value) \
193 current->state = (state_value)
194
195#define set_current_state(state_value) \
196 smp_store_mb(current->state, (state_value))
197
198/*
199 * set_special_state() should be used for those states when the blocking task
200 * can not use the regular condition based wait-loop. In that case we must
201 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
202 * will not collide with our state change.
203 */
204#define set_special_state(state_value) \
205 do { \
206 unsigned long flags; /* may shadow */ \
207 raw_spin_lock_irqsave(&current->pi_lock, flags); \
208 current->state = (state_value); \
209 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
210 } while (0)
211
8eb23b9f
PZ
212#endif
213
5eca1c10
IM
214/* Task command name length: */
215#define TASK_COMM_LEN 16
1da177e4 216
1da177e4
LT
217extern void scheduler_tick(void);
218
5eca1c10
IM
219#define MAX_SCHEDULE_TIMEOUT LONG_MAX
220
221extern long schedule_timeout(long timeout);
222extern long schedule_timeout_interruptible(long timeout);
223extern long schedule_timeout_killable(long timeout);
224extern long schedule_timeout_uninterruptible(long timeout);
225extern long schedule_timeout_idle(long timeout);
1da177e4 226asmlinkage void schedule(void);
c5491ea7 227extern void schedule_preempt_disabled(void);
19c95f26 228asmlinkage void preempt_schedule_irq(void);
1da177e4 229
10ab5643
TH
230extern int __must_check io_schedule_prepare(void);
231extern void io_schedule_finish(int token);
9cff8ade 232extern long io_schedule_timeout(long timeout);
10ab5643 233extern void io_schedule(void);
9cff8ade 234
d37f761d 235/**
0ba42a59 236 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
237 * @utime: time spent in user mode
238 * @stime: time spent in system mode
9d7fb042 239 * @lock: protects the above two fields
d37f761d 240 *
9d7fb042
PZ
241 * Stores previous user/system time values such that we can guarantee
242 * monotonicity.
d37f761d 243 */
9d7fb042
PZ
244struct prev_cputime {
245#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
246 u64 utime;
247 u64 stime;
248 raw_spinlock_t lock;
9d7fb042 249#endif
d37f761d
FW
250};
251
bac5b6b6
FW
252enum vtime_state {
253 /* Task is sleeping or running in a CPU with VTIME inactive: */
254 VTIME_INACTIVE = 0,
14faf6fc
FW
255 /* Task is idle */
256 VTIME_IDLE,
bac5b6b6
FW
257 /* Task runs in kernelspace in a CPU with VTIME active: */
258 VTIME_SYS,
14faf6fc
FW
259 /* Task runs in userspace in a CPU with VTIME active: */
260 VTIME_USER,
e6d5bf3e
FW
261 /* Task runs as guests in a CPU with VTIME active: */
262 VTIME_GUEST,
bac5b6b6
FW
263};
264
265struct vtime {
266 seqcount_t seqcount;
267 unsigned long long starttime;
268 enum vtime_state state;
802f4a82 269 unsigned int cpu;
2a42eb95
WL
270 u64 utime;
271 u64 stime;
272 u64 gtime;
bac5b6b6
FW
273};
274
69842cba
PB
275/*
276 * Utilization clamp constraints.
277 * @UCLAMP_MIN: Minimum utilization
278 * @UCLAMP_MAX: Maximum utilization
279 * @UCLAMP_CNT: Utilization clamp constraints count
280 */
281enum uclamp_id {
282 UCLAMP_MIN = 0,
283 UCLAMP_MAX,
284 UCLAMP_CNT
285};
286
f9a25f77
MP
287#ifdef CONFIG_SMP
288extern struct root_domain def_root_domain;
289extern struct mutex sched_domains_mutex;
290#endif
291
1da177e4 292struct sched_info {
7f5f8e8d 293#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
294 /* Cumulative counters: */
295
296 /* # of times we have run on this CPU: */
297 unsigned long pcount;
298
299 /* Time spent waiting on a runqueue: */
300 unsigned long long run_delay;
301
302 /* Timestamps: */
303
304 /* When did we last run on a CPU? */
305 unsigned long long last_arrival;
306
307 /* When were we last queued to run? */
308 unsigned long long last_queued;
1da177e4 309
f6db8347 310#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 311};
1da177e4 312
6ecdd749
YD
313/*
314 * Integer metrics need fixed point arithmetic, e.g., sched/fair
315 * has a few: load, load_avg, util_avg, freq, and capacity.
316 *
317 * We define a basic fixed point arithmetic range, and then formalize
318 * all these metrics based on that basic range.
319 */
5eca1c10
IM
320# define SCHED_FIXEDPOINT_SHIFT 10
321# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 322
69842cba
PB
323/* Increase resolution of cpu_capacity calculations */
324# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
325# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
326
20b8a59f 327struct load_weight {
5eca1c10
IM
328 unsigned long weight;
329 u32 inv_weight;
20b8a59f
IM
330};
331
7f65ea42
PB
332/**
333 * struct util_est - Estimation utilization of FAIR tasks
334 * @enqueued: instantaneous estimated utilization of a task/cpu
335 * @ewma: the Exponential Weighted Moving Average (EWMA)
336 * utilization of a task
337 *
338 * Support data structure to track an Exponential Weighted Moving Average
339 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
340 * average each time a task completes an activation. Sample's weight is chosen
341 * so that the EWMA will be relatively insensitive to transient changes to the
342 * task's workload.
343 *
344 * The enqueued attribute has a slightly different meaning for tasks and cpus:
345 * - task: the task's util_avg at last task dequeue time
346 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
347 * Thus, the util_est.enqueued of a task represents the contribution on the
348 * estimated utilization of the CPU where that task is currently enqueued.
349 *
350 * Only for tasks we track a moving average of the past instantaneous
351 * estimated utilization. This allows to absorb sporadic drops in utilization
352 * of an otherwise almost periodic task.
353 */
354struct util_est {
355 unsigned int enqueued;
356 unsigned int ewma;
357#define UTIL_EST_WEIGHT_SHIFT 2
317d359d 358} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 359
9d89c257 360/*
9f683953 361 * The load/runnable/util_avg accumulates an infinite geometric series
0dacee1b 362 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
7b595334
YD
363 *
364 * [load_avg definition]
365 *
366 * load_avg = runnable% * scale_load_down(load)
367 *
9f683953
VG
368 * [runnable_avg definition]
369 *
370 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
7b595334 371 *
7b595334
YD
372 * [util_avg definition]
373 *
374 * util_avg = running% * SCHED_CAPACITY_SCALE
375 *
9f683953
VG
376 * where runnable% is the time ratio that a sched_entity is runnable and
377 * running% the time ratio that a sched_entity is running.
378 *
379 * For cfs_rq, they are the aggregated values of all runnable and blocked
380 * sched_entities.
7b595334 381 *
c1b7b8d4 382 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
9f683953
VG
383 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
384 * for computing those signals (see update_rq_clock_pelt())
7b595334 385 *
23127296
VG
386 * N.B., the above ratios (runnable% and running%) themselves are in the
387 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
388 * to as large a range as necessary. This is for example reflected by
389 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
390 *
391 * [Overflow issue]
392 *
393 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
394 * with the highest load (=88761), always runnable on a single cfs_rq,
395 * and should not overflow as the number already hits PID_MAX_LIMIT.
396 *
397 * For all other cases (including 32-bit kernels), struct load_weight's
398 * weight will overflow first before we do, because:
399 *
400 * Max(load_avg) <= Max(load.weight)
401 *
402 * Then it is the load_weight's responsibility to consider overflow
403 * issues.
9d89c257 404 */
9d85f21c 405struct sched_avg {
5eca1c10
IM
406 u64 last_update_time;
407 u64 load_sum;
9f683953 408 u64 runnable_sum;
5eca1c10
IM
409 u32 util_sum;
410 u32 period_contrib;
411 unsigned long load_avg;
9f683953 412 unsigned long runnable_avg;
5eca1c10 413 unsigned long util_avg;
7f65ea42 414 struct util_est util_est;
317d359d 415} ____cacheline_aligned;
9d85f21c 416
41acab88 417struct sched_statistics {
7f5f8e8d 418#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
419 u64 wait_start;
420 u64 wait_max;
421 u64 wait_count;
422 u64 wait_sum;
423 u64 iowait_count;
424 u64 iowait_sum;
425
426 u64 sleep_start;
427 u64 sleep_max;
428 s64 sum_sleep_runtime;
429
430 u64 block_start;
431 u64 block_max;
432 u64 exec_max;
433 u64 slice_max;
434
435 u64 nr_migrations_cold;
436 u64 nr_failed_migrations_affine;
437 u64 nr_failed_migrations_running;
438 u64 nr_failed_migrations_hot;
439 u64 nr_forced_migrations;
440
441 u64 nr_wakeups;
442 u64 nr_wakeups_sync;
443 u64 nr_wakeups_migrate;
444 u64 nr_wakeups_local;
445 u64 nr_wakeups_remote;
446 u64 nr_wakeups_affine;
447 u64 nr_wakeups_affine_attempts;
448 u64 nr_wakeups_passive;
449 u64 nr_wakeups_idle;
41acab88 450#endif
7f5f8e8d 451};
41acab88
LDM
452
453struct sched_entity {
5eca1c10
IM
454 /* For load-balancing: */
455 struct load_weight load;
456 struct rb_node run_node;
457 struct list_head group_node;
458 unsigned int on_rq;
41acab88 459
5eca1c10
IM
460 u64 exec_start;
461 u64 sum_exec_runtime;
462 u64 vruntime;
463 u64 prev_sum_exec_runtime;
41acab88 464
5eca1c10 465 u64 nr_migrations;
41acab88 466
5eca1c10 467 struct sched_statistics statistics;
94c18227 468
20b8a59f 469#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
470 int depth;
471 struct sched_entity *parent;
20b8a59f 472 /* rq on which this entity is (to be) queued: */
5eca1c10 473 struct cfs_rq *cfs_rq;
20b8a59f 474 /* rq "owned" by this entity/group: */
5eca1c10 475 struct cfs_rq *my_q;
9f683953
VG
476 /* cached value of my_q->h_nr_running */
477 unsigned long runnable_weight;
20b8a59f 478#endif
8bd75c77 479
141965c7 480#ifdef CONFIG_SMP
5a107804
JO
481 /*
482 * Per entity load average tracking.
483 *
484 * Put into separate cache line so it does not
485 * collide with read-mostly values above.
486 */
317d359d 487 struct sched_avg avg;
9d85f21c 488#endif
20b8a59f 489};
70b97a7f 490
fa717060 491struct sched_rt_entity {
5eca1c10
IM
492 struct list_head run_list;
493 unsigned long timeout;
494 unsigned long watchdog_stamp;
495 unsigned int time_slice;
496 unsigned short on_rq;
497 unsigned short on_list;
498
499 struct sched_rt_entity *back;
052f1dc7 500#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 501 struct sched_rt_entity *parent;
6f505b16 502 /* rq on which this entity is (to be) queued: */
5eca1c10 503 struct rt_rq *rt_rq;
6f505b16 504 /* rq "owned" by this entity/group: */
5eca1c10 505 struct rt_rq *my_q;
6f505b16 506#endif
3859a271 507} __randomize_layout;
fa717060 508
aab03e05 509struct sched_dl_entity {
5eca1c10 510 struct rb_node rb_node;
aab03e05
DF
511
512 /*
513 * Original scheduling parameters. Copied here from sched_attr
4027d080 514 * during sched_setattr(), they will remain the same until
515 * the next sched_setattr().
aab03e05 516 */
5eca1c10
IM
517 u64 dl_runtime; /* Maximum runtime for each instance */
518 u64 dl_deadline; /* Relative deadline of each instance */
519 u64 dl_period; /* Separation of two instances (period) */
54d6d303 520 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 521 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
522
523 /*
524 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 525 * they are continuously updated during task execution. Note that
aab03e05
DF
526 * the remaining runtime could be < 0 in case we are in overrun.
527 */
5eca1c10
IM
528 s64 runtime; /* Remaining runtime for this instance */
529 u64 deadline; /* Absolute deadline for this instance */
530 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
531
532 /*
533 * Some bool flags:
534 *
535 * @dl_throttled tells if we exhausted the runtime. If so, the
536 * task has to wait for a replenishment to be performed at the
537 * next firing of dl_timer.
538 *
2d3d891d
DF
539 * @dl_boosted tells if we are boosted due to DI. If so we are
540 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
541 * exit the critical section);
542 *
5eca1c10 543 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 544 * all its available runtime during the last job.
209a0cbd
LA
545 *
546 * @dl_non_contending tells if the task is inactive while still
547 * contributing to the active utilization. In other words, it
548 * indicates if the inactive timer has been armed and its handler
549 * has not been executed yet. This flag is useful to avoid race
550 * conditions between the inactive timer handler and the wakeup
551 * code.
34be3930
JL
552 *
553 * @dl_overrun tells if the task asked to be informed about runtime
554 * overruns.
aab03e05 555 */
aa5222e9 556 unsigned int dl_throttled : 1;
aa5222e9
DC
557 unsigned int dl_yielded : 1;
558 unsigned int dl_non_contending : 1;
34be3930 559 unsigned int dl_overrun : 1;
aab03e05
DF
560
561 /*
562 * Bandwidth enforcement timer. Each -deadline task has its
563 * own bandwidth to be enforced, thus we need one timer per task.
564 */
5eca1c10 565 struct hrtimer dl_timer;
209a0cbd
LA
566
567 /*
568 * Inactive timer, responsible for decreasing the active utilization
569 * at the "0-lag time". When a -deadline task blocks, it contributes
570 * to GRUB's active utilization until the "0-lag time", hence a
571 * timer is needed to decrease the active utilization at the correct
572 * time.
573 */
574 struct hrtimer inactive_timer;
2279f540
JL
575
576#ifdef CONFIG_RT_MUTEXES
577 /*
578 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
579 * pi_se points to the donor, otherwise points to the dl_se it belongs
580 * to (the original one/itself).
581 */
582 struct sched_dl_entity *pi_se;
583#endif
aab03e05 584};
8bd75c77 585
69842cba
PB
586#ifdef CONFIG_UCLAMP_TASK
587/* Number of utilization clamp buckets (shorter alias) */
588#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
589
590/*
591 * Utilization clamp for a scheduling entity
592 * @value: clamp value "assigned" to a se
593 * @bucket_id: bucket index corresponding to the "assigned" value
e8f14172 594 * @active: the se is currently refcounted in a rq's bucket
a509a7cd 595 * @user_defined: the requested clamp value comes from user-space
69842cba
PB
596 *
597 * The bucket_id is the index of the clamp bucket matching the clamp value
598 * which is pre-computed and stored to avoid expensive integer divisions from
599 * the fast path.
e8f14172
PB
600 *
601 * The active bit is set whenever a task has got an "effective" value assigned,
602 * which can be different from the clamp value "requested" from user-space.
603 * This allows to know a task is refcounted in the rq's bucket corresponding
604 * to the "effective" bucket_id.
a509a7cd
PB
605 *
606 * The user_defined bit is set whenever a task has got a task-specific clamp
607 * value requested from userspace, i.e. the system defaults apply to this task
608 * just as a restriction. This allows to relax default clamps when a less
609 * restrictive task-specific value has been requested, thus allowing to
610 * implement a "nice" semantic. For example, a task running with a 20%
611 * default boost can still drop its own boosting to 0%.
69842cba
PB
612 */
613struct uclamp_se {
614 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
615 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
e8f14172 616 unsigned int active : 1;
a509a7cd 617 unsigned int user_defined : 1;
69842cba
PB
618};
619#endif /* CONFIG_UCLAMP_TASK */
620
1d082fd0
PM
621union rcu_special {
622 struct {
5eca1c10
IM
623 u8 blocked;
624 u8 need_qs;
05f41571 625 u8 exp_hint; /* Hint for performance. */
276c4104 626 u8 need_mb; /* Readers need smp_mb(). */
8203d6d0 627 } b; /* Bits. */
05f41571 628 u32 s; /* Set of bits. */
1d082fd0 629};
86848966 630
8dc85d54
PZ
631enum perf_event_task_context {
632 perf_invalid_context = -1,
633 perf_hw_context = 0,
89a1e187 634 perf_sw_context,
8dc85d54
PZ
635 perf_nr_task_contexts,
636};
637
eb61baf6
IM
638struct wake_q_node {
639 struct wake_q_node *next;
640};
641
5fbda3ec
TG
642struct kmap_ctrl {
643#ifdef CONFIG_KMAP_LOCAL
644 int idx;
645 pte_t pteval[KM_MAX_IDX];
646#endif
647};
648
1da177e4 649struct task_struct {
c65eacbe
AL
650#ifdef CONFIG_THREAD_INFO_IN_TASK
651 /*
652 * For reasons of header soup (see current_thread_info()), this
653 * must be the first element of task_struct.
654 */
5eca1c10 655 struct thread_info thread_info;
c65eacbe 656#endif
5eca1c10
IM
657 /* -1 unrunnable, 0 runnable, >0 stopped: */
658 volatile long state;
29e48ce8
KC
659
660 /*
661 * This begins the randomizable portion of task_struct. Only
662 * scheduling-critical items should be added above here.
663 */
664 randomized_struct_fields_start
665
5eca1c10 666 void *stack;
ec1d2819 667 refcount_t usage;
5eca1c10
IM
668 /* Per task flags (PF_*), defined further below: */
669 unsigned int flags;
670 unsigned int ptrace;
1da177e4 671
2dd73a4f 672#ifdef CONFIG_SMP
5eca1c10 673 int on_cpu;
8c4890d1 674 struct __call_single_node wake_entry;
c65eacbe 675#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
676 /* Current CPU: */
677 unsigned int cpu;
c65eacbe 678#endif
5eca1c10
IM
679 unsigned int wakee_flips;
680 unsigned long wakee_flip_decay_ts;
681 struct task_struct *last_wakee;
ac66f547 682
32e839dd
MG
683 /*
684 * recent_used_cpu is initially set as the last CPU used by a task
685 * that wakes affine another task. Waker/wakee relationships can
686 * push tasks around a CPU where each wakeup moves to the next one.
687 * Tracking a recently used CPU allows a quick search for a recently
688 * used CPU that may be idle.
689 */
690 int recent_used_cpu;
5eca1c10 691 int wake_cpu;
2dd73a4f 692#endif
5eca1c10
IM
693 int on_rq;
694
695 int prio;
696 int static_prio;
697 int normal_prio;
698 unsigned int rt_priority;
50e645a8 699
5eca1c10
IM
700 const struct sched_class *sched_class;
701 struct sched_entity se;
702 struct sched_rt_entity rt;
8323f26c 703#ifdef CONFIG_CGROUP_SCHED
5eca1c10 704 struct task_group *sched_task_group;
8323f26c 705#endif
5eca1c10 706 struct sched_dl_entity dl;
1da177e4 707
69842cba 708#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
709 /*
710 * Clamp values requested for a scheduling entity.
711 * Must be updated with task_rq_lock() held.
712 */
e8f14172 713 struct uclamp_se uclamp_req[UCLAMP_CNT];
13685c4a
QY
714 /*
715 * Effective clamp values used for a scheduling entity.
716 * Must be updated with task_rq_lock() held.
717 */
69842cba
PB
718 struct uclamp_se uclamp[UCLAMP_CNT];
719#endif
720
e107be36 721#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
722 /* List of struct preempt_notifier: */
723 struct hlist_head preempt_notifiers;
e107be36
AK
724#endif
725
6c5c9341 726#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 727 unsigned int btrace_seq;
6c5c9341 728#endif
1da177e4 729
5eca1c10
IM
730 unsigned int policy;
731 int nr_cpus_allowed;
3bd37062
SAS
732 const cpumask_t *cpus_ptr;
733 cpumask_t cpus_mask;
6d337eab 734 void *migration_pending;
74d862b6 735#ifdef CONFIG_SMP
a7c81556 736 unsigned short migration_disabled;
af449901 737#endif
a7c81556 738 unsigned short migration_flags;
1da177e4 739
a57eb940 740#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
741 int rcu_read_lock_nesting;
742 union rcu_special rcu_read_unlock_special;
743 struct list_head rcu_node_entry;
744 struct rcu_node *rcu_blocked_node;
28f6569a 745#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 746
8315f422 747#ifdef CONFIG_TASKS_RCU
5eca1c10 748 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
749 u8 rcu_tasks_holdout;
750 u8 rcu_tasks_idx;
5eca1c10 751 int rcu_tasks_idle_cpu;
ccdd29ff 752 struct list_head rcu_tasks_holdout_list;
8315f422 753#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 754
d5f177d3
PM
755#ifdef CONFIG_TASKS_TRACE_RCU
756 int trc_reader_nesting;
757 int trc_ipi_to_cpu;
276c4104 758 union rcu_special trc_reader_special;
d5f177d3
PM
759 bool trc_reader_checked;
760 struct list_head trc_holdout_list;
761#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
762
5eca1c10 763 struct sched_info sched_info;
1da177e4 764
5eca1c10 765 struct list_head tasks;
806c09a7 766#ifdef CONFIG_SMP
5eca1c10
IM
767 struct plist_node pushable_tasks;
768 struct rb_node pushable_dl_tasks;
806c09a7 769#endif
1da177e4 770
5eca1c10
IM
771 struct mm_struct *mm;
772 struct mm_struct *active_mm;
314ff785
IM
773
774 /* Per-thread vma caching: */
5eca1c10 775 struct vmacache vmacache;
314ff785 776
5eca1c10
IM
777#ifdef SPLIT_RSS_COUNTING
778 struct task_rss_stat rss_stat;
34e55232 779#endif
5eca1c10
IM
780 int exit_state;
781 int exit_code;
782 int exit_signal;
783 /* The signal sent when the parent dies: */
784 int pdeath_signal;
785 /* JOBCTL_*, siglock protected: */
786 unsigned long jobctl;
787
788 /* Used for emulating ABI behavior of previous Linux versions: */
789 unsigned int personality;
790
791 /* Scheduler bits, serialized by scheduler locks: */
792 unsigned sched_reset_on_fork:1;
793 unsigned sched_contributes_to_load:1;
794 unsigned sched_migrated:1;
eb414681
JW
795#ifdef CONFIG_PSI
796 unsigned sched_psi_wake_requeue:1;
797#endif
798
5eca1c10
IM
799 /* Force alignment to the next boundary: */
800 unsigned :0;
801
802 /* Unserialized, strictly 'current' */
803
f97bb527
PZ
804 /*
805 * This field must not be in the scheduler word above due to wakelist
806 * queueing no longer being serialized by p->on_cpu. However:
807 *
808 * p->XXX = X; ttwu()
809 * schedule() if (p->on_rq && ..) // false
810 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
811 * deactivate_task() ttwu_queue_wakelist())
812 * p->on_rq = 0; p->sched_remote_wakeup = Y;
813 *
814 * guarantees all stores of 'current' are visible before
815 * ->sched_remote_wakeup gets used, so it can be in this word.
816 */
817 unsigned sched_remote_wakeup:1;
818
5eca1c10
IM
819 /* Bit to tell LSMs we're in execve(): */
820 unsigned in_execve:1;
821 unsigned in_iowait:1;
822#ifndef TIF_RESTORE_SIGMASK
823 unsigned restore_sigmask:1;
7e781418 824#endif
626ebc41 825#ifdef CONFIG_MEMCG
29ef680a 826 unsigned in_user_fault:1;
127424c8 827#endif
ff303e66 828#ifdef CONFIG_COMPAT_BRK
5eca1c10 829 unsigned brk_randomized:1;
ff303e66 830#endif
77f88796
TH
831#ifdef CONFIG_CGROUPS
832 /* disallow userland-initiated cgroup migration */
833 unsigned no_cgroup_migration:1;
76f969e8
RG
834 /* task is frozen/stopped (used by the cgroup freezer) */
835 unsigned frozen:1;
77f88796 836#endif
d09d8df3 837#ifdef CONFIG_BLK_CGROUP
d09d8df3
JB
838 unsigned use_memdelay:1;
839#endif
1066d1b6
YS
840#ifdef CONFIG_PSI
841 /* Stalled due to lack of memory */
842 unsigned in_memstall:1;
843#endif
8e9b16c4
ST
844#ifdef CONFIG_PAGE_OWNER
845 /* Used by page_owner=on to detect recursion in page tracking. */
846 unsigned in_page_owner:1;
847#endif
6f185c29 848
5eca1c10 849 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 850
5eca1c10 851 struct restart_block restart_block;
f56141e3 852
5eca1c10
IM
853 pid_t pid;
854 pid_t tgid;
0a425405 855
050e9baa 856#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
857 /* Canary value for the -fstack-protector GCC feature: */
858 unsigned long stack_canary;
1314562a 859#endif
4d1d61a6 860 /*
5eca1c10 861 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 862 * older sibling, respectively. (p->father can be replaced with
f470021a 863 * p->real_parent->pid)
1da177e4 864 */
5eca1c10
IM
865
866 /* Real parent process: */
867 struct task_struct __rcu *real_parent;
868
869 /* Recipient of SIGCHLD, wait4() reports: */
870 struct task_struct __rcu *parent;
871
1da177e4 872 /*
5eca1c10 873 * Children/sibling form the list of natural children:
1da177e4 874 */
5eca1c10
IM
875 struct list_head children;
876 struct list_head sibling;
877 struct task_struct *group_leader;
1da177e4 878
f470021a 879 /*
5eca1c10
IM
880 * 'ptraced' is the list of tasks this task is using ptrace() on.
881 *
f470021a 882 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 883 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 884 */
5eca1c10
IM
885 struct list_head ptraced;
886 struct list_head ptrace_entry;
f470021a 887
1da177e4 888 /* PID/PID hash table linkage. */
2c470475
EB
889 struct pid *thread_pid;
890 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
891 struct list_head thread_group;
892 struct list_head thread_node;
893
894 struct completion *vfork_done;
1da177e4 895
5eca1c10
IM
896 /* CLONE_CHILD_SETTID: */
897 int __user *set_child_tid;
1da177e4 898
5eca1c10
IM
899 /* CLONE_CHILD_CLEARTID: */
900 int __user *clear_child_tid;
901
3bfe6106
JA
902 /* PF_IO_WORKER */
903 void *pf_io_worker;
904
5eca1c10
IM
905 u64 utime;
906 u64 stime;
40565b5a 907#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
908 u64 utimescaled;
909 u64 stimescaled;
40565b5a 910#endif
5eca1c10
IM
911 u64 gtime;
912 struct prev_cputime prev_cputime;
6a61671b 913#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 914 struct vtime vtime;
d99ca3b9 915#endif
d027d45d
FW
916
917#ifdef CONFIG_NO_HZ_FULL
5eca1c10 918 atomic_t tick_dep_mask;
d027d45d 919#endif
5eca1c10
IM
920 /* Context switch counts: */
921 unsigned long nvcsw;
922 unsigned long nivcsw;
923
924 /* Monotonic time in nsecs: */
925 u64 start_time;
926
927 /* Boot based time in nsecs: */
cf25e24d 928 u64 start_boottime;
5eca1c10
IM
929
930 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
931 unsigned long min_flt;
932 unsigned long maj_flt;
1da177e4 933
2b69942f
TG
934 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
935 struct posix_cputimers posix_cputimers;
1da177e4 936
1fb497dd
TG
937#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
938 struct posix_cputimers_work posix_cputimers_work;
939#endif
940
5eca1c10
IM
941 /* Process credentials: */
942
943 /* Tracer's credentials at attach: */
944 const struct cred __rcu *ptracer_cred;
945
946 /* Objective and real subjective task credentials (COW): */
947 const struct cred __rcu *real_cred;
948
949 /* Effective (overridable) subjective task credentials (COW): */
950 const struct cred __rcu *cred;
951
7743c48e
DH
952#ifdef CONFIG_KEYS
953 /* Cached requested key. */
954 struct key *cached_requested_key;
955#endif
956
5eca1c10
IM
957 /*
958 * executable name, excluding path.
959 *
960 * - normally initialized setup_new_exec()
961 * - access it with [gs]et_task_comm()
962 * - lock it with task_lock()
963 */
964 char comm[TASK_COMM_LEN];
965
966 struct nameidata *nameidata;
967
3d5b6fcc 968#ifdef CONFIG_SYSVIPC
5eca1c10
IM
969 struct sysv_sem sysvsem;
970 struct sysv_shm sysvshm;
3d5b6fcc 971#endif
e162b39a 972#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 973 unsigned long last_switch_count;
a2e51445 974 unsigned long last_switch_time;
82a1fcb9 975#endif
5eca1c10
IM
976 /* Filesystem information: */
977 struct fs_struct *fs;
978
979 /* Open file information: */
980 struct files_struct *files;
981
0f212204
JA
982#ifdef CONFIG_IO_URING
983 struct io_uring_task *io_uring;
984#endif
985
5eca1c10
IM
986 /* Namespaces: */
987 struct nsproxy *nsproxy;
988
989 /* Signal handlers: */
990 struct signal_struct *signal;
913292c9 991 struct sighand_struct __rcu *sighand;
4bad58eb 992 struct sigqueue *sigqueue_cache;
5eca1c10
IM
993 sigset_t blocked;
994 sigset_t real_blocked;
995 /* Restored if set_restore_sigmask() was used: */
996 sigset_t saved_sigmask;
997 struct sigpending pending;
998 unsigned long sas_ss_sp;
999 size_t sas_ss_size;
1000 unsigned int sas_ss_flags;
1001
1002 struct callback_head *task_works;
1003
4b7d248b 1004#ifdef CONFIG_AUDIT
bfef93a5 1005#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
1006 struct audit_context *audit_context;
1007#endif
5eca1c10
IM
1008 kuid_t loginuid;
1009 unsigned int sessionid;
bfef93a5 1010#endif
5eca1c10 1011 struct seccomp seccomp;
1446e1df 1012 struct syscall_user_dispatch syscall_dispatch;
5eca1c10
IM
1013
1014 /* Thread group tracking: */
d1e7fd64
EB
1015 u64 parent_exec_id;
1016 u64 self_exec_id;
1da177e4 1017
5eca1c10
IM
1018 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1019 spinlock_t alloc_lock;
1da177e4 1020
b29739f9 1021 /* Protection of the PI data structures: */
5eca1c10 1022 raw_spinlock_t pi_lock;
b29739f9 1023
5eca1c10 1024 struct wake_q_node wake_q;
76751049 1025
23f78d4a 1026#ifdef CONFIG_RT_MUTEXES
5eca1c10 1027 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 1028 struct rb_root_cached pi_waiters;
e96a7705
XP
1029 /* Updated under owner's pi_lock and rq lock */
1030 struct task_struct *pi_top_task;
5eca1c10
IM
1031 /* Deadlock detection and priority inheritance handling: */
1032 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1033#endif
1034
408894ee 1035#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
1036 /* Mutex deadlock detection: */
1037 struct mutex_waiter *blocked_on;
408894ee 1038#endif
5eca1c10 1039
312364f3
DV
1040#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1041 int non_block_count;
1042#endif
1043
de30a2b3 1044#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c 1045 struct irqtrace_events irqtrace;
de8f5e4f 1046 unsigned int hardirq_threaded;
c86e9b98 1047 u64 hardirq_chain_key;
5eca1c10
IM
1048 int softirqs_enabled;
1049 int softirq_context;
40db1739 1050 int irq_config;
de30a2b3 1051#endif
728b478d
TG
1052#ifdef CONFIG_PREEMPT_RT
1053 int softirq_disable_cnt;
1054#endif
5eca1c10 1055
fbb9ce95 1056#ifdef CONFIG_LOCKDEP
5eca1c10
IM
1057# define MAX_LOCK_DEPTH 48UL
1058 u64 curr_chain_key;
1059 int lockdep_depth;
1060 unsigned int lockdep_recursion;
1061 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 1062#endif
5eca1c10 1063
5cf53f3c 1064#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
5eca1c10 1065 unsigned int in_ubsan;
c6d30853 1066#endif
408894ee 1067
5eca1c10
IM
1068 /* Journalling filesystem info: */
1069 void *journal_info;
1da177e4 1070
5eca1c10
IM
1071 /* Stacked block device info: */
1072 struct bio_list *bio_list;
d89d8796 1073
73c10101 1074#ifdef CONFIG_BLOCK
5eca1c10
IM
1075 /* Stack plugging: */
1076 struct blk_plug *plug;
73c10101
JA
1077#endif
1078
5eca1c10
IM
1079 /* VM state: */
1080 struct reclaim_state *reclaim_state;
1081
1082 struct backing_dev_info *backing_dev_info;
1da177e4 1083
5eca1c10 1084 struct io_context *io_context;
1da177e4 1085
5e1f0f09
MG
1086#ifdef CONFIG_COMPACTION
1087 struct capture_control *capture_control;
1088#endif
5eca1c10
IM
1089 /* Ptrace state: */
1090 unsigned long ptrace_message;
ae7795bc 1091 kernel_siginfo_t *last_siginfo;
1da177e4 1092
5eca1c10 1093 struct task_io_accounting ioac;
eb414681
JW
1094#ifdef CONFIG_PSI
1095 /* Pressure stall state */
1096 unsigned int psi_flags;
1097#endif
5eca1c10
IM
1098#ifdef CONFIG_TASK_XACCT
1099 /* Accumulated RSS usage: */
1100 u64 acct_rss_mem1;
1101 /* Accumulated virtual memory usage: */
1102 u64 acct_vm_mem1;
1103 /* stime + utime since last update: */
1104 u64 acct_timexpd;
1da177e4
LT
1105#endif
1106#ifdef CONFIG_CPUSETS
5eca1c10
IM
1107 /* Protected by ->alloc_lock: */
1108 nodemask_t mems_allowed;
3b03706f 1109 /* Sequence number to catch updates: */
b7505861 1110 seqcount_spinlock_t mems_allowed_seq;
5eca1c10
IM
1111 int cpuset_mem_spread_rotor;
1112 int cpuset_slab_spread_rotor;
1da177e4 1113#endif
ddbcc7e8 1114#ifdef CONFIG_CGROUPS
5eca1c10
IM
1115 /* Control Group info protected by css_set_lock: */
1116 struct css_set __rcu *cgroups;
1117 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1118 struct list_head cg_list;
ddbcc7e8 1119#endif
e6d42931 1120#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 1121 u32 closid;
d6aaba61 1122 u32 rmid;
e02737d5 1123#endif
42b2dd0a 1124#ifdef CONFIG_FUTEX
5eca1c10 1125 struct robust_list_head __user *robust_list;
34f192c6
IM
1126#ifdef CONFIG_COMPAT
1127 struct compat_robust_list_head __user *compat_robust_list;
1128#endif
5eca1c10
IM
1129 struct list_head pi_state_list;
1130 struct futex_pi_state *pi_state_cache;
3f186d97 1131 struct mutex futex_exit_mutex;
3d4775df 1132 unsigned int futex_state;
c7aceaba 1133#endif
cdd6c482 1134#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
1135 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1136 struct mutex perf_event_mutex;
1137 struct list_head perf_event_list;
a63eaf34 1138#endif
8f47b187 1139#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1140 unsigned long preempt_disable_ip;
8f47b187 1141#endif
c7aceaba 1142#ifdef CONFIG_NUMA
5eca1c10
IM
1143 /* Protected by alloc_lock: */
1144 struct mempolicy *mempolicy;
45816682 1145 short il_prev;
5eca1c10 1146 short pref_node_fork;
42b2dd0a 1147#endif
cbee9f88 1148#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1149 int numa_scan_seq;
1150 unsigned int numa_scan_period;
1151 unsigned int numa_scan_period_max;
1152 int numa_preferred_nid;
1153 unsigned long numa_migrate_retry;
1154 /* Migration stamp: */
1155 u64 node_stamp;
1156 u64 last_task_numa_placement;
1157 u64 last_sum_exec_runtime;
1158 struct callback_head numa_work;
1159
cb361d8c
JH
1160 /*
1161 * This pointer is only modified for current in syscall and
1162 * pagefault context (and for tasks being destroyed), so it can be read
1163 * from any of the following contexts:
1164 * - RCU read-side critical section
1165 * - current->numa_group from everywhere
1166 * - task's runqueue locked, task not running
1167 */
1168 struct numa_group __rcu *numa_group;
8c8a743c 1169
745d6147 1170 /*
44dba3d5
IM
1171 * numa_faults is an array split into four regions:
1172 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1173 * in this precise order.
1174 *
1175 * faults_memory: Exponential decaying average of faults on a per-node
1176 * basis. Scheduling placement decisions are made based on these
1177 * counts. The values remain static for the duration of a PTE scan.
1178 * faults_cpu: Track the nodes the process was running on when a NUMA
1179 * hinting fault was incurred.
1180 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1181 * during the current scan window. When the scan completes, the counts
1182 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1183 */
5eca1c10
IM
1184 unsigned long *numa_faults;
1185 unsigned long total_numa_faults;
745d6147 1186
04bb2f94
RR
1187 /*
1188 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1189 * scan window were remote/local or failed to migrate. The task scan
1190 * period is adapted based on the locality of the faults with different
1191 * weights depending on whether they were shared or private faults
04bb2f94 1192 */
5eca1c10 1193 unsigned long numa_faults_locality[3];
04bb2f94 1194
5eca1c10 1195 unsigned long numa_pages_migrated;
cbee9f88
PZ
1196#endif /* CONFIG_NUMA_BALANCING */
1197
d7822b1e
MD
1198#ifdef CONFIG_RSEQ
1199 struct rseq __user *rseq;
d7822b1e
MD
1200 u32 rseq_sig;
1201 /*
1202 * RmW on rseq_event_mask must be performed atomically
1203 * with respect to preemption.
1204 */
1205 unsigned long rseq_event_mask;
1206#endif
1207
5eca1c10 1208 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1209
3fbd7ee2
EB
1210 union {
1211 refcount_t rcu_users;
1212 struct rcu_head rcu;
1213 };
b92ce558 1214
5eca1c10
IM
1215 /* Cache last used pipe for splice(): */
1216 struct pipe_inode_info *splice_pipe;
5640f768 1217
5eca1c10 1218 struct page_frag task_frag;
5640f768 1219
47913d4e
IM
1220#ifdef CONFIG_TASK_DELAY_ACCT
1221 struct task_delay_info *delays;
f4f154fd 1222#endif
47913d4e 1223
f4f154fd 1224#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1225 int make_it_fail;
9049f2f6 1226 unsigned int fail_nth;
ca74e92b 1227#endif
9d823e8f 1228 /*
5eca1c10
IM
1229 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1230 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1231 */
5eca1c10
IM
1232 int nr_dirtied;
1233 int nr_dirtied_pause;
1234 /* Start of a write-and-pause period: */
1235 unsigned long dirty_paused_when;
9d823e8f 1236
9745512c 1237#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1238 int latency_record_count;
1239 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1240#endif
6976675d 1241 /*
5eca1c10 1242 * Time slack values; these are used to round up poll() and
6976675d
AV
1243 * select() etc timeout values. These are in nanoseconds.
1244 */
5eca1c10
IM
1245 u64 timer_slack_ns;
1246 u64 default_timer_slack_ns;
f8d570a4 1247
d73b4936 1248#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
5eca1c10 1249 unsigned int kasan_depth;
0b24becc 1250#endif
92c209ac 1251
dfd402a4
ME
1252#ifdef CONFIG_KCSAN
1253 struct kcsan_ctx kcsan_ctx;
92c209ac
ME
1254#ifdef CONFIG_TRACE_IRQFLAGS
1255 struct irqtrace_events kcsan_save_irqtrace;
1256#endif
dfd402a4 1257#endif
5eca1c10 1258
393824f6
PA
1259#if IS_ENABLED(CONFIG_KUNIT)
1260 struct kunit *kunit_test;
1261#endif
1262
fb52607a 1263#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1264 /* Index of current stored address in ret_stack: */
1265 int curr_ret_stack;
39eb456d 1266 int curr_ret_depth;
5eca1c10
IM
1267
1268 /* Stack of return addresses for return function tracing: */
1269 struct ftrace_ret_stack *ret_stack;
1270
1271 /* Timestamp for last schedule: */
1272 unsigned long long ftrace_timestamp;
1273
f201ae23
FW
1274 /*
1275 * Number of functions that haven't been traced
5eca1c10 1276 * because of depth overrun:
f201ae23 1277 */
5eca1c10
IM
1278 atomic_t trace_overrun;
1279
1280 /* Pause tracing: */
1281 atomic_t tracing_graph_pause;
f201ae23 1282#endif
5eca1c10 1283
ea4e2bc4 1284#ifdef CONFIG_TRACING
5eca1c10
IM
1285 /* State flags for use by tracers: */
1286 unsigned long trace;
1287
1288 /* Bitmask and counter of trace recursion: */
1289 unsigned long trace_recursion;
261842b7 1290#endif /* CONFIG_TRACING */
5eca1c10 1291
5c9a8750 1292#ifdef CONFIG_KCOV
eec028c9
AK
1293 /* See kernel/kcov.c for more details. */
1294
5eca1c10 1295 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1296 unsigned int kcov_mode;
5eca1c10
IM
1297
1298 /* Size of the kcov_area: */
1299 unsigned int kcov_size;
1300
1301 /* Buffer for coverage collection: */
1302 void *kcov_area;
1303
1304 /* KCOV descriptor wired with this task or NULL: */
1305 struct kcov *kcov;
eec028c9
AK
1306
1307 /* KCOV common handle for remote coverage collection: */
1308 u64 kcov_handle;
1309
1310 /* KCOV sequence number: */
1311 int kcov_sequence;
5ff3b30a
AK
1312
1313 /* Collect coverage from softirq context: */
1314 unsigned int kcov_softirq;
5c9a8750 1315#endif
5eca1c10 1316
6f185c29 1317#ifdef CONFIG_MEMCG
5eca1c10
IM
1318 struct mem_cgroup *memcg_in_oom;
1319 gfp_t memcg_oom_gfp_mask;
1320 int memcg_oom_order;
b23afb93 1321
5eca1c10
IM
1322 /* Number of pages to reclaim on returning to userland: */
1323 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1324
1325 /* Used by memcontrol for targeted memcg charge: */
1326 struct mem_cgroup *active_memcg;
569b846d 1327#endif
5eca1c10 1328
d09d8df3
JB
1329#ifdef CONFIG_BLK_CGROUP
1330 struct request_queue *throttle_queue;
1331#endif
1332
0326f5a9 1333#ifdef CONFIG_UPROBES
5eca1c10 1334 struct uprobe_task *utask;
0326f5a9 1335#endif
cafe5635 1336#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1337 unsigned int sequential_io;
1338 unsigned int sequential_io_avg;
cafe5635 1339#endif
5fbda3ec 1340 struct kmap_ctrl kmap_ctrl;
8eb23b9f 1341#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1342 unsigned long task_state_change;
8eb23b9f 1343#endif
5eca1c10 1344 int pagefault_disabled;
03049269 1345#ifdef CONFIG_MMU
5eca1c10 1346 struct task_struct *oom_reaper_list;
03049269 1347#endif
ba14a194 1348#ifdef CONFIG_VMAP_STACK
5eca1c10 1349 struct vm_struct *stack_vm_area;
ba14a194 1350#endif
68f24b08 1351#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1352 /* A live task holds one reference: */
f0b89d39 1353 refcount_t stack_refcount;
d83a7cb3
JP
1354#endif
1355#ifdef CONFIG_LIVEPATCH
1356 int patch_state;
0302e28d 1357#endif
e4e55b47
TH
1358#ifdef CONFIG_SECURITY
1359 /* Used by LSM modules for access restriction: */
1360 void *security;
68f24b08 1361#endif
a10787e6
SL
1362#ifdef CONFIG_BPF_SYSCALL
1363 /* Used by BPF task local storage */
1364 struct bpf_local_storage __rcu *bpf_storage;
1365#endif
29e48ce8 1366
afaef01c
AP
1367#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1368 unsigned long lowest_stack;
c8d12627 1369 unsigned long prev_lowest_stack;
afaef01c
AP
1370#endif
1371
5567d11c 1372#ifdef CONFIG_X86_MCE
c0ab7ffc
TL
1373 void __user *mce_vaddr;
1374 __u64 mce_kflags;
5567d11c 1375 u64 mce_addr;
17fae129
TL
1376 __u64 mce_ripv : 1,
1377 mce_whole_page : 1,
1378 __mce_reserved : 62;
5567d11c
PZ
1379 struct callback_head mce_kill_me;
1380#endif
1381
d741bf41
PZ
1382#ifdef CONFIG_KRETPROBES
1383 struct llist_head kretprobe_instances;
1384#endif
1385
29e48ce8
KC
1386 /*
1387 * New fields for task_struct should be added above here, so that
1388 * they are included in the randomized portion of task_struct.
1389 */
1390 randomized_struct_fields_end
1391
5eca1c10
IM
1392 /* CPU-specific state of this task: */
1393 struct thread_struct thread;
1394
1395 /*
1396 * WARNING: on x86, 'thread_struct' contains a variable-sized
1397 * structure. It *MUST* be at the end of 'task_struct'.
1398 *
1399 * Do not put anything below here!
1400 */
1da177e4
LT
1401};
1402
e868171a 1403static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1404{
2c470475 1405 return task->thread_pid;
22c935f4
EB
1406}
1407
7af57294
PE
1408/*
1409 * the helpers to get the task's different pids as they are seen
1410 * from various namespaces
1411 *
1412 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1413 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1414 * current.
7af57294
PE
1415 * task_xid_nr_ns() : id seen from the ns specified;
1416 *
7af57294
PE
1417 * see also pid_nr() etc in include/linux/pid.h
1418 */
5eca1c10 1419pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1420
e868171a 1421static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1422{
1423 return tsk->pid;
1424}
1425
5eca1c10 1426static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1427{
1428 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1429}
7af57294
PE
1430
1431static inline pid_t task_pid_vnr(struct task_struct *tsk)
1432{
52ee2dfd 1433 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1434}
1435
1436
e868171a 1437static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1438{
1439 return tsk->tgid;
1440}
1441
5eca1c10
IM
1442/**
1443 * pid_alive - check that a task structure is not stale
1444 * @p: Task structure to be checked.
1445 *
1446 * Test if a process is not yet dead (at most zombie state)
1447 * If pid_alive fails, then pointers within the task structure
1448 * can be stale and must not be dereferenced.
1449 *
1450 * Return: 1 if the process is alive. 0 otherwise.
1451 */
1452static inline int pid_alive(const struct task_struct *p)
1453{
2c470475 1454 return p->thread_pid != NULL;
5eca1c10 1455}
7af57294 1456
5eca1c10 1457static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1458{
52ee2dfd 1459 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1460}
1461
7af57294
PE
1462static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1463{
52ee2dfd 1464 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1465}
1466
1467
5eca1c10 1468static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1469{
52ee2dfd 1470 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1471}
1472
7af57294
PE
1473static inline pid_t task_session_vnr(struct task_struct *tsk)
1474{
52ee2dfd 1475 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1476}
1477
dd1c1f2f
ON
1478static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1479{
6883f81a 1480 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1481}
1482
1483static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1484{
6883f81a 1485 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1486}
1487
1488static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1489{
1490 pid_t pid = 0;
1491
1492 rcu_read_lock();
1493 if (pid_alive(tsk))
1494 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1495 rcu_read_unlock();
1496
1497 return pid;
1498}
1499
1500static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1501{
1502 return task_ppid_nr_ns(tsk, &init_pid_ns);
1503}
1504
5eca1c10 1505/* Obsolete, do not use: */
1b0f7ffd
ON
1506static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1507{
1508 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1509}
7af57294 1510
06eb6184
PZ
1511#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1512#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1513
1d48b080 1514static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1515{
1593baab
PZ
1516 unsigned int tsk_state = READ_ONCE(tsk->state);
1517 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1518
06eb6184
PZ
1519 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1520
06eb6184
PZ
1521 if (tsk_state == TASK_IDLE)
1522 state = TASK_REPORT_IDLE;
1523
1593baab
PZ
1524 return fls(state);
1525}
1526
1d48b080 1527static inline char task_index_to_char(unsigned int state)
1593baab 1528{
8ef9925b 1529 static const char state_char[] = "RSDTtXZPI";
1593baab 1530
06eb6184 1531 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1532
1593baab
PZ
1533 return state_char[state];
1534}
1535
1536static inline char task_state_to_char(struct task_struct *tsk)
1537{
1d48b080 1538 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1539}
1540
f400e198 1541/**
570f5241
SS
1542 * is_global_init - check if a task structure is init. Since init
1543 * is free to have sub-threads we need to check tgid.
3260259f
H
1544 * @tsk: Task structure to be checked.
1545 *
1546 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1547 *
1548 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1549 */
e868171a 1550static inline int is_global_init(struct task_struct *tsk)
b461cc03 1551{
570f5241 1552 return task_tgid_nr(tsk) == 1;
b461cc03 1553}
b460cbc5 1554
9ec52099
CLG
1555extern struct pid *cad_pid;
1556
1da177e4
LT
1557/*
1558 * Per process flags
1559 */
01ccf592 1560#define PF_VCPU 0x00000001 /* I'm a virtual CPU */
5eca1c10
IM
1561#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1562#define PF_EXITING 0x00000004 /* Getting shut down */
01ccf592 1563#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
5eca1c10
IM
1564#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1565#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1566#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1567#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1568#define PF_DUMPCORE 0x00000200 /* Dumped core */
1569#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1570#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1571#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1572#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1573#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1574#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1575#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1576#define PF_KSWAPD 0x00020000 /* I am kswapd */
1577#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1578#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
a37b0715
N
1579#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1580 * I am cleaning dirty pages from some other bdi. */
5eca1c10
IM
1581#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1582#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1583#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
3bd37062 1584#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1585#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1a08ae36 1586#define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
5eca1c10
IM
1587#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1588#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1589
1590/*
1591 * Only the _current_ task can read/write to tsk->flags, but other
1592 * tasks can access tsk->flags in readonly mode for example
1593 * with tsk_used_math (like during threaded core dumping).
1594 * There is however an exception to this rule during ptrace
1595 * or during fork: the ptracer task is allowed to write to the
1596 * child->flags of its traced child (same goes for fork, the parent
1597 * can write to the child->flags), because we're guaranteed the
1598 * child is not running and in turn not changing child->flags
1599 * at the same time the parent does it.
1600 */
5eca1c10
IM
1601#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1602#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1603#define clear_used_math() clear_stopped_child_used_math(current)
1604#define set_used_math() set_stopped_child_used_math(current)
1605
1da177e4
LT
1606#define conditional_stopped_child_used_math(condition, child) \
1607 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1608
1609#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1610
1da177e4
LT
1611#define copy_to_stopped_child_used_math(child) \
1612 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1613
1da177e4 1614/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1615#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1616#define used_math() tsk_used_math(current)
1da177e4 1617
62ec05dd
TG
1618static inline bool is_percpu_thread(void)
1619{
1620#ifdef CONFIG_SMP
1621 return (current->flags & PF_NO_SETAFFINITY) &&
1622 (current->nr_cpus_allowed == 1);
1623#else
1624 return true;
1625#endif
1626}
1627
1d4457f9 1628/* Per-process atomic flags. */
5eca1c10
IM
1629#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1630#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1631#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1632#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1633#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1634#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1635#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1636#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1637
e0e5070b
ZL
1638#define TASK_PFA_TEST(name, func) \
1639 static inline bool task_##func(struct task_struct *p) \
1640 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1641
e0e5070b
ZL
1642#define TASK_PFA_SET(name, func) \
1643 static inline void task_set_##func(struct task_struct *p) \
1644 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1645
e0e5070b
ZL
1646#define TASK_PFA_CLEAR(name, func) \
1647 static inline void task_clear_##func(struct task_struct *p) \
1648 { clear_bit(PFA_##name, &p->atomic_flags); }
1649
1650TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1651TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1652
2ad654bc
ZL
1653TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1654TASK_PFA_SET(SPREAD_PAGE, spread_page)
1655TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1656
1657TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1658TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1659TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1660
356e4bff
TG
1661TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1662TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1663TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1664
71368af9
WL
1665TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1666TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1667TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1668
356e4bff
TG
1669TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1670TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1671
9137bb27
TG
1672TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1673TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1674TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1675
1676TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1677TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1678
5eca1c10 1679static inline void
717a94b5 1680current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1681{
717a94b5
N
1682 current->flags &= ~flags;
1683 current->flags |= orig_flags & flags;
907aed48
MG
1684}
1685
5eca1c10
IM
1686extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1687extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1688#ifdef CONFIG_SMP
5eca1c10
IM
1689extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1690extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1691#else
5eca1c10 1692static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1693{
1694}
5eca1c10 1695static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1696{
96f874e2 1697 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1698 return -EINVAL;
1699 return 0;
1700}
1701#endif
e0ad9556 1702
fa93384f 1703extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1704extern void set_user_nice(struct task_struct *p, long nice);
1705extern int task_prio(const struct task_struct *p);
5eca1c10 1706
d0ea0268
DY
1707/**
1708 * task_nice - return the nice value of a given task.
1709 * @p: the task in question.
1710 *
1711 * Return: The nice value [ -20 ... 0 ... 19 ].
1712 */
1713static inline int task_nice(const struct task_struct *p)
1714{
1715 return PRIO_TO_NICE((p)->static_prio);
1716}
5eca1c10 1717
36c8b586
IM
1718extern int can_nice(const struct task_struct *p, const int nice);
1719extern int task_curr(const struct task_struct *p);
1da177e4 1720extern int idle_cpu(int cpu);
943d355d 1721extern int available_idle_cpu(int cpu);
5eca1c10
IM
1722extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1723extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
8b700983
PZ
1724extern void sched_set_fifo(struct task_struct *p);
1725extern void sched_set_fifo_low(struct task_struct *p);
1726extern void sched_set_normal(struct task_struct *p, int nice);
5eca1c10 1727extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1728extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1729extern struct task_struct *idle_task(int cpu);
5eca1c10 1730
c4f30608
PM
1731/**
1732 * is_idle_task - is the specified task an idle task?
fa757281 1733 * @p: the task in question.
e69f6186
YB
1734 *
1735 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1736 */
c94a88f3 1737static __always_inline bool is_idle_task(const struct task_struct *p)
c4f30608 1738{
c1de45ca 1739 return !!(p->flags & PF_IDLE);
c4f30608 1740}
5eca1c10 1741
36c8b586 1742extern struct task_struct *curr_task(int cpu);
a458ae2e 1743extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1744
1745void yield(void);
1746
1da177e4 1747union thread_union {
0500871f
DH
1748#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1749 struct task_struct task;
1750#endif
c65eacbe 1751#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1752 struct thread_info thread_info;
c65eacbe 1753#endif
1da177e4
LT
1754 unsigned long stack[THREAD_SIZE/sizeof(long)];
1755};
1756
0500871f
DH
1757#ifndef CONFIG_THREAD_INFO_IN_TASK
1758extern struct thread_info init_thread_info;
1759#endif
1760
1761extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1762
f3ac6067
IM
1763#ifdef CONFIG_THREAD_INFO_IN_TASK
1764static inline struct thread_info *task_thread_info(struct task_struct *task)
1765{
1766 return &task->thread_info;
1767}
1768#elif !defined(__HAVE_THREAD_FUNCTIONS)
1769# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1770#endif
1771
198fe21b
PE
1772/*
1773 * find a task by one of its numerical ids
1774 *
198fe21b
PE
1775 * find_task_by_pid_ns():
1776 * finds a task by its pid in the specified namespace
228ebcbe
PE
1777 * find_task_by_vpid():
1778 * finds a task by its virtual pid
198fe21b 1779 *
e49859e7 1780 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1781 */
1782
228ebcbe 1783extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1784extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1785
2ee08260
MR
1786/*
1787 * find a task by its virtual pid and get the task struct
1788 */
1789extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1790
b3c97528
HH
1791extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1792extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1793extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1794
1da177e4 1795#ifdef CONFIG_SMP
5eca1c10 1796extern void kick_process(struct task_struct *tsk);
1da177e4 1797#else
5eca1c10 1798static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1799#endif
1da177e4 1800
82b89778 1801extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1802
82b89778
AH
1803static inline void set_task_comm(struct task_struct *tsk, const char *from)
1804{
1805 __set_task_comm(tsk, from, false);
1806}
5eca1c10 1807
3756f640
AB
1808extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1809#define get_task_comm(buf, tsk) ({ \
1810 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1811 __get_task_comm(buf, sizeof(buf), tsk); \
1812})
1da177e4
LT
1813
1814#ifdef CONFIG_SMP
2a0a24eb
TG
1815static __always_inline void scheduler_ipi(void)
1816{
1817 /*
1818 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1819 * TIF_NEED_RESCHED remotely (for the first time) will also send
1820 * this IPI.
1821 */
1822 preempt_fold_need_resched();
1823}
85ba2d86 1824extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 1825#else
184748cc 1826static inline void scheduler_ipi(void) { }
5eca1c10 1827static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
85ba2d86
RM
1828{
1829 return 1;
1830}
1da177e4
LT
1831#endif
1832
5eca1c10
IM
1833/*
1834 * Set thread flags in other task's structures.
1835 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1836 */
1837static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1838{
a1261f54 1839 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1840}
1841
1842static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1843{
a1261f54 1844 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1845}
1846
93ee37c2
DM
1847static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1848 bool value)
1849{
1850 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1851}
1852
1da177e4
LT
1853static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1854{
a1261f54 1855 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1856}
1857
1858static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1859{
a1261f54 1860 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1861}
1862
1863static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1864{
a1261f54 1865 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1866}
1867
1868static inline void set_tsk_need_resched(struct task_struct *tsk)
1869{
1870 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1871}
1872
1873static inline void clear_tsk_need_resched(struct task_struct *tsk)
1874{
1875 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1876}
1877
8ae121ac
GH
1878static inline int test_tsk_need_resched(struct task_struct *tsk)
1879{
1880 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1881}
1882
1da177e4
LT
1883/*
1884 * cond_resched() and cond_resched_lock(): latency reduction via
1885 * explicit rescheduling in places that are safe. The return
1886 * value indicates whether a reschedule was done in fact.
1887 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 1888 */
b965f1dd
PZI
1889#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
1890extern int __cond_resched(void);
1891
1892#ifdef CONFIG_PREEMPT_DYNAMIC
1893
1894DECLARE_STATIC_CALL(cond_resched, __cond_resched);
1895
1896static __always_inline int _cond_resched(void)
1897{
ef72661e 1898 return static_call_mod(cond_resched)();
b965f1dd
PZI
1899}
1900
35a773a0 1901#else
b965f1dd
PZI
1902
1903static inline int _cond_resched(void)
1904{
1905 return __cond_resched();
1906}
1907
1908#endif /* CONFIG_PREEMPT_DYNAMIC */
1909
1910#else
1911
35a773a0 1912static inline int _cond_resched(void) { return 0; }
b965f1dd
PZI
1913
1914#endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
6f80bd98 1915
613afbf8 1916#define cond_resched() ({ \
3427445a 1917 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1918 _cond_resched(); \
1919})
6f80bd98 1920
613afbf8 1921extern int __cond_resched_lock(spinlock_t *lock);
f3d4b4b1
BG
1922extern int __cond_resched_rwlock_read(rwlock_t *lock);
1923extern int __cond_resched_rwlock_write(rwlock_t *lock);
613afbf8
FW
1924
1925#define cond_resched_lock(lock) ({ \
3427445a 1926 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1927 __cond_resched_lock(lock); \
1928})
1929
f3d4b4b1
BG
1930#define cond_resched_rwlock_read(lock) ({ \
1931 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
1932 __cond_resched_rwlock_read(lock); \
1933})
1934
1935#define cond_resched_rwlock_write(lock) ({ \
1936 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
1937 __cond_resched_rwlock_write(lock); \
1938})
1939
f6f3c437
SH
1940static inline void cond_resched_rcu(void)
1941{
1942#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1943 rcu_read_unlock();
1944 cond_resched();
1945 rcu_read_lock();
1946#endif
1947}
1948
1da177e4
LT
1949/*
1950 * Does a critical section need to be broken due to another
c1a280b6 1951 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
95c354fe 1952 * but a general need for low latency)
1da177e4 1953 */
95c354fe 1954static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1955{
c1a280b6 1956#ifdef CONFIG_PREEMPTION
95c354fe
NP
1957 return spin_is_contended(lock);
1958#else
1da177e4 1959 return 0;
95c354fe 1960#endif
1da177e4
LT
1961}
1962
a09a689a
BG
1963/*
1964 * Check if a rwlock is contended.
1965 * Returns non-zero if there is another task waiting on the rwlock.
1966 * Returns zero if the lock is not contended or the system / underlying
1967 * rwlock implementation does not support contention detection.
1968 * Technically does not depend on CONFIG_PREEMPTION, but a general need
1969 * for low latency.
1970 */
1971static inline int rwlock_needbreak(rwlock_t *lock)
1972{
1973#ifdef CONFIG_PREEMPTION
1974 return rwlock_is_contended(lock);
1975#else
1976 return 0;
1977#endif
1978}
1979
75f93fed
PZ
1980static __always_inline bool need_resched(void)
1981{
1982 return unlikely(tif_need_resched());
1983}
1984
1da177e4
LT
1985/*
1986 * Wrappers for p->thread_info->cpu access. No-op on UP.
1987 */
1988#ifdef CONFIG_SMP
1989
1990static inline unsigned int task_cpu(const struct task_struct *p)
1991{
c65eacbe 1992#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 1993 return READ_ONCE(p->cpu);
c65eacbe 1994#else
c546951d 1995 return READ_ONCE(task_thread_info(p)->cpu);
c65eacbe 1996#endif
1da177e4
LT
1997}
1998
c65cc870 1999extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
2000
2001#else
2002
2003static inline unsigned int task_cpu(const struct task_struct *p)
2004{
2005 return 0;
2006}
2007
2008static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2009{
2010}
2011
2012#endif /* CONFIG_SMP */
2013
d9345c65
PX
2014/*
2015 * In order to reduce various lock holder preemption latencies provide an
2016 * interface to see if a vCPU is currently running or not.
2017 *
2018 * This allows us to terminate optimistic spin loops and block, analogous to
2019 * the native optimistic spin heuristic of testing if the lock owner task is
2020 * running or not.
2021 */
2022#ifndef vcpu_is_preempted
42fd8baa
QC
2023static inline bool vcpu_is_preempted(int cpu)
2024{
2025 return false;
2026}
d9345c65
PX
2027#endif
2028
96f874e2
RR
2029extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2030extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 2031
82455257
DH
2032#ifndef TASK_SIZE_OF
2033#define TASK_SIZE_OF(tsk) TASK_SIZE
2034#endif
2035
a5418be9
VK
2036#ifdef CONFIG_SMP
2037/* Returns effective CPU energy utilization, as seen by the scheduler */
2038unsigned long sched_cpu_util(int cpu, unsigned long max);
2039#endif /* CONFIG_SMP */
2040
d7822b1e
MD
2041#ifdef CONFIG_RSEQ
2042
2043/*
2044 * Map the event mask on the user-space ABI enum rseq_cs_flags
2045 * for direct mask checks.
2046 */
2047enum rseq_event_mask_bits {
2048 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2049 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2050 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2051};
2052
2053enum rseq_event_mask {
2054 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2055 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2056 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2057};
2058
2059static inline void rseq_set_notify_resume(struct task_struct *t)
2060{
2061 if (t->rseq)
2062 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2063}
2064
784e0300 2065void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 2066
784e0300
WD
2067static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2068 struct pt_regs *regs)
d7822b1e
MD
2069{
2070 if (current->rseq)
784e0300 2071 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2072}
2073
784e0300
WD
2074static inline void rseq_signal_deliver(struct ksignal *ksig,
2075 struct pt_regs *regs)
d7822b1e
MD
2076{
2077 preempt_disable();
2078 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2079 preempt_enable();
784e0300 2080 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2081}
2082
2083/* rseq_preempt() requires preemption to be disabled. */
2084static inline void rseq_preempt(struct task_struct *t)
2085{
2086 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2087 rseq_set_notify_resume(t);
2088}
2089
2090/* rseq_migrate() requires preemption to be disabled. */
2091static inline void rseq_migrate(struct task_struct *t)
2092{
2093 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2094 rseq_set_notify_resume(t);
2095}
2096
2097/*
2098 * If parent process has a registered restartable sequences area, the
463f550f 2099 * child inherits. Unregister rseq for a clone with CLONE_VM set.
d7822b1e
MD
2100 */
2101static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2102{
463f550f 2103 if (clone_flags & CLONE_VM) {
d7822b1e 2104 t->rseq = NULL;
d7822b1e
MD
2105 t->rseq_sig = 0;
2106 t->rseq_event_mask = 0;
2107 } else {
2108 t->rseq = current->rseq;
d7822b1e
MD
2109 t->rseq_sig = current->rseq_sig;
2110 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
2111 }
2112}
2113
2114static inline void rseq_execve(struct task_struct *t)
2115{
2116 t->rseq = NULL;
d7822b1e
MD
2117 t->rseq_sig = 0;
2118 t->rseq_event_mask = 0;
2119}
2120
2121#else
2122
2123static inline void rseq_set_notify_resume(struct task_struct *t)
2124{
2125}
784e0300
WD
2126static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2127 struct pt_regs *regs)
d7822b1e
MD
2128{
2129}
784e0300
WD
2130static inline void rseq_signal_deliver(struct ksignal *ksig,
2131 struct pt_regs *regs)
d7822b1e
MD
2132{
2133}
2134static inline void rseq_preempt(struct task_struct *t)
2135{
2136}
2137static inline void rseq_migrate(struct task_struct *t)
2138{
2139}
2140static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2141{
2142}
2143static inline void rseq_execve(struct task_struct *t)
2144{
2145}
2146
2147#endif
2148
2149#ifdef CONFIG_DEBUG_RSEQ
2150
2151void rseq_syscall(struct pt_regs *regs);
2152
2153#else
2154
2155static inline void rseq_syscall(struct pt_regs *regs)
2156{
2157}
2158
2159#endif
2160
3c93a0c0
QY
2161const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2162char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2163int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2164
2165const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2166const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2167const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2168
2169int sched_trace_rq_cpu(struct rq *rq);
51cf18c9 2170int sched_trace_rq_cpu_capacity(struct rq *rq);
9d246053 2171int sched_trace_rq_nr_running(struct rq *rq);
3c93a0c0
QY
2172
2173const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2174
1da177e4 2175#endif