sched/pelt: Remove unused runnable load average
[linux-block.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
ec1d2819 24#include <linux/refcount.h>
a3b6714e 25#include <linux/resource.h>
9745512c 26#include <linux/latencytop.h>
5eca1c10 27#include <linux/sched/prio.h>
9eacb5c7 28#include <linux/sched/types.h>
5eca1c10
IM
29#include <linux/signal_types.h>
30#include <linux/mm_types_task.h>
31#include <linux/task_io_accounting.h>
2b69942f 32#include <linux/posix-timers.h>
d7822b1e 33#include <linux/rseq.h>
a3b6714e 34
5eca1c10 35/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 36struct audit_context;
c7af7877 37struct backing_dev_info;
bddd87c7 38struct bio_list;
73c10101 39struct blk_plug;
3c93a0c0 40struct capture_control;
c7af7877 41struct cfs_rq;
c7af7877
IM
42struct fs_struct;
43struct futex_pi_state;
44struct io_context;
45struct mempolicy;
89076bc3 46struct nameidata;
c7af7877
IM
47struct nsproxy;
48struct perf_event_context;
49struct pid_namespace;
50struct pipe_inode_info;
51struct rcu_node;
52struct reclaim_state;
53struct robust_list_head;
3c93a0c0
QY
54struct root_domain;
55struct rq;
c7af7877
IM
56struct sched_attr;
57struct sched_param;
43ae34cb 58struct seq_file;
c7af7877
IM
59struct sighand_struct;
60struct signal_struct;
61struct task_delay_info;
4cf86d77 62struct task_group;
1da177e4 63
4a8342d2
LT
64/*
65 * Task state bitmask. NOTE! These bits are also
66 * encoded in fs/proc/array.c: get_task_state().
67 *
68 * We have two separate sets of flags: task->state
69 * is about runnability, while task->exit_state are
70 * about the task exiting. Confusing, but this way
71 * modifying one set can't modify the other one by
72 * mistake.
73 */
5eca1c10
IM
74
75/* Used in tsk->state: */
92c4bc9f
PZ
76#define TASK_RUNNING 0x0000
77#define TASK_INTERRUPTIBLE 0x0001
78#define TASK_UNINTERRUPTIBLE 0x0002
79#define __TASK_STOPPED 0x0004
80#define __TASK_TRACED 0x0008
5eca1c10 81/* Used in tsk->exit_state: */
92c4bc9f
PZ
82#define EXIT_DEAD 0x0010
83#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
84#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
85/* Used in tsk->state again: */
8ef9925b
PZ
86#define TASK_PARKED 0x0040
87#define TASK_DEAD 0x0080
88#define TASK_WAKEKILL 0x0100
89#define TASK_WAKING 0x0200
92c4bc9f
PZ
90#define TASK_NOLOAD 0x0400
91#define TASK_NEW 0x0800
92#define TASK_STATE_MAX 0x1000
5eca1c10 93
5eca1c10
IM
94/* Convenience macros for the sake of set_current_state: */
95#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
96#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
97#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
98
99#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
100
101/* Convenience macros for the sake of wake_up(): */
102#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
103
104/* get_task_state(): */
105#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
106 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
107 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
108 TASK_PARKED)
5eca1c10
IM
109
110#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
111
112#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
113
114#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
115
116#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
117 (task->flags & PF_FROZEN) == 0 && \
118 (task->state & TASK_NOLOAD) == 0)
1da177e4 119
8eb23b9f
PZ
120#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
121
b5bf9a90
PZ
122/*
123 * Special states are those that do not use the normal wait-loop pattern. See
124 * the comment with set_special_state().
125 */
126#define is_special_task_state(state) \
1cef1150 127 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 128
8eb23b9f
PZ
129#define __set_current_state(state_value) \
130 do { \
b5bf9a90 131 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f
PZ
132 current->task_state_change = _THIS_IP_; \
133 current->state = (state_value); \
134 } while (0)
b5bf9a90 135
8eb23b9f
PZ
136#define set_current_state(state_value) \
137 do { \
b5bf9a90 138 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f 139 current->task_state_change = _THIS_IP_; \
a2250238 140 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
141 } while (0)
142
b5bf9a90
PZ
143#define set_special_state(state_value) \
144 do { \
145 unsigned long flags; /* may shadow */ \
146 WARN_ON_ONCE(!is_special_task_state(state_value)); \
147 raw_spin_lock_irqsave(&current->pi_lock, flags); \
148 current->task_state_change = _THIS_IP_; \
149 current->state = (state_value); \
150 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
151 } while (0)
8eb23b9f 152#else
498d0c57
AM
153/*
154 * set_current_state() includes a barrier so that the write of current->state
155 * is correctly serialised wrt the caller's subsequent test of whether to
156 * actually sleep:
157 *
a2250238 158 * for (;;) {
498d0c57 159 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
160 * if (!need_sleep)
161 * break;
162 *
163 * schedule();
164 * }
165 * __set_current_state(TASK_RUNNING);
166 *
167 * If the caller does not need such serialisation (because, for instance, the
168 * condition test and condition change and wakeup are under the same lock) then
169 * use __set_current_state().
170 *
171 * The above is typically ordered against the wakeup, which does:
172 *
b5bf9a90
PZ
173 * need_sleep = false;
174 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 175 *
7696f991
AP
176 * where wake_up_state() executes a full memory barrier before accessing the
177 * task state.
a2250238
PZ
178 *
179 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
180 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
181 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 182 *
b5bf9a90 183 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 184 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
185 * a problem either because that will result in one extra go around the loop
186 * and our @cond test will save the day.
498d0c57 187 *
a2250238 188 * Also see the comments of try_to_wake_up().
498d0c57 189 */
b5bf9a90
PZ
190#define __set_current_state(state_value) \
191 current->state = (state_value)
192
193#define set_current_state(state_value) \
194 smp_store_mb(current->state, (state_value))
195
196/*
197 * set_special_state() should be used for those states when the blocking task
198 * can not use the regular condition based wait-loop. In that case we must
199 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
200 * will not collide with our state change.
201 */
202#define set_special_state(state_value) \
203 do { \
204 unsigned long flags; /* may shadow */ \
205 raw_spin_lock_irqsave(&current->pi_lock, flags); \
206 current->state = (state_value); \
207 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
208 } while (0)
209
8eb23b9f
PZ
210#endif
211
5eca1c10
IM
212/* Task command name length: */
213#define TASK_COMM_LEN 16
1da177e4 214
1da177e4
LT
215extern void scheduler_tick(void);
216
5eca1c10
IM
217#define MAX_SCHEDULE_TIMEOUT LONG_MAX
218
219extern long schedule_timeout(long timeout);
220extern long schedule_timeout_interruptible(long timeout);
221extern long schedule_timeout_killable(long timeout);
222extern long schedule_timeout_uninterruptible(long timeout);
223extern long schedule_timeout_idle(long timeout);
1da177e4 224asmlinkage void schedule(void);
c5491ea7 225extern void schedule_preempt_disabled(void);
19c95f26 226asmlinkage void preempt_schedule_irq(void);
1da177e4 227
10ab5643
TH
228extern int __must_check io_schedule_prepare(void);
229extern void io_schedule_finish(int token);
9cff8ade 230extern long io_schedule_timeout(long timeout);
10ab5643 231extern void io_schedule(void);
9cff8ade 232
d37f761d 233/**
0ba42a59 234 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
235 * @utime: time spent in user mode
236 * @stime: time spent in system mode
9d7fb042 237 * @lock: protects the above two fields
d37f761d 238 *
9d7fb042
PZ
239 * Stores previous user/system time values such that we can guarantee
240 * monotonicity.
d37f761d 241 */
9d7fb042
PZ
242struct prev_cputime {
243#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
244 u64 utime;
245 u64 stime;
246 raw_spinlock_t lock;
9d7fb042 247#endif
d37f761d
FW
248};
249
bac5b6b6
FW
250enum vtime_state {
251 /* Task is sleeping or running in a CPU with VTIME inactive: */
252 VTIME_INACTIVE = 0,
14faf6fc
FW
253 /* Task is idle */
254 VTIME_IDLE,
bac5b6b6
FW
255 /* Task runs in kernelspace in a CPU with VTIME active: */
256 VTIME_SYS,
14faf6fc
FW
257 /* Task runs in userspace in a CPU with VTIME active: */
258 VTIME_USER,
e6d5bf3e
FW
259 /* Task runs as guests in a CPU with VTIME active: */
260 VTIME_GUEST,
bac5b6b6
FW
261};
262
263struct vtime {
264 seqcount_t seqcount;
265 unsigned long long starttime;
266 enum vtime_state state;
802f4a82 267 unsigned int cpu;
2a42eb95
WL
268 u64 utime;
269 u64 stime;
270 u64 gtime;
bac5b6b6
FW
271};
272
69842cba
PB
273/*
274 * Utilization clamp constraints.
275 * @UCLAMP_MIN: Minimum utilization
276 * @UCLAMP_MAX: Maximum utilization
277 * @UCLAMP_CNT: Utilization clamp constraints count
278 */
279enum uclamp_id {
280 UCLAMP_MIN = 0,
281 UCLAMP_MAX,
282 UCLAMP_CNT
283};
284
f9a25f77
MP
285#ifdef CONFIG_SMP
286extern struct root_domain def_root_domain;
287extern struct mutex sched_domains_mutex;
288#endif
289
1da177e4 290struct sched_info {
7f5f8e8d 291#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
292 /* Cumulative counters: */
293
294 /* # of times we have run on this CPU: */
295 unsigned long pcount;
296
297 /* Time spent waiting on a runqueue: */
298 unsigned long long run_delay;
299
300 /* Timestamps: */
301
302 /* When did we last run on a CPU? */
303 unsigned long long last_arrival;
304
305 /* When were we last queued to run? */
306 unsigned long long last_queued;
1da177e4 307
f6db8347 308#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 309};
1da177e4 310
6ecdd749
YD
311/*
312 * Integer metrics need fixed point arithmetic, e.g., sched/fair
313 * has a few: load, load_avg, util_avg, freq, and capacity.
314 *
315 * We define a basic fixed point arithmetic range, and then formalize
316 * all these metrics based on that basic range.
317 */
5eca1c10
IM
318# define SCHED_FIXEDPOINT_SHIFT 10
319# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 320
69842cba
PB
321/* Increase resolution of cpu_capacity calculations */
322# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
323# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
324
20b8a59f 325struct load_weight {
5eca1c10
IM
326 unsigned long weight;
327 u32 inv_weight;
20b8a59f
IM
328};
329
7f65ea42
PB
330/**
331 * struct util_est - Estimation utilization of FAIR tasks
332 * @enqueued: instantaneous estimated utilization of a task/cpu
333 * @ewma: the Exponential Weighted Moving Average (EWMA)
334 * utilization of a task
335 *
336 * Support data structure to track an Exponential Weighted Moving Average
337 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
338 * average each time a task completes an activation. Sample's weight is chosen
339 * so that the EWMA will be relatively insensitive to transient changes to the
340 * task's workload.
341 *
342 * The enqueued attribute has a slightly different meaning for tasks and cpus:
343 * - task: the task's util_avg at last task dequeue time
344 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
345 * Thus, the util_est.enqueued of a task represents the contribution on the
346 * estimated utilization of the CPU where that task is currently enqueued.
347 *
348 * Only for tasks we track a moving average of the past instantaneous
349 * estimated utilization. This allows to absorb sporadic drops in utilization
350 * of an otherwise almost periodic task.
351 */
352struct util_est {
353 unsigned int enqueued;
354 unsigned int ewma;
355#define UTIL_EST_WEIGHT_SHIFT 2
317d359d 356} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 357
9d89c257 358/*
7b595334 359 * The load_avg/util_avg accumulates an infinite geometric series
0dacee1b 360 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
7b595334
YD
361 *
362 * [load_avg definition]
363 *
364 * load_avg = runnable% * scale_load_down(load)
365 *
366 * where runnable% is the time ratio that a sched_entity is runnable.
367 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 368 * blocked sched_entities.
7b595334 369 *
7b595334
YD
370 * [util_avg definition]
371 *
372 * util_avg = running% * SCHED_CAPACITY_SCALE
373 *
374 * where running% is the time ratio that a sched_entity is running on
375 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
376 * and blocked sched_entities.
377 *
23127296
VG
378 * load_avg and util_avg don't direcly factor frequency scaling and CPU
379 * capacity scaling. The scaling is done through the rq_clock_pelt that
380 * is used for computing those signals (see update_rq_clock_pelt())
7b595334 381 *
23127296
VG
382 * N.B., the above ratios (runnable% and running%) themselves are in the
383 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
384 * to as large a range as necessary. This is for example reflected by
385 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
386 *
387 * [Overflow issue]
388 *
389 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
390 * with the highest load (=88761), always runnable on a single cfs_rq,
391 * and should not overflow as the number already hits PID_MAX_LIMIT.
392 *
393 * For all other cases (including 32-bit kernels), struct load_weight's
394 * weight will overflow first before we do, because:
395 *
396 * Max(load_avg) <= Max(load.weight)
397 *
398 * Then it is the load_weight's responsibility to consider overflow
399 * issues.
9d89c257 400 */
9d85f21c 401struct sched_avg {
5eca1c10
IM
402 u64 last_update_time;
403 u64 load_sum;
404 u32 util_sum;
405 u32 period_contrib;
406 unsigned long load_avg;
407 unsigned long util_avg;
7f65ea42 408 struct util_est util_est;
317d359d 409} ____cacheline_aligned;
9d85f21c 410
41acab88 411struct sched_statistics {
7f5f8e8d 412#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
413 u64 wait_start;
414 u64 wait_max;
415 u64 wait_count;
416 u64 wait_sum;
417 u64 iowait_count;
418 u64 iowait_sum;
419
420 u64 sleep_start;
421 u64 sleep_max;
422 s64 sum_sleep_runtime;
423
424 u64 block_start;
425 u64 block_max;
426 u64 exec_max;
427 u64 slice_max;
428
429 u64 nr_migrations_cold;
430 u64 nr_failed_migrations_affine;
431 u64 nr_failed_migrations_running;
432 u64 nr_failed_migrations_hot;
433 u64 nr_forced_migrations;
434
435 u64 nr_wakeups;
436 u64 nr_wakeups_sync;
437 u64 nr_wakeups_migrate;
438 u64 nr_wakeups_local;
439 u64 nr_wakeups_remote;
440 u64 nr_wakeups_affine;
441 u64 nr_wakeups_affine_attempts;
442 u64 nr_wakeups_passive;
443 u64 nr_wakeups_idle;
41acab88 444#endif
7f5f8e8d 445};
41acab88
LDM
446
447struct sched_entity {
5eca1c10
IM
448 /* For load-balancing: */
449 struct load_weight load;
450 struct rb_node run_node;
451 struct list_head group_node;
452 unsigned int on_rq;
41acab88 453
5eca1c10
IM
454 u64 exec_start;
455 u64 sum_exec_runtime;
456 u64 vruntime;
457 u64 prev_sum_exec_runtime;
41acab88 458
5eca1c10 459 u64 nr_migrations;
41acab88 460
5eca1c10 461 struct sched_statistics statistics;
94c18227 462
20b8a59f 463#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
464 int depth;
465 struct sched_entity *parent;
20b8a59f 466 /* rq on which this entity is (to be) queued: */
5eca1c10 467 struct cfs_rq *cfs_rq;
20b8a59f 468 /* rq "owned" by this entity/group: */
5eca1c10 469 struct cfs_rq *my_q;
20b8a59f 470#endif
8bd75c77 471
141965c7 472#ifdef CONFIG_SMP
5a107804
JO
473 /*
474 * Per entity load average tracking.
475 *
476 * Put into separate cache line so it does not
477 * collide with read-mostly values above.
478 */
317d359d 479 struct sched_avg avg;
9d85f21c 480#endif
20b8a59f 481};
70b97a7f 482
fa717060 483struct sched_rt_entity {
5eca1c10
IM
484 struct list_head run_list;
485 unsigned long timeout;
486 unsigned long watchdog_stamp;
487 unsigned int time_slice;
488 unsigned short on_rq;
489 unsigned short on_list;
490
491 struct sched_rt_entity *back;
052f1dc7 492#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 493 struct sched_rt_entity *parent;
6f505b16 494 /* rq on which this entity is (to be) queued: */
5eca1c10 495 struct rt_rq *rt_rq;
6f505b16 496 /* rq "owned" by this entity/group: */
5eca1c10 497 struct rt_rq *my_q;
6f505b16 498#endif
3859a271 499} __randomize_layout;
fa717060 500
aab03e05 501struct sched_dl_entity {
5eca1c10 502 struct rb_node rb_node;
aab03e05
DF
503
504 /*
505 * Original scheduling parameters. Copied here from sched_attr
4027d080 506 * during sched_setattr(), they will remain the same until
507 * the next sched_setattr().
aab03e05 508 */
5eca1c10
IM
509 u64 dl_runtime; /* Maximum runtime for each instance */
510 u64 dl_deadline; /* Relative deadline of each instance */
511 u64 dl_period; /* Separation of two instances (period) */
54d6d303 512 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 513 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
514
515 /*
516 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 517 * they are continuously updated during task execution. Note that
aab03e05
DF
518 * the remaining runtime could be < 0 in case we are in overrun.
519 */
5eca1c10
IM
520 s64 runtime; /* Remaining runtime for this instance */
521 u64 deadline; /* Absolute deadline for this instance */
522 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
523
524 /*
525 * Some bool flags:
526 *
527 * @dl_throttled tells if we exhausted the runtime. If so, the
528 * task has to wait for a replenishment to be performed at the
529 * next firing of dl_timer.
530 *
2d3d891d
DF
531 * @dl_boosted tells if we are boosted due to DI. If so we are
532 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
533 * exit the critical section);
534 *
5eca1c10 535 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 536 * all its available runtime during the last job.
209a0cbd
LA
537 *
538 * @dl_non_contending tells if the task is inactive while still
539 * contributing to the active utilization. In other words, it
540 * indicates if the inactive timer has been armed and its handler
541 * has not been executed yet. This flag is useful to avoid race
542 * conditions between the inactive timer handler and the wakeup
543 * code.
34be3930
JL
544 *
545 * @dl_overrun tells if the task asked to be informed about runtime
546 * overruns.
aab03e05 547 */
aa5222e9
DC
548 unsigned int dl_throttled : 1;
549 unsigned int dl_boosted : 1;
550 unsigned int dl_yielded : 1;
551 unsigned int dl_non_contending : 1;
34be3930 552 unsigned int dl_overrun : 1;
aab03e05
DF
553
554 /*
555 * Bandwidth enforcement timer. Each -deadline task has its
556 * own bandwidth to be enforced, thus we need one timer per task.
557 */
5eca1c10 558 struct hrtimer dl_timer;
209a0cbd
LA
559
560 /*
561 * Inactive timer, responsible for decreasing the active utilization
562 * at the "0-lag time". When a -deadline task blocks, it contributes
563 * to GRUB's active utilization until the "0-lag time", hence a
564 * timer is needed to decrease the active utilization at the correct
565 * time.
566 */
567 struct hrtimer inactive_timer;
aab03e05 568};
8bd75c77 569
69842cba
PB
570#ifdef CONFIG_UCLAMP_TASK
571/* Number of utilization clamp buckets (shorter alias) */
572#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
573
574/*
575 * Utilization clamp for a scheduling entity
576 * @value: clamp value "assigned" to a se
577 * @bucket_id: bucket index corresponding to the "assigned" value
e8f14172 578 * @active: the se is currently refcounted in a rq's bucket
a509a7cd 579 * @user_defined: the requested clamp value comes from user-space
69842cba
PB
580 *
581 * The bucket_id is the index of the clamp bucket matching the clamp value
582 * which is pre-computed and stored to avoid expensive integer divisions from
583 * the fast path.
e8f14172
PB
584 *
585 * The active bit is set whenever a task has got an "effective" value assigned,
586 * which can be different from the clamp value "requested" from user-space.
587 * This allows to know a task is refcounted in the rq's bucket corresponding
588 * to the "effective" bucket_id.
a509a7cd
PB
589 *
590 * The user_defined bit is set whenever a task has got a task-specific clamp
591 * value requested from userspace, i.e. the system defaults apply to this task
592 * just as a restriction. This allows to relax default clamps when a less
593 * restrictive task-specific value has been requested, thus allowing to
594 * implement a "nice" semantic. For example, a task running with a 20%
595 * default boost can still drop its own boosting to 0%.
69842cba
PB
596 */
597struct uclamp_se {
598 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
599 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
e8f14172 600 unsigned int active : 1;
a509a7cd 601 unsigned int user_defined : 1;
69842cba
PB
602};
603#endif /* CONFIG_UCLAMP_TASK */
604
1d082fd0
PM
605union rcu_special {
606 struct {
5eca1c10
IM
607 u8 blocked;
608 u8 need_qs;
05f41571 609 u8 exp_hint; /* Hint for performance. */
23634ebc 610 u8 deferred_qs;
8203d6d0 611 } b; /* Bits. */
05f41571 612 u32 s; /* Set of bits. */
1d082fd0 613};
86848966 614
8dc85d54
PZ
615enum perf_event_task_context {
616 perf_invalid_context = -1,
617 perf_hw_context = 0,
89a1e187 618 perf_sw_context,
8dc85d54
PZ
619 perf_nr_task_contexts,
620};
621
eb61baf6
IM
622struct wake_q_node {
623 struct wake_q_node *next;
624};
625
1da177e4 626struct task_struct {
c65eacbe
AL
627#ifdef CONFIG_THREAD_INFO_IN_TASK
628 /*
629 * For reasons of header soup (see current_thread_info()), this
630 * must be the first element of task_struct.
631 */
5eca1c10 632 struct thread_info thread_info;
c65eacbe 633#endif
5eca1c10
IM
634 /* -1 unrunnable, 0 runnable, >0 stopped: */
635 volatile long state;
29e48ce8
KC
636
637 /*
638 * This begins the randomizable portion of task_struct. Only
639 * scheduling-critical items should be added above here.
640 */
641 randomized_struct_fields_start
642
5eca1c10 643 void *stack;
ec1d2819 644 refcount_t usage;
5eca1c10
IM
645 /* Per task flags (PF_*), defined further below: */
646 unsigned int flags;
647 unsigned int ptrace;
1da177e4 648
2dd73a4f 649#ifdef CONFIG_SMP
5eca1c10
IM
650 struct llist_node wake_entry;
651 int on_cpu;
c65eacbe 652#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
653 /* Current CPU: */
654 unsigned int cpu;
c65eacbe 655#endif
5eca1c10
IM
656 unsigned int wakee_flips;
657 unsigned long wakee_flip_decay_ts;
658 struct task_struct *last_wakee;
ac66f547 659
32e839dd
MG
660 /*
661 * recent_used_cpu is initially set as the last CPU used by a task
662 * that wakes affine another task. Waker/wakee relationships can
663 * push tasks around a CPU where each wakeup moves to the next one.
664 * Tracking a recently used CPU allows a quick search for a recently
665 * used CPU that may be idle.
666 */
667 int recent_used_cpu;
5eca1c10 668 int wake_cpu;
2dd73a4f 669#endif
5eca1c10
IM
670 int on_rq;
671
672 int prio;
673 int static_prio;
674 int normal_prio;
675 unsigned int rt_priority;
50e645a8 676
5eca1c10
IM
677 const struct sched_class *sched_class;
678 struct sched_entity se;
679 struct sched_rt_entity rt;
8323f26c 680#ifdef CONFIG_CGROUP_SCHED
5eca1c10 681 struct task_group *sched_task_group;
8323f26c 682#endif
5eca1c10 683 struct sched_dl_entity dl;
1da177e4 684
69842cba 685#ifdef CONFIG_UCLAMP_TASK
e8f14172
PB
686 /* Clamp values requested for a scheduling entity */
687 struct uclamp_se uclamp_req[UCLAMP_CNT];
688 /* Effective clamp values used for a scheduling entity */
69842cba
PB
689 struct uclamp_se uclamp[UCLAMP_CNT];
690#endif
691
e107be36 692#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
693 /* List of struct preempt_notifier: */
694 struct hlist_head preempt_notifiers;
e107be36
AK
695#endif
696
6c5c9341 697#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 698 unsigned int btrace_seq;
6c5c9341 699#endif
1da177e4 700
5eca1c10
IM
701 unsigned int policy;
702 int nr_cpus_allowed;
3bd37062
SAS
703 const cpumask_t *cpus_ptr;
704 cpumask_t cpus_mask;
1da177e4 705
a57eb940 706#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
707 int rcu_read_lock_nesting;
708 union rcu_special rcu_read_unlock_special;
709 struct list_head rcu_node_entry;
710 struct rcu_node *rcu_blocked_node;
28f6569a 711#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 712
8315f422 713#ifdef CONFIG_TASKS_RCU
5eca1c10 714 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
715 u8 rcu_tasks_holdout;
716 u8 rcu_tasks_idx;
5eca1c10 717 int rcu_tasks_idle_cpu;
ccdd29ff 718 struct list_head rcu_tasks_holdout_list;
8315f422 719#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 720
5eca1c10 721 struct sched_info sched_info;
1da177e4 722
5eca1c10 723 struct list_head tasks;
806c09a7 724#ifdef CONFIG_SMP
5eca1c10
IM
725 struct plist_node pushable_tasks;
726 struct rb_node pushable_dl_tasks;
806c09a7 727#endif
1da177e4 728
5eca1c10
IM
729 struct mm_struct *mm;
730 struct mm_struct *active_mm;
314ff785
IM
731
732 /* Per-thread vma caching: */
5eca1c10 733 struct vmacache vmacache;
314ff785 734
5eca1c10
IM
735#ifdef SPLIT_RSS_COUNTING
736 struct task_rss_stat rss_stat;
34e55232 737#endif
5eca1c10
IM
738 int exit_state;
739 int exit_code;
740 int exit_signal;
741 /* The signal sent when the parent dies: */
742 int pdeath_signal;
743 /* JOBCTL_*, siglock protected: */
744 unsigned long jobctl;
745
746 /* Used for emulating ABI behavior of previous Linux versions: */
747 unsigned int personality;
748
749 /* Scheduler bits, serialized by scheduler locks: */
750 unsigned sched_reset_on_fork:1;
751 unsigned sched_contributes_to_load:1;
752 unsigned sched_migrated:1;
753 unsigned sched_remote_wakeup:1;
eb414681
JW
754#ifdef CONFIG_PSI
755 unsigned sched_psi_wake_requeue:1;
756#endif
757
5eca1c10
IM
758 /* Force alignment to the next boundary: */
759 unsigned :0;
760
761 /* Unserialized, strictly 'current' */
762
763 /* Bit to tell LSMs we're in execve(): */
764 unsigned in_execve:1;
765 unsigned in_iowait:1;
766#ifndef TIF_RESTORE_SIGMASK
767 unsigned restore_sigmask:1;
7e781418 768#endif
626ebc41 769#ifdef CONFIG_MEMCG
29ef680a 770 unsigned in_user_fault:1;
127424c8 771#endif
ff303e66 772#ifdef CONFIG_COMPAT_BRK
5eca1c10 773 unsigned brk_randomized:1;
ff303e66 774#endif
77f88796
TH
775#ifdef CONFIG_CGROUPS
776 /* disallow userland-initiated cgroup migration */
777 unsigned no_cgroup_migration:1;
76f969e8
RG
778 /* task is frozen/stopped (used by the cgroup freezer) */
779 unsigned frozen:1;
77f88796 780#endif
d09d8df3
JB
781#ifdef CONFIG_BLK_CGROUP
782 /* to be used once the psi infrastructure lands upstream. */
783 unsigned use_memdelay:1;
784#endif
6f185c29 785
5eca1c10 786 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 787
5eca1c10 788 struct restart_block restart_block;
f56141e3 789
5eca1c10
IM
790 pid_t pid;
791 pid_t tgid;
0a425405 792
050e9baa 793#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
794 /* Canary value for the -fstack-protector GCC feature: */
795 unsigned long stack_canary;
1314562a 796#endif
4d1d61a6 797 /*
5eca1c10 798 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 799 * older sibling, respectively. (p->father can be replaced with
f470021a 800 * p->real_parent->pid)
1da177e4 801 */
5eca1c10
IM
802
803 /* Real parent process: */
804 struct task_struct __rcu *real_parent;
805
806 /* Recipient of SIGCHLD, wait4() reports: */
807 struct task_struct __rcu *parent;
808
1da177e4 809 /*
5eca1c10 810 * Children/sibling form the list of natural children:
1da177e4 811 */
5eca1c10
IM
812 struct list_head children;
813 struct list_head sibling;
814 struct task_struct *group_leader;
1da177e4 815
f470021a 816 /*
5eca1c10
IM
817 * 'ptraced' is the list of tasks this task is using ptrace() on.
818 *
f470021a 819 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 820 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 821 */
5eca1c10
IM
822 struct list_head ptraced;
823 struct list_head ptrace_entry;
f470021a 824
1da177e4 825 /* PID/PID hash table linkage. */
2c470475
EB
826 struct pid *thread_pid;
827 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
828 struct list_head thread_group;
829 struct list_head thread_node;
830
831 struct completion *vfork_done;
1da177e4 832
5eca1c10
IM
833 /* CLONE_CHILD_SETTID: */
834 int __user *set_child_tid;
1da177e4 835
5eca1c10
IM
836 /* CLONE_CHILD_CLEARTID: */
837 int __user *clear_child_tid;
838
839 u64 utime;
840 u64 stime;
40565b5a 841#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
842 u64 utimescaled;
843 u64 stimescaled;
40565b5a 844#endif
5eca1c10
IM
845 u64 gtime;
846 struct prev_cputime prev_cputime;
6a61671b 847#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 848 struct vtime vtime;
d99ca3b9 849#endif
d027d45d
FW
850
851#ifdef CONFIG_NO_HZ_FULL
5eca1c10 852 atomic_t tick_dep_mask;
d027d45d 853#endif
5eca1c10
IM
854 /* Context switch counts: */
855 unsigned long nvcsw;
856 unsigned long nivcsw;
857
858 /* Monotonic time in nsecs: */
859 u64 start_time;
860
861 /* Boot based time in nsecs: */
cf25e24d 862 u64 start_boottime;
5eca1c10
IM
863
864 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
865 unsigned long min_flt;
866 unsigned long maj_flt;
1da177e4 867
2b69942f
TG
868 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
869 struct posix_cputimers posix_cputimers;
1da177e4 870
5eca1c10
IM
871 /* Process credentials: */
872
873 /* Tracer's credentials at attach: */
874 const struct cred __rcu *ptracer_cred;
875
876 /* Objective and real subjective task credentials (COW): */
877 const struct cred __rcu *real_cred;
878
879 /* Effective (overridable) subjective task credentials (COW): */
880 const struct cred __rcu *cred;
881
7743c48e
DH
882#ifdef CONFIG_KEYS
883 /* Cached requested key. */
884 struct key *cached_requested_key;
885#endif
886
5eca1c10
IM
887 /*
888 * executable name, excluding path.
889 *
890 * - normally initialized setup_new_exec()
891 * - access it with [gs]et_task_comm()
892 * - lock it with task_lock()
893 */
894 char comm[TASK_COMM_LEN];
895
896 struct nameidata *nameidata;
897
3d5b6fcc 898#ifdef CONFIG_SYSVIPC
5eca1c10
IM
899 struct sysv_sem sysvsem;
900 struct sysv_shm sysvshm;
3d5b6fcc 901#endif
e162b39a 902#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 903 unsigned long last_switch_count;
a2e51445 904 unsigned long last_switch_time;
82a1fcb9 905#endif
5eca1c10
IM
906 /* Filesystem information: */
907 struct fs_struct *fs;
908
909 /* Open file information: */
910 struct files_struct *files;
911
912 /* Namespaces: */
913 struct nsproxy *nsproxy;
914
915 /* Signal handlers: */
916 struct signal_struct *signal;
913292c9 917 struct sighand_struct __rcu *sighand;
5eca1c10
IM
918 sigset_t blocked;
919 sigset_t real_blocked;
920 /* Restored if set_restore_sigmask() was used: */
921 sigset_t saved_sigmask;
922 struct sigpending pending;
923 unsigned long sas_ss_sp;
924 size_t sas_ss_size;
925 unsigned int sas_ss_flags;
926
927 struct callback_head *task_works;
928
4b7d248b 929#ifdef CONFIG_AUDIT
bfef93a5 930#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
931 struct audit_context *audit_context;
932#endif
5eca1c10
IM
933 kuid_t loginuid;
934 unsigned int sessionid;
bfef93a5 935#endif
5eca1c10
IM
936 struct seccomp seccomp;
937
938 /* Thread group tracking: */
939 u32 parent_exec_id;
940 u32 self_exec_id;
1da177e4 941
5eca1c10
IM
942 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
943 spinlock_t alloc_lock;
1da177e4 944
b29739f9 945 /* Protection of the PI data structures: */
5eca1c10 946 raw_spinlock_t pi_lock;
b29739f9 947
5eca1c10 948 struct wake_q_node wake_q;
76751049 949
23f78d4a 950#ifdef CONFIG_RT_MUTEXES
5eca1c10 951 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 952 struct rb_root_cached pi_waiters;
e96a7705
XP
953 /* Updated under owner's pi_lock and rq lock */
954 struct task_struct *pi_top_task;
5eca1c10
IM
955 /* Deadlock detection and priority inheritance handling: */
956 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
957#endif
958
408894ee 959#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
960 /* Mutex deadlock detection: */
961 struct mutex_waiter *blocked_on;
408894ee 962#endif
5eca1c10 963
312364f3
DV
964#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
965 int non_block_count;
966#endif
967
de30a2b3 968#ifdef CONFIG_TRACE_IRQFLAGS
5eca1c10
IM
969 unsigned int irq_events;
970 unsigned long hardirq_enable_ip;
971 unsigned long hardirq_disable_ip;
972 unsigned int hardirq_enable_event;
973 unsigned int hardirq_disable_event;
974 int hardirqs_enabled;
975 int hardirq_context;
976 unsigned long softirq_disable_ip;
977 unsigned long softirq_enable_ip;
978 unsigned int softirq_disable_event;
979 unsigned int softirq_enable_event;
980 int softirqs_enabled;
981 int softirq_context;
de30a2b3 982#endif
5eca1c10 983
fbb9ce95 984#ifdef CONFIG_LOCKDEP
5eca1c10
IM
985# define MAX_LOCK_DEPTH 48UL
986 u64 curr_chain_key;
987 int lockdep_depth;
988 unsigned int lockdep_recursion;
989 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 990#endif
5eca1c10 991
c6d30853 992#ifdef CONFIG_UBSAN
5eca1c10 993 unsigned int in_ubsan;
c6d30853 994#endif
408894ee 995
5eca1c10
IM
996 /* Journalling filesystem info: */
997 void *journal_info;
1da177e4 998
5eca1c10
IM
999 /* Stacked block device info: */
1000 struct bio_list *bio_list;
d89d8796 1001
73c10101 1002#ifdef CONFIG_BLOCK
5eca1c10
IM
1003 /* Stack plugging: */
1004 struct blk_plug *plug;
73c10101
JA
1005#endif
1006
5eca1c10
IM
1007 /* VM state: */
1008 struct reclaim_state *reclaim_state;
1009
1010 struct backing_dev_info *backing_dev_info;
1da177e4 1011
5eca1c10 1012 struct io_context *io_context;
1da177e4 1013
5e1f0f09
MG
1014#ifdef CONFIG_COMPACTION
1015 struct capture_control *capture_control;
1016#endif
5eca1c10
IM
1017 /* Ptrace state: */
1018 unsigned long ptrace_message;
ae7795bc 1019 kernel_siginfo_t *last_siginfo;
1da177e4 1020
5eca1c10 1021 struct task_io_accounting ioac;
eb414681
JW
1022#ifdef CONFIG_PSI
1023 /* Pressure stall state */
1024 unsigned int psi_flags;
1025#endif
5eca1c10
IM
1026#ifdef CONFIG_TASK_XACCT
1027 /* Accumulated RSS usage: */
1028 u64 acct_rss_mem1;
1029 /* Accumulated virtual memory usage: */
1030 u64 acct_vm_mem1;
1031 /* stime + utime since last update: */
1032 u64 acct_timexpd;
1da177e4
LT
1033#endif
1034#ifdef CONFIG_CPUSETS
5eca1c10
IM
1035 /* Protected by ->alloc_lock: */
1036 nodemask_t mems_allowed;
1037 /* Seqence number to catch updates: */
1038 seqcount_t mems_allowed_seq;
1039 int cpuset_mem_spread_rotor;
1040 int cpuset_slab_spread_rotor;
1da177e4 1041#endif
ddbcc7e8 1042#ifdef CONFIG_CGROUPS
5eca1c10
IM
1043 /* Control Group info protected by css_set_lock: */
1044 struct css_set __rcu *cgroups;
1045 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1046 struct list_head cg_list;
ddbcc7e8 1047#endif
e6d42931 1048#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 1049 u32 closid;
d6aaba61 1050 u32 rmid;
e02737d5 1051#endif
42b2dd0a 1052#ifdef CONFIG_FUTEX
5eca1c10 1053 struct robust_list_head __user *robust_list;
34f192c6
IM
1054#ifdef CONFIG_COMPAT
1055 struct compat_robust_list_head __user *compat_robust_list;
1056#endif
5eca1c10
IM
1057 struct list_head pi_state_list;
1058 struct futex_pi_state *pi_state_cache;
3f186d97 1059 struct mutex futex_exit_mutex;
3d4775df 1060 unsigned int futex_state;
c7aceaba 1061#endif
cdd6c482 1062#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
1063 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1064 struct mutex perf_event_mutex;
1065 struct list_head perf_event_list;
a63eaf34 1066#endif
8f47b187 1067#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1068 unsigned long preempt_disable_ip;
8f47b187 1069#endif
c7aceaba 1070#ifdef CONFIG_NUMA
5eca1c10
IM
1071 /* Protected by alloc_lock: */
1072 struct mempolicy *mempolicy;
45816682 1073 short il_prev;
5eca1c10 1074 short pref_node_fork;
42b2dd0a 1075#endif
cbee9f88 1076#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1077 int numa_scan_seq;
1078 unsigned int numa_scan_period;
1079 unsigned int numa_scan_period_max;
1080 int numa_preferred_nid;
1081 unsigned long numa_migrate_retry;
1082 /* Migration stamp: */
1083 u64 node_stamp;
1084 u64 last_task_numa_placement;
1085 u64 last_sum_exec_runtime;
1086 struct callback_head numa_work;
1087
cb361d8c
JH
1088 /*
1089 * This pointer is only modified for current in syscall and
1090 * pagefault context (and for tasks being destroyed), so it can be read
1091 * from any of the following contexts:
1092 * - RCU read-side critical section
1093 * - current->numa_group from everywhere
1094 * - task's runqueue locked, task not running
1095 */
1096 struct numa_group __rcu *numa_group;
8c8a743c 1097
745d6147 1098 /*
44dba3d5
IM
1099 * numa_faults is an array split into four regions:
1100 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1101 * in this precise order.
1102 *
1103 * faults_memory: Exponential decaying average of faults on a per-node
1104 * basis. Scheduling placement decisions are made based on these
1105 * counts. The values remain static for the duration of a PTE scan.
1106 * faults_cpu: Track the nodes the process was running on when a NUMA
1107 * hinting fault was incurred.
1108 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1109 * during the current scan window. When the scan completes, the counts
1110 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1111 */
5eca1c10
IM
1112 unsigned long *numa_faults;
1113 unsigned long total_numa_faults;
745d6147 1114
04bb2f94
RR
1115 /*
1116 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1117 * scan window were remote/local or failed to migrate. The task scan
1118 * period is adapted based on the locality of the faults with different
1119 * weights depending on whether they were shared or private faults
04bb2f94 1120 */
5eca1c10 1121 unsigned long numa_faults_locality[3];
04bb2f94 1122
5eca1c10 1123 unsigned long numa_pages_migrated;
cbee9f88
PZ
1124#endif /* CONFIG_NUMA_BALANCING */
1125
d7822b1e
MD
1126#ifdef CONFIG_RSEQ
1127 struct rseq __user *rseq;
d7822b1e
MD
1128 u32 rseq_sig;
1129 /*
1130 * RmW on rseq_event_mask must be performed atomically
1131 * with respect to preemption.
1132 */
1133 unsigned long rseq_event_mask;
1134#endif
1135
5eca1c10 1136 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1137
3fbd7ee2
EB
1138 union {
1139 refcount_t rcu_users;
1140 struct rcu_head rcu;
1141 };
b92ce558 1142
5eca1c10
IM
1143 /* Cache last used pipe for splice(): */
1144 struct pipe_inode_info *splice_pipe;
5640f768 1145
5eca1c10 1146 struct page_frag task_frag;
5640f768 1147
47913d4e
IM
1148#ifdef CONFIG_TASK_DELAY_ACCT
1149 struct task_delay_info *delays;
f4f154fd 1150#endif
47913d4e 1151
f4f154fd 1152#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1153 int make_it_fail;
9049f2f6 1154 unsigned int fail_nth;
ca74e92b 1155#endif
9d823e8f 1156 /*
5eca1c10
IM
1157 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1158 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1159 */
5eca1c10
IM
1160 int nr_dirtied;
1161 int nr_dirtied_pause;
1162 /* Start of a write-and-pause period: */
1163 unsigned long dirty_paused_when;
9d823e8f 1164
9745512c 1165#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1166 int latency_record_count;
1167 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1168#endif
6976675d 1169 /*
5eca1c10 1170 * Time slack values; these are used to round up poll() and
6976675d
AV
1171 * select() etc timeout values. These are in nanoseconds.
1172 */
5eca1c10
IM
1173 u64 timer_slack_ns;
1174 u64 default_timer_slack_ns;
f8d570a4 1175
0b24becc 1176#ifdef CONFIG_KASAN
5eca1c10 1177 unsigned int kasan_depth;
0b24becc 1178#endif
5eca1c10 1179
fb52607a 1180#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1181 /* Index of current stored address in ret_stack: */
1182 int curr_ret_stack;
39eb456d 1183 int curr_ret_depth;
5eca1c10
IM
1184
1185 /* Stack of return addresses for return function tracing: */
1186 struct ftrace_ret_stack *ret_stack;
1187
1188 /* Timestamp for last schedule: */
1189 unsigned long long ftrace_timestamp;
1190
f201ae23
FW
1191 /*
1192 * Number of functions that haven't been traced
5eca1c10 1193 * because of depth overrun:
f201ae23 1194 */
5eca1c10
IM
1195 atomic_t trace_overrun;
1196
1197 /* Pause tracing: */
1198 atomic_t tracing_graph_pause;
f201ae23 1199#endif
5eca1c10 1200
ea4e2bc4 1201#ifdef CONFIG_TRACING
5eca1c10
IM
1202 /* State flags for use by tracers: */
1203 unsigned long trace;
1204
1205 /* Bitmask and counter of trace recursion: */
1206 unsigned long trace_recursion;
261842b7 1207#endif /* CONFIG_TRACING */
5eca1c10 1208
5c9a8750 1209#ifdef CONFIG_KCOV
eec028c9
AK
1210 /* See kernel/kcov.c for more details. */
1211
5eca1c10 1212 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1213 unsigned int kcov_mode;
5eca1c10
IM
1214
1215 /* Size of the kcov_area: */
1216 unsigned int kcov_size;
1217
1218 /* Buffer for coverage collection: */
1219 void *kcov_area;
1220
1221 /* KCOV descriptor wired with this task or NULL: */
1222 struct kcov *kcov;
eec028c9
AK
1223
1224 /* KCOV common handle for remote coverage collection: */
1225 u64 kcov_handle;
1226
1227 /* KCOV sequence number: */
1228 int kcov_sequence;
5c9a8750 1229#endif
5eca1c10 1230
6f185c29 1231#ifdef CONFIG_MEMCG
5eca1c10
IM
1232 struct mem_cgroup *memcg_in_oom;
1233 gfp_t memcg_oom_gfp_mask;
1234 int memcg_oom_order;
b23afb93 1235
5eca1c10
IM
1236 /* Number of pages to reclaim on returning to userland: */
1237 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1238
1239 /* Used by memcontrol for targeted memcg charge: */
1240 struct mem_cgroup *active_memcg;
569b846d 1241#endif
5eca1c10 1242
d09d8df3
JB
1243#ifdef CONFIG_BLK_CGROUP
1244 struct request_queue *throttle_queue;
1245#endif
1246
0326f5a9 1247#ifdef CONFIG_UPROBES
5eca1c10 1248 struct uprobe_task *utask;
0326f5a9 1249#endif
cafe5635 1250#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1251 unsigned int sequential_io;
1252 unsigned int sequential_io_avg;
cafe5635 1253#endif
8eb23b9f 1254#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1255 unsigned long task_state_change;
8eb23b9f 1256#endif
5eca1c10 1257 int pagefault_disabled;
03049269 1258#ifdef CONFIG_MMU
5eca1c10 1259 struct task_struct *oom_reaper_list;
03049269 1260#endif
ba14a194 1261#ifdef CONFIG_VMAP_STACK
5eca1c10 1262 struct vm_struct *stack_vm_area;
ba14a194 1263#endif
68f24b08 1264#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1265 /* A live task holds one reference: */
f0b89d39 1266 refcount_t stack_refcount;
d83a7cb3
JP
1267#endif
1268#ifdef CONFIG_LIVEPATCH
1269 int patch_state;
0302e28d 1270#endif
e4e55b47
TH
1271#ifdef CONFIG_SECURITY
1272 /* Used by LSM modules for access restriction: */
1273 void *security;
68f24b08 1274#endif
29e48ce8 1275
afaef01c
AP
1276#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1277 unsigned long lowest_stack;
c8d12627 1278 unsigned long prev_lowest_stack;
afaef01c
AP
1279#endif
1280
29e48ce8
KC
1281 /*
1282 * New fields for task_struct should be added above here, so that
1283 * they are included in the randomized portion of task_struct.
1284 */
1285 randomized_struct_fields_end
1286
5eca1c10
IM
1287 /* CPU-specific state of this task: */
1288 struct thread_struct thread;
1289
1290 /*
1291 * WARNING: on x86, 'thread_struct' contains a variable-sized
1292 * structure. It *MUST* be at the end of 'task_struct'.
1293 *
1294 * Do not put anything below here!
1295 */
1da177e4
LT
1296};
1297
e868171a 1298static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1299{
2c470475 1300 return task->thread_pid;
22c935f4
EB
1301}
1302
7af57294
PE
1303/*
1304 * the helpers to get the task's different pids as they are seen
1305 * from various namespaces
1306 *
1307 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1308 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1309 * current.
7af57294
PE
1310 * task_xid_nr_ns() : id seen from the ns specified;
1311 *
7af57294
PE
1312 * see also pid_nr() etc in include/linux/pid.h
1313 */
5eca1c10 1314pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1315
e868171a 1316static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1317{
1318 return tsk->pid;
1319}
1320
5eca1c10 1321static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1322{
1323 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1324}
7af57294
PE
1325
1326static inline pid_t task_pid_vnr(struct task_struct *tsk)
1327{
52ee2dfd 1328 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1329}
1330
1331
e868171a 1332static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1333{
1334 return tsk->tgid;
1335}
1336
5eca1c10
IM
1337/**
1338 * pid_alive - check that a task structure is not stale
1339 * @p: Task structure to be checked.
1340 *
1341 * Test if a process is not yet dead (at most zombie state)
1342 * If pid_alive fails, then pointers within the task structure
1343 * can be stale and must not be dereferenced.
1344 *
1345 * Return: 1 if the process is alive. 0 otherwise.
1346 */
1347static inline int pid_alive(const struct task_struct *p)
1348{
2c470475 1349 return p->thread_pid != NULL;
5eca1c10 1350}
7af57294 1351
5eca1c10 1352static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1353{
52ee2dfd 1354 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1355}
1356
7af57294
PE
1357static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1358{
52ee2dfd 1359 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1360}
1361
1362
5eca1c10 1363static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1364{
52ee2dfd 1365 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1366}
1367
7af57294
PE
1368static inline pid_t task_session_vnr(struct task_struct *tsk)
1369{
52ee2dfd 1370 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1371}
1372
dd1c1f2f
ON
1373static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1374{
6883f81a 1375 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1376}
1377
1378static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1379{
6883f81a 1380 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1381}
1382
1383static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1384{
1385 pid_t pid = 0;
1386
1387 rcu_read_lock();
1388 if (pid_alive(tsk))
1389 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1390 rcu_read_unlock();
1391
1392 return pid;
1393}
1394
1395static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1396{
1397 return task_ppid_nr_ns(tsk, &init_pid_ns);
1398}
1399
5eca1c10 1400/* Obsolete, do not use: */
1b0f7ffd
ON
1401static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1402{
1403 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1404}
7af57294 1405
06eb6184
PZ
1406#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1407#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1408
1d48b080 1409static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1410{
1593baab
PZ
1411 unsigned int tsk_state = READ_ONCE(tsk->state);
1412 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1413
06eb6184
PZ
1414 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1415
06eb6184
PZ
1416 if (tsk_state == TASK_IDLE)
1417 state = TASK_REPORT_IDLE;
1418
1593baab
PZ
1419 return fls(state);
1420}
1421
1d48b080 1422static inline char task_index_to_char(unsigned int state)
1593baab 1423{
8ef9925b 1424 static const char state_char[] = "RSDTtXZPI";
1593baab 1425
06eb6184 1426 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1427
1593baab
PZ
1428 return state_char[state];
1429}
1430
1431static inline char task_state_to_char(struct task_struct *tsk)
1432{
1d48b080 1433 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1434}
1435
f400e198 1436/**
570f5241
SS
1437 * is_global_init - check if a task structure is init. Since init
1438 * is free to have sub-threads we need to check tgid.
3260259f
H
1439 * @tsk: Task structure to be checked.
1440 *
1441 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1442 *
1443 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1444 */
e868171a 1445static inline int is_global_init(struct task_struct *tsk)
b461cc03 1446{
570f5241 1447 return task_tgid_nr(tsk) == 1;
b461cc03 1448}
b460cbc5 1449
9ec52099
CLG
1450extern struct pid *cad_pid;
1451
1da177e4
LT
1452/*
1453 * Per process flags
1454 */
5eca1c10
IM
1455#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1456#define PF_EXITING 0x00000004 /* Getting shut down */
5eca1c10
IM
1457#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1458#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1459#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1460#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1461#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1462#define PF_DUMPCORE 0x00000200 /* Dumped core */
1463#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1464#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1465#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1466#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1467#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1468#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1469#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1470#define PF_KSWAPD 0x00020000 /* I am kswapd */
1471#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1472#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
5eca1c10
IM
1473#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1474#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1475#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1476#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
eb414681 1477#define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */
73ab1cb2 1478#define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
3bd37062 1479#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1480#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
d7fefcc8 1481#define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
771b53d0 1482#define PF_IO_WORKER 0x20000000 /* Task is an IO worker */
5eca1c10
IM
1483#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1484#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1485
1486/*
1487 * Only the _current_ task can read/write to tsk->flags, but other
1488 * tasks can access tsk->flags in readonly mode for example
1489 * with tsk_used_math (like during threaded core dumping).
1490 * There is however an exception to this rule during ptrace
1491 * or during fork: the ptracer task is allowed to write to the
1492 * child->flags of its traced child (same goes for fork, the parent
1493 * can write to the child->flags), because we're guaranteed the
1494 * child is not running and in turn not changing child->flags
1495 * at the same time the parent does it.
1496 */
5eca1c10
IM
1497#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1498#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1499#define clear_used_math() clear_stopped_child_used_math(current)
1500#define set_used_math() set_stopped_child_used_math(current)
1501
1da177e4
LT
1502#define conditional_stopped_child_used_math(condition, child) \
1503 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1504
1505#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1506
1da177e4
LT
1507#define copy_to_stopped_child_used_math(child) \
1508 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1509
1da177e4 1510/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1511#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1512#define used_math() tsk_used_math(current)
1da177e4 1513
62ec05dd
TG
1514static inline bool is_percpu_thread(void)
1515{
1516#ifdef CONFIG_SMP
1517 return (current->flags & PF_NO_SETAFFINITY) &&
1518 (current->nr_cpus_allowed == 1);
1519#else
1520 return true;
1521#endif
1522}
1523
1d4457f9 1524/* Per-process atomic flags. */
5eca1c10
IM
1525#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1526#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1527#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1528#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1529#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1530#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1531#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1532#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1533
e0e5070b
ZL
1534#define TASK_PFA_TEST(name, func) \
1535 static inline bool task_##func(struct task_struct *p) \
1536 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1537
e0e5070b
ZL
1538#define TASK_PFA_SET(name, func) \
1539 static inline void task_set_##func(struct task_struct *p) \
1540 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1541
e0e5070b
ZL
1542#define TASK_PFA_CLEAR(name, func) \
1543 static inline void task_clear_##func(struct task_struct *p) \
1544 { clear_bit(PFA_##name, &p->atomic_flags); }
1545
1546TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1547TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1548
2ad654bc
ZL
1549TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1550TASK_PFA_SET(SPREAD_PAGE, spread_page)
1551TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1552
1553TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1554TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1555TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1556
356e4bff
TG
1557TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1558TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1559TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1560
71368af9
WL
1561TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1562TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1563TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1564
356e4bff
TG
1565TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1566TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1567
9137bb27
TG
1568TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1569TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1570TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1571
1572TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1573TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1574
5eca1c10 1575static inline void
717a94b5 1576current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1577{
717a94b5
N
1578 current->flags &= ~flags;
1579 current->flags |= orig_flags & flags;
907aed48
MG
1580}
1581
5eca1c10
IM
1582extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1583extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1584#ifdef CONFIG_SMP
5eca1c10
IM
1585extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1586extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1587#else
5eca1c10 1588static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1589{
1590}
5eca1c10 1591static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1592{
96f874e2 1593 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1594 return -EINVAL;
1595 return 0;
1596}
1597#endif
e0ad9556 1598
fa93384f 1599extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1600extern void set_user_nice(struct task_struct *p, long nice);
1601extern int task_prio(const struct task_struct *p);
5eca1c10 1602
d0ea0268
DY
1603/**
1604 * task_nice - return the nice value of a given task.
1605 * @p: the task in question.
1606 *
1607 * Return: The nice value [ -20 ... 0 ... 19 ].
1608 */
1609static inline int task_nice(const struct task_struct *p)
1610{
1611 return PRIO_TO_NICE((p)->static_prio);
1612}
5eca1c10 1613
36c8b586
IM
1614extern int can_nice(const struct task_struct *p, const int nice);
1615extern int task_curr(const struct task_struct *p);
1da177e4 1616extern int idle_cpu(int cpu);
943d355d 1617extern int available_idle_cpu(int cpu);
5eca1c10
IM
1618extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1619extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1620extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1621extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1622extern struct task_struct *idle_task(int cpu);
5eca1c10 1623
c4f30608
PM
1624/**
1625 * is_idle_task - is the specified task an idle task?
fa757281 1626 * @p: the task in question.
e69f6186
YB
1627 *
1628 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1629 */
7061ca3b 1630static inline bool is_idle_task(const struct task_struct *p)
c4f30608 1631{
c1de45ca 1632 return !!(p->flags & PF_IDLE);
c4f30608 1633}
5eca1c10 1634
36c8b586 1635extern struct task_struct *curr_task(int cpu);
a458ae2e 1636extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1637
1638void yield(void);
1639
1da177e4 1640union thread_union {
0500871f
DH
1641#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1642 struct task_struct task;
1643#endif
c65eacbe 1644#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1645 struct thread_info thread_info;
c65eacbe 1646#endif
1da177e4
LT
1647 unsigned long stack[THREAD_SIZE/sizeof(long)];
1648};
1649
0500871f
DH
1650#ifndef CONFIG_THREAD_INFO_IN_TASK
1651extern struct thread_info init_thread_info;
1652#endif
1653
1654extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1655
f3ac6067
IM
1656#ifdef CONFIG_THREAD_INFO_IN_TASK
1657static inline struct thread_info *task_thread_info(struct task_struct *task)
1658{
1659 return &task->thread_info;
1660}
1661#elif !defined(__HAVE_THREAD_FUNCTIONS)
1662# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1663#endif
1664
198fe21b
PE
1665/*
1666 * find a task by one of its numerical ids
1667 *
198fe21b
PE
1668 * find_task_by_pid_ns():
1669 * finds a task by its pid in the specified namespace
228ebcbe
PE
1670 * find_task_by_vpid():
1671 * finds a task by its virtual pid
198fe21b 1672 *
e49859e7 1673 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1674 */
1675
228ebcbe 1676extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1677extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1678
2ee08260
MR
1679/*
1680 * find a task by its virtual pid and get the task struct
1681 */
1682extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1683
b3c97528
HH
1684extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1685extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1686extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1687
1da177e4 1688#ifdef CONFIG_SMP
5eca1c10 1689extern void kick_process(struct task_struct *tsk);
1da177e4 1690#else
5eca1c10 1691static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1692#endif
1da177e4 1693
82b89778 1694extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1695
82b89778
AH
1696static inline void set_task_comm(struct task_struct *tsk, const char *from)
1697{
1698 __set_task_comm(tsk, from, false);
1699}
5eca1c10 1700
3756f640
AB
1701extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1702#define get_task_comm(buf, tsk) ({ \
1703 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1704 __get_task_comm(buf, sizeof(buf), tsk); \
1705})
1da177e4
LT
1706
1707#ifdef CONFIG_SMP
317f3941 1708void scheduler_ipi(void);
85ba2d86 1709extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 1710#else
184748cc 1711static inline void scheduler_ipi(void) { }
5eca1c10 1712static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
85ba2d86
RM
1713{
1714 return 1;
1715}
1da177e4
LT
1716#endif
1717
5eca1c10
IM
1718/*
1719 * Set thread flags in other task's structures.
1720 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1721 */
1722static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1723{
a1261f54 1724 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1725}
1726
1727static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1728{
a1261f54 1729 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1730}
1731
93ee37c2
DM
1732static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1733 bool value)
1734{
1735 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1736}
1737
1da177e4
LT
1738static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1739{
a1261f54 1740 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1741}
1742
1743static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1744{
a1261f54 1745 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1746}
1747
1748static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1749{
a1261f54 1750 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1751}
1752
1753static inline void set_tsk_need_resched(struct task_struct *tsk)
1754{
1755 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1756}
1757
1758static inline void clear_tsk_need_resched(struct task_struct *tsk)
1759{
1760 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1761}
1762
8ae121ac
GH
1763static inline int test_tsk_need_resched(struct task_struct *tsk)
1764{
1765 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1766}
1767
1da177e4
LT
1768/*
1769 * cond_resched() and cond_resched_lock(): latency reduction via
1770 * explicit rescheduling in places that are safe. The return
1771 * value indicates whether a reschedule was done in fact.
1772 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 1773 */
c1a280b6 1774#ifndef CONFIG_PREEMPTION
c3921ab7 1775extern int _cond_resched(void);
35a773a0
PZ
1776#else
1777static inline int _cond_resched(void) { return 0; }
1778#endif
6f80bd98 1779
613afbf8 1780#define cond_resched() ({ \
3427445a 1781 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1782 _cond_resched(); \
1783})
6f80bd98 1784
613afbf8
FW
1785extern int __cond_resched_lock(spinlock_t *lock);
1786
1787#define cond_resched_lock(lock) ({ \
3427445a 1788 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1789 __cond_resched_lock(lock); \
1790})
1791
f6f3c437
SH
1792static inline void cond_resched_rcu(void)
1793{
1794#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1795 rcu_read_unlock();
1796 cond_resched();
1797 rcu_read_lock();
1798#endif
1799}
1800
1da177e4
LT
1801/*
1802 * Does a critical section need to be broken due to another
c1a280b6 1803 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
95c354fe 1804 * but a general need for low latency)
1da177e4 1805 */
95c354fe 1806static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1807{
c1a280b6 1808#ifdef CONFIG_PREEMPTION
95c354fe
NP
1809 return spin_is_contended(lock);
1810#else
1da177e4 1811 return 0;
95c354fe 1812#endif
1da177e4
LT
1813}
1814
75f93fed
PZ
1815static __always_inline bool need_resched(void)
1816{
1817 return unlikely(tif_need_resched());
1818}
1819
1da177e4
LT
1820/*
1821 * Wrappers for p->thread_info->cpu access. No-op on UP.
1822 */
1823#ifdef CONFIG_SMP
1824
1825static inline unsigned int task_cpu(const struct task_struct *p)
1826{
c65eacbe 1827#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 1828 return READ_ONCE(p->cpu);
c65eacbe 1829#else
c546951d 1830 return READ_ONCE(task_thread_info(p)->cpu);
c65eacbe 1831#endif
1da177e4
LT
1832}
1833
c65cc870 1834extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
1835
1836#else
1837
1838static inline unsigned int task_cpu(const struct task_struct *p)
1839{
1840 return 0;
1841}
1842
1843static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1844{
1845}
1846
1847#endif /* CONFIG_SMP */
1848
d9345c65
PX
1849/*
1850 * In order to reduce various lock holder preemption latencies provide an
1851 * interface to see if a vCPU is currently running or not.
1852 *
1853 * This allows us to terminate optimistic spin loops and block, analogous to
1854 * the native optimistic spin heuristic of testing if the lock owner task is
1855 * running or not.
1856 */
1857#ifndef vcpu_is_preempted
42fd8baa
QC
1858static inline bool vcpu_is_preempted(int cpu)
1859{
1860 return false;
1861}
d9345c65
PX
1862#endif
1863
96f874e2
RR
1864extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1865extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 1866
82455257
DH
1867#ifndef TASK_SIZE_OF
1868#define TASK_SIZE_OF(tsk) TASK_SIZE
1869#endif
1870
d7822b1e
MD
1871#ifdef CONFIG_RSEQ
1872
1873/*
1874 * Map the event mask on the user-space ABI enum rseq_cs_flags
1875 * for direct mask checks.
1876 */
1877enum rseq_event_mask_bits {
1878 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1879 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1880 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1881};
1882
1883enum rseq_event_mask {
1884 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1885 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1886 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1887};
1888
1889static inline void rseq_set_notify_resume(struct task_struct *t)
1890{
1891 if (t->rseq)
1892 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1893}
1894
784e0300 1895void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 1896
784e0300
WD
1897static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1898 struct pt_regs *regs)
d7822b1e
MD
1899{
1900 if (current->rseq)
784e0300 1901 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1902}
1903
784e0300
WD
1904static inline void rseq_signal_deliver(struct ksignal *ksig,
1905 struct pt_regs *regs)
d7822b1e
MD
1906{
1907 preempt_disable();
1908 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1909 preempt_enable();
784e0300 1910 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1911}
1912
1913/* rseq_preempt() requires preemption to be disabled. */
1914static inline void rseq_preempt(struct task_struct *t)
1915{
1916 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1917 rseq_set_notify_resume(t);
1918}
1919
1920/* rseq_migrate() requires preemption to be disabled. */
1921static inline void rseq_migrate(struct task_struct *t)
1922{
1923 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1924 rseq_set_notify_resume(t);
1925}
1926
1927/*
1928 * If parent process has a registered restartable sequences area, the
463f550f 1929 * child inherits. Unregister rseq for a clone with CLONE_VM set.
d7822b1e
MD
1930 */
1931static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1932{
463f550f 1933 if (clone_flags & CLONE_VM) {
d7822b1e 1934 t->rseq = NULL;
d7822b1e
MD
1935 t->rseq_sig = 0;
1936 t->rseq_event_mask = 0;
1937 } else {
1938 t->rseq = current->rseq;
d7822b1e
MD
1939 t->rseq_sig = current->rseq_sig;
1940 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
1941 }
1942}
1943
1944static inline void rseq_execve(struct task_struct *t)
1945{
1946 t->rseq = NULL;
d7822b1e
MD
1947 t->rseq_sig = 0;
1948 t->rseq_event_mask = 0;
1949}
1950
1951#else
1952
1953static inline void rseq_set_notify_resume(struct task_struct *t)
1954{
1955}
784e0300
WD
1956static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1957 struct pt_regs *regs)
d7822b1e
MD
1958{
1959}
784e0300
WD
1960static inline void rseq_signal_deliver(struct ksignal *ksig,
1961 struct pt_regs *regs)
d7822b1e
MD
1962{
1963}
1964static inline void rseq_preempt(struct task_struct *t)
1965{
1966}
1967static inline void rseq_migrate(struct task_struct *t)
1968{
1969}
1970static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1971{
1972}
1973static inline void rseq_execve(struct task_struct *t)
1974{
1975}
1976
1977#endif
1978
73ab1cb2
TY
1979void __exit_umh(struct task_struct *tsk);
1980
1981static inline void exit_umh(struct task_struct *tsk)
1982{
1983 if (unlikely(tsk->flags & PF_UMH))
1984 __exit_umh(tsk);
1985}
1986
d7822b1e
MD
1987#ifdef CONFIG_DEBUG_RSEQ
1988
1989void rseq_syscall(struct pt_regs *regs);
1990
1991#else
1992
1993static inline void rseq_syscall(struct pt_regs *regs)
1994{
1995}
1996
1997#endif
1998
3c93a0c0
QY
1999const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2000char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2001int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2002
2003const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2004const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2005const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2006
2007int sched_trace_rq_cpu(struct rq *rq);
2008
2009const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2010
1da177e4 2011#endif