lockdep: Refactor IRQ trace events fields into struct
[linux-2.6-block.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
0584df9c 21#include <linux/irqflags.h>
1da177e4 22#include <linux/seccomp.h>
5eca1c10 23#include <linux/nodemask.h>
b68070e1 24#include <linux/rcupdate.h>
ec1d2819 25#include <linux/refcount.h>
a3b6714e 26#include <linux/resource.h>
9745512c 27#include <linux/latencytop.h>
5eca1c10 28#include <linux/sched/prio.h>
9eacb5c7 29#include <linux/sched/types.h>
5eca1c10
IM
30#include <linux/signal_types.h>
31#include <linux/mm_types_task.h>
32#include <linux/task_io_accounting.h>
2b69942f 33#include <linux/posix-timers.h>
d7822b1e 34#include <linux/rseq.h>
dfd402a4 35#include <linux/kcsan.h>
a3b6714e 36
5eca1c10 37/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 38struct audit_context;
c7af7877 39struct backing_dev_info;
bddd87c7 40struct bio_list;
73c10101 41struct blk_plug;
3c93a0c0 42struct capture_control;
c7af7877 43struct cfs_rq;
c7af7877
IM
44struct fs_struct;
45struct futex_pi_state;
46struct io_context;
47struct mempolicy;
89076bc3 48struct nameidata;
c7af7877
IM
49struct nsproxy;
50struct perf_event_context;
51struct pid_namespace;
52struct pipe_inode_info;
53struct rcu_node;
54struct reclaim_state;
55struct robust_list_head;
3c93a0c0
QY
56struct root_domain;
57struct rq;
c7af7877
IM
58struct sched_attr;
59struct sched_param;
43ae34cb 60struct seq_file;
c7af7877
IM
61struct sighand_struct;
62struct signal_struct;
63struct task_delay_info;
4cf86d77 64struct task_group;
1da177e4 65
4a8342d2
LT
66/*
67 * Task state bitmask. NOTE! These bits are also
68 * encoded in fs/proc/array.c: get_task_state().
69 *
70 * We have two separate sets of flags: task->state
71 * is about runnability, while task->exit_state are
72 * about the task exiting. Confusing, but this way
73 * modifying one set can't modify the other one by
74 * mistake.
75 */
5eca1c10
IM
76
77/* Used in tsk->state: */
92c4bc9f
PZ
78#define TASK_RUNNING 0x0000
79#define TASK_INTERRUPTIBLE 0x0001
80#define TASK_UNINTERRUPTIBLE 0x0002
81#define __TASK_STOPPED 0x0004
82#define __TASK_TRACED 0x0008
5eca1c10 83/* Used in tsk->exit_state: */
92c4bc9f
PZ
84#define EXIT_DEAD 0x0010
85#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
86#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
87/* Used in tsk->state again: */
8ef9925b
PZ
88#define TASK_PARKED 0x0040
89#define TASK_DEAD 0x0080
90#define TASK_WAKEKILL 0x0100
91#define TASK_WAKING 0x0200
92c4bc9f
PZ
92#define TASK_NOLOAD 0x0400
93#define TASK_NEW 0x0800
94#define TASK_STATE_MAX 0x1000
5eca1c10 95
5eca1c10
IM
96/* Convenience macros for the sake of set_current_state: */
97#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
98#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
99#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
100
101#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
102
103/* Convenience macros for the sake of wake_up(): */
104#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
105
106/* get_task_state(): */
107#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
108 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
109 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
110 TASK_PARKED)
5eca1c10
IM
111
112#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
113
114#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
115
116#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
117
8eb23b9f
PZ
118#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
119
b5bf9a90
PZ
120/*
121 * Special states are those that do not use the normal wait-loop pattern. See
122 * the comment with set_special_state().
123 */
124#define is_special_task_state(state) \
1cef1150 125 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 126
8eb23b9f
PZ
127#define __set_current_state(state_value) \
128 do { \
b5bf9a90 129 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f
PZ
130 current->task_state_change = _THIS_IP_; \
131 current->state = (state_value); \
132 } while (0)
b5bf9a90 133
8eb23b9f
PZ
134#define set_current_state(state_value) \
135 do { \
b5bf9a90 136 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f 137 current->task_state_change = _THIS_IP_; \
a2250238 138 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
139 } while (0)
140
b5bf9a90
PZ
141#define set_special_state(state_value) \
142 do { \
143 unsigned long flags; /* may shadow */ \
144 WARN_ON_ONCE(!is_special_task_state(state_value)); \
145 raw_spin_lock_irqsave(&current->pi_lock, flags); \
146 current->task_state_change = _THIS_IP_; \
147 current->state = (state_value); \
148 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
149 } while (0)
8eb23b9f 150#else
498d0c57
AM
151/*
152 * set_current_state() includes a barrier so that the write of current->state
153 * is correctly serialised wrt the caller's subsequent test of whether to
154 * actually sleep:
155 *
a2250238 156 * for (;;) {
498d0c57 157 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
158 * if (!need_sleep)
159 * break;
160 *
161 * schedule();
162 * }
163 * __set_current_state(TASK_RUNNING);
164 *
165 * If the caller does not need such serialisation (because, for instance, the
166 * condition test and condition change and wakeup are under the same lock) then
167 * use __set_current_state().
168 *
169 * The above is typically ordered against the wakeup, which does:
170 *
b5bf9a90
PZ
171 * need_sleep = false;
172 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 173 *
7696f991
AP
174 * where wake_up_state() executes a full memory barrier before accessing the
175 * task state.
a2250238
PZ
176 *
177 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
178 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
179 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 180 *
b5bf9a90 181 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 182 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
183 * a problem either because that will result in one extra go around the loop
184 * and our @cond test will save the day.
498d0c57 185 *
a2250238 186 * Also see the comments of try_to_wake_up().
498d0c57 187 */
b5bf9a90
PZ
188#define __set_current_state(state_value) \
189 current->state = (state_value)
190
191#define set_current_state(state_value) \
192 smp_store_mb(current->state, (state_value))
193
194/*
195 * set_special_state() should be used for those states when the blocking task
196 * can not use the regular condition based wait-loop. In that case we must
197 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
198 * will not collide with our state change.
199 */
200#define set_special_state(state_value) \
201 do { \
202 unsigned long flags; /* may shadow */ \
203 raw_spin_lock_irqsave(&current->pi_lock, flags); \
204 current->state = (state_value); \
205 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
206 } while (0)
207
8eb23b9f
PZ
208#endif
209
5eca1c10
IM
210/* Task command name length: */
211#define TASK_COMM_LEN 16
1da177e4 212
1da177e4
LT
213extern void scheduler_tick(void);
214
5eca1c10
IM
215#define MAX_SCHEDULE_TIMEOUT LONG_MAX
216
217extern long schedule_timeout(long timeout);
218extern long schedule_timeout_interruptible(long timeout);
219extern long schedule_timeout_killable(long timeout);
220extern long schedule_timeout_uninterruptible(long timeout);
221extern long schedule_timeout_idle(long timeout);
1da177e4 222asmlinkage void schedule(void);
c5491ea7 223extern void schedule_preempt_disabled(void);
19c95f26 224asmlinkage void preempt_schedule_irq(void);
1da177e4 225
10ab5643
TH
226extern int __must_check io_schedule_prepare(void);
227extern void io_schedule_finish(int token);
9cff8ade 228extern long io_schedule_timeout(long timeout);
10ab5643 229extern void io_schedule(void);
9cff8ade 230
d37f761d 231/**
0ba42a59 232 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
233 * @utime: time spent in user mode
234 * @stime: time spent in system mode
9d7fb042 235 * @lock: protects the above two fields
d37f761d 236 *
9d7fb042
PZ
237 * Stores previous user/system time values such that we can guarantee
238 * monotonicity.
d37f761d 239 */
9d7fb042
PZ
240struct prev_cputime {
241#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
242 u64 utime;
243 u64 stime;
244 raw_spinlock_t lock;
9d7fb042 245#endif
d37f761d
FW
246};
247
bac5b6b6
FW
248enum vtime_state {
249 /* Task is sleeping or running in a CPU with VTIME inactive: */
250 VTIME_INACTIVE = 0,
14faf6fc
FW
251 /* Task is idle */
252 VTIME_IDLE,
bac5b6b6
FW
253 /* Task runs in kernelspace in a CPU with VTIME active: */
254 VTIME_SYS,
14faf6fc
FW
255 /* Task runs in userspace in a CPU with VTIME active: */
256 VTIME_USER,
e6d5bf3e
FW
257 /* Task runs as guests in a CPU with VTIME active: */
258 VTIME_GUEST,
bac5b6b6
FW
259};
260
261struct vtime {
262 seqcount_t seqcount;
263 unsigned long long starttime;
264 enum vtime_state state;
802f4a82 265 unsigned int cpu;
2a42eb95
WL
266 u64 utime;
267 u64 stime;
268 u64 gtime;
bac5b6b6
FW
269};
270
69842cba
PB
271/*
272 * Utilization clamp constraints.
273 * @UCLAMP_MIN: Minimum utilization
274 * @UCLAMP_MAX: Maximum utilization
275 * @UCLAMP_CNT: Utilization clamp constraints count
276 */
277enum uclamp_id {
278 UCLAMP_MIN = 0,
279 UCLAMP_MAX,
280 UCLAMP_CNT
281};
282
f9a25f77
MP
283#ifdef CONFIG_SMP
284extern struct root_domain def_root_domain;
285extern struct mutex sched_domains_mutex;
286#endif
287
1da177e4 288struct sched_info {
7f5f8e8d 289#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
290 /* Cumulative counters: */
291
292 /* # of times we have run on this CPU: */
293 unsigned long pcount;
294
295 /* Time spent waiting on a runqueue: */
296 unsigned long long run_delay;
297
298 /* Timestamps: */
299
300 /* When did we last run on a CPU? */
301 unsigned long long last_arrival;
302
303 /* When were we last queued to run? */
304 unsigned long long last_queued;
1da177e4 305
f6db8347 306#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 307};
1da177e4 308
6ecdd749
YD
309/*
310 * Integer metrics need fixed point arithmetic, e.g., sched/fair
311 * has a few: load, load_avg, util_avg, freq, and capacity.
312 *
313 * We define a basic fixed point arithmetic range, and then formalize
314 * all these metrics based on that basic range.
315 */
5eca1c10
IM
316# define SCHED_FIXEDPOINT_SHIFT 10
317# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 318
69842cba
PB
319/* Increase resolution of cpu_capacity calculations */
320# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
321# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
322
20b8a59f 323struct load_weight {
5eca1c10
IM
324 unsigned long weight;
325 u32 inv_weight;
20b8a59f
IM
326};
327
7f65ea42
PB
328/**
329 * struct util_est - Estimation utilization of FAIR tasks
330 * @enqueued: instantaneous estimated utilization of a task/cpu
331 * @ewma: the Exponential Weighted Moving Average (EWMA)
332 * utilization of a task
333 *
334 * Support data structure to track an Exponential Weighted Moving Average
335 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
336 * average each time a task completes an activation. Sample's weight is chosen
337 * so that the EWMA will be relatively insensitive to transient changes to the
338 * task's workload.
339 *
340 * The enqueued attribute has a slightly different meaning for tasks and cpus:
341 * - task: the task's util_avg at last task dequeue time
342 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
343 * Thus, the util_est.enqueued of a task represents the contribution on the
344 * estimated utilization of the CPU where that task is currently enqueued.
345 *
346 * Only for tasks we track a moving average of the past instantaneous
347 * estimated utilization. This allows to absorb sporadic drops in utilization
348 * of an otherwise almost periodic task.
349 */
350struct util_est {
351 unsigned int enqueued;
352 unsigned int ewma;
353#define UTIL_EST_WEIGHT_SHIFT 2
317d359d 354} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 355
9d89c257 356/*
9f683953 357 * The load/runnable/util_avg accumulates an infinite geometric series
0dacee1b 358 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
7b595334
YD
359 *
360 * [load_avg definition]
361 *
362 * load_avg = runnable% * scale_load_down(load)
363 *
9f683953
VG
364 * [runnable_avg definition]
365 *
366 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
7b595334 367 *
7b595334
YD
368 * [util_avg definition]
369 *
370 * util_avg = running% * SCHED_CAPACITY_SCALE
371 *
9f683953
VG
372 * where runnable% is the time ratio that a sched_entity is runnable and
373 * running% the time ratio that a sched_entity is running.
374 *
375 * For cfs_rq, they are the aggregated values of all runnable and blocked
376 * sched_entities.
7b595334 377 *
9f683953
VG
378 * The load/runnable/util_avg doesn't direcly factor frequency scaling and CPU
379 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
380 * for computing those signals (see update_rq_clock_pelt())
7b595334 381 *
23127296
VG
382 * N.B., the above ratios (runnable% and running%) themselves are in the
383 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
384 * to as large a range as necessary. This is for example reflected by
385 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
386 *
387 * [Overflow issue]
388 *
389 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
390 * with the highest load (=88761), always runnable on a single cfs_rq,
391 * and should not overflow as the number already hits PID_MAX_LIMIT.
392 *
393 * For all other cases (including 32-bit kernels), struct load_weight's
394 * weight will overflow first before we do, because:
395 *
396 * Max(load_avg) <= Max(load.weight)
397 *
398 * Then it is the load_weight's responsibility to consider overflow
399 * issues.
9d89c257 400 */
9d85f21c 401struct sched_avg {
5eca1c10
IM
402 u64 last_update_time;
403 u64 load_sum;
9f683953 404 u64 runnable_sum;
5eca1c10
IM
405 u32 util_sum;
406 u32 period_contrib;
407 unsigned long load_avg;
9f683953 408 unsigned long runnable_avg;
5eca1c10 409 unsigned long util_avg;
7f65ea42 410 struct util_est util_est;
317d359d 411} ____cacheline_aligned;
9d85f21c 412
41acab88 413struct sched_statistics {
7f5f8e8d 414#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
415 u64 wait_start;
416 u64 wait_max;
417 u64 wait_count;
418 u64 wait_sum;
419 u64 iowait_count;
420 u64 iowait_sum;
421
422 u64 sleep_start;
423 u64 sleep_max;
424 s64 sum_sleep_runtime;
425
426 u64 block_start;
427 u64 block_max;
428 u64 exec_max;
429 u64 slice_max;
430
431 u64 nr_migrations_cold;
432 u64 nr_failed_migrations_affine;
433 u64 nr_failed_migrations_running;
434 u64 nr_failed_migrations_hot;
435 u64 nr_forced_migrations;
436
437 u64 nr_wakeups;
438 u64 nr_wakeups_sync;
439 u64 nr_wakeups_migrate;
440 u64 nr_wakeups_local;
441 u64 nr_wakeups_remote;
442 u64 nr_wakeups_affine;
443 u64 nr_wakeups_affine_attempts;
444 u64 nr_wakeups_passive;
445 u64 nr_wakeups_idle;
41acab88 446#endif
7f5f8e8d 447};
41acab88
LDM
448
449struct sched_entity {
5eca1c10
IM
450 /* For load-balancing: */
451 struct load_weight load;
452 struct rb_node run_node;
453 struct list_head group_node;
454 unsigned int on_rq;
41acab88 455
5eca1c10
IM
456 u64 exec_start;
457 u64 sum_exec_runtime;
458 u64 vruntime;
459 u64 prev_sum_exec_runtime;
41acab88 460
5eca1c10 461 u64 nr_migrations;
41acab88 462
5eca1c10 463 struct sched_statistics statistics;
94c18227 464
20b8a59f 465#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
466 int depth;
467 struct sched_entity *parent;
20b8a59f 468 /* rq on which this entity is (to be) queued: */
5eca1c10 469 struct cfs_rq *cfs_rq;
20b8a59f 470 /* rq "owned" by this entity/group: */
5eca1c10 471 struct cfs_rq *my_q;
9f683953
VG
472 /* cached value of my_q->h_nr_running */
473 unsigned long runnable_weight;
20b8a59f 474#endif
8bd75c77 475
141965c7 476#ifdef CONFIG_SMP
5a107804
JO
477 /*
478 * Per entity load average tracking.
479 *
480 * Put into separate cache line so it does not
481 * collide with read-mostly values above.
482 */
317d359d 483 struct sched_avg avg;
9d85f21c 484#endif
20b8a59f 485};
70b97a7f 486
fa717060 487struct sched_rt_entity {
5eca1c10
IM
488 struct list_head run_list;
489 unsigned long timeout;
490 unsigned long watchdog_stamp;
491 unsigned int time_slice;
492 unsigned short on_rq;
493 unsigned short on_list;
494
495 struct sched_rt_entity *back;
052f1dc7 496#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 497 struct sched_rt_entity *parent;
6f505b16 498 /* rq on which this entity is (to be) queued: */
5eca1c10 499 struct rt_rq *rt_rq;
6f505b16 500 /* rq "owned" by this entity/group: */
5eca1c10 501 struct rt_rq *my_q;
6f505b16 502#endif
3859a271 503} __randomize_layout;
fa717060 504
aab03e05 505struct sched_dl_entity {
5eca1c10 506 struct rb_node rb_node;
aab03e05
DF
507
508 /*
509 * Original scheduling parameters. Copied here from sched_attr
4027d080 510 * during sched_setattr(), they will remain the same until
511 * the next sched_setattr().
aab03e05 512 */
5eca1c10
IM
513 u64 dl_runtime; /* Maximum runtime for each instance */
514 u64 dl_deadline; /* Relative deadline of each instance */
515 u64 dl_period; /* Separation of two instances (period) */
54d6d303 516 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 517 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
518
519 /*
520 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 521 * they are continuously updated during task execution. Note that
aab03e05
DF
522 * the remaining runtime could be < 0 in case we are in overrun.
523 */
5eca1c10
IM
524 s64 runtime; /* Remaining runtime for this instance */
525 u64 deadline; /* Absolute deadline for this instance */
526 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
527
528 /*
529 * Some bool flags:
530 *
531 * @dl_throttled tells if we exhausted the runtime. If so, the
532 * task has to wait for a replenishment to be performed at the
533 * next firing of dl_timer.
534 *
2d3d891d
DF
535 * @dl_boosted tells if we are boosted due to DI. If so we are
536 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
537 * exit the critical section);
538 *
5eca1c10 539 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 540 * all its available runtime during the last job.
209a0cbd
LA
541 *
542 * @dl_non_contending tells if the task is inactive while still
543 * contributing to the active utilization. In other words, it
544 * indicates if the inactive timer has been armed and its handler
545 * has not been executed yet. This flag is useful to avoid race
546 * conditions between the inactive timer handler and the wakeup
547 * code.
34be3930
JL
548 *
549 * @dl_overrun tells if the task asked to be informed about runtime
550 * overruns.
aab03e05 551 */
aa5222e9
DC
552 unsigned int dl_throttled : 1;
553 unsigned int dl_boosted : 1;
554 unsigned int dl_yielded : 1;
555 unsigned int dl_non_contending : 1;
34be3930 556 unsigned int dl_overrun : 1;
aab03e05
DF
557
558 /*
559 * Bandwidth enforcement timer. Each -deadline task has its
560 * own bandwidth to be enforced, thus we need one timer per task.
561 */
5eca1c10 562 struct hrtimer dl_timer;
209a0cbd
LA
563
564 /*
565 * Inactive timer, responsible for decreasing the active utilization
566 * at the "0-lag time". When a -deadline task blocks, it contributes
567 * to GRUB's active utilization until the "0-lag time", hence a
568 * timer is needed to decrease the active utilization at the correct
569 * time.
570 */
571 struct hrtimer inactive_timer;
aab03e05 572};
8bd75c77 573
69842cba
PB
574#ifdef CONFIG_UCLAMP_TASK
575/* Number of utilization clamp buckets (shorter alias) */
576#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
577
578/*
579 * Utilization clamp for a scheduling entity
580 * @value: clamp value "assigned" to a se
581 * @bucket_id: bucket index corresponding to the "assigned" value
e8f14172 582 * @active: the se is currently refcounted in a rq's bucket
a509a7cd 583 * @user_defined: the requested clamp value comes from user-space
69842cba
PB
584 *
585 * The bucket_id is the index of the clamp bucket matching the clamp value
586 * which is pre-computed and stored to avoid expensive integer divisions from
587 * the fast path.
e8f14172
PB
588 *
589 * The active bit is set whenever a task has got an "effective" value assigned,
590 * which can be different from the clamp value "requested" from user-space.
591 * This allows to know a task is refcounted in the rq's bucket corresponding
592 * to the "effective" bucket_id.
a509a7cd
PB
593 *
594 * The user_defined bit is set whenever a task has got a task-specific clamp
595 * value requested from userspace, i.e. the system defaults apply to this task
596 * just as a restriction. This allows to relax default clamps when a less
597 * restrictive task-specific value has been requested, thus allowing to
598 * implement a "nice" semantic. For example, a task running with a 20%
599 * default boost can still drop its own boosting to 0%.
69842cba
PB
600 */
601struct uclamp_se {
602 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
603 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
e8f14172 604 unsigned int active : 1;
a509a7cd 605 unsigned int user_defined : 1;
69842cba
PB
606};
607#endif /* CONFIG_UCLAMP_TASK */
608
1d082fd0
PM
609union rcu_special {
610 struct {
5eca1c10
IM
611 u8 blocked;
612 u8 need_qs;
05f41571 613 u8 exp_hint; /* Hint for performance. */
276c4104 614 u8 need_mb; /* Readers need smp_mb(). */
8203d6d0 615 } b; /* Bits. */
05f41571 616 u32 s; /* Set of bits. */
1d082fd0 617};
86848966 618
8dc85d54
PZ
619enum perf_event_task_context {
620 perf_invalid_context = -1,
621 perf_hw_context = 0,
89a1e187 622 perf_sw_context,
8dc85d54
PZ
623 perf_nr_task_contexts,
624};
625
eb61baf6
IM
626struct wake_q_node {
627 struct wake_q_node *next;
628};
629
1da177e4 630struct task_struct {
c65eacbe
AL
631#ifdef CONFIG_THREAD_INFO_IN_TASK
632 /*
633 * For reasons of header soup (see current_thread_info()), this
634 * must be the first element of task_struct.
635 */
5eca1c10 636 struct thread_info thread_info;
c65eacbe 637#endif
5eca1c10
IM
638 /* -1 unrunnable, 0 runnable, >0 stopped: */
639 volatile long state;
29e48ce8
KC
640
641 /*
642 * This begins the randomizable portion of task_struct. Only
643 * scheduling-critical items should be added above here.
644 */
645 randomized_struct_fields_start
646
5eca1c10 647 void *stack;
ec1d2819 648 refcount_t usage;
5eca1c10
IM
649 /* Per task flags (PF_*), defined further below: */
650 unsigned int flags;
651 unsigned int ptrace;
1da177e4 652
2dd73a4f 653#ifdef CONFIG_SMP
5eca1c10 654 int on_cpu;
8c4890d1 655 struct __call_single_node wake_entry;
c65eacbe 656#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
657 /* Current CPU: */
658 unsigned int cpu;
c65eacbe 659#endif
5eca1c10
IM
660 unsigned int wakee_flips;
661 unsigned long wakee_flip_decay_ts;
662 struct task_struct *last_wakee;
ac66f547 663
32e839dd
MG
664 /*
665 * recent_used_cpu is initially set as the last CPU used by a task
666 * that wakes affine another task. Waker/wakee relationships can
667 * push tasks around a CPU where each wakeup moves to the next one.
668 * Tracking a recently used CPU allows a quick search for a recently
669 * used CPU that may be idle.
670 */
671 int recent_used_cpu;
5eca1c10 672 int wake_cpu;
2dd73a4f 673#endif
5eca1c10
IM
674 int on_rq;
675
676 int prio;
677 int static_prio;
678 int normal_prio;
679 unsigned int rt_priority;
50e645a8 680
5eca1c10
IM
681 const struct sched_class *sched_class;
682 struct sched_entity se;
683 struct sched_rt_entity rt;
8323f26c 684#ifdef CONFIG_CGROUP_SCHED
5eca1c10 685 struct task_group *sched_task_group;
8323f26c 686#endif
5eca1c10 687 struct sched_dl_entity dl;
1da177e4 688
69842cba 689#ifdef CONFIG_UCLAMP_TASK
e8f14172
PB
690 /* Clamp values requested for a scheduling entity */
691 struct uclamp_se uclamp_req[UCLAMP_CNT];
692 /* Effective clamp values used for a scheduling entity */
69842cba
PB
693 struct uclamp_se uclamp[UCLAMP_CNT];
694#endif
695
e107be36 696#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
697 /* List of struct preempt_notifier: */
698 struct hlist_head preempt_notifiers;
e107be36
AK
699#endif
700
6c5c9341 701#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 702 unsigned int btrace_seq;
6c5c9341 703#endif
1da177e4 704
5eca1c10
IM
705 unsigned int policy;
706 int nr_cpus_allowed;
3bd37062
SAS
707 const cpumask_t *cpus_ptr;
708 cpumask_t cpus_mask;
1da177e4 709
a57eb940 710#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
711 int rcu_read_lock_nesting;
712 union rcu_special rcu_read_unlock_special;
713 struct list_head rcu_node_entry;
714 struct rcu_node *rcu_blocked_node;
28f6569a 715#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 716
8315f422 717#ifdef CONFIG_TASKS_RCU
5eca1c10 718 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
719 u8 rcu_tasks_holdout;
720 u8 rcu_tasks_idx;
5eca1c10 721 int rcu_tasks_idle_cpu;
ccdd29ff 722 struct list_head rcu_tasks_holdout_list;
8315f422 723#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 724
d5f177d3
PM
725#ifdef CONFIG_TASKS_TRACE_RCU
726 int trc_reader_nesting;
727 int trc_ipi_to_cpu;
276c4104 728 union rcu_special trc_reader_special;
d5f177d3
PM
729 bool trc_reader_checked;
730 struct list_head trc_holdout_list;
731#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
732
5eca1c10 733 struct sched_info sched_info;
1da177e4 734
5eca1c10 735 struct list_head tasks;
806c09a7 736#ifdef CONFIG_SMP
5eca1c10
IM
737 struct plist_node pushable_tasks;
738 struct rb_node pushable_dl_tasks;
806c09a7 739#endif
1da177e4 740
5eca1c10
IM
741 struct mm_struct *mm;
742 struct mm_struct *active_mm;
314ff785
IM
743
744 /* Per-thread vma caching: */
5eca1c10 745 struct vmacache vmacache;
314ff785 746
5eca1c10
IM
747#ifdef SPLIT_RSS_COUNTING
748 struct task_rss_stat rss_stat;
34e55232 749#endif
5eca1c10
IM
750 int exit_state;
751 int exit_code;
752 int exit_signal;
753 /* The signal sent when the parent dies: */
754 int pdeath_signal;
755 /* JOBCTL_*, siglock protected: */
756 unsigned long jobctl;
757
758 /* Used for emulating ABI behavior of previous Linux versions: */
759 unsigned int personality;
760
761 /* Scheduler bits, serialized by scheduler locks: */
762 unsigned sched_reset_on_fork:1;
763 unsigned sched_contributes_to_load:1;
764 unsigned sched_migrated:1;
765 unsigned sched_remote_wakeup:1;
eb414681
JW
766#ifdef CONFIG_PSI
767 unsigned sched_psi_wake_requeue:1;
768#endif
769
5eca1c10
IM
770 /* Force alignment to the next boundary: */
771 unsigned :0;
772
773 /* Unserialized, strictly 'current' */
774
775 /* Bit to tell LSMs we're in execve(): */
776 unsigned in_execve:1;
777 unsigned in_iowait:1;
778#ifndef TIF_RESTORE_SIGMASK
779 unsigned restore_sigmask:1;
7e781418 780#endif
626ebc41 781#ifdef CONFIG_MEMCG
29ef680a 782 unsigned in_user_fault:1;
127424c8 783#endif
ff303e66 784#ifdef CONFIG_COMPAT_BRK
5eca1c10 785 unsigned brk_randomized:1;
ff303e66 786#endif
77f88796
TH
787#ifdef CONFIG_CGROUPS
788 /* disallow userland-initiated cgroup migration */
789 unsigned no_cgroup_migration:1;
76f969e8
RG
790 /* task is frozen/stopped (used by the cgroup freezer) */
791 unsigned frozen:1;
77f88796 792#endif
d09d8df3 793#ifdef CONFIG_BLK_CGROUP
d09d8df3
JB
794 unsigned use_memdelay:1;
795#endif
1066d1b6
YS
796#ifdef CONFIG_PSI
797 /* Stalled due to lack of memory */
798 unsigned in_memstall:1;
799#endif
6f185c29 800
5eca1c10 801 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 802
5eca1c10 803 struct restart_block restart_block;
f56141e3 804
5eca1c10
IM
805 pid_t pid;
806 pid_t tgid;
0a425405 807
050e9baa 808#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
809 /* Canary value for the -fstack-protector GCC feature: */
810 unsigned long stack_canary;
1314562a 811#endif
4d1d61a6 812 /*
5eca1c10 813 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 814 * older sibling, respectively. (p->father can be replaced with
f470021a 815 * p->real_parent->pid)
1da177e4 816 */
5eca1c10
IM
817
818 /* Real parent process: */
819 struct task_struct __rcu *real_parent;
820
821 /* Recipient of SIGCHLD, wait4() reports: */
822 struct task_struct __rcu *parent;
823
1da177e4 824 /*
5eca1c10 825 * Children/sibling form the list of natural children:
1da177e4 826 */
5eca1c10
IM
827 struct list_head children;
828 struct list_head sibling;
829 struct task_struct *group_leader;
1da177e4 830
f470021a 831 /*
5eca1c10
IM
832 * 'ptraced' is the list of tasks this task is using ptrace() on.
833 *
f470021a 834 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 835 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 836 */
5eca1c10
IM
837 struct list_head ptraced;
838 struct list_head ptrace_entry;
f470021a 839
1da177e4 840 /* PID/PID hash table linkage. */
2c470475
EB
841 struct pid *thread_pid;
842 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
843 struct list_head thread_group;
844 struct list_head thread_node;
845
846 struct completion *vfork_done;
1da177e4 847
5eca1c10
IM
848 /* CLONE_CHILD_SETTID: */
849 int __user *set_child_tid;
1da177e4 850
5eca1c10
IM
851 /* CLONE_CHILD_CLEARTID: */
852 int __user *clear_child_tid;
853
854 u64 utime;
855 u64 stime;
40565b5a 856#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
857 u64 utimescaled;
858 u64 stimescaled;
40565b5a 859#endif
5eca1c10
IM
860 u64 gtime;
861 struct prev_cputime prev_cputime;
6a61671b 862#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 863 struct vtime vtime;
d99ca3b9 864#endif
d027d45d
FW
865
866#ifdef CONFIG_NO_HZ_FULL
5eca1c10 867 atomic_t tick_dep_mask;
d027d45d 868#endif
5eca1c10
IM
869 /* Context switch counts: */
870 unsigned long nvcsw;
871 unsigned long nivcsw;
872
873 /* Monotonic time in nsecs: */
874 u64 start_time;
875
876 /* Boot based time in nsecs: */
cf25e24d 877 u64 start_boottime;
5eca1c10
IM
878
879 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
880 unsigned long min_flt;
881 unsigned long maj_flt;
1da177e4 882
2b69942f
TG
883 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
884 struct posix_cputimers posix_cputimers;
1da177e4 885
5eca1c10
IM
886 /* Process credentials: */
887
888 /* Tracer's credentials at attach: */
889 const struct cred __rcu *ptracer_cred;
890
891 /* Objective and real subjective task credentials (COW): */
892 const struct cred __rcu *real_cred;
893
894 /* Effective (overridable) subjective task credentials (COW): */
895 const struct cred __rcu *cred;
896
7743c48e
DH
897#ifdef CONFIG_KEYS
898 /* Cached requested key. */
899 struct key *cached_requested_key;
900#endif
901
5eca1c10
IM
902 /*
903 * executable name, excluding path.
904 *
905 * - normally initialized setup_new_exec()
906 * - access it with [gs]et_task_comm()
907 * - lock it with task_lock()
908 */
909 char comm[TASK_COMM_LEN];
910
911 struct nameidata *nameidata;
912
3d5b6fcc 913#ifdef CONFIG_SYSVIPC
5eca1c10
IM
914 struct sysv_sem sysvsem;
915 struct sysv_shm sysvshm;
3d5b6fcc 916#endif
e162b39a 917#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 918 unsigned long last_switch_count;
a2e51445 919 unsigned long last_switch_time;
82a1fcb9 920#endif
5eca1c10
IM
921 /* Filesystem information: */
922 struct fs_struct *fs;
923
924 /* Open file information: */
925 struct files_struct *files;
926
927 /* Namespaces: */
928 struct nsproxy *nsproxy;
929
930 /* Signal handlers: */
931 struct signal_struct *signal;
913292c9 932 struct sighand_struct __rcu *sighand;
5eca1c10
IM
933 sigset_t blocked;
934 sigset_t real_blocked;
935 /* Restored if set_restore_sigmask() was used: */
936 sigset_t saved_sigmask;
937 struct sigpending pending;
938 unsigned long sas_ss_sp;
939 size_t sas_ss_size;
940 unsigned int sas_ss_flags;
941
942 struct callback_head *task_works;
943
4b7d248b 944#ifdef CONFIG_AUDIT
bfef93a5 945#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
946 struct audit_context *audit_context;
947#endif
5eca1c10
IM
948 kuid_t loginuid;
949 unsigned int sessionid;
bfef93a5 950#endif
5eca1c10
IM
951 struct seccomp seccomp;
952
953 /* Thread group tracking: */
d1e7fd64
EB
954 u64 parent_exec_id;
955 u64 self_exec_id;
1da177e4 956
5eca1c10
IM
957 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
958 spinlock_t alloc_lock;
1da177e4 959
b29739f9 960 /* Protection of the PI data structures: */
5eca1c10 961 raw_spinlock_t pi_lock;
b29739f9 962
5eca1c10 963 struct wake_q_node wake_q;
76751049 964
23f78d4a 965#ifdef CONFIG_RT_MUTEXES
5eca1c10 966 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 967 struct rb_root_cached pi_waiters;
e96a7705
XP
968 /* Updated under owner's pi_lock and rq lock */
969 struct task_struct *pi_top_task;
5eca1c10
IM
970 /* Deadlock detection and priority inheritance handling: */
971 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
972#endif
973
408894ee 974#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
975 /* Mutex deadlock detection: */
976 struct mutex_waiter *blocked_on;
408894ee 977#endif
5eca1c10 978
312364f3
DV
979#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
980 int non_block_count;
981#endif
982
de30a2b3 983#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c 984 struct irqtrace_events irqtrace;
de8f5e4f 985 unsigned int hardirq_threaded;
c86e9b98 986 u64 hardirq_chain_key;
5eca1c10
IM
987 int softirqs_enabled;
988 int softirq_context;
40db1739 989 int irq_config;
de30a2b3 990#endif
5eca1c10 991
fbb9ce95 992#ifdef CONFIG_LOCKDEP
5eca1c10
IM
993# define MAX_LOCK_DEPTH 48UL
994 u64 curr_chain_key;
995 int lockdep_depth;
996 unsigned int lockdep_recursion;
997 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 998#endif
5eca1c10 999
c6d30853 1000#ifdef CONFIG_UBSAN
5eca1c10 1001 unsigned int in_ubsan;
c6d30853 1002#endif
408894ee 1003
5eca1c10
IM
1004 /* Journalling filesystem info: */
1005 void *journal_info;
1da177e4 1006
5eca1c10
IM
1007 /* Stacked block device info: */
1008 struct bio_list *bio_list;
d89d8796 1009
73c10101 1010#ifdef CONFIG_BLOCK
5eca1c10
IM
1011 /* Stack plugging: */
1012 struct blk_plug *plug;
73c10101
JA
1013#endif
1014
5eca1c10
IM
1015 /* VM state: */
1016 struct reclaim_state *reclaim_state;
1017
1018 struct backing_dev_info *backing_dev_info;
1da177e4 1019
5eca1c10 1020 struct io_context *io_context;
1da177e4 1021
5e1f0f09
MG
1022#ifdef CONFIG_COMPACTION
1023 struct capture_control *capture_control;
1024#endif
5eca1c10
IM
1025 /* Ptrace state: */
1026 unsigned long ptrace_message;
ae7795bc 1027 kernel_siginfo_t *last_siginfo;
1da177e4 1028
5eca1c10 1029 struct task_io_accounting ioac;
eb414681
JW
1030#ifdef CONFIG_PSI
1031 /* Pressure stall state */
1032 unsigned int psi_flags;
1033#endif
5eca1c10
IM
1034#ifdef CONFIG_TASK_XACCT
1035 /* Accumulated RSS usage: */
1036 u64 acct_rss_mem1;
1037 /* Accumulated virtual memory usage: */
1038 u64 acct_vm_mem1;
1039 /* stime + utime since last update: */
1040 u64 acct_timexpd;
1da177e4
LT
1041#endif
1042#ifdef CONFIG_CPUSETS
5eca1c10
IM
1043 /* Protected by ->alloc_lock: */
1044 nodemask_t mems_allowed;
1045 /* Seqence number to catch updates: */
1046 seqcount_t mems_allowed_seq;
1047 int cpuset_mem_spread_rotor;
1048 int cpuset_slab_spread_rotor;
1da177e4 1049#endif
ddbcc7e8 1050#ifdef CONFIG_CGROUPS
5eca1c10
IM
1051 /* Control Group info protected by css_set_lock: */
1052 struct css_set __rcu *cgroups;
1053 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1054 struct list_head cg_list;
ddbcc7e8 1055#endif
e6d42931 1056#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 1057 u32 closid;
d6aaba61 1058 u32 rmid;
e02737d5 1059#endif
42b2dd0a 1060#ifdef CONFIG_FUTEX
5eca1c10 1061 struct robust_list_head __user *robust_list;
34f192c6
IM
1062#ifdef CONFIG_COMPAT
1063 struct compat_robust_list_head __user *compat_robust_list;
1064#endif
5eca1c10
IM
1065 struct list_head pi_state_list;
1066 struct futex_pi_state *pi_state_cache;
3f186d97 1067 struct mutex futex_exit_mutex;
3d4775df 1068 unsigned int futex_state;
c7aceaba 1069#endif
cdd6c482 1070#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
1071 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1072 struct mutex perf_event_mutex;
1073 struct list_head perf_event_list;
a63eaf34 1074#endif
8f47b187 1075#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1076 unsigned long preempt_disable_ip;
8f47b187 1077#endif
c7aceaba 1078#ifdef CONFIG_NUMA
5eca1c10
IM
1079 /* Protected by alloc_lock: */
1080 struct mempolicy *mempolicy;
45816682 1081 short il_prev;
5eca1c10 1082 short pref_node_fork;
42b2dd0a 1083#endif
cbee9f88 1084#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1085 int numa_scan_seq;
1086 unsigned int numa_scan_period;
1087 unsigned int numa_scan_period_max;
1088 int numa_preferred_nid;
1089 unsigned long numa_migrate_retry;
1090 /* Migration stamp: */
1091 u64 node_stamp;
1092 u64 last_task_numa_placement;
1093 u64 last_sum_exec_runtime;
1094 struct callback_head numa_work;
1095
cb361d8c
JH
1096 /*
1097 * This pointer is only modified for current in syscall and
1098 * pagefault context (and for tasks being destroyed), so it can be read
1099 * from any of the following contexts:
1100 * - RCU read-side critical section
1101 * - current->numa_group from everywhere
1102 * - task's runqueue locked, task not running
1103 */
1104 struct numa_group __rcu *numa_group;
8c8a743c 1105
745d6147 1106 /*
44dba3d5
IM
1107 * numa_faults is an array split into four regions:
1108 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1109 * in this precise order.
1110 *
1111 * faults_memory: Exponential decaying average of faults on a per-node
1112 * basis. Scheduling placement decisions are made based on these
1113 * counts. The values remain static for the duration of a PTE scan.
1114 * faults_cpu: Track the nodes the process was running on when a NUMA
1115 * hinting fault was incurred.
1116 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1117 * during the current scan window. When the scan completes, the counts
1118 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1119 */
5eca1c10
IM
1120 unsigned long *numa_faults;
1121 unsigned long total_numa_faults;
745d6147 1122
04bb2f94
RR
1123 /*
1124 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1125 * scan window were remote/local or failed to migrate. The task scan
1126 * period is adapted based on the locality of the faults with different
1127 * weights depending on whether they were shared or private faults
04bb2f94 1128 */
5eca1c10 1129 unsigned long numa_faults_locality[3];
04bb2f94 1130
5eca1c10 1131 unsigned long numa_pages_migrated;
cbee9f88
PZ
1132#endif /* CONFIG_NUMA_BALANCING */
1133
d7822b1e
MD
1134#ifdef CONFIG_RSEQ
1135 struct rseq __user *rseq;
d7822b1e
MD
1136 u32 rseq_sig;
1137 /*
1138 * RmW on rseq_event_mask must be performed atomically
1139 * with respect to preemption.
1140 */
1141 unsigned long rseq_event_mask;
1142#endif
1143
5eca1c10 1144 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1145
3fbd7ee2
EB
1146 union {
1147 refcount_t rcu_users;
1148 struct rcu_head rcu;
1149 };
b92ce558 1150
5eca1c10
IM
1151 /* Cache last used pipe for splice(): */
1152 struct pipe_inode_info *splice_pipe;
5640f768 1153
5eca1c10 1154 struct page_frag task_frag;
5640f768 1155
47913d4e
IM
1156#ifdef CONFIG_TASK_DELAY_ACCT
1157 struct task_delay_info *delays;
f4f154fd 1158#endif
47913d4e 1159
f4f154fd 1160#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1161 int make_it_fail;
9049f2f6 1162 unsigned int fail_nth;
ca74e92b 1163#endif
9d823e8f 1164 /*
5eca1c10
IM
1165 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1166 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1167 */
5eca1c10
IM
1168 int nr_dirtied;
1169 int nr_dirtied_pause;
1170 /* Start of a write-and-pause period: */
1171 unsigned long dirty_paused_when;
9d823e8f 1172
9745512c 1173#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1174 int latency_record_count;
1175 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1176#endif
6976675d 1177 /*
5eca1c10 1178 * Time slack values; these are used to round up poll() and
6976675d
AV
1179 * select() etc timeout values. These are in nanoseconds.
1180 */
5eca1c10
IM
1181 u64 timer_slack_ns;
1182 u64 default_timer_slack_ns;
f8d570a4 1183
0b24becc 1184#ifdef CONFIG_KASAN
5eca1c10 1185 unsigned int kasan_depth;
0b24becc 1186#endif
dfd402a4
ME
1187#ifdef CONFIG_KCSAN
1188 struct kcsan_ctx kcsan_ctx;
1189#endif
5eca1c10 1190
fb52607a 1191#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1192 /* Index of current stored address in ret_stack: */
1193 int curr_ret_stack;
39eb456d 1194 int curr_ret_depth;
5eca1c10
IM
1195
1196 /* Stack of return addresses for return function tracing: */
1197 struct ftrace_ret_stack *ret_stack;
1198
1199 /* Timestamp for last schedule: */
1200 unsigned long long ftrace_timestamp;
1201
f201ae23
FW
1202 /*
1203 * Number of functions that haven't been traced
5eca1c10 1204 * because of depth overrun:
f201ae23 1205 */
5eca1c10
IM
1206 atomic_t trace_overrun;
1207
1208 /* Pause tracing: */
1209 atomic_t tracing_graph_pause;
f201ae23 1210#endif
5eca1c10 1211
ea4e2bc4 1212#ifdef CONFIG_TRACING
5eca1c10
IM
1213 /* State flags for use by tracers: */
1214 unsigned long trace;
1215
1216 /* Bitmask and counter of trace recursion: */
1217 unsigned long trace_recursion;
261842b7 1218#endif /* CONFIG_TRACING */
5eca1c10 1219
5c9a8750 1220#ifdef CONFIG_KCOV
eec028c9
AK
1221 /* See kernel/kcov.c for more details. */
1222
5eca1c10 1223 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1224 unsigned int kcov_mode;
5eca1c10
IM
1225
1226 /* Size of the kcov_area: */
1227 unsigned int kcov_size;
1228
1229 /* Buffer for coverage collection: */
1230 void *kcov_area;
1231
1232 /* KCOV descriptor wired with this task or NULL: */
1233 struct kcov *kcov;
eec028c9
AK
1234
1235 /* KCOV common handle for remote coverage collection: */
1236 u64 kcov_handle;
1237
1238 /* KCOV sequence number: */
1239 int kcov_sequence;
5ff3b30a
AK
1240
1241 /* Collect coverage from softirq context: */
1242 unsigned int kcov_softirq;
5c9a8750 1243#endif
5eca1c10 1244
6f185c29 1245#ifdef CONFIG_MEMCG
5eca1c10
IM
1246 struct mem_cgroup *memcg_in_oom;
1247 gfp_t memcg_oom_gfp_mask;
1248 int memcg_oom_order;
b23afb93 1249
5eca1c10
IM
1250 /* Number of pages to reclaim on returning to userland: */
1251 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1252
1253 /* Used by memcontrol for targeted memcg charge: */
1254 struct mem_cgroup *active_memcg;
569b846d 1255#endif
5eca1c10 1256
d09d8df3
JB
1257#ifdef CONFIG_BLK_CGROUP
1258 struct request_queue *throttle_queue;
1259#endif
1260
0326f5a9 1261#ifdef CONFIG_UPROBES
5eca1c10 1262 struct uprobe_task *utask;
0326f5a9 1263#endif
cafe5635 1264#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1265 unsigned int sequential_io;
1266 unsigned int sequential_io_avg;
cafe5635 1267#endif
8eb23b9f 1268#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1269 unsigned long task_state_change;
8eb23b9f 1270#endif
5eca1c10 1271 int pagefault_disabled;
03049269 1272#ifdef CONFIG_MMU
5eca1c10 1273 struct task_struct *oom_reaper_list;
03049269 1274#endif
ba14a194 1275#ifdef CONFIG_VMAP_STACK
5eca1c10 1276 struct vm_struct *stack_vm_area;
ba14a194 1277#endif
68f24b08 1278#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1279 /* A live task holds one reference: */
f0b89d39 1280 refcount_t stack_refcount;
d83a7cb3
JP
1281#endif
1282#ifdef CONFIG_LIVEPATCH
1283 int patch_state;
0302e28d 1284#endif
e4e55b47
TH
1285#ifdef CONFIG_SECURITY
1286 /* Used by LSM modules for access restriction: */
1287 void *security;
68f24b08 1288#endif
29e48ce8 1289
afaef01c
AP
1290#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1291 unsigned long lowest_stack;
c8d12627 1292 unsigned long prev_lowest_stack;
afaef01c
AP
1293#endif
1294
5567d11c
PZ
1295#ifdef CONFIG_X86_MCE
1296 u64 mce_addr;
17fae129
TL
1297 __u64 mce_ripv : 1,
1298 mce_whole_page : 1,
1299 __mce_reserved : 62;
5567d11c
PZ
1300 struct callback_head mce_kill_me;
1301#endif
1302
29e48ce8
KC
1303 /*
1304 * New fields for task_struct should be added above here, so that
1305 * they are included in the randomized portion of task_struct.
1306 */
1307 randomized_struct_fields_end
1308
5eca1c10
IM
1309 /* CPU-specific state of this task: */
1310 struct thread_struct thread;
1311
1312 /*
1313 * WARNING: on x86, 'thread_struct' contains a variable-sized
1314 * structure. It *MUST* be at the end of 'task_struct'.
1315 *
1316 * Do not put anything below here!
1317 */
1da177e4
LT
1318};
1319
e868171a 1320static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1321{
2c470475 1322 return task->thread_pid;
22c935f4
EB
1323}
1324
7af57294
PE
1325/*
1326 * the helpers to get the task's different pids as they are seen
1327 * from various namespaces
1328 *
1329 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1330 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1331 * current.
7af57294
PE
1332 * task_xid_nr_ns() : id seen from the ns specified;
1333 *
7af57294
PE
1334 * see also pid_nr() etc in include/linux/pid.h
1335 */
5eca1c10 1336pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1337
e868171a 1338static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1339{
1340 return tsk->pid;
1341}
1342
5eca1c10 1343static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1344{
1345 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1346}
7af57294
PE
1347
1348static inline pid_t task_pid_vnr(struct task_struct *tsk)
1349{
52ee2dfd 1350 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1351}
1352
1353
e868171a 1354static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1355{
1356 return tsk->tgid;
1357}
1358
5eca1c10
IM
1359/**
1360 * pid_alive - check that a task structure is not stale
1361 * @p: Task structure to be checked.
1362 *
1363 * Test if a process is not yet dead (at most zombie state)
1364 * If pid_alive fails, then pointers within the task structure
1365 * can be stale and must not be dereferenced.
1366 *
1367 * Return: 1 if the process is alive. 0 otherwise.
1368 */
1369static inline int pid_alive(const struct task_struct *p)
1370{
2c470475 1371 return p->thread_pid != NULL;
5eca1c10 1372}
7af57294 1373
5eca1c10 1374static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1375{
52ee2dfd 1376 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1377}
1378
7af57294
PE
1379static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1380{
52ee2dfd 1381 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1382}
1383
1384
5eca1c10 1385static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1386{
52ee2dfd 1387 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1388}
1389
7af57294
PE
1390static inline pid_t task_session_vnr(struct task_struct *tsk)
1391{
52ee2dfd 1392 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1393}
1394
dd1c1f2f
ON
1395static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1396{
6883f81a 1397 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1398}
1399
1400static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1401{
6883f81a 1402 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1403}
1404
1405static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1406{
1407 pid_t pid = 0;
1408
1409 rcu_read_lock();
1410 if (pid_alive(tsk))
1411 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1412 rcu_read_unlock();
1413
1414 return pid;
1415}
1416
1417static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1418{
1419 return task_ppid_nr_ns(tsk, &init_pid_ns);
1420}
1421
5eca1c10 1422/* Obsolete, do not use: */
1b0f7ffd
ON
1423static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1424{
1425 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1426}
7af57294 1427
06eb6184
PZ
1428#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1429#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1430
1d48b080 1431static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1432{
1593baab
PZ
1433 unsigned int tsk_state = READ_ONCE(tsk->state);
1434 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1435
06eb6184
PZ
1436 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1437
06eb6184
PZ
1438 if (tsk_state == TASK_IDLE)
1439 state = TASK_REPORT_IDLE;
1440
1593baab
PZ
1441 return fls(state);
1442}
1443
1d48b080 1444static inline char task_index_to_char(unsigned int state)
1593baab 1445{
8ef9925b 1446 static const char state_char[] = "RSDTtXZPI";
1593baab 1447
06eb6184 1448 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1449
1593baab
PZ
1450 return state_char[state];
1451}
1452
1453static inline char task_state_to_char(struct task_struct *tsk)
1454{
1d48b080 1455 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1456}
1457
f400e198 1458/**
570f5241
SS
1459 * is_global_init - check if a task structure is init. Since init
1460 * is free to have sub-threads we need to check tgid.
3260259f
H
1461 * @tsk: Task structure to be checked.
1462 *
1463 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1464 *
1465 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1466 */
e868171a 1467static inline int is_global_init(struct task_struct *tsk)
b461cc03 1468{
570f5241 1469 return task_tgid_nr(tsk) == 1;
b461cc03 1470}
b460cbc5 1471
9ec52099
CLG
1472extern struct pid *cad_pid;
1473
1da177e4
LT
1474/*
1475 * Per process flags
1476 */
5eca1c10
IM
1477#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1478#define PF_EXITING 0x00000004 /* Getting shut down */
5eca1c10
IM
1479#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1480#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1481#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1482#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1483#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1484#define PF_DUMPCORE 0x00000200 /* Dumped core */
1485#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1486#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1487#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1488#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1489#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1490#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1491#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1492#define PF_KSWAPD 0x00020000 /* I am kswapd */
1493#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1494#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
a37b0715
N
1495#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1496 * I am cleaning dirty pages from some other bdi. */
5eca1c10
IM
1497#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1498#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1499#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
73ab1cb2 1500#define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
3bd37062 1501#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1502#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
d7fefcc8 1503#define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
771b53d0 1504#define PF_IO_WORKER 0x20000000 /* Task is an IO worker */
5eca1c10
IM
1505#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1506#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1507
1508/*
1509 * Only the _current_ task can read/write to tsk->flags, but other
1510 * tasks can access tsk->flags in readonly mode for example
1511 * with tsk_used_math (like during threaded core dumping).
1512 * There is however an exception to this rule during ptrace
1513 * or during fork: the ptracer task is allowed to write to the
1514 * child->flags of its traced child (same goes for fork, the parent
1515 * can write to the child->flags), because we're guaranteed the
1516 * child is not running and in turn not changing child->flags
1517 * at the same time the parent does it.
1518 */
5eca1c10
IM
1519#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1520#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1521#define clear_used_math() clear_stopped_child_used_math(current)
1522#define set_used_math() set_stopped_child_used_math(current)
1523
1da177e4
LT
1524#define conditional_stopped_child_used_math(condition, child) \
1525 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1526
1527#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1528
1da177e4
LT
1529#define copy_to_stopped_child_used_math(child) \
1530 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1531
1da177e4 1532/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1533#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1534#define used_math() tsk_used_math(current)
1da177e4 1535
62ec05dd
TG
1536static inline bool is_percpu_thread(void)
1537{
1538#ifdef CONFIG_SMP
1539 return (current->flags & PF_NO_SETAFFINITY) &&
1540 (current->nr_cpus_allowed == 1);
1541#else
1542 return true;
1543#endif
1544}
1545
1d4457f9 1546/* Per-process atomic flags. */
5eca1c10
IM
1547#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1548#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1549#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1550#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1551#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1552#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1553#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1554#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1555
e0e5070b
ZL
1556#define TASK_PFA_TEST(name, func) \
1557 static inline bool task_##func(struct task_struct *p) \
1558 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1559
e0e5070b
ZL
1560#define TASK_PFA_SET(name, func) \
1561 static inline void task_set_##func(struct task_struct *p) \
1562 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1563
e0e5070b
ZL
1564#define TASK_PFA_CLEAR(name, func) \
1565 static inline void task_clear_##func(struct task_struct *p) \
1566 { clear_bit(PFA_##name, &p->atomic_flags); }
1567
1568TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1569TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1570
2ad654bc
ZL
1571TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1572TASK_PFA_SET(SPREAD_PAGE, spread_page)
1573TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1574
1575TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1576TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1577TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1578
356e4bff
TG
1579TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1580TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1581TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1582
71368af9
WL
1583TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1584TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1585TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1586
356e4bff
TG
1587TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1588TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1589
9137bb27
TG
1590TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1591TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1592TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1593
1594TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1595TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1596
5eca1c10 1597static inline void
717a94b5 1598current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1599{
717a94b5
N
1600 current->flags &= ~flags;
1601 current->flags |= orig_flags & flags;
907aed48
MG
1602}
1603
5eca1c10
IM
1604extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1605extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1606#ifdef CONFIG_SMP
5eca1c10
IM
1607extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1608extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1609#else
5eca1c10 1610static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1611{
1612}
5eca1c10 1613static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1614{
96f874e2 1615 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1616 return -EINVAL;
1617 return 0;
1618}
1619#endif
e0ad9556 1620
fa93384f 1621extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1622extern void set_user_nice(struct task_struct *p, long nice);
1623extern int task_prio(const struct task_struct *p);
5eca1c10 1624
d0ea0268
DY
1625/**
1626 * task_nice - return the nice value of a given task.
1627 * @p: the task in question.
1628 *
1629 * Return: The nice value [ -20 ... 0 ... 19 ].
1630 */
1631static inline int task_nice(const struct task_struct *p)
1632{
1633 return PRIO_TO_NICE((p)->static_prio);
1634}
5eca1c10 1635
36c8b586
IM
1636extern int can_nice(const struct task_struct *p, const int nice);
1637extern int task_curr(const struct task_struct *p);
1da177e4 1638extern int idle_cpu(int cpu);
943d355d 1639extern int available_idle_cpu(int cpu);
5eca1c10
IM
1640extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1641extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1642extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1643extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1644extern struct task_struct *idle_task(int cpu);
5eca1c10 1645
c4f30608
PM
1646/**
1647 * is_idle_task - is the specified task an idle task?
fa757281 1648 * @p: the task in question.
e69f6186
YB
1649 *
1650 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1651 */
7061ca3b 1652static inline bool is_idle_task(const struct task_struct *p)
c4f30608 1653{
c1de45ca 1654 return !!(p->flags & PF_IDLE);
c4f30608 1655}
5eca1c10 1656
36c8b586 1657extern struct task_struct *curr_task(int cpu);
a458ae2e 1658extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1659
1660void yield(void);
1661
1da177e4 1662union thread_union {
0500871f
DH
1663#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1664 struct task_struct task;
1665#endif
c65eacbe 1666#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1667 struct thread_info thread_info;
c65eacbe 1668#endif
1da177e4
LT
1669 unsigned long stack[THREAD_SIZE/sizeof(long)];
1670};
1671
0500871f
DH
1672#ifndef CONFIG_THREAD_INFO_IN_TASK
1673extern struct thread_info init_thread_info;
1674#endif
1675
1676extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1677
f3ac6067
IM
1678#ifdef CONFIG_THREAD_INFO_IN_TASK
1679static inline struct thread_info *task_thread_info(struct task_struct *task)
1680{
1681 return &task->thread_info;
1682}
1683#elif !defined(__HAVE_THREAD_FUNCTIONS)
1684# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1685#endif
1686
198fe21b
PE
1687/*
1688 * find a task by one of its numerical ids
1689 *
198fe21b
PE
1690 * find_task_by_pid_ns():
1691 * finds a task by its pid in the specified namespace
228ebcbe
PE
1692 * find_task_by_vpid():
1693 * finds a task by its virtual pid
198fe21b 1694 *
e49859e7 1695 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1696 */
1697
228ebcbe 1698extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1699extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1700
2ee08260
MR
1701/*
1702 * find a task by its virtual pid and get the task struct
1703 */
1704extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1705
b3c97528
HH
1706extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1707extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1708extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1709
1da177e4 1710#ifdef CONFIG_SMP
5eca1c10 1711extern void kick_process(struct task_struct *tsk);
1da177e4 1712#else
5eca1c10 1713static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1714#endif
1da177e4 1715
82b89778 1716extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1717
82b89778
AH
1718static inline void set_task_comm(struct task_struct *tsk, const char *from)
1719{
1720 __set_task_comm(tsk, from, false);
1721}
5eca1c10 1722
3756f640
AB
1723extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1724#define get_task_comm(buf, tsk) ({ \
1725 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1726 __get_task_comm(buf, sizeof(buf), tsk); \
1727})
1da177e4
LT
1728
1729#ifdef CONFIG_SMP
2a0a24eb
TG
1730static __always_inline void scheduler_ipi(void)
1731{
1732 /*
1733 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1734 * TIF_NEED_RESCHED remotely (for the first time) will also send
1735 * this IPI.
1736 */
1737 preempt_fold_need_resched();
1738}
85ba2d86 1739extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 1740#else
184748cc 1741static inline void scheduler_ipi(void) { }
5eca1c10 1742static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
85ba2d86
RM
1743{
1744 return 1;
1745}
1da177e4
LT
1746#endif
1747
5eca1c10
IM
1748/*
1749 * Set thread flags in other task's structures.
1750 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1751 */
1752static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1753{
a1261f54 1754 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1755}
1756
1757static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1758{
a1261f54 1759 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1760}
1761
93ee37c2
DM
1762static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1763 bool value)
1764{
1765 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1766}
1767
1da177e4
LT
1768static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1769{
a1261f54 1770 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1771}
1772
1773static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1774{
a1261f54 1775 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1776}
1777
1778static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1779{
a1261f54 1780 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1781}
1782
1783static inline void set_tsk_need_resched(struct task_struct *tsk)
1784{
1785 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1786}
1787
1788static inline void clear_tsk_need_resched(struct task_struct *tsk)
1789{
1790 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1791}
1792
8ae121ac
GH
1793static inline int test_tsk_need_resched(struct task_struct *tsk)
1794{
1795 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1796}
1797
1da177e4
LT
1798/*
1799 * cond_resched() and cond_resched_lock(): latency reduction via
1800 * explicit rescheduling in places that are safe. The return
1801 * value indicates whether a reschedule was done in fact.
1802 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 1803 */
c1a280b6 1804#ifndef CONFIG_PREEMPTION
c3921ab7 1805extern int _cond_resched(void);
35a773a0
PZ
1806#else
1807static inline int _cond_resched(void) { return 0; }
1808#endif
6f80bd98 1809
613afbf8 1810#define cond_resched() ({ \
3427445a 1811 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1812 _cond_resched(); \
1813})
6f80bd98 1814
613afbf8
FW
1815extern int __cond_resched_lock(spinlock_t *lock);
1816
1817#define cond_resched_lock(lock) ({ \
3427445a 1818 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1819 __cond_resched_lock(lock); \
1820})
1821
f6f3c437
SH
1822static inline void cond_resched_rcu(void)
1823{
1824#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1825 rcu_read_unlock();
1826 cond_resched();
1827 rcu_read_lock();
1828#endif
1829}
1830
1da177e4
LT
1831/*
1832 * Does a critical section need to be broken due to another
c1a280b6 1833 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
95c354fe 1834 * but a general need for low latency)
1da177e4 1835 */
95c354fe 1836static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1837{
c1a280b6 1838#ifdef CONFIG_PREEMPTION
95c354fe
NP
1839 return spin_is_contended(lock);
1840#else
1da177e4 1841 return 0;
95c354fe 1842#endif
1da177e4
LT
1843}
1844
75f93fed
PZ
1845static __always_inline bool need_resched(void)
1846{
1847 return unlikely(tif_need_resched());
1848}
1849
1da177e4
LT
1850/*
1851 * Wrappers for p->thread_info->cpu access. No-op on UP.
1852 */
1853#ifdef CONFIG_SMP
1854
1855static inline unsigned int task_cpu(const struct task_struct *p)
1856{
c65eacbe 1857#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 1858 return READ_ONCE(p->cpu);
c65eacbe 1859#else
c546951d 1860 return READ_ONCE(task_thread_info(p)->cpu);
c65eacbe 1861#endif
1da177e4
LT
1862}
1863
c65cc870 1864extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
1865
1866#else
1867
1868static inline unsigned int task_cpu(const struct task_struct *p)
1869{
1870 return 0;
1871}
1872
1873static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1874{
1875}
1876
1877#endif /* CONFIG_SMP */
1878
d9345c65
PX
1879/*
1880 * In order to reduce various lock holder preemption latencies provide an
1881 * interface to see if a vCPU is currently running or not.
1882 *
1883 * This allows us to terminate optimistic spin loops and block, analogous to
1884 * the native optimistic spin heuristic of testing if the lock owner task is
1885 * running or not.
1886 */
1887#ifndef vcpu_is_preempted
42fd8baa
QC
1888static inline bool vcpu_is_preempted(int cpu)
1889{
1890 return false;
1891}
d9345c65
PX
1892#endif
1893
96f874e2
RR
1894extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1895extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 1896
82455257
DH
1897#ifndef TASK_SIZE_OF
1898#define TASK_SIZE_OF(tsk) TASK_SIZE
1899#endif
1900
d7822b1e
MD
1901#ifdef CONFIG_RSEQ
1902
1903/*
1904 * Map the event mask on the user-space ABI enum rseq_cs_flags
1905 * for direct mask checks.
1906 */
1907enum rseq_event_mask_bits {
1908 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1909 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1910 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1911};
1912
1913enum rseq_event_mask {
1914 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1915 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1916 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1917};
1918
1919static inline void rseq_set_notify_resume(struct task_struct *t)
1920{
1921 if (t->rseq)
1922 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1923}
1924
784e0300 1925void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 1926
784e0300
WD
1927static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1928 struct pt_regs *regs)
d7822b1e
MD
1929{
1930 if (current->rseq)
784e0300 1931 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1932}
1933
784e0300
WD
1934static inline void rseq_signal_deliver(struct ksignal *ksig,
1935 struct pt_regs *regs)
d7822b1e
MD
1936{
1937 preempt_disable();
1938 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1939 preempt_enable();
784e0300 1940 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1941}
1942
1943/* rseq_preempt() requires preemption to be disabled. */
1944static inline void rseq_preempt(struct task_struct *t)
1945{
1946 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1947 rseq_set_notify_resume(t);
1948}
1949
1950/* rseq_migrate() requires preemption to be disabled. */
1951static inline void rseq_migrate(struct task_struct *t)
1952{
1953 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1954 rseq_set_notify_resume(t);
1955}
1956
1957/*
1958 * If parent process has a registered restartable sequences area, the
463f550f 1959 * child inherits. Unregister rseq for a clone with CLONE_VM set.
d7822b1e
MD
1960 */
1961static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1962{
463f550f 1963 if (clone_flags & CLONE_VM) {
d7822b1e 1964 t->rseq = NULL;
d7822b1e
MD
1965 t->rseq_sig = 0;
1966 t->rseq_event_mask = 0;
1967 } else {
1968 t->rseq = current->rseq;
d7822b1e
MD
1969 t->rseq_sig = current->rseq_sig;
1970 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
1971 }
1972}
1973
1974static inline void rseq_execve(struct task_struct *t)
1975{
1976 t->rseq = NULL;
d7822b1e
MD
1977 t->rseq_sig = 0;
1978 t->rseq_event_mask = 0;
1979}
1980
1981#else
1982
1983static inline void rseq_set_notify_resume(struct task_struct *t)
1984{
1985}
784e0300
WD
1986static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1987 struct pt_regs *regs)
d7822b1e
MD
1988{
1989}
784e0300
WD
1990static inline void rseq_signal_deliver(struct ksignal *ksig,
1991 struct pt_regs *regs)
d7822b1e
MD
1992{
1993}
1994static inline void rseq_preempt(struct task_struct *t)
1995{
1996}
1997static inline void rseq_migrate(struct task_struct *t)
1998{
1999}
2000static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2001{
2002}
2003static inline void rseq_execve(struct task_struct *t)
2004{
2005}
2006
2007#endif
2008
73ab1cb2
TY
2009void __exit_umh(struct task_struct *tsk);
2010
2011static inline void exit_umh(struct task_struct *tsk)
2012{
2013 if (unlikely(tsk->flags & PF_UMH))
2014 __exit_umh(tsk);
2015}
2016
d7822b1e
MD
2017#ifdef CONFIG_DEBUG_RSEQ
2018
2019void rseq_syscall(struct pt_regs *regs);
2020
2021#else
2022
2023static inline void rseq_syscall(struct pt_regs *regs)
2024{
2025}
2026
2027#endif
2028
3c93a0c0
QY
2029const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2030char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2031int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2032
2033const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2034const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2035const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2036
2037int sched_trace_rq_cpu(struct rq *rq);
2038
2039const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2040
1da177e4 2041#endif