Merge tag 'i2c-for-6.4-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
f80be457 17#include <linux/kmsan_types.h>
5eca1c10
IM
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
0584df9c 21#include <linux/irqflags.h>
1da177e4 22#include <linux/seccomp.h>
5eca1c10 23#include <linux/nodemask.h>
b68070e1 24#include <linux/rcupdate.h>
ec1d2819 25#include <linux/refcount.h>
a3b6714e 26#include <linux/resource.h>
9745512c 27#include <linux/latencytop.h>
5eca1c10 28#include <linux/sched/prio.h>
9eacb5c7 29#include <linux/sched/types.h>
5eca1c10 30#include <linux/signal_types.h>
1446e1df 31#include <linux/syscall_user_dispatch.h>
5eca1c10
IM
32#include <linux/mm_types_task.h>
33#include <linux/task_io_accounting.h>
2b69942f 34#include <linux/posix-timers.h>
d7822b1e 35#include <linux/rseq.h>
0cd39f46 36#include <linux/seqlock.h>
dfd402a4 37#include <linux/kcsan.h>
102227b9 38#include <linux/rv.h>
e3ff7c60 39#include <linux/livepatch_sched.h>
5fbda3ec 40#include <asm/kmap_size.h>
a3b6714e 41
5eca1c10 42/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 43struct audit_context;
c7af7877 44struct backing_dev_info;
bddd87c7 45struct bio_list;
73c10101 46struct blk_plug;
a10787e6 47struct bpf_local_storage;
c7603cfa 48struct bpf_run_ctx;
3c93a0c0 49struct capture_control;
c7af7877 50struct cfs_rq;
c7af7877
IM
51struct fs_struct;
52struct futex_pi_state;
53struct io_context;
1875dc5b 54struct io_uring_task;
c7af7877 55struct mempolicy;
89076bc3 56struct nameidata;
c7af7877
IM
57struct nsproxy;
58struct perf_event_context;
59struct pid_namespace;
60struct pipe_inode_info;
61struct rcu_node;
62struct reclaim_state;
63struct robust_list_head;
3c93a0c0
QY
64struct root_domain;
65struct rq;
c7af7877
IM
66struct sched_attr;
67struct sched_param;
43ae34cb 68struct seq_file;
c7af7877
IM
69struct sighand_struct;
70struct signal_struct;
71struct task_delay_info;
4cf86d77 72struct task_group;
fd593511 73struct user_event_mm;
1da177e4 74
4a8342d2
LT
75/*
76 * Task state bitmask. NOTE! These bits are also
77 * encoded in fs/proc/array.c: get_task_state().
78 *
79 * We have two separate sets of flags: task->state
80 * is about runnability, while task->exit_state are
81 * about the task exiting. Confusing, but this way
82 * modifying one set can't modify the other one by
83 * mistake.
84 */
5eca1c10
IM
85
86/* Used in tsk->state: */
9963e444
PZ
87#define TASK_RUNNING 0x00000000
88#define TASK_INTERRUPTIBLE 0x00000001
89#define TASK_UNINTERRUPTIBLE 0x00000002
90#define __TASK_STOPPED 0x00000004
91#define __TASK_TRACED 0x00000008
5eca1c10 92/* Used in tsk->exit_state: */
9963e444
PZ
93#define EXIT_DEAD 0x00000010
94#define EXIT_ZOMBIE 0x00000020
5eca1c10
IM
95#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
96/* Used in tsk->state again: */
9963e444
PZ
97#define TASK_PARKED 0x00000040
98#define TASK_DEAD 0x00000080
99#define TASK_WAKEKILL 0x00000100
100#define TASK_WAKING 0x00000200
101#define TASK_NOLOAD 0x00000400
102#define TASK_NEW 0x00000800
9963e444 103#define TASK_RTLOCK_WAIT 0x00001000
f5d39b02
PZ
104#define TASK_FREEZABLE 0x00002000
105#define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
106#define TASK_FROZEN 0x00008000
107#define TASK_STATE_MAX 0x00010000
5eca1c10 108
f9fc8cad
PZ
109#define TASK_ANY (TASK_STATE_MAX-1)
110
f5d39b02
PZ
111/*
112 * DO NOT ADD ANY NEW USERS !
113 */
114#define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
5eca1c10 115
5eca1c10
IM
116/* Convenience macros for the sake of set_current_state: */
117#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
118#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
2500ad1c 119#define TASK_TRACED __TASK_TRACED
5eca1c10
IM
120
121#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
122
123/* Convenience macros for the sake of wake_up(): */
124#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
125
126/* get_task_state(): */
127#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
128 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
129 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
130 TASK_PARKED)
5eca1c10 131
2f064a59 132#define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
5eca1c10 133
31cae1ea
PZ
134#define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
135#define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
136#define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
5eca1c10 137
b5bf9a90
PZ
138/*
139 * Special states are those that do not use the normal wait-loop pattern. See
140 * the comment with set_special_state().
141 */
142#define is_special_task_state(state) \
1cef1150 143 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 144
85019c16
TG
145#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
146# define debug_normal_state_change(state_value) \
147 do { \
148 WARN_ON_ONCE(is_special_task_state(state_value)); \
149 current->task_state_change = _THIS_IP_; \
8eb23b9f
PZ
150 } while (0)
151
85019c16 152# define debug_special_state_change(state_value) \
b5bf9a90 153 do { \
b5bf9a90 154 WARN_ON_ONCE(!is_special_task_state(state_value)); \
b5bf9a90 155 current->task_state_change = _THIS_IP_; \
b5bf9a90 156 } while (0)
85019c16 157
5f220be2
TG
158# define debug_rtlock_wait_set_state() \
159 do { \
160 current->saved_state_change = current->task_state_change;\
161 current->task_state_change = _THIS_IP_; \
162 } while (0)
163
164# define debug_rtlock_wait_restore_state() \
165 do { \
166 current->task_state_change = current->saved_state_change;\
167 } while (0)
168
8eb23b9f 169#else
85019c16
TG
170# define debug_normal_state_change(cond) do { } while (0)
171# define debug_special_state_change(cond) do { } while (0)
5f220be2
TG
172# define debug_rtlock_wait_set_state() do { } while (0)
173# define debug_rtlock_wait_restore_state() do { } while (0)
85019c16
TG
174#endif
175
498d0c57
AM
176/*
177 * set_current_state() includes a barrier so that the write of current->state
178 * is correctly serialised wrt the caller's subsequent test of whether to
179 * actually sleep:
180 *
a2250238 181 * for (;;) {
498d0c57 182 * set_current_state(TASK_UNINTERRUPTIBLE);
58877d34
PZ
183 * if (CONDITION)
184 * break;
a2250238
PZ
185 *
186 * schedule();
187 * }
188 * __set_current_state(TASK_RUNNING);
189 *
190 * If the caller does not need such serialisation (because, for instance, the
58877d34 191 * CONDITION test and condition change and wakeup are under the same lock) then
a2250238
PZ
192 * use __set_current_state().
193 *
194 * The above is typically ordered against the wakeup, which does:
195 *
58877d34 196 * CONDITION = 1;
b5bf9a90 197 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 198 *
58877d34
PZ
199 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
200 * accessing p->state.
a2250238
PZ
201 *
202 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
203 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
204 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 205 *
b5bf9a90 206 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 207 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
208 * a problem either because that will result in one extra go around the loop
209 * and our @cond test will save the day.
498d0c57 210 *
a2250238 211 * Also see the comments of try_to_wake_up().
498d0c57 212 */
b5bf9a90 213#define __set_current_state(state_value) \
85019c16
TG
214 do { \
215 debug_normal_state_change((state_value)); \
216 WRITE_ONCE(current->__state, (state_value)); \
217 } while (0)
b5bf9a90
PZ
218
219#define set_current_state(state_value) \
85019c16
TG
220 do { \
221 debug_normal_state_change((state_value)); \
222 smp_store_mb(current->__state, (state_value)); \
223 } while (0)
b5bf9a90
PZ
224
225/*
226 * set_special_state() should be used for those states when the blocking task
227 * can not use the regular condition based wait-loop. In that case we must
85019c16
TG
228 * serialize against wakeups such that any possible in-flight TASK_RUNNING
229 * stores will not collide with our state change.
b5bf9a90
PZ
230 */
231#define set_special_state(state_value) \
232 do { \
233 unsigned long flags; /* may shadow */ \
85019c16 234 \
b5bf9a90 235 raw_spin_lock_irqsave(&current->pi_lock, flags); \
85019c16 236 debug_special_state_change((state_value)); \
2f064a59 237 WRITE_ONCE(current->__state, (state_value)); \
b5bf9a90
PZ
238 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
239 } while (0)
240
5f220be2
TG
241/*
242 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
243 *
244 * RT's spin/rwlock substitutions are state preserving. The state of the
245 * task when blocking on the lock is saved in task_struct::saved_state and
246 * restored after the lock has been acquired. These operations are
247 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
248 * lock related wakeups while the task is blocked on the lock are
249 * redirected to operate on task_struct::saved_state to ensure that these
250 * are not dropped. On restore task_struct::saved_state is set to
251 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
252 *
253 * The lock operation looks like this:
254 *
255 * current_save_and_set_rtlock_wait_state();
256 * for (;;) {
257 * if (try_lock())
258 * break;
259 * raw_spin_unlock_irq(&lock->wait_lock);
260 * schedule_rtlock();
261 * raw_spin_lock_irq(&lock->wait_lock);
262 * set_current_state(TASK_RTLOCK_WAIT);
263 * }
264 * current_restore_rtlock_saved_state();
265 */
266#define current_save_and_set_rtlock_wait_state() \
267 do { \
268 lockdep_assert_irqs_disabled(); \
269 raw_spin_lock(&current->pi_lock); \
270 current->saved_state = current->__state; \
271 debug_rtlock_wait_set_state(); \
272 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
273 raw_spin_unlock(&current->pi_lock); \
274 } while (0);
275
276#define current_restore_rtlock_saved_state() \
277 do { \
278 lockdep_assert_irqs_disabled(); \
279 raw_spin_lock(&current->pi_lock); \
280 debug_rtlock_wait_restore_state(); \
281 WRITE_ONCE(current->__state, current->saved_state); \
282 current->saved_state = TASK_RUNNING; \
283 raw_spin_unlock(&current->pi_lock); \
284 } while (0);
8eb23b9f 285
2f064a59 286#define get_current_state() READ_ONCE(current->__state)
d6c23bb3 287
3087c61e
YS
288/*
289 * Define the task command name length as enum, then it can be visible to
290 * BPF programs.
291 */
292enum {
293 TASK_COMM_LEN = 16,
294};
1da177e4 295
1da177e4
LT
296extern void scheduler_tick(void);
297
5eca1c10
IM
298#define MAX_SCHEDULE_TIMEOUT LONG_MAX
299
300extern long schedule_timeout(long timeout);
301extern long schedule_timeout_interruptible(long timeout);
302extern long schedule_timeout_killable(long timeout);
303extern long schedule_timeout_uninterruptible(long timeout);
304extern long schedule_timeout_idle(long timeout);
1da177e4 305asmlinkage void schedule(void);
c5491ea7 306extern void schedule_preempt_disabled(void);
19c95f26 307asmlinkage void preempt_schedule_irq(void);
6991436c
TG
308#ifdef CONFIG_PREEMPT_RT
309 extern void schedule_rtlock(void);
310#endif
1da177e4 311
10ab5643
TH
312extern int __must_check io_schedule_prepare(void);
313extern void io_schedule_finish(int token);
9cff8ade 314extern long io_schedule_timeout(long timeout);
10ab5643 315extern void io_schedule(void);
9cff8ade 316
d37f761d 317/**
0ba42a59 318 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
319 * @utime: time spent in user mode
320 * @stime: time spent in system mode
9d7fb042 321 * @lock: protects the above two fields
d37f761d 322 *
9d7fb042
PZ
323 * Stores previous user/system time values such that we can guarantee
324 * monotonicity.
d37f761d 325 */
9d7fb042
PZ
326struct prev_cputime {
327#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
328 u64 utime;
329 u64 stime;
330 raw_spinlock_t lock;
9d7fb042 331#endif
d37f761d
FW
332};
333
bac5b6b6
FW
334enum vtime_state {
335 /* Task is sleeping or running in a CPU with VTIME inactive: */
336 VTIME_INACTIVE = 0,
14faf6fc
FW
337 /* Task is idle */
338 VTIME_IDLE,
bac5b6b6
FW
339 /* Task runs in kernelspace in a CPU with VTIME active: */
340 VTIME_SYS,
14faf6fc
FW
341 /* Task runs in userspace in a CPU with VTIME active: */
342 VTIME_USER,
e6d5bf3e
FW
343 /* Task runs as guests in a CPU with VTIME active: */
344 VTIME_GUEST,
bac5b6b6
FW
345};
346
347struct vtime {
348 seqcount_t seqcount;
349 unsigned long long starttime;
350 enum vtime_state state;
802f4a82 351 unsigned int cpu;
2a42eb95
WL
352 u64 utime;
353 u64 stime;
354 u64 gtime;
bac5b6b6
FW
355};
356
69842cba
PB
357/*
358 * Utilization clamp constraints.
359 * @UCLAMP_MIN: Minimum utilization
360 * @UCLAMP_MAX: Maximum utilization
361 * @UCLAMP_CNT: Utilization clamp constraints count
362 */
363enum uclamp_id {
364 UCLAMP_MIN = 0,
365 UCLAMP_MAX,
366 UCLAMP_CNT
367};
368
f9a25f77
MP
369#ifdef CONFIG_SMP
370extern struct root_domain def_root_domain;
371extern struct mutex sched_domains_mutex;
372#endif
373
1da177e4 374struct sched_info {
7f5f8e8d 375#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
376 /* Cumulative counters: */
377
378 /* # of times we have run on this CPU: */
379 unsigned long pcount;
380
381 /* Time spent waiting on a runqueue: */
382 unsigned long long run_delay;
383
384 /* Timestamps: */
385
386 /* When did we last run on a CPU? */
387 unsigned long long last_arrival;
388
389 /* When were we last queued to run? */
390 unsigned long long last_queued;
1da177e4 391
f6db8347 392#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 393};
1da177e4 394
6ecdd749
YD
395/*
396 * Integer metrics need fixed point arithmetic, e.g., sched/fair
397 * has a few: load, load_avg, util_avg, freq, and capacity.
398 *
399 * We define a basic fixed point arithmetic range, and then formalize
400 * all these metrics based on that basic range.
401 */
5eca1c10
IM
402# define SCHED_FIXEDPOINT_SHIFT 10
403# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 404
69842cba
PB
405/* Increase resolution of cpu_capacity calculations */
406# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
407# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
408
20b8a59f 409struct load_weight {
5eca1c10
IM
410 unsigned long weight;
411 u32 inv_weight;
20b8a59f
IM
412};
413
7f65ea42
PB
414/**
415 * struct util_est - Estimation utilization of FAIR tasks
416 * @enqueued: instantaneous estimated utilization of a task/cpu
417 * @ewma: the Exponential Weighted Moving Average (EWMA)
418 * utilization of a task
419 *
420 * Support data structure to track an Exponential Weighted Moving Average
421 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
422 * average each time a task completes an activation. Sample's weight is chosen
423 * so that the EWMA will be relatively insensitive to transient changes to the
424 * task's workload.
425 *
426 * The enqueued attribute has a slightly different meaning for tasks and cpus:
427 * - task: the task's util_avg at last task dequeue time
428 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
429 * Thus, the util_est.enqueued of a task represents the contribution on the
430 * estimated utilization of the CPU where that task is currently enqueued.
431 *
432 * Only for tasks we track a moving average of the past instantaneous
433 * estimated utilization. This allows to absorb sporadic drops in utilization
434 * of an otherwise almost periodic task.
68d7a190
DE
435 *
436 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
437 * updates. When a task is dequeued, its util_est should not be updated if its
438 * util_avg has not been updated in the meantime.
439 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
440 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
441 * for a task) it is safe to use MSB.
7f65ea42
PB
442 */
443struct util_est {
444 unsigned int enqueued;
445 unsigned int ewma;
446#define UTIL_EST_WEIGHT_SHIFT 2
68d7a190 447#define UTIL_AVG_UNCHANGED 0x80000000
317d359d 448} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 449
9d89c257 450/*
9f683953 451 * The load/runnable/util_avg accumulates an infinite geometric series
0dacee1b 452 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
7b595334
YD
453 *
454 * [load_avg definition]
455 *
456 * load_avg = runnable% * scale_load_down(load)
457 *
9f683953
VG
458 * [runnable_avg definition]
459 *
460 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
7b595334 461 *
7b595334
YD
462 * [util_avg definition]
463 *
464 * util_avg = running% * SCHED_CAPACITY_SCALE
465 *
9f683953
VG
466 * where runnable% is the time ratio that a sched_entity is runnable and
467 * running% the time ratio that a sched_entity is running.
468 *
469 * For cfs_rq, they are the aggregated values of all runnable and blocked
470 * sched_entities.
7b595334 471 *
c1b7b8d4 472 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
9f683953
VG
473 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
474 * for computing those signals (see update_rq_clock_pelt())
7b595334 475 *
23127296
VG
476 * N.B., the above ratios (runnable% and running%) themselves are in the
477 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
478 * to as large a range as necessary. This is for example reflected by
479 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
480 *
481 * [Overflow issue]
482 *
483 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
484 * with the highest load (=88761), always runnable on a single cfs_rq,
485 * and should not overflow as the number already hits PID_MAX_LIMIT.
486 *
487 * For all other cases (including 32-bit kernels), struct load_weight's
488 * weight will overflow first before we do, because:
489 *
490 * Max(load_avg) <= Max(load.weight)
491 *
492 * Then it is the load_weight's responsibility to consider overflow
493 * issues.
9d89c257 494 */
9d85f21c 495struct sched_avg {
5eca1c10
IM
496 u64 last_update_time;
497 u64 load_sum;
9f683953 498 u64 runnable_sum;
5eca1c10
IM
499 u32 util_sum;
500 u32 period_contrib;
501 unsigned long load_avg;
9f683953 502 unsigned long runnable_avg;
5eca1c10 503 unsigned long util_avg;
7f65ea42 504 struct util_est util_est;
317d359d 505} ____cacheline_aligned;
9d85f21c 506
41acab88 507struct sched_statistics {
7f5f8e8d 508#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
509 u64 wait_start;
510 u64 wait_max;
511 u64 wait_count;
512 u64 wait_sum;
513 u64 iowait_count;
514 u64 iowait_sum;
515
516 u64 sleep_start;
517 u64 sleep_max;
518 s64 sum_sleep_runtime;
519
520 u64 block_start;
521 u64 block_max;
847fc0cd
YS
522 s64 sum_block_runtime;
523
5eca1c10
IM
524 u64 exec_max;
525 u64 slice_max;
526
527 u64 nr_migrations_cold;
528 u64 nr_failed_migrations_affine;
529 u64 nr_failed_migrations_running;
530 u64 nr_failed_migrations_hot;
531 u64 nr_forced_migrations;
532
533 u64 nr_wakeups;
534 u64 nr_wakeups_sync;
535 u64 nr_wakeups_migrate;
536 u64 nr_wakeups_local;
537 u64 nr_wakeups_remote;
538 u64 nr_wakeups_affine;
539 u64 nr_wakeups_affine_attempts;
540 u64 nr_wakeups_passive;
541 u64 nr_wakeups_idle;
4feee7d1
JD
542
543#ifdef CONFIG_SCHED_CORE
544 u64 core_forceidle_sum;
41acab88 545#endif
4feee7d1 546#endif /* CONFIG_SCHEDSTATS */
ceeadb83 547} ____cacheline_aligned;
41acab88
LDM
548
549struct sched_entity {
5eca1c10
IM
550 /* For load-balancing: */
551 struct load_weight load;
552 struct rb_node run_node;
553 struct list_head group_node;
554 unsigned int on_rq;
41acab88 555
5eca1c10
IM
556 u64 exec_start;
557 u64 sum_exec_runtime;
558 u64 vruntime;
559 u64 prev_sum_exec_runtime;
41acab88 560
5eca1c10 561 u64 nr_migrations;
41acab88 562
20b8a59f 563#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
564 int depth;
565 struct sched_entity *parent;
20b8a59f 566 /* rq on which this entity is (to be) queued: */
5eca1c10 567 struct cfs_rq *cfs_rq;
20b8a59f 568 /* rq "owned" by this entity/group: */
5eca1c10 569 struct cfs_rq *my_q;
9f683953
VG
570 /* cached value of my_q->h_nr_running */
571 unsigned long runnable_weight;
20b8a59f 572#endif
8bd75c77 573
141965c7 574#ifdef CONFIG_SMP
5a107804
JO
575 /*
576 * Per entity load average tracking.
577 *
578 * Put into separate cache line so it does not
579 * collide with read-mostly values above.
580 */
317d359d 581 struct sched_avg avg;
9d85f21c 582#endif
20b8a59f 583};
70b97a7f 584
fa717060 585struct sched_rt_entity {
5eca1c10
IM
586 struct list_head run_list;
587 unsigned long timeout;
588 unsigned long watchdog_stamp;
589 unsigned int time_slice;
590 unsigned short on_rq;
591 unsigned short on_list;
592
593 struct sched_rt_entity *back;
052f1dc7 594#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 595 struct sched_rt_entity *parent;
6f505b16 596 /* rq on which this entity is (to be) queued: */
5eca1c10 597 struct rt_rq *rt_rq;
6f505b16 598 /* rq "owned" by this entity/group: */
5eca1c10 599 struct rt_rq *my_q;
6f505b16 600#endif
3859a271 601} __randomize_layout;
fa717060 602
aab03e05 603struct sched_dl_entity {
5eca1c10 604 struct rb_node rb_node;
aab03e05
DF
605
606 /*
607 * Original scheduling parameters. Copied here from sched_attr
4027d080 608 * during sched_setattr(), they will remain the same until
609 * the next sched_setattr().
aab03e05 610 */
5eca1c10
IM
611 u64 dl_runtime; /* Maximum runtime for each instance */
612 u64 dl_deadline; /* Relative deadline of each instance */
613 u64 dl_period; /* Separation of two instances (period) */
54d6d303 614 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 615 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
616
617 /*
618 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 619 * they are continuously updated during task execution. Note that
aab03e05
DF
620 * the remaining runtime could be < 0 in case we are in overrun.
621 */
5eca1c10
IM
622 s64 runtime; /* Remaining runtime for this instance */
623 u64 deadline; /* Absolute deadline for this instance */
624 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
625
626 /*
627 * Some bool flags:
628 *
629 * @dl_throttled tells if we exhausted the runtime. If so, the
630 * task has to wait for a replenishment to be performed at the
631 * next firing of dl_timer.
632 *
5eca1c10 633 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 634 * all its available runtime during the last job.
209a0cbd
LA
635 *
636 * @dl_non_contending tells if the task is inactive while still
637 * contributing to the active utilization. In other words, it
638 * indicates if the inactive timer has been armed and its handler
639 * has not been executed yet. This flag is useful to avoid race
640 * conditions between the inactive timer handler and the wakeup
641 * code.
34be3930
JL
642 *
643 * @dl_overrun tells if the task asked to be informed about runtime
644 * overruns.
aab03e05 645 */
aa5222e9 646 unsigned int dl_throttled : 1;
aa5222e9
DC
647 unsigned int dl_yielded : 1;
648 unsigned int dl_non_contending : 1;
34be3930 649 unsigned int dl_overrun : 1;
aab03e05
DF
650
651 /*
652 * Bandwidth enforcement timer. Each -deadline task has its
653 * own bandwidth to be enforced, thus we need one timer per task.
654 */
5eca1c10 655 struct hrtimer dl_timer;
209a0cbd
LA
656
657 /*
658 * Inactive timer, responsible for decreasing the active utilization
659 * at the "0-lag time". When a -deadline task blocks, it contributes
660 * to GRUB's active utilization until the "0-lag time", hence a
661 * timer is needed to decrease the active utilization at the correct
662 * time.
663 */
664 struct hrtimer inactive_timer;
2279f540
JL
665
666#ifdef CONFIG_RT_MUTEXES
667 /*
668 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
669 * pi_se points to the donor, otherwise points to the dl_se it belongs
670 * to (the original one/itself).
671 */
672 struct sched_dl_entity *pi_se;
673#endif
aab03e05 674};
8bd75c77 675
69842cba
PB
676#ifdef CONFIG_UCLAMP_TASK
677/* Number of utilization clamp buckets (shorter alias) */
678#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
679
680/*
681 * Utilization clamp for a scheduling entity
682 * @value: clamp value "assigned" to a se
683 * @bucket_id: bucket index corresponding to the "assigned" value
e8f14172 684 * @active: the se is currently refcounted in a rq's bucket
a509a7cd 685 * @user_defined: the requested clamp value comes from user-space
69842cba
PB
686 *
687 * The bucket_id is the index of the clamp bucket matching the clamp value
688 * which is pre-computed and stored to avoid expensive integer divisions from
689 * the fast path.
e8f14172
PB
690 *
691 * The active bit is set whenever a task has got an "effective" value assigned,
692 * which can be different from the clamp value "requested" from user-space.
693 * This allows to know a task is refcounted in the rq's bucket corresponding
694 * to the "effective" bucket_id.
a509a7cd
PB
695 *
696 * The user_defined bit is set whenever a task has got a task-specific clamp
697 * value requested from userspace, i.e. the system defaults apply to this task
698 * just as a restriction. This allows to relax default clamps when a less
699 * restrictive task-specific value has been requested, thus allowing to
700 * implement a "nice" semantic. For example, a task running with a 20%
701 * default boost can still drop its own boosting to 0%.
69842cba
PB
702 */
703struct uclamp_se {
704 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
705 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
e8f14172 706 unsigned int active : 1;
a509a7cd 707 unsigned int user_defined : 1;
69842cba
PB
708};
709#endif /* CONFIG_UCLAMP_TASK */
710
1d082fd0
PM
711union rcu_special {
712 struct {
5eca1c10
IM
713 u8 blocked;
714 u8 need_qs;
05f41571 715 u8 exp_hint; /* Hint for performance. */
276c4104 716 u8 need_mb; /* Readers need smp_mb(). */
8203d6d0 717 } b; /* Bits. */
05f41571 718 u32 s; /* Set of bits. */
1d082fd0 719};
86848966 720
8dc85d54
PZ
721enum perf_event_task_context {
722 perf_invalid_context = -1,
723 perf_hw_context = 0,
89a1e187 724 perf_sw_context,
8dc85d54
PZ
725 perf_nr_task_contexts,
726};
727
eb61baf6
IM
728struct wake_q_node {
729 struct wake_q_node *next;
730};
731
5fbda3ec
TG
732struct kmap_ctrl {
733#ifdef CONFIG_KMAP_LOCAL
734 int idx;
735 pte_t pteval[KM_MAX_IDX];
736#endif
737};
738
1da177e4 739struct task_struct {
c65eacbe
AL
740#ifdef CONFIG_THREAD_INFO_IN_TASK
741 /*
742 * For reasons of header soup (see current_thread_info()), this
743 * must be the first element of task_struct.
744 */
5eca1c10 745 struct thread_info thread_info;
c65eacbe 746#endif
2f064a59 747 unsigned int __state;
29e48ce8 748
5f220be2
TG
749#ifdef CONFIG_PREEMPT_RT
750 /* saved state for "spinlock sleepers" */
751 unsigned int saved_state;
752#endif
753
29e48ce8
KC
754 /*
755 * This begins the randomizable portion of task_struct. Only
756 * scheduling-critical items should be added above here.
757 */
758 randomized_struct_fields_start
759
5eca1c10 760 void *stack;
ec1d2819 761 refcount_t usage;
5eca1c10
IM
762 /* Per task flags (PF_*), defined further below: */
763 unsigned int flags;
764 unsigned int ptrace;
1da177e4 765
2dd73a4f 766#ifdef CONFIG_SMP
5eca1c10 767 int on_cpu;
8c4890d1 768 struct __call_single_node wake_entry;
5eca1c10
IM
769 unsigned int wakee_flips;
770 unsigned long wakee_flip_decay_ts;
771 struct task_struct *last_wakee;
ac66f547 772
32e839dd
MG
773 /*
774 * recent_used_cpu is initially set as the last CPU used by a task
775 * that wakes affine another task. Waker/wakee relationships can
776 * push tasks around a CPU where each wakeup moves to the next one.
777 * Tracking a recently used CPU allows a quick search for a recently
778 * used CPU that may be idle.
779 */
780 int recent_used_cpu;
5eca1c10 781 int wake_cpu;
2dd73a4f 782#endif
5eca1c10
IM
783 int on_rq;
784
785 int prio;
786 int static_prio;
787 int normal_prio;
788 unsigned int rt_priority;
50e645a8 789
5eca1c10
IM
790 struct sched_entity se;
791 struct sched_rt_entity rt;
8a311c74 792 struct sched_dl_entity dl;
804bccba 793 const struct sched_class *sched_class;
8a311c74
PZ
794
795#ifdef CONFIG_SCHED_CORE
796 struct rb_node core_node;
797 unsigned long core_cookie;
d2dfa17b 798 unsigned int core_occupation;
8a311c74
PZ
799#endif
800
8323f26c 801#ifdef CONFIG_CGROUP_SCHED
5eca1c10 802 struct task_group *sched_task_group;
8323f26c 803#endif
1da177e4 804
69842cba 805#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
806 /*
807 * Clamp values requested for a scheduling entity.
808 * Must be updated with task_rq_lock() held.
809 */
e8f14172 810 struct uclamp_se uclamp_req[UCLAMP_CNT];
13685c4a
QY
811 /*
812 * Effective clamp values used for a scheduling entity.
813 * Must be updated with task_rq_lock() held.
814 */
69842cba
PB
815 struct uclamp_se uclamp[UCLAMP_CNT];
816#endif
817
ceeadb83
YS
818 struct sched_statistics stats;
819
e107be36 820#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
821 /* List of struct preempt_notifier: */
822 struct hlist_head preempt_notifiers;
e107be36
AK
823#endif
824
6c5c9341 825#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 826 unsigned int btrace_seq;
6c5c9341 827#endif
1da177e4 828
5eca1c10
IM
829 unsigned int policy;
830 int nr_cpus_allowed;
3bd37062 831 const cpumask_t *cpus_ptr;
b90ca8ba 832 cpumask_t *user_cpus_ptr;
3bd37062 833 cpumask_t cpus_mask;
6d337eab 834 void *migration_pending;
74d862b6 835#ifdef CONFIG_SMP
a7c81556 836 unsigned short migration_disabled;
af449901 837#endif
a7c81556 838 unsigned short migration_flags;
1da177e4 839
a57eb940 840#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
841 int rcu_read_lock_nesting;
842 union rcu_special rcu_read_unlock_special;
843 struct list_head rcu_node_entry;
844 struct rcu_node *rcu_blocked_node;
28f6569a 845#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 846
8315f422 847#ifdef CONFIG_TASKS_RCU
5eca1c10 848 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
849 u8 rcu_tasks_holdout;
850 u8 rcu_tasks_idx;
5eca1c10 851 int rcu_tasks_idle_cpu;
ccdd29ff 852 struct list_head rcu_tasks_holdout_list;
8315f422 853#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 854
d5f177d3
PM
855#ifdef CONFIG_TASKS_TRACE_RCU
856 int trc_reader_nesting;
857 int trc_ipi_to_cpu;
276c4104 858 union rcu_special trc_reader_special;
d5f177d3 859 struct list_head trc_holdout_list;
434c9eef
PM
860 struct list_head trc_blkd_node;
861 int trc_blkd_cpu;
d5f177d3
PM
862#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
863
5eca1c10 864 struct sched_info sched_info;
1da177e4 865
5eca1c10 866 struct list_head tasks;
806c09a7 867#ifdef CONFIG_SMP
5eca1c10
IM
868 struct plist_node pushable_tasks;
869 struct rb_node pushable_dl_tasks;
806c09a7 870#endif
1da177e4 871
5eca1c10
IM
872 struct mm_struct *mm;
873 struct mm_struct *active_mm;
314ff785 874
5eca1c10
IM
875 int exit_state;
876 int exit_code;
877 int exit_signal;
878 /* The signal sent when the parent dies: */
879 int pdeath_signal;
880 /* JOBCTL_*, siglock protected: */
881 unsigned long jobctl;
882
883 /* Used for emulating ABI behavior of previous Linux versions: */
884 unsigned int personality;
885
886 /* Scheduler bits, serialized by scheduler locks: */
887 unsigned sched_reset_on_fork:1;
888 unsigned sched_contributes_to_load:1;
889 unsigned sched_migrated:1;
eb414681 890
5eca1c10
IM
891 /* Force alignment to the next boundary: */
892 unsigned :0;
893
894 /* Unserialized, strictly 'current' */
895
f97bb527
PZ
896 /*
897 * This field must not be in the scheduler word above due to wakelist
898 * queueing no longer being serialized by p->on_cpu. However:
899 *
900 * p->XXX = X; ttwu()
901 * schedule() if (p->on_rq && ..) // false
902 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
903 * deactivate_task() ttwu_queue_wakelist())
904 * p->on_rq = 0; p->sched_remote_wakeup = Y;
905 *
906 * guarantees all stores of 'current' are visible before
907 * ->sched_remote_wakeup gets used, so it can be in this word.
908 */
909 unsigned sched_remote_wakeup:1;
910
5eca1c10
IM
911 /* Bit to tell LSMs we're in execve(): */
912 unsigned in_execve:1;
913 unsigned in_iowait:1;
914#ifndef TIF_RESTORE_SIGMASK
915 unsigned restore_sigmask:1;
7e781418 916#endif
626ebc41 917#ifdef CONFIG_MEMCG
29ef680a 918 unsigned in_user_fault:1;
127424c8 919#endif
ec1c86b2
YZ
920#ifdef CONFIG_LRU_GEN
921 /* whether the LRU algorithm may apply to this access */
922 unsigned in_lru_fault:1;
923#endif
ff303e66 924#ifdef CONFIG_COMPAT_BRK
5eca1c10 925 unsigned brk_randomized:1;
ff303e66 926#endif
77f88796
TH
927#ifdef CONFIG_CGROUPS
928 /* disallow userland-initiated cgroup migration */
929 unsigned no_cgroup_migration:1;
76f969e8
RG
930 /* task is frozen/stopped (used by the cgroup freezer) */
931 unsigned frozen:1;
77f88796 932#endif
d09d8df3 933#ifdef CONFIG_BLK_CGROUP
d09d8df3
JB
934 unsigned use_memdelay:1;
935#endif
1066d1b6
YS
936#ifdef CONFIG_PSI
937 /* Stalled due to lack of memory */
938 unsigned in_memstall:1;
939#endif
8e9b16c4
ST
940#ifdef CONFIG_PAGE_OWNER
941 /* Used by page_owner=on to detect recursion in page tracking. */
942 unsigned in_page_owner:1;
943#endif
b542e383
TG
944#ifdef CONFIG_EVENTFD
945 /* Recursion prevention for eventfd_signal() */
9f0deaa1 946 unsigned in_eventfd:1;
b542e383 947#endif
a3d29e82
PZ
948#ifdef CONFIG_IOMMU_SVA
949 unsigned pasid_activated:1;
950#endif
b041b525
TL
951#ifdef CONFIG_CPU_SUP_INTEL
952 unsigned reported_split_lock:1;
953#endif
aa1cf99b
YY
954#ifdef CONFIG_TASK_DELAY_ACCT
955 /* delay due to memory thrashing */
956 unsigned in_thrashing:1;
957#endif
6f185c29 958
5eca1c10 959 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 960
5eca1c10 961 struct restart_block restart_block;
f56141e3 962
5eca1c10
IM
963 pid_t pid;
964 pid_t tgid;
0a425405 965
050e9baa 966#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
967 /* Canary value for the -fstack-protector GCC feature: */
968 unsigned long stack_canary;
1314562a 969#endif
4d1d61a6 970 /*
5eca1c10 971 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 972 * older sibling, respectively. (p->father can be replaced with
f470021a 973 * p->real_parent->pid)
1da177e4 974 */
5eca1c10
IM
975
976 /* Real parent process: */
977 struct task_struct __rcu *real_parent;
978
979 /* Recipient of SIGCHLD, wait4() reports: */
980 struct task_struct __rcu *parent;
981
1da177e4 982 /*
5eca1c10 983 * Children/sibling form the list of natural children:
1da177e4 984 */
5eca1c10
IM
985 struct list_head children;
986 struct list_head sibling;
987 struct task_struct *group_leader;
1da177e4 988
f470021a 989 /*
5eca1c10
IM
990 * 'ptraced' is the list of tasks this task is using ptrace() on.
991 *
f470021a 992 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 993 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 994 */
5eca1c10
IM
995 struct list_head ptraced;
996 struct list_head ptrace_entry;
f470021a 997
1da177e4 998 /* PID/PID hash table linkage. */
2c470475
EB
999 struct pid *thread_pid;
1000 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
1001 struct list_head thread_group;
1002 struct list_head thread_node;
1003
1004 struct completion *vfork_done;
1da177e4 1005
5eca1c10
IM
1006 /* CLONE_CHILD_SETTID: */
1007 int __user *set_child_tid;
1da177e4 1008
5eca1c10
IM
1009 /* CLONE_CHILD_CLEARTID: */
1010 int __user *clear_child_tid;
1011
e32cf5df
EB
1012 /* PF_KTHREAD | PF_IO_WORKER */
1013 void *worker_private;
3bfe6106 1014
5eca1c10
IM
1015 u64 utime;
1016 u64 stime;
40565b5a 1017#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
1018 u64 utimescaled;
1019 u64 stimescaled;
40565b5a 1020#endif
5eca1c10
IM
1021 u64 gtime;
1022 struct prev_cputime prev_cputime;
6a61671b 1023#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 1024 struct vtime vtime;
d99ca3b9 1025#endif
d027d45d
FW
1026
1027#ifdef CONFIG_NO_HZ_FULL
5eca1c10 1028 atomic_t tick_dep_mask;
d027d45d 1029#endif
5eca1c10
IM
1030 /* Context switch counts: */
1031 unsigned long nvcsw;
1032 unsigned long nivcsw;
1033
1034 /* Monotonic time in nsecs: */
1035 u64 start_time;
1036
1037 /* Boot based time in nsecs: */
cf25e24d 1038 u64 start_boottime;
5eca1c10
IM
1039
1040 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1041 unsigned long min_flt;
1042 unsigned long maj_flt;
1da177e4 1043
2b69942f
TG
1044 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1045 struct posix_cputimers posix_cputimers;
1da177e4 1046
1fb497dd
TG
1047#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1048 struct posix_cputimers_work posix_cputimers_work;
1049#endif
1050
5eca1c10
IM
1051 /* Process credentials: */
1052
1053 /* Tracer's credentials at attach: */
1054 const struct cred __rcu *ptracer_cred;
1055
1056 /* Objective and real subjective task credentials (COW): */
1057 const struct cred __rcu *real_cred;
1058
1059 /* Effective (overridable) subjective task credentials (COW): */
1060 const struct cred __rcu *cred;
1061
7743c48e
DH
1062#ifdef CONFIG_KEYS
1063 /* Cached requested key. */
1064 struct key *cached_requested_key;
1065#endif
1066
5eca1c10
IM
1067 /*
1068 * executable name, excluding path.
1069 *
1070 * - normally initialized setup_new_exec()
1071 * - access it with [gs]et_task_comm()
1072 * - lock it with task_lock()
1073 */
1074 char comm[TASK_COMM_LEN];
1075
1076 struct nameidata *nameidata;
1077
3d5b6fcc 1078#ifdef CONFIG_SYSVIPC
5eca1c10
IM
1079 struct sysv_sem sysvsem;
1080 struct sysv_shm sysvshm;
3d5b6fcc 1081#endif
e162b39a 1082#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 1083 unsigned long last_switch_count;
a2e51445 1084 unsigned long last_switch_time;
82a1fcb9 1085#endif
5eca1c10
IM
1086 /* Filesystem information: */
1087 struct fs_struct *fs;
1088
1089 /* Open file information: */
1090 struct files_struct *files;
1091
0f212204
JA
1092#ifdef CONFIG_IO_URING
1093 struct io_uring_task *io_uring;
1094#endif
1095
5eca1c10
IM
1096 /* Namespaces: */
1097 struct nsproxy *nsproxy;
1098
1099 /* Signal handlers: */
1100 struct signal_struct *signal;
913292c9 1101 struct sighand_struct __rcu *sighand;
5eca1c10
IM
1102 sigset_t blocked;
1103 sigset_t real_blocked;
1104 /* Restored if set_restore_sigmask() was used: */
1105 sigset_t saved_sigmask;
1106 struct sigpending pending;
1107 unsigned long sas_ss_sp;
1108 size_t sas_ss_size;
1109 unsigned int sas_ss_flags;
1110
1111 struct callback_head *task_works;
1112
4b7d248b 1113#ifdef CONFIG_AUDIT
bfef93a5 1114#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
1115 struct audit_context *audit_context;
1116#endif
5eca1c10
IM
1117 kuid_t loginuid;
1118 unsigned int sessionid;
bfef93a5 1119#endif
5eca1c10 1120 struct seccomp seccomp;
1446e1df 1121 struct syscall_user_dispatch syscall_dispatch;
5eca1c10
IM
1122
1123 /* Thread group tracking: */
d1e7fd64
EB
1124 u64 parent_exec_id;
1125 u64 self_exec_id;
1da177e4 1126
5eca1c10
IM
1127 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1128 spinlock_t alloc_lock;
1da177e4 1129
b29739f9 1130 /* Protection of the PI data structures: */
5eca1c10 1131 raw_spinlock_t pi_lock;
b29739f9 1132
5eca1c10 1133 struct wake_q_node wake_q;
76751049 1134
23f78d4a 1135#ifdef CONFIG_RT_MUTEXES
5eca1c10 1136 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 1137 struct rb_root_cached pi_waiters;
e96a7705
XP
1138 /* Updated under owner's pi_lock and rq lock */
1139 struct task_struct *pi_top_task;
5eca1c10
IM
1140 /* Deadlock detection and priority inheritance handling: */
1141 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1142#endif
1143
408894ee 1144#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
1145 /* Mutex deadlock detection: */
1146 struct mutex_waiter *blocked_on;
408894ee 1147#endif
5eca1c10 1148
312364f3
DV
1149#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1150 int non_block_count;
1151#endif
1152
de30a2b3 1153#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c 1154 struct irqtrace_events irqtrace;
de8f5e4f 1155 unsigned int hardirq_threaded;
c86e9b98 1156 u64 hardirq_chain_key;
5eca1c10
IM
1157 int softirqs_enabled;
1158 int softirq_context;
40db1739 1159 int irq_config;
de30a2b3 1160#endif
728b478d
TG
1161#ifdef CONFIG_PREEMPT_RT
1162 int softirq_disable_cnt;
1163#endif
5eca1c10 1164
fbb9ce95 1165#ifdef CONFIG_LOCKDEP
5eca1c10
IM
1166# define MAX_LOCK_DEPTH 48UL
1167 u64 curr_chain_key;
1168 int lockdep_depth;
1169 unsigned int lockdep_recursion;
1170 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 1171#endif
5eca1c10 1172
5cf53f3c 1173#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
5eca1c10 1174 unsigned int in_ubsan;
c6d30853 1175#endif
408894ee 1176
5eca1c10
IM
1177 /* Journalling filesystem info: */
1178 void *journal_info;
1da177e4 1179
5eca1c10
IM
1180 /* Stacked block device info: */
1181 struct bio_list *bio_list;
d89d8796 1182
5eca1c10
IM
1183 /* Stack plugging: */
1184 struct blk_plug *plug;
73c10101 1185
5eca1c10
IM
1186 /* VM state: */
1187 struct reclaim_state *reclaim_state;
1188
1189 struct backing_dev_info *backing_dev_info;
1da177e4 1190
5eca1c10 1191 struct io_context *io_context;
1da177e4 1192
5e1f0f09
MG
1193#ifdef CONFIG_COMPACTION
1194 struct capture_control *capture_control;
1195#endif
5eca1c10
IM
1196 /* Ptrace state: */
1197 unsigned long ptrace_message;
ae7795bc 1198 kernel_siginfo_t *last_siginfo;
1da177e4 1199
5eca1c10 1200 struct task_io_accounting ioac;
eb414681
JW
1201#ifdef CONFIG_PSI
1202 /* Pressure stall state */
1203 unsigned int psi_flags;
1204#endif
5eca1c10
IM
1205#ifdef CONFIG_TASK_XACCT
1206 /* Accumulated RSS usage: */
1207 u64 acct_rss_mem1;
1208 /* Accumulated virtual memory usage: */
1209 u64 acct_vm_mem1;
1210 /* stime + utime since last update: */
1211 u64 acct_timexpd;
1da177e4
LT
1212#endif
1213#ifdef CONFIG_CPUSETS
5eca1c10
IM
1214 /* Protected by ->alloc_lock: */
1215 nodemask_t mems_allowed;
3b03706f 1216 /* Sequence number to catch updates: */
b7505861 1217 seqcount_spinlock_t mems_allowed_seq;
5eca1c10
IM
1218 int cpuset_mem_spread_rotor;
1219 int cpuset_slab_spread_rotor;
1da177e4 1220#endif
ddbcc7e8 1221#ifdef CONFIG_CGROUPS
5eca1c10
IM
1222 /* Control Group info protected by css_set_lock: */
1223 struct css_set __rcu *cgroups;
1224 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1225 struct list_head cg_list;
ddbcc7e8 1226#endif
e6d42931 1227#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 1228 u32 closid;
d6aaba61 1229 u32 rmid;
e02737d5 1230#endif
42b2dd0a 1231#ifdef CONFIG_FUTEX
5eca1c10 1232 struct robust_list_head __user *robust_list;
34f192c6
IM
1233#ifdef CONFIG_COMPAT
1234 struct compat_robust_list_head __user *compat_robust_list;
1235#endif
5eca1c10
IM
1236 struct list_head pi_state_list;
1237 struct futex_pi_state *pi_state_cache;
3f186d97 1238 struct mutex futex_exit_mutex;
3d4775df 1239 unsigned int futex_state;
c7aceaba 1240#endif
cdd6c482 1241#ifdef CONFIG_PERF_EVENTS
bd275681 1242 struct perf_event_context *perf_event_ctxp;
5eca1c10
IM
1243 struct mutex perf_event_mutex;
1244 struct list_head perf_event_list;
a63eaf34 1245#endif
8f47b187 1246#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1247 unsigned long preempt_disable_ip;
8f47b187 1248#endif
c7aceaba 1249#ifdef CONFIG_NUMA
5eca1c10
IM
1250 /* Protected by alloc_lock: */
1251 struct mempolicy *mempolicy;
45816682 1252 short il_prev;
5eca1c10 1253 short pref_node_fork;
42b2dd0a 1254#endif
cbee9f88 1255#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1256 int numa_scan_seq;
1257 unsigned int numa_scan_period;
1258 unsigned int numa_scan_period_max;
1259 int numa_preferred_nid;
1260 unsigned long numa_migrate_retry;
1261 /* Migration stamp: */
1262 u64 node_stamp;
1263 u64 last_task_numa_placement;
1264 u64 last_sum_exec_runtime;
1265 struct callback_head numa_work;
1266
cb361d8c
JH
1267 /*
1268 * This pointer is only modified for current in syscall and
1269 * pagefault context (and for tasks being destroyed), so it can be read
1270 * from any of the following contexts:
1271 * - RCU read-side critical section
1272 * - current->numa_group from everywhere
1273 * - task's runqueue locked, task not running
1274 */
1275 struct numa_group __rcu *numa_group;
8c8a743c 1276
745d6147 1277 /*
44dba3d5
IM
1278 * numa_faults is an array split into four regions:
1279 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1280 * in this precise order.
1281 *
1282 * faults_memory: Exponential decaying average of faults on a per-node
1283 * basis. Scheduling placement decisions are made based on these
1284 * counts. The values remain static for the duration of a PTE scan.
1285 * faults_cpu: Track the nodes the process was running on when a NUMA
1286 * hinting fault was incurred.
1287 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1288 * during the current scan window. When the scan completes, the counts
1289 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1290 */
5eca1c10
IM
1291 unsigned long *numa_faults;
1292 unsigned long total_numa_faults;
745d6147 1293
04bb2f94
RR
1294 /*
1295 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1296 * scan window were remote/local or failed to migrate. The task scan
1297 * period is adapted based on the locality of the faults with different
1298 * weights depending on whether they were shared or private faults
04bb2f94 1299 */
5eca1c10 1300 unsigned long numa_faults_locality[3];
04bb2f94 1301
5eca1c10 1302 unsigned long numa_pages_migrated;
cbee9f88
PZ
1303#endif /* CONFIG_NUMA_BALANCING */
1304
d7822b1e
MD
1305#ifdef CONFIG_RSEQ
1306 struct rseq __user *rseq;
ee3e3ac0 1307 u32 rseq_len;
d7822b1e
MD
1308 u32 rseq_sig;
1309 /*
1310 * RmW on rseq_event_mask must be performed atomically
1311 * with respect to preemption.
1312 */
1313 unsigned long rseq_event_mask;
1314#endif
1315
af7f588d
MD
1316#ifdef CONFIG_SCHED_MM_CID
1317 int mm_cid; /* Current cid in mm */
223baf9d
MD
1318 int last_mm_cid; /* Most recent cid in mm */
1319 int migrate_from_cpu;
af7f588d 1320 int mm_cid_active; /* Whether cid bitmap is active */
223baf9d 1321 struct callback_head cid_work;
af7f588d
MD
1322#endif
1323
5eca1c10 1324 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1325
5eca1c10
IM
1326 /* Cache last used pipe for splice(): */
1327 struct pipe_inode_info *splice_pipe;
5640f768 1328
5eca1c10 1329 struct page_frag task_frag;
5640f768 1330
47913d4e
IM
1331#ifdef CONFIG_TASK_DELAY_ACCT
1332 struct task_delay_info *delays;
f4f154fd 1333#endif
47913d4e 1334
f4f154fd 1335#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1336 int make_it_fail;
9049f2f6 1337 unsigned int fail_nth;
ca74e92b 1338#endif
9d823e8f 1339 /*
5eca1c10
IM
1340 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1341 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1342 */
5eca1c10
IM
1343 int nr_dirtied;
1344 int nr_dirtied_pause;
1345 /* Start of a write-and-pause period: */
1346 unsigned long dirty_paused_when;
9d823e8f 1347
9745512c 1348#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1349 int latency_record_count;
1350 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1351#endif
6976675d 1352 /*
5eca1c10 1353 * Time slack values; these are used to round up poll() and
6976675d
AV
1354 * select() etc timeout values. These are in nanoseconds.
1355 */
5eca1c10
IM
1356 u64 timer_slack_ns;
1357 u64 default_timer_slack_ns;
f8d570a4 1358
d73b4936 1359#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
5eca1c10 1360 unsigned int kasan_depth;
0b24becc 1361#endif
92c209ac 1362
dfd402a4
ME
1363#ifdef CONFIG_KCSAN
1364 struct kcsan_ctx kcsan_ctx;
92c209ac
ME
1365#ifdef CONFIG_TRACE_IRQFLAGS
1366 struct irqtrace_events kcsan_save_irqtrace;
1367#endif
69562e49
ME
1368#ifdef CONFIG_KCSAN_WEAK_MEMORY
1369 int kcsan_stack_depth;
1370#endif
dfd402a4 1371#endif
5eca1c10 1372
f80be457
AP
1373#ifdef CONFIG_KMSAN
1374 struct kmsan_ctx kmsan_ctx;
1375#endif
1376
393824f6
PA
1377#if IS_ENABLED(CONFIG_KUNIT)
1378 struct kunit *kunit_test;
1379#endif
1380
fb52607a 1381#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1382 /* Index of current stored address in ret_stack: */
1383 int curr_ret_stack;
39eb456d 1384 int curr_ret_depth;
5eca1c10
IM
1385
1386 /* Stack of return addresses for return function tracing: */
1387 struct ftrace_ret_stack *ret_stack;
1388
1389 /* Timestamp for last schedule: */
1390 unsigned long long ftrace_timestamp;
1391
f201ae23
FW
1392 /*
1393 * Number of functions that haven't been traced
5eca1c10 1394 * because of depth overrun:
f201ae23 1395 */
5eca1c10
IM
1396 atomic_t trace_overrun;
1397
1398 /* Pause tracing: */
1399 atomic_t tracing_graph_pause;
f201ae23 1400#endif
5eca1c10 1401
ea4e2bc4 1402#ifdef CONFIG_TRACING
5eca1c10
IM
1403 /* Bitmask and counter of trace recursion: */
1404 unsigned long trace_recursion;
261842b7 1405#endif /* CONFIG_TRACING */
5eca1c10 1406
5c9a8750 1407#ifdef CONFIG_KCOV
eec028c9
AK
1408 /* See kernel/kcov.c for more details. */
1409
5eca1c10 1410 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1411 unsigned int kcov_mode;
5eca1c10
IM
1412
1413 /* Size of the kcov_area: */
1414 unsigned int kcov_size;
1415
1416 /* Buffer for coverage collection: */
1417 void *kcov_area;
1418
1419 /* KCOV descriptor wired with this task or NULL: */
1420 struct kcov *kcov;
eec028c9
AK
1421
1422 /* KCOV common handle for remote coverage collection: */
1423 u64 kcov_handle;
1424
1425 /* KCOV sequence number: */
1426 int kcov_sequence;
5ff3b30a
AK
1427
1428 /* Collect coverage from softirq context: */
1429 unsigned int kcov_softirq;
5c9a8750 1430#endif
5eca1c10 1431
6f185c29 1432#ifdef CONFIG_MEMCG
5eca1c10
IM
1433 struct mem_cgroup *memcg_in_oom;
1434 gfp_t memcg_oom_gfp_mask;
1435 int memcg_oom_order;
b23afb93 1436
5eca1c10
IM
1437 /* Number of pages to reclaim on returning to userland: */
1438 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1439
1440 /* Used by memcontrol for targeted memcg charge: */
1441 struct mem_cgroup *active_memcg;
569b846d 1442#endif
5eca1c10 1443
d09d8df3 1444#ifdef CONFIG_BLK_CGROUP
f05837ed 1445 struct gendisk *throttle_disk;
d09d8df3
JB
1446#endif
1447
0326f5a9 1448#ifdef CONFIG_UPROBES
5eca1c10 1449 struct uprobe_task *utask;
0326f5a9 1450#endif
cafe5635 1451#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1452 unsigned int sequential_io;
1453 unsigned int sequential_io_avg;
cafe5635 1454#endif
5fbda3ec 1455 struct kmap_ctrl kmap_ctrl;
8eb23b9f 1456#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1457 unsigned long task_state_change;
5f220be2
TG
1458# ifdef CONFIG_PREEMPT_RT
1459 unsigned long saved_state_change;
1460# endif
8eb23b9f 1461#endif
22df776a
DV
1462 struct rcu_head rcu;
1463 refcount_t rcu_users;
5eca1c10 1464 int pagefault_disabled;
03049269 1465#ifdef CONFIG_MMU
5eca1c10 1466 struct task_struct *oom_reaper_list;
e4a38402 1467 struct timer_list oom_reaper_timer;
03049269 1468#endif
ba14a194 1469#ifdef CONFIG_VMAP_STACK
5eca1c10 1470 struct vm_struct *stack_vm_area;
ba14a194 1471#endif
68f24b08 1472#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1473 /* A live task holds one reference: */
f0b89d39 1474 refcount_t stack_refcount;
d83a7cb3
JP
1475#endif
1476#ifdef CONFIG_LIVEPATCH
1477 int patch_state;
0302e28d 1478#endif
e4e55b47
TH
1479#ifdef CONFIG_SECURITY
1480 /* Used by LSM modules for access restriction: */
1481 void *security;
68f24b08 1482#endif
a10787e6
SL
1483#ifdef CONFIG_BPF_SYSCALL
1484 /* Used by BPF task local storage */
1485 struct bpf_local_storage __rcu *bpf_storage;
c7603cfa
AN
1486 /* Used for BPF run context */
1487 struct bpf_run_ctx *bpf_ctx;
a10787e6 1488#endif
29e48ce8 1489
afaef01c
AP
1490#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1491 unsigned long lowest_stack;
c8d12627 1492 unsigned long prev_lowest_stack;
afaef01c
AP
1493#endif
1494
5567d11c 1495#ifdef CONFIG_X86_MCE
c0ab7ffc
TL
1496 void __user *mce_vaddr;
1497 __u64 mce_kflags;
5567d11c 1498 u64 mce_addr;
17fae129
TL
1499 __u64 mce_ripv : 1,
1500 mce_whole_page : 1,
1501 __mce_reserved : 62;
5567d11c 1502 struct callback_head mce_kill_me;
81065b35 1503 int mce_count;
5567d11c
PZ
1504#endif
1505
d741bf41
PZ
1506#ifdef CONFIG_KRETPROBES
1507 struct llist_head kretprobe_instances;
1508#endif
54ecbe6f
MH
1509#ifdef CONFIG_RETHOOK
1510 struct llist_head rethooks;
1511#endif
d741bf41 1512
58e106e7
BS
1513#ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1514 /*
1515 * If L1D flush is supported on mm context switch
1516 * then we use this callback head to queue kill work
1517 * to kill tasks that are not running on SMT disabled
1518 * cores
1519 */
1520 struct callback_head l1d_flush_kill;
1521#endif
1522
102227b9
DBO
1523#ifdef CONFIG_RV
1524 /*
1525 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1526 * If we find justification for more monitors, we can think
1527 * about adding more or developing a dynamic method. So far,
1528 * none of these are justified.
1529 */
1530 union rv_task_monitor rv[RV_PER_TASK_MONITORS];
1531#endif
1532
fd593511
BB
1533#ifdef CONFIG_USER_EVENTS
1534 struct user_event_mm *user_event_mm;
1535#endif
1536
29e48ce8
KC
1537 /*
1538 * New fields for task_struct should be added above here, so that
1539 * they are included in the randomized portion of task_struct.
1540 */
1541 randomized_struct_fields_end
1542
5eca1c10
IM
1543 /* CPU-specific state of this task: */
1544 struct thread_struct thread;
1545
1546 /*
1547 * WARNING: on x86, 'thread_struct' contains a variable-sized
1548 * structure. It *MUST* be at the end of 'task_struct'.
1549 *
1550 * Do not put anything below here!
1551 */
1da177e4
LT
1552};
1553
e868171a 1554static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1555{
2c470475 1556 return task->thread_pid;
22c935f4
EB
1557}
1558
7af57294
PE
1559/*
1560 * the helpers to get the task's different pids as they are seen
1561 * from various namespaces
1562 *
1563 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1564 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1565 * current.
7af57294
PE
1566 * task_xid_nr_ns() : id seen from the ns specified;
1567 *
7af57294
PE
1568 * see also pid_nr() etc in include/linux/pid.h
1569 */
5eca1c10 1570pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1571
e868171a 1572static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1573{
1574 return tsk->pid;
1575}
1576
5eca1c10 1577static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1578{
1579 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1580}
7af57294
PE
1581
1582static inline pid_t task_pid_vnr(struct task_struct *tsk)
1583{
52ee2dfd 1584 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1585}
1586
1587
e868171a 1588static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1589{
1590 return tsk->tgid;
1591}
1592
5eca1c10
IM
1593/**
1594 * pid_alive - check that a task structure is not stale
1595 * @p: Task structure to be checked.
1596 *
1597 * Test if a process is not yet dead (at most zombie state)
1598 * If pid_alive fails, then pointers within the task structure
1599 * can be stale and must not be dereferenced.
1600 *
1601 * Return: 1 if the process is alive. 0 otherwise.
1602 */
1603static inline int pid_alive(const struct task_struct *p)
1604{
2c470475 1605 return p->thread_pid != NULL;
5eca1c10 1606}
7af57294 1607
5eca1c10 1608static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1609{
52ee2dfd 1610 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1611}
1612
7af57294
PE
1613static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1614{
52ee2dfd 1615 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1616}
1617
1618
5eca1c10 1619static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1620{
52ee2dfd 1621 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1622}
1623
7af57294
PE
1624static inline pid_t task_session_vnr(struct task_struct *tsk)
1625{
52ee2dfd 1626 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1627}
1628
dd1c1f2f
ON
1629static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1630{
6883f81a 1631 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1632}
1633
1634static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1635{
6883f81a 1636 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1637}
1638
1639static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1640{
1641 pid_t pid = 0;
1642
1643 rcu_read_lock();
1644 if (pid_alive(tsk))
1645 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1646 rcu_read_unlock();
1647
1648 return pid;
1649}
1650
1651static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1652{
1653 return task_ppid_nr_ns(tsk, &init_pid_ns);
1654}
1655
5eca1c10 1656/* Obsolete, do not use: */
1b0f7ffd
ON
1657static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1658{
1659 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1660}
7af57294 1661
06eb6184
PZ
1662#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1663#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1664
fa2c3254
VS
1665static inline unsigned int __task_state_index(unsigned int tsk_state,
1666 unsigned int tsk_exit_state)
20435d84 1667{
fa2c3254 1668 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
20435d84 1669
06eb6184
PZ
1670 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1671
06eb6184
PZ
1672 if (tsk_state == TASK_IDLE)
1673 state = TASK_REPORT_IDLE;
1674
25795ef6
VS
1675 /*
1676 * We're lying here, but rather than expose a completely new task state
1677 * to userspace, we can make this appear as if the task has gone through
1678 * a regular rt_mutex_lock() call.
1679 */
1680 if (tsk_state == TASK_RTLOCK_WAIT)
1681 state = TASK_UNINTERRUPTIBLE;
1682
1593baab
PZ
1683 return fls(state);
1684}
1685
fa2c3254
VS
1686static inline unsigned int task_state_index(struct task_struct *tsk)
1687{
1688 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1689}
1690
1d48b080 1691static inline char task_index_to_char(unsigned int state)
1593baab 1692{
8ef9925b 1693 static const char state_char[] = "RSDTtXZPI";
1593baab 1694
06eb6184 1695 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1696
1593baab
PZ
1697 return state_char[state];
1698}
1699
1700static inline char task_state_to_char(struct task_struct *tsk)
1701{
1d48b080 1702 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1703}
1704
f400e198 1705/**
570f5241
SS
1706 * is_global_init - check if a task structure is init. Since init
1707 * is free to have sub-threads we need to check tgid.
3260259f
H
1708 * @tsk: Task structure to be checked.
1709 *
1710 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1711 *
1712 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1713 */
e868171a 1714static inline int is_global_init(struct task_struct *tsk)
b461cc03 1715{
570f5241 1716 return task_tgid_nr(tsk) == 1;
b461cc03 1717}
b460cbc5 1718
9ec52099
CLG
1719extern struct pid *cad_pid;
1720
1da177e4
LT
1721/*
1722 * Per process flags
1723 */
01ccf592 1724#define PF_VCPU 0x00000001 /* I'm a virtual CPU */
5eca1c10
IM
1725#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1726#define PF_EXITING 0x00000004 /* Getting shut down */
92307383 1727#define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
01ccf592 1728#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
5eca1c10
IM
1729#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1730#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1731#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1732#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1733#define PF_DUMPCORE 0x00000200 /* Dumped core */
1734#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1735#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1736#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1737#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
54e6842d 1738#define PF_USER_WORKER 0x00004000 /* Kernel thread cloned from userspace thread */
5eca1c10 1739#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
fb04563d 1740#define PF__HOLE__00010000 0x00010000
7dea19f9
MH
1741#define PF_KSWAPD 0x00020000 /* I am kswapd */
1742#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1743#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
a37b0715
N
1744#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1745 * I am cleaning dirty pages from some other bdi. */
5eca1c10
IM
1746#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1747#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
fb04563d
PZ
1748#define PF__HOLE__00800000 0x00800000
1749#define PF__HOLE__01000000 0x01000000
1750#define PF__HOLE__02000000 0x02000000
3bd37062 1751#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1752#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1a08ae36 1753#define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
fb04563d
PZ
1754#define PF__HOLE__20000000 0x20000000
1755#define PF__HOLE__40000000 0x40000000
5eca1c10 1756#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1757
1758/*
1759 * Only the _current_ task can read/write to tsk->flags, but other
1760 * tasks can access tsk->flags in readonly mode for example
1761 * with tsk_used_math (like during threaded core dumping).
1762 * There is however an exception to this rule during ptrace
1763 * or during fork: the ptracer task is allowed to write to the
1764 * child->flags of its traced child (same goes for fork, the parent
1765 * can write to the child->flags), because we're guaranteed the
1766 * child is not running and in turn not changing child->flags
1767 * at the same time the parent does it.
1768 */
5eca1c10
IM
1769#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1770#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1771#define clear_used_math() clear_stopped_child_used_math(current)
1772#define set_used_math() set_stopped_child_used_math(current)
1773
1da177e4
LT
1774#define conditional_stopped_child_used_math(condition, child) \
1775 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1776
1777#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1778
1da177e4
LT
1779#define copy_to_stopped_child_used_math(child) \
1780 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1781
1da177e4 1782/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1783#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1784#define used_math() tsk_used_math(current)
1da177e4 1785
83d40a61 1786static __always_inline bool is_percpu_thread(void)
62ec05dd
TG
1787{
1788#ifdef CONFIG_SMP
1789 return (current->flags & PF_NO_SETAFFINITY) &&
1790 (current->nr_cpus_allowed == 1);
1791#else
1792 return true;
1793#endif
1794}
1795
1d4457f9 1796/* Per-process atomic flags. */
5eca1c10
IM
1797#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1798#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1799#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1800#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1801#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1802#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1803#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1804#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1805
e0e5070b
ZL
1806#define TASK_PFA_TEST(name, func) \
1807 static inline bool task_##func(struct task_struct *p) \
1808 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1809
e0e5070b
ZL
1810#define TASK_PFA_SET(name, func) \
1811 static inline void task_set_##func(struct task_struct *p) \
1812 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1813
e0e5070b
ZL
1814#define TASK_PFA_CLEAR(name, func) \
1815 static inline void task_clear_##func(struct task_struct *p) \
1816 { clear_bit(PFA_##name, &p->atomic_flags); }
1817
1818TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1819TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1820
2ad654bc
ZL
1821TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1822TASK_PFA_SET(SPREAD_PAGE, spread_page)
1823TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1824
1825TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1826TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1827TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1828
356e4bff
TG
1829TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1830TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1831TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1832
71368af9
WL
1833TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1834TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1835TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1836
356e4bff
TG
1837TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1838TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1839
9137bb27
TG
1840TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1841TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1842TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1843
1844TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1845TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1846
5eca1c10 1847static inline void
717a94b5 1848current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1849{
717a94b5
N
1850 current->flags &= ~flags;
1851 current->flags |= orig_flags & flags;
907aed48
MG
1852}
1853
5eca1c10 1854extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
b6e8d40d 1855extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_effective_cpus);
1da177e4 1856#ifdef CONFIG_SMP
5eca1c10
IM
1857extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1858extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
b90ca8ba
WD
1859extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1860extern void release_user_cpus_ptr(struct task_struct *p);
234b8ab6 1861extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
07ec77a1
WD
1862extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1863extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1da177e4 1864#else
5eca1c10 1865static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1866{
1867}
5eca1c10 1868static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1869{
96f874e2 1870 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1871 return -EINVAL;
1872 return 0;
1873}
b90ca8ba
WD
1874static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1875{
1876 if (src->user_cpus_ptr)
1877 return -EINVAL;
1878 return 0;
1879}
1880static inline void release_user_cpus_ptr(struct task_struct *p)
1881{
1882 WARN_ON(p->user_cpus_ptr);
1883}
234b8ab6
WD
1884
1885static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1886{
1887 return 0;
1888}
1da177e4 1889#endif
e0ad9556 1890
fa93384f 1891extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1892extern void set_user_nice(struct task_struct *p, long nice);
1893extern int task_prio(const struct task_struct *p);
5eca1c10 1894
d0ea0268
DY
1895/**
1896 * task_nice - return the nice value of a given task.
1897 * @p: the task in question.
1898 *
1899 * Return: The nice value [ -20 ... 0 ... 19 ].
1900 */
1901static inline int task_nice(const struct task_struct *p)
1902{
1903 return PRIO_TO_NICE((p)->static_prio);
1904}
5eca1c10 1905
36c8b586
IM
1906extern int can_nice(const struct task_struct *p, const int nice);
1907extern int task_curr(const struct task_struct *p);
1da177e4 1908extern int idle_cpu(int cpu);
943d355d 1909extern int available_idle_cpu(int cpu);
5eca1c10
IM
1910extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1911extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
8b700983
PZ
1912extern void sched_set_fifo(struct task_struct *p);
1913extern void sched_set_fifo_low(struct task_struct *p);
1914extern void sched_set_normal(struct task_struct *p, int nice);
5eca1c10 1915extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1916extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1917extern struct task_struct *idle_task(int cpu);
5eca1c10 1918
c4f30608
PM
1919/**
1920 * is_idle_task - is the specified task an idle task?
fa757281 1921 * @p: the task in question.
e69f6186
YB
1922 *
1923 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1924 */
c94a88f3 1925static __always_inline bool is_idle_task(const struct task_struct *p)
c4f30608 1926{
c1de45ca 1927 return !!(p->flags & PF_IDLE);
c4f30608 1928}
5eca1c10 1929
36c8b586 1930extern struct task_struct *curr_task(int cpu);
a458ae2e 1931extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1932
1933void yield(void);
1934
1da177e4 1935union thread_union {
0500871f
DH
1936#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1937 struct task_struct task;
1938#endif
c65eacbe 1939#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1940 struct thread_info thread_info;
c65eacbe 1941#endif
1da177e4
LT
1942 unsigned long stack[THREAD_SIZE/sizeof(long)];
1943};
1944
0500871f
DH
1945#ifndef CONFIG_THREAD_INFO_IN_TASK
1946extern struct thread_info init_thread_info;
1947#endif
1948
1949extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1950
f3ac6067 1951#ifdef CONFIG_THREAD_INFO_IN_TASK
bcf9033e 1952# define task_thread_info(task) (&(task)->thread_info)
f3ac6067
IM
1953#elif !defined(__HAVE_THREAD_FUNCTIONS)
1954# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1955#endif
1956
198fe21b
PE
1957/*
1958 * find a task by one of its numerical ids
1959 *
198fe21b
PE
1960 * find_task_by_pid_ns():
1961 * finds a task by its pid in the specified namespace
228ebcbe
PE
1962 * find_task_by_vpid():
1963 * finds a task by its virtual pid
198fe21b 1964 *
e49859e7 1965 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1966 */
1967
228ebcbe 1968extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1969extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1970
2ee08260
MR
1971/*
1972 * find a task by its virtual pid and get the task struct
1973 */
1974extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1975
b3c97528
HH
1976extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1977extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1978extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1979
1da177e4 1980#ifdef CONFIG_SMP
5eca1c10 1981extern void kick_process(struct task_struct *tsk);
1da177e4 1982#else
5eca1c10 1983static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1984#endif
1da177e4 1985
82b89778 1986extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1987
82b89778
AH
1988static inline void set_task_comm(struct task_struct *tsk, const char *from)
1989{
1990 __set_task_comm(tsk, from, false);
1991}
5eca1c10 1992
3756f640
AB
1993extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1994#define get_task_comm(buf, tsk) ({ \
1995 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1996 __get_task_comm(buf, sizeof(buf), tsk); \
1997})
1da177e4
LT
1998
1999#ifdef CONFIG_SMP
2a0a24eb
TG
2000static __always_inline void scheduler_ipi(void)
2001{
2002 /*
2003 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2004 * TIF_NEED_RESCHED remotely (for the first time) will also send
2005 * this IPI.
2006 */
2007 preempt_fold_need_resched();
2008}
2f064a59 2009extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1da177e4 2010#else
184748cc 2011static inline void scheduler_ipi(void) { }
2f064a59 2012static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
85ba2d86
RM
2013{
2014 return 1;
2015}
1da177e4
LT
2016#endif
2017
5eca1c10
IM
2018/*
2019 * Set thread flags in other task's structures.
2020 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
2021 */
2022static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2023{
a1261f54 2024 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2025}
2026
2027static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2028{
a1261f54 2029 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2030}
2031
93ee37c2
DM
2032static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2033 bool value)
2034{
2035 update_ti_thread_flag(task_thread_info(tsk), flag, value);
2036}
2037
1da177e4
LT
2038static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2039{
a1261f54 2040 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2041}
2042
2043static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2044{
a1261f54 2045 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2046}
2047
2048static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2049{
a1261f54 2050 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2051}
2052
2053static inline void set_tsk_need_resched(struct task_struct *tsk)
2054{
2055 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2056}
2057
2058static inline void clear_tsk_need_resched(struct task_struct *tsk)
2059{
2060 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2061}
2062
8ae121ac
GH
2063static inline int test_tsk_need_resched(struct task_struct *tsk)
2064{
2065 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2066}
2067
1da177e4
LT
2068/*
2069 * cond_resched() and cond_resched_lock(): latency reduction via
2070 * explicit rescheduling in places that are safe. The return
2071 * value indicates whether a reschedule was done in fact.
2072 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 2073 */
b965f1dd
PZI
2074#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2075extern int __cond_resched(void);
2076
99cf983c 2077#if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
b965f1dd 2078
e3ff7c60
JP
2079void sched_dynamic_klp_enable(void);
2080void sched_dynamic_klp_disable(void);
2081
b965f1dd
PZI
2082DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2083
2084static __always_inline int _cond_resched(void)
2085{
ef72661e 2086 return static_call_mod(cond_resched)();
b965f1dd
PZI
2087}
2088
99cf983c 2089#elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
e3ff7c60 2090
99cf983c
MR
2091extern int dynamic_cond_resched(void);
2092
2093static __always_inline int _cond_resched(void)
2094{
2095 return dynamic_cond_resched();
2096}
2097
e3ff7c60 2098#else /* !CONFIG_PREEMPTION */
b965f1dd
PZI
2099
2100static inline int _cond_resched(void)
2101{
e3ff7c60 2102 klp_sched_try_switch();
b965f1dd
PZI
2103 return __cond_resched();
2104}
2105
e3ff7c60 2106#endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
b965f1dd 2107
e3ff7c60 2108#else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
b965f1dd 2109
e3ff7c60
JP
2110static inline int _cond_resched(void)
2111{
2112 klp_sched_try_switch();
2113 return 0;
2114}
b965f1dd 2115
e3ff7c60 2116#endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
6f80bd98 2117
613afbf8 2118#define cond_resched() ({ \
874f670e 2119 __might_resched(__FILE__, __LINE__, 0); \
613afbf8
FW
2120 _cond_resched(); \
2121})
6f80bd98 2122
613afbf8 2123extern int __cond_resched_lock(spinlock_t *lock);
f3d4b4b1
BG
2124extern int __cond_resched_rwlock_read(rwlock_t *lock);
2125extern int __cond_resched_rwlock_write(rwlock_t *lock);
613afbf8 2126
50e081b9
TG
2127#define MIGHT_RESCHED_RCU_SHIFT 8
2128#define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2129
3e9cc688
TG
2130#ifndef CONFIG_PREEMPT_RT
2131/*
2132 * Non RT kernels have an elevated preempt count due to the held lock,
2133 * but are not allowed to be inside a RCU read side critical section
2134 */
2135# define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2136#else
2137/*
2138 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2139 * cond_resched*lock() has to take that into account because it checks for
2140 * preempt_count() and rcu_preempt_depth().
2141 */
2142# define PREEMPT_LOCK_RESCHED_OFFSETS \
2143 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2144#endif
2145
2146#define cond_resched_lock(lock) ({ \
2147 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2148 __cond_resched_lock(lock); \
613afbf8
FW
2149})
2150
3e9cc688
TG
2151#define cond_resched_rwlock_read(lock) ({ \
2152 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2153 __cond_resched_rwlock_read(lock); \
f3d4b4b1
BG
2154})
2155
3e9cc688
TG
2156#define cond_resched_rwlock_write(lock) ({ \
2157 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2158 __cond_resched_rwlock_write(lock); \
f3d4b4b1
BG
2159})
2160
f6f3c437
SH
2161static inline void cond_resched_rcu(void)
2162{
2163#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2164 rcu_read_unlock();
2165 cond_resched();
2166 rcu_read_lock();
2167#endif
2168}
2169
cfe43f47
VS
2170#ifdef CONFIG_PREEMPT_DYNAMIC
2171
2172extern bool preempt_model_none(void);
2173extern bool preempt_model_voluntary(void);
2174extern bool preempt_model_full(void);
2175
2176#else
2177
2178static inline bool preempt_model_none(void)
2179{
2180 return IS_ENABLED(CONFIG_PREEMPT_NONE);
2181}
2182static inline bool preempt_model_voluntary(void)
2183{
2184 return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2185}
2186static inline bool preempt_model_full(void)
2187{
2188 return IS_ENABLED(CONFIG_PREEMPT);
2189}
2190
2191#endif
2192
2193static inline bool preempt_model_rt(void)
2194{
2195 return IS_ENABLED(CONFIG_PREEMPT_RT);
2196}
2197
2198/*
2199 * Does the preemption model allow non-cooperative preemption?
2200 *
2201 * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2202 * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2203 * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2204 * PREEMPT_NONE model.
2205 */
2206static inline bool preempt_model_preemptible(void)
2207{
2208 return preempt_model_full() || preempt_model_rt();
2209}
2210
1da177e4
LT
2211/*
2212 * Does a critical section need to be broken due to another
c1a280b6 2213 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
95c354fe 2214 * but a general need for low latency)
1da177e4 2215 */
95c354fe 2216static inline int spin_needbreak(spinlock_t *lock)
1da177e4 2217{
c1a280b6 2218#ifdef CONFIG_PREEMPTION
95c354fe
NP
2219 return spin_is_contended(lock);
2220#else
1da177e4 2221 return 0;
95c354fe 2222#endif
1da177e4
LT
2223}
2224
a09a689a
BG
2225/*
2226 * Check if a rwlock is contended.
2227 * Returns non-zero if there is another task waiting on the rwlock.
2228 * Returns zero if the lock is not contended or the system / underlying
2229 * rwlock implementation does not support contention detection.
2230 * Technically does not depend on CONFIG_PREEMPTION, but a general need
2231 * for low latency.
2232 */
2233static inline int rwlock_needbreak(rwlock_t *lock)
2234{
2235#ifdef CONFIG_PREEMPTION
2236 return rwlock_is_contended(lock);
2237#else
2238 return 0;
2239#endif
2240}
2241
75f93fed
PZ
2242static __always_inline bool need_resched(void)
2243{
2244 return unlikely(tif_need_resched());
2245}
2246
1da177e4
LT
2247/*
2248 * Wrappers for p->thread_info->cpu access. No-op on UP.
2249 */
2250#ifdef CONFIG_SMP
2251
2252static inline unsigned int task_cpu(const struct task_struct *p)
2253{
c546951d 2254 return READ_ONCE(task_thread_info(p)->cpu);
1da177e4
LT
2255}
2256
c65cc870 2257extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
2258
2259#else
2260
2261static inline unsigned int task_cpu(const struct task_struct *p)
2262{
2263 return 0;
2264}
2265
2266static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2267{
2268}
2269
2270#endif /* CONFIG_SMP */
2271
a1dfb631 2272extern bool sched_task_on_rq(struct task_struct *p);
42a20f86 2273extern unsigned long get_wchan(struct task_struct *p);
e386b672 2274extern struct task_struct *cpu_curr_snapshot(int cpu);
a1dfb631 2275
d9345c65
PX
2276/*
2277 * In order to reduce various lock holder preemption latencies provide an
2278 * interface to see if a vCPU is currently running or not.
2279 *
2280 * This allows us to terminate optimistic spin loops and block, analogous to
2281 * the native optimistic spin heuristic of testing if the lock owner task is
2282 * running or not.
2283 */
2284#ifndef vcpu_is_preempted
42fd8baa
QC
2285static inline bool vcpu_is_preempted(int cpu)
2286{
2287 return false;
2288}
d9345c65
PX
2289#endif
2290
96f874e2
RR
2291extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2292extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 2293
82455257
DH
2294#ifndef TASK_SIZE_OF
2295#define TASK_SIZE_OF(tsk) TASK_SIZE
2296#endif
2297
a5418be9 2298#ifdef CONFIG_SMP
c0bed69d
KW
2299static inline bool owner_on_cpu(struct task_struct *owner)
2300{
2301 /*
2302 * As lock holder preemption issue, we both skip spinning if
2303 * task is not on cpu or its cpu is preempted
2304 */
4cf75fd4 2305 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
c0bed69d
KW
2306}
2307
a5418be9 2308/* Returns effective CPU energy utilization, as seen by the scheduler */
bb447999 2309unsigned long sched_cpu_util(int cpu);
a5418be9
VK
2310#endif /* CONFIG_SMP */
2311
d7822b1e
MD
2312#ifdef CONFIG_RSEQ
2313
2314/*
2315 * Map the event mask on the user-space ABI enum rseq_cs_flags
2316 * for direct mask checks.
2317 */
2318enum rseq_event_mask_bits {
2319 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2320 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2321 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2322};
2323
2324enum rseq_event_mask {
2325 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2326 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2327 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2328};
2329
2330static inline void rseq_set_notify_resume(struct task_struct *t)
2331{
2332 if (t->rseq)
2333 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2334}
2335
784e0300 2336void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 2337
784e0300
WD
2338static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2339 struct pt_regs *regs)
d7822b1e
MD
2340{
2341 if (current->rseq)
784e0300 2342 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2343}
2344
784e0300
WD
2345static inline void rseq_signal_deliver(struct ksignal *ksig,
2346 struct pt_regs *regs)
d7822b1e
MD
2347{
2348 preempt_disable();
2349 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2350 preempt_enable();
784e0300 2351 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2352}
2353
2354/* rseq_preempt() requires preemption to be disabled. */
2355static inline void rseq_preempt(struct task_struct *t)
2356{
2357 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2358 rseq_set_notify_resume(t);
2359}
2360
2361/* rseq_migrate() requires preemption to be disabled. */
2362static inline void rseq_migrate(struct task_struct *t)
2363{
2364 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2365 rseq_set_notify_resume(t);
2366}
2367
2368/*
2369 * If parent process has a registered restartable sequences area, the
463f550f 2370 * child inherits. Unregister rseq for a clone with CLONE_VM set.
d7822b1e
MD
2371 */
2372static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2373{
463f550f 2374 if (clone_flags & CLONE_VM) {
d7822b1e 2375 t->rseq = NULL;
ee3e3ac0 2376 t->rseq_len = 0;
d7822b1e
MD
2377 t->rseq_sig = 0;
2378 t->rseq_event_mask = 0;
2379 } else {
2380 t->rseq = current->rseq;
ee3e3ac0 2381 t->rseq_len = current->rseq_len;
d7822b1e
MD
2382 t->rseq_sig = current->rseq_sig;
2383 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
2384 }
2385}
2386
2387static inline void rseq_execve(struct task_struct *t)
2388{
2389 t->rseq = NULL;
ee3e3ac0 2390 t->rseq_len = 0;
d7822b1e
MD
2391 t->rseq_sig = 0;
2392 t->rseq_event_mask = 0;
2393}
2394
2395#else
2396
2397static inline void rseq_set_notify_resume(struct task_struct *t)
2398{
2399}
784e0300
WD
2400static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2401 struct pt_regs *regs)
d7822b1e
MD
2402{
2403}
784e0300
WD
2404static inline void rseq_signal_deliver(struct ksignal *ksig,
2405 struct pt_regs *regs)
d7822b1e
MD
2406{
2407}
2408static inline void rseq_preempt(struct task_struct *t)
2409{
2410}
2411static inline void rseq_migrate(struct task_struct *t)
2412{
2413}
2414static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2415{
2416}
2417static inline void rseq_execve(struct task_struct *t)
2418{
2419}
2420
2421#endif
2422
2423#ifdef CONFIG_DEBUG_RSEQ
2424
2425void rseq_syscall(struct pt_regs *regs);
2426
2427#else
2428
2429static inline void rseq_syscall(struct pt_regs *regs)
2430{
2431}
2432
2433#endif
2434
6e33cad0
PZ
2435#ifdef CONFIG_SCHED_CORE
2436extern void sched_core_free(struct task_struct *tsk);
85dd3f61 2437extern void sched_core_fork(struct task_struct *p);
7ac592aa
CH
2438extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2439 unsigned long uaddr);
6e33cad0
PZ
2440#else
2441static inline void sched_core_free(struct task_struct *tsk) { }
85dd3f61 2442static inline void sched_core_fork(struct task_struct *p) { }
6e33cad0
PZ
2443#endif
2444
d664e399
TG
2445extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2446
1da177e4 2447#endif