Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[linux-block.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
f80be457 17#include <linux/kmsan_types.h>
5eca1c10
IM
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
0584df9c 21#include <linux/irqflags.h>
1da177e4 22#include <linux/seccomp.h>
5eca1c10 23#include <linux/nodemask.h>
b68070e1 24#include <linux/rcupdate.h>
ec1d2819 25#include <linux/refcount.h>
a3b6714e 26#include <linux/resource.h>
9745512c 27#include <linux/latencytop.h>
5eca1c10 28#include <linux/sched/prio.h>
9eacb5c7 29#include <linux/sched/types.h>
5eca1c10 30#include <linux/signal_types.h>
1446e1df 31#include <linux/syscall_user_dispatch.h>
5eca1c10
IM
32#include <linux/mm_types_task.h>
33#include <linux/task_io_accounting.h>
2b69942f 34#include <linux/posix-timers.h>
d7822b1e 35#include <linux/rseq.h>
0cd39f46 36#include <linux/seqlock.h>
dfd402a4 37#include <linux/kcsan.h>
102227b9 38#include <linux/rv.h>
5fbda3ec 39#include <asm/kmap_size.h>
a3b6714e 40
5eca1c10 41/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 42struct audit_context;
c7af7877 43struct backing_dev_info;
bddd87c7 44struct bio_list;
73c10101 45struct blk_plug;
a10787e6 46struct bpf_local_storage;
c7603cfa 47struct bpf_run_ctx;
3c93a0c0 48struct capture_control;
c7af7877 49struct cfs_rq;
c7af7877
IM
50struct fs_struct;
51struct futex_pi_state;
52struct io_context;
1875dc5b 53struct io_uring_task;
c7af7877 54struct mempolicy;
89076bc3 55struct nameidata;
c7af7877
IM
56struct nsproxy;
57struct perf_event_context;
58struct pid_namespace;
59struct pipe_inode_info;
60struct rcu_node;
61struct reclaim_state;
62struct robust_list_head;
3c93a0c0
QY
63struct root_domain;
64struct rq;
c7af7877
IM
65struct sched_attr;
66struct sched_param;
43ae34cb 67struct seq_file;
c7af7877
IM
68struct sighand_struct;
69struct signal_struct;
70struct task_delay_info;
4cf86d77 71struct task_group;
1da177e4 72
4a8342d2
LT
73/*
74 * Task state bitmask. NOTE! These bits are also
75 * encoded in fs/proc/array.c: get_task_state().
76 *
77 * We have two separate sets of flags: task->state
78 * is about runnability, while task->exit_state are
79 * about the task exiting. Confusing, but this way
80 * modifying one set can't modify the other one by
81 * mistake.
82 */
5eca1c10
IM
83
84/* Used in tsk->state: */
9963e444
PZ
85#define TASK_RUNNING 0x00000000
86#define TASK_INTERRUPTIBLE 0x00000001
87#define TASK_UNINTERRUPTIBLE 0x00000002
88#define __TASK_STOPPED 0x00000004
89#define __TASK_TRACED 0x00000008
5eca1c10 90/* Used in tsk->exit_state: */
9963e444
PZ
91#define EXIT_DEAD 0x00000010
92#define EXIT_ZOMBIE 0x00000020
5eca1c10
IM
93#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
94/* Used in tsk->state again: */
9963e444
PZ
95#define TASK_PARKED 0x00000040
96#define TASK_DEAD 0x00000080
97#define TASK_WAKEKILL 0x00000100
98#define TASK_WAKING 0x00000200
99#define TASK_NOLOAD 0x00000400
100#define TASK_NEW 0x00000800
9963e444 101#define TASK_RTLOCK_WAIT 0x00001000
f5d39b02
PZ
102#define TASK_FREEZABLE 0x00002000
103#define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
104#define TASK_FROZEN 0x00008000
105#define TASK_STATE_MAX 0x00010000
5eca1c10 106
f9fc8cad
PZ
107#define TASK_ANY (TASK_STATE_MAX-1)
108
f5d39b02
PZ
109/*
110 * DO NOT ADD ANY NEW USERS !
111 */
112#define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
5eca1c10 113
5eca1c10
IM
114/* Convenience macros for the sake of set_current_state: */
115#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
116#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
2500ad1c 117#define TASK_TRACED __TASK_TRACED
5eca1c10
IM
118
119#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
120
121/* Convenience macros for the sake of wake_up(): */
122#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
123
124/* get_task_state(): */
125#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
126 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
127 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
128 TASK_PARKED)
5eca1c10 129
2f064a59 130#define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
5eca1c10 131
31cae1ea
PZ
132#define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
133#define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
134#define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
5eca1c10 135
b5bf9a90
PZ
136/*
137 * Special states are those that do not use the normal wait-loop pattern. See
138 * the comment with set_special_state().
139 */
140#define is_special_task_state(state) \
1cef1150 141 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 142
85019c16
TG
143#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
144# define debug_normal_state_change(state_value) \
145 do { \
146 WARN_ON_ONCE(is_special_task_state(state_value)); \
147 current->task_state_change = _THIS_IP_; \
8eb23b9f
PZ
148 } while (0)
149
85019c16 150# define debug_special_state_change(state_value) \
b5bf9a90 151 do { \
b5bf9a90 152 WARN_ON_ONCE(!is_special_task_state(state_value)); \
b5bf9a90 153 current->task_state_change = _THIS_IP_; \
b5bf9a90 154 } while (0)
85019c16 155
5f220be2
TG
156# define debug_rtlock_wait_set_state() \
157 do { \
158 current->saved_state_change = current->task_state_change;\
159 current->task_state_change = _THIS_IP_; \
160 } while (0)
161
162# define debug_rtlock_wait_restore_state() \
163 do { \
164 current->task_state_change = current->saved_state_change;\
165 } while (0)
166
8eb23b9f 167#else
85019c16
TG
168# define debug_normal_state_change(cond) do { } while (0)
169# define debug_special_state_change(cond) do { } while (0)
5f220be2
TG
170# define debug_rtlock_wait_set_state() do { } while (0)
171# define debug_rtlock_wait_restore_state() do { } while (0)
85019c16
TG
172#endif
173
498d0c57
AM
174/*
175 * set_current_state() includes a barrier so that the write of current->state
176 * is correctly serialised wrt the caller's subsequent test of whether to
177 * actually sleep:
178 *
a2250238 179 * for (;;) {
498d0c57 180 * set_current_state(TASK_UNINTERRUPTIBLE);
58877d34
PZ
181 * if (CONDITION)
182 * break;
a2250238
PZ
183 *
184 * schedule();
185 * }
186 * __set_current_state(TASK_RUNNING);
187 *
188 * If the caller does not need such serialisation (because, for instance, the
58877d34 189 * CONDITION test and condition change and wakeup are under the same lock) then
a2250238
PZ
190 * use __set_current_state().
191 *
192 * The above is typically ordered against the wakeup, which does:
193 *
58877d34 194 * CONDITION = 1;
b5bf9a90 195 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 196 *
58877d34
PZ
197 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
198 * accessing p->state.
a2250238
PZ
199 *
200 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
201 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
202 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 203 *
b5bf9a90 204 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 205 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
206 * a problem either because that will result in one extra go around the loop
207 * and our @cond test will save the day.
498d0c57 208 *
a2250238 209 * Also see the comments of try_to_wake_up().
498d0c57 210 */
b5bf9a90 211#define __set_current_state(state_value) \
85019c16
TG
212 do { \
213 debug_normal_state_change((state_value)); \
214 WRITE_ONCE(current->__state, (state_value)); \
215 } while (0)
b5bf9a90
PZ
216
217#define set_current_state(state_value) \
85019c16
TG
218 do { \
219 debug_normal_state_change((state_value)); \
220 smp_store_mb(current->__state, (state_value)); \
221 } while (0)
b5bf9a90
PZ
222
223/*
224 * set_special_state() should be used for those states when the blocking task
225 * can not use the regular condition based wait-loop. In that case we must
85019c16
TG
226 * serialize against wakeups such that any possible in-flight TASK_RUNNING
227 * stores will not collide with our state change.
b5bf9a90
PZ
228 */
229#define set_special_state(state_value) \
230 do { \
231 unsigned long flags; /* may shadow */ \
85019c16 232 \
b5bf9a90 233 raw_spin_lock_irqsave(&current->pi_lock, flags); \
85019c16 234 debug_special_state_change((state_value)); \
2f064a59 235 WRITE_ONCE(current->__state, (state_value)); \
b5bf9a90
PZ
236 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
237 } while (0)
238
5f220be2
TG
239/*
240 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
241 *
242 * RT's spin/rwlock substitutions are state preserving. The state of the
243 * task when blocking on the lock is saved in task_struct::saved_state and
244 * restored after the lock has been acquired. These operations are
245 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
246 * lock related wakeups while the task is blocked on the lock are
247 * redirected to operate on task_struct::saved_state to ensure that these
248 * are not dropped. On restore task_struct::saved_state is set to
249 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
250 *
251 * The lock operation looks like this:
252 *
253 * current_save_and_set_rtlock_wait_state();
254 * for (;;) {
255 * if (try_lock())
256 * break;
257 * raw_spin_unlock_irq(&lock->wait_lock);
258 * schedule_rtlock();
259 * raw_spin_lock_irq(&lock->wait_lock);
260 * set_current_state(TASK_RTLOCK_WAIT);
261 * }
262 * current_restore_rtlock_saved_state();
263 */
264#define current_save_and_set_rtlock_wait_state() \
265 do { \
266 lockdep_assert_irqs_disabled(); \
267 raw_spin_lock(&current->pi_lock); \
268 current->saved_state = current->__state; \
269 debug_rtlock_wait_set_state(); \
270 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
271 raw_spin_unlock(&current->pi_lock); \
272 } while (0);
273
274#define current_restore_rtlock_saved_state() \
275 do { \
276 lockdep_assert_irqs_disabled(); \
277 raw_spin_lock(&current->pi_lock); \
278 debug_rtlock_wait_restore_state(); \
279 WRITE_ONCE(current->__state, current->saved_state); \
280 current->saved_state = TASK_RUNNING; \
281 raw_spin_unlock(&current->pi_lock); \
282 } while (0);
8eb23b9f 283
2f064a59 284#define get_current_state() READ_ONCE(current->__state)
d6c23bb3 285
3087c61e
YS
286/*
287 * Define the task command name length as enum, then it can be visible to
288 * BPF programs.
289 */
290enum {
291 TASK_COMM_LEN = 16,
292};
1da177e4 293
1da177e4
LT
294extern void scheduler_tick(void);
295
5eca1c10
IM
296#define MAX_SCHEDULE_TIMEOUT LONG_MAX
297
298extern long schedule_timeout(long timeout);
299extern long schedule_timeout_interruptible(long timeout);
300extern long schedule_timeout_killable(long timeout);
301extern long schedule_timeout_uninterruptible(long timeout);
302extern long schedule_timeout_idle(long timeout);
1da177e4 303asmlinkage void schedule(void);
c5491ea7 304extern void schedule_preempt_disabled(void);
19c95f26 305asmlinkage void preempt_schedule_irq(void);
6991436c
TG
306#ifdef CONFIG_PREEMPT_RT
307 extern void schedule_rtlock(void);
308#endif
1da177e4 309
10ab5643
TH
310extern int __must_check io_schedule_prepare(void);
311extern void io_schedule_finish(int token);
9cff8ade 312extern long io_schedule_timeout(long timeout);
10ab5643 313extern void io_schedule(void);
9cff8ade 314
d37f761d 315/**
0ba42a59 316 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
317 * @utime: time spent in user mode
318 * @stime: time spent in system mode
9d7fb042 319 * @lock: protects the above two fields
d37f761d 320 *
9d7fb042
PZ
321 * Stores previous user/system time values such that we can guarantee
322 * monotonicity.
d37f761d 323 */
9d7fb042
PZ
324struct prev_cputime {
325#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
326 u64 utime;
327 u64 stime;
328 raw_spinlock_t lock;
9d7fb042 329#endif
d37f761d
FW
330};
331
bac5b6b6
FW
332enum vtime_state {
333 /* Task is sleeping or running in a CPU with VTIME inactive: */
334 VTIME_INACTIVE = 0,
14faf6fc
FW
335 /* Task is idle */
336 VTIME_IDLE,
bac5b6b6
FW
337 /* Task runs in kernelspace in a CPU with VTIME active: */
338 VTIME_SYS,
14faf6fc
FW
339 /* Task runs in userspace in a CPU with VTIME active: */
340 VTIME_USER,
e6d5bf3e
FW
341 /* Task runs as guests in a CPU with VTIME active: */
342 VTIME_GUEST,
bac5b6b6
FW
343};
344
345struct vtime {
346 seqcount_t seqcount;
347 unsigned long long starttime;
348 enum vtime_state state;
802f4a82 349 unsigned int cpu;
2a42eb95
WL
350 u64 utime;
351 u64 stime;
352 u64 gtime;
bac5b6b6
FW
353};
354
69842cba
PB
355/*
356 * Utilization clamp constraints.
357 * @UCLAMP_MIN: Minimum utilization
358 * @UCLAMP_MAX: Maximum utilization
359 * @UCLAMP_CNT: Utilization clamp constraints count
360 */
361enum uclamp_id {
362 UCLAMP_MIN = 0,
363 UCLAMP_MAX,
364 UCLAMP_CNT
365};
366
f9a25f77
MP
367#ifdef CONFIG_SMP
368extern struct root_domain def_root_domain;
369extern struct mutex sched_domains_mutex;
370#endif
371
1da177e4 372struct sched_info {
7f5f8e8d 373#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
374 /* Cumulative counters: */
375
376 /* # of times we have run on this CPU: */
377 unsigned long pcount;
378
379 /* Time spent waiting on a runqueue: */
380 unsigned long long run_delay;
381
382 /* Timestamps: */
383
384 /* When did we last run on a CPU? */
385 unsigned long long last_arrival;
386
387 /* When were we last queued to run? */
388 unsigned long long last_queued;
1da177e4 389
f6db8347 390#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 391};
1da177e4 392
6ecdd749
YD
393/*
394 * Integer metrics need fixed point arithmetic, e.g., sched/fair
395 * has a few: load, load_avg, util_avg, freq, and capacity.
396 *
397 * We define a basic fixed point arithmetic range, and then formalize
398 * all these metrics based on that basic range.
399 */
5eca1c10
IM
400# define SCHED_FIXEDPOINT_SHIFT 10
401# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 402
69842cba
PB
403/* Increase resolution of cpu_capacity calculations */
404# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
405# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
406
20b8a59f 407struct load_weight {
5eca1c10
IM
408 unsigned long weight;
409 u32 inv_weight;
20b8a59f
IM
410};
411
7f65ea42
PB
412/**
413 * struct util_est - Estimation utilization of FAIR tasks
414 * @enqueued: instantaneous estimated utilization of a task/cpu
415 * @ewma: the Exponential Weighted Moving Average (EWMA)
416 * utilization of a task
417 *
418 * Support data structure to track an Exponential Weighted Moving Average
419 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
420 * average each time a task completes an activation. Sample's weight is chosen
421 * so that the EWMA will be relatively insensitive to transient changes to the
422 * task's workload.
423 *
424 * The enqueued attribute has a slightly different meaning for tasks and cpus:
425 * - task: the task's util_avg at last task dequeue time
426 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
427 * Thus, the util_est.enqueued of a task represents the contribution on the
428 * estimated utilization of the CPU where that task is currently enqueued.
429 *
430 * Only for tasks we track a moving average of the past instantaneous
431 * estimated utilization. This allows to absorb sporadic drops in utilization
432 * of an otherwise almost periodic task.
68d7a190
DE
433 *
434 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
435 * updates. When a task is dequeued, its util_est should not be updated if its
436 * util_avg has not been updated in the meantime.
437 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
438 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
439 * for a task) it is safe to use MSB.
7f65ea42
PB
440 */
441struct util_est {
442 unsigned int enqueued;
443 unsigned int ewma;
444#define UTIL_EST_WEIGHT_SHIFT 2
68d7a190 445#define UTIL_AVG_UNCHANGED 0x80000000
317d359d 446} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 447
9d89c257 448/*
9f683953 449 * The load/runnable/util_avg accumulates an infinite geometric series
0dacee1b 450 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
7b595334
YD
451 *
452 * [load_avg definition]
453 *
454 * load_avg = runnable% * scale_load_down(load)
455 *
9f683953
VG
456 * [runnable_avg definition]
457 *
458 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
7b595334 459 *
7b595334
YD
460 * [util_avg definition]
461 *
462 * util_avg = running% * SCHED_CAPACITY_SCALE
463 *
9f683953
VG
464 * where runnable% is the time ratio that a sched_entity is runnable and
465 * running% the time ratio that a sched_entity is running.
466 *
467 * For cfs_rq, they are the aggregated values of all runnable and blocked
468 * sched_entities.
7b595334 469 *
c1b7b8d4 470 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
9f683953
VG
471 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
472 * for computing those signals (see update_rq_clock_pelt())
7b595334 473 *
23127296
VG
474 * N.B., the above ratios (runnable% and running%) themselves are in the
475 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
476 * to as large a range as necessary. This is for example reflected by
477 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
478 *
479 * [Overflow issue]
480 *
481 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
482 * with the highest load (=88761), always runnable on a single cfs_rq,
483 * and should not overflow as the number already hits PID_MAX_LIMIT.
484 *
485 * For all other cases (including 32-bit kernels), struct load_weight's
486 * weight will overflow first before we do, because:
487 *
488 * Max(load_avg) <= Max(load.weight)
489 *
490 * Then it is the load_weight's responsibility to consider overflow
491 * issues.
9d89c257 492 */
9d85f21c 493struct sched_avg {
5eca1c10
IM
494 u64 last_update_time;
495 u64 load_sum;
9f683953 496 u64 runnable_sum;
5eca1c10
IM
497 u32 util_sum;
498 u32 period_contrib;
499 unsigned long load_avg;
9f683953 500 unsigned long runnable_avg;
5eca1c10 501 unsigned long util_avg;
7f65ea42 502 struct util_est util_est;
317d359d 503} ____cacheline_aligned;
9d85f21c 504
41acab88 505struct sched_statistics {
7f5f8e8d 506#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
507 u64 wait_start;
508 u64 wait_max;
509 u64 wait_count;
510 u64 wait_sum;
511 u64 iowait_count;
512 u64 iowait_sum;
513
514 u64 sleep_start;
515 u64 sleep_max;
516 s64 sum_sleep_runtime;
517
518 u64 block_start;
519 u64 block_max;
847fc0cd
YS
520 s64 sum_block_runtime;
521
5eca1c10
IM
522 u64 exec_max;
523 u64 slice_max;
524
525 u64 nr_migrations_cold;
526 u64 nr_failed_migrations_affine;
527 u64 nr_failed_migrations_running;
528 u64 nr_failed_migrations_hot;
529 u64 nr_forced_migrations;
530
531 u64 nr_wakeups;
532 u64 nr_wakeups_sync;
533 u64 nr_wakeups_migrate;
534 u64 nr_wakeups_local;
535 u64 nr_wakeups_remote;
536 u64 nr_wakeups_affine;
537 u64 nr_wakeups_affine_attempts;
538 u64 nr_wakeups_passive;
539 u64 nr_wakeups_idle;
4feee7d1
JD
540
541#ifdef CONFIG_SCHED_CORE
542 u64 core_forceidle_sum;
41acab88 543#endif
4feee7d1 544#endif /* CONFIG_SCHEDSTATS */
ceeadb83 545} ____cacheline_aligned;
41acab88
LDM
546
547struct sched_entity {
5eca1c10
IM
548 /* For load-balancing: */
549 struct load_weight load;
550 struct rb_node run_node;
551 struct list_head group_node;
552 unsigned int on_rq;
41acab88 553
5eca1c10
IM
554 u64 exec_start;
555 u64 sum_exec_runtime;
556 u64 vruntime;
557 u64 prev_sum_exec_runtime;
41acab88 558
5eca1c10 559 u64 nr_migrations;
41acab88 560
20b8a59f 561#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
562 int depth;
563 struct sched_entity *parent;
20b8a59f 564 /* rq on which this entity is (to be) queued: */
5eca1c10 565 struct cfs_rq *cfs_rq;
20b8a59f 566 /* rq "owned" by this entity/group: */
5eca1c10 567 struct cfs_rq *my_q;
9f683953
VG
568 /* cached value of my_q->h_nr_running */
569 unsigned long runnable_weight;
20b8a59f 570#endif
8bd75c77 571
141965c7 572#ifdef CONFIG_SMP
5a107804
JO
573 /*
574 * Per entity load average tracking.
575 *
576 * Put into separate cache line so it does not
577 * collide with read-mostly values above.
578 */
317d359d 579 struct sched_avg avg;
9d85f21c 580#endif
20b8a59f 581};
70b97a7f 582
fa717060 583struct sched_rt_entity {
5eca1c10
IM
584 struct list_head run_list;
585 unsigned long timeout;
586 unsigned long watchdog_stamp;
587 unsigned int time_slice;
588 unsigned short on_rq;
589 unsigned short on_list;
590
591 struct sched_rt_entity *back;
052f1dc7 592#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 593 struct sched_rt_entity *parent;
6f505b16 594 /* rq on which this entity is (to be) queued: */
5eca1c10 595 struct rt_rq *rt_rq;
6f505b16 596 /* rq "owned" by this entity/group: */
5eca1c10 597 struct rt_rq *my_q;
6f505b16 598#endif
3859a271 599} __randomize_layout;
fa717060 600
aab03e05 601struct sched_dl_entity {
5eca1c10 602 struct rb_node rb_node;
aab03e05
DF
603
604 /*
605 * Original scheduling parameters. Copied here from sched_attr
4027d080 606 * during sched_setattr(), they will remain the same until
607 * the next sched_setattr().
aab03e05 608 */
5eca1c10
IM
609 u64 dl_runtime; /* Maximum runtime for each instance */
610 u64 dl_deadline; /* Relative deadline of each instance */
611 u64 dl_period; /* Separation of two instances (period) */
54d6d303 612 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 613 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
614
615 /*
616 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 617 * they are continuously updated during task execution. Note that
aab03e05
DF
618 * the remaining runtime could be < 0 in case we are in overrun.
619 */
5eca1c10
IM
620 s64 runtime; /* Remaining runtime for this instance */
621 u64 deadline; /* Absolute deadline for this instance */
622 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
623
624 /*
625 * Some bool flags:
626 *
627 * @dl_throttled tells if we exhausted the runtime. If so, the
628 * task has to wait for a replenishment to be performed at the
629 * next firing of dl_timer.
630 *
5eca1c10 631 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 632 * all its available runtime during the last job.
209a0cbd
LA
633 *
634 * @dl_non_contending tells if the task is inactive while still
635 * contributing to the active utilization. In other words, it
636 * indicates if the inactive timer has been armed and its handler
637 * has not been executed yet. This flag is useful to avoid race
638 * conditions between the inactive timer handler and the wakeup
639 * code.
34be3930
JL
640 *
641 * @dl_overrun tells if the task asked to be informed about runtime
642 * overruns.
aab03e05 643 */
aa5222e9 644 unsigned int dl_throttled : 1;
aa5222e9
DC
645 unsigned int dl_yielded : 1;
646 unsigned int dl_non_contending : 1;
34be3930 647 unsigned int dl_overrun : 1;
aab03e05
DF
648
649 /*
650 * Bandwidth enforcement timer. Each -deadline task has its
651 * own bandwidth to be enforced, thus we need one timer per task.
652 */
5eca1c10 653 struct hrtimer dl_timer;
209a0cbd
LA
654
655 /*
656 * Inactive timer, responsible for decreasing the active utilization
657 * at the "0-lag time". When a -deadline task blocks, it contributes
658 * to GRUB's active utilization until the "0-lag time", hence a
659 * timer is needed to decrease the active utilization at the correct
660 * time.
661 */
662 struct hrtimer inactive_timer;
2279f540
JL
663
664#ifdef CONFIG_RT_MUTEXES
665 /*
666 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
667 * pi_se points to the donor, otherwise points to the dl_se it belongs
668 * to (the original one/itself).
669 */
670 struct sched_dl_entity *pi_se;
671#endif
aab03e05 672};
8bd75c77 673
69842cba
PB
674#ifdef CONFIG_UCLAMP_TASK
675/* Number of utilization clamp buckets (shorter alias) */
676#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
677
678/*
679 * Utilization clamp for a scheduling entity
680 * @value: clamp value "assigned" to a se
681 * @bucket_id: bucket index corresponding to the "assigned" value
e8f14172 682 * @active: the se is currently refcounted in a rq's bucket
a509a7cd 683 * @user_defined: the requested clamp value comes from user-space
69842cba
PB
684 *
685 * The bucket_id is the index of the clamp bucket matching the clamp value
686 * which is pre-computed and stored to avoid expensive integer divisions from
687 * the fast path.
e8f14172
PB
688 *
689 * The active bit is set whenever a task has got an "effective" value assigned,
690 * which can be different from the clamp value "requested" from user-space.
691 * This allows to know a task is refcounted in the rq's bucket corresponding
692 * to the "effective" bucket_id.
a509a7cd
PB
693 *
694 * The user_defined bit is set whenever a task has got a task-specific clamp
695 * value requested from userspace, i.e. the system defaults apply to this task
696 * just as a restriction. This allows to relax default clamps when a less
697 * restrictive task-specific value has been requested, thus allowing to
698 * implement a "nice" semantic. For example, a task running with a 20%
699 * default boost can still drop its own boosting to 0%.
69842cba
PB
700 */
701struct uclamp_se {
702 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
703 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
e8f14172 704 unsigned int active : 1;
a509a7cd 705 unsigned int user_defined : 1;
69842cba
PB
706};
707#endif /* CONFIG_UCLAMP_TASK */
708
1d082fd0
PM
709union rcu_special {
710 struct {
5eca1c10
IM
711 u8 blocked;
712 u8 need_qs;
05f41571 713 u8 exp_hint; /* Hint for performance. */
276c4104 714 u8 need_mb; /* Readers need smp_mb(). */
8203d6d0 715 } b; /* Bits. */
05f41571 716 u32 s; /* Set of bits. */
1d082fd0 717};
86848966 718
8dc85d54
PZ
719enum perf_event_task_context {
720 perf_invalid_context = -1,
721 perf_hw_context = 0,
89a1e187 722 perf_sw_context,
8dc85d54
PZ
723 perf_nr_task_contexts,
724};
725
eb61baf6
IM
726struct wake_q_node {
727 struct wake_q_node *next;
728};
729
5fbda3ec
TG
730struct kmap_ctrl {
731#ifdef CONFIG_KMAP_LOCAL
732 int idx;
733 pte_t pteval[KM_MAX_IDX];
734#endif
735};
736
1da177e4 737struct task_struct {
c65eacbe
AL
738#ifdef CONFIG_THREAD_INFO_IN_TASK
739 /*
740 * For reasons of header soup (see current_thread_info()), this
741 * must be the first element of task_struct.
742 */
5eca1c10 743 struct thread_info thread_info;
c65eacbe 744#endif
2f064a59 745 unsigned int __state;
29e48ce8 746
5f220be2
TG
747#ifdef CONFIG_PREEMPT_RT
748 /* saved state for "spinlock sleepers" */
749 unsigned int saved_state;
750#endif
751
29e48ce8
KC
752 /*
753 * This begins the randomizable portion of task_struct. Only
754 * scheduling-critical items should be added above here.
755 */
756 randomized_struct_fields_start
757
5eca1c10 758 void *stack;
ec1d2819 759 refcount_t usage;
5eca1c10
IM
760 /* Per task flags (PF_*), defined further below: */
761 unsigned int flags;
762 unsigned int ptrace;
1da177e4 763
2dd73a4f 764#ifdef CONFIG_SMP
5eca1c10 765 int on_cpu;
8c4890d1 766 struct __call_single_node wake_entry;
5eca1c10
IM
767 unsigned int wakee_flips;
768 unsigned long wakee_flip_decay_ts;
769 struct task_struct *last_wakee;
ac66f547 770
32e839dd
MG
771 /*
772 * recent_used_cpu is initially set as the last CPU used by a task
773 * that wakes affine another task. Waker/wakee relationships can
774 * push tasks around a CPU where each wakeup moves to the next one.
775 * Tracking a recently used CPU allows a quick search for a recently
776 * used CPU that may be idle.
777 */
778 int recent_used_cpu;
5eca1c10 779 int wake_cpu;
2dd73a4f 780#endif
5eca1c10
IM
781 int on_rq;
782
783 int prio;
784 int static_prio;
785 int normal_prio;
786 unsigned int rt_priority;
50e645a8 787
5eca1c10
IM
788 struct sched_entity se;
789 struct sched_rt_entity rt;
8a311c74 790 struct sched_dl_entity dl;
804bccba 791 const struct sched_class *sched_class;
8a311c74
PZ
792
793#ifdef CONFIG_SCHED_CORE
794 struct rb_node core_node;
795 unsigned long core_cookie;
d2dfa17b 796 unsigned int core_occupation;
8a311c74
PZ
797#endif
798
8323f26c 799#ifdef CONFIG_CGROUP_SCHED
5eca1c10 800 struct task_group *sched_task_group;
8323f26c 801#endif
1da177e4 802
69842cba 803#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
804 /*
805 * Clamp values requested for a scheduling entity.
806 * Must be updated with task_rq_lock() held.
807 */
e8f14172 808 struct uclamp_se uclamp_req[UCLAMP_CNT];
13685c4a
QY
809 /*
810 * Effective clamp values used for a scheduling entity.
811 * Must be updated with task_rq_lock() held.
812 */
69842cba
PB
813 struct uclamp_se uclamp[UCLAMP_CNT];
814#endif
815
ceeadb83
YS
816 struct sched_statistics stats;
817
e107be36 818#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
819 /* List of struct preempt_notifier: */
820 struct hlist_head preempt_notifiers;
e107be36
AK
821#endif
822
6c5c9341 823#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 824 unsigned int btrace_seq;
6c5c9341 825#endif
1da177e4 826
5eca1c10
IM
827 unsigned int policy;
828 int nr_cpus_allowed;
3bd37062 829 const cpumask_t *cpus_ptr;
b90ca8ba 830 cpumask_t *user_cpus_ptr;
3bd37062 831 cpumask_t cpus_mask;
6d337eab 832 void *migration_pending;
74d862b6 833#ifdef CONFIG_SMP
a7c81556 834 unsigned short migration_disabled;
af449901 835#endif
a7c81556 836 unsigned short migration_flags;
1da177e4 837
a57eb940 838#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
839 int rcu_read_lock_nesting;
840 union rcu_special rcu_read_unlock_special;
841 struct list_head rcu_node_entry;
842 struct rcu_node *rcu_blocked_node;
28f6569a 843#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 844
8315f422 845#ifdef CONFIG_TASKS_RCU
5eca1c10 846 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
847 u8 rcu_tasks_holdout;
848 u8 rcu_tasks_idx;
5eca1c10 849 int rcu_tasks_idle_cpu;
ccdd29ff 850 struct list_head rcu_tasks_holdout_list;
8315f422 851#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 852
d5f177d3
PM
853#ifdef CONFIG_TASKS_TRACE_RCU
854 int trc_reader_nesting;
855 int trc_ipi_to_cpu;
276c4104 856 union rcu_special trc_reader_special;
d5f177d3 857 struct list_head trc_holdout_list;
434c9eef
PM
858 struct list_head trc_blkd_node;
859 int trc_blkd_cpu;
d5f177d3
PM
860#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
861
5eca1c10 862 struct sched_info sched_info;
1da177e4 863
5eca1c10 864 struct list_head tasks;
806c09a7 865#ifdef CONFIG_SMP
5eca1c10
IM
866 struct plist_node pushable_tasks;
867 struct rb_node pushable_dl_tasks;
806c09a7 868#endif
1da177e4 869
5eca1c10
IM
870 struct mm_struct *mm;
871 struct mm_struct *active_mm;
314ff785 872
5eca1c10
IM
873 int exit_state;
874 int exit_code;
875 int exit_signal;
876 /* The signal sent when the parent dies: */
877 int pdeath_signal;
878 /* JOBCTL_*, siglock protected: */
879 unsigned long jobctl;
880
881 /* Used for emulating ABI behavior of previous Linux versions: */
882 unsigned int personality;
883
884 /* Scheduler bits, serialized by scheduler locks: */
885 unsigned sched_reset_on_fork:1;
886 unsigned sched_contributes_to_load:1;
887 unsigned sched_migrated:1;
eb414681 888
5eca1c10
IM
889 /* Force alignment to the next boundary: */
890 unsigned :0;
891
892 /* Unserialized, strictly 'current' */
893
f97bb527
PZ
894 /*
895 * This field must not be in the scheduler word above due to wakelist
896 * queueing no longer being serialized by p->on_cpu. However:
897 *
898 * p->XXX = X; ttwu()
899 * schedule() if (p->on_rq && ..) // false
900 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
901 * deactivate_task() ttwu_queue_wakelist())
902 * p->on_rq = 0; p->sched_remote_wakeup = Y;
903 *
904 * guarantees all stores of 'current' are visible before
905 * ->sched_remote_wakeup gets used, so it can be in this word.
906 */
907 unsigned sched_remote_wakeup:1;
908
5eca1c10
IM
909 /* Bit to tell LSMs we're in execve(): */
910 unsigned in_execve:1;
911 unsigned in_iowait:1;
912#ifndef TIF_RESTORE_SIGMASK
913 unsigned restore_sigmask:1;
7e781418 914#endif
626ebc41 915#ifdef CONFIG_MEMCG
29ef680a 916 unsigned in_user_fault:1;
127424c8 917#endif
ec1c86b2
YZ
918#ifdef CONFIG_LRU_GEN
919 /* whether the LRU algorithm may apply to this access */
920 unsigned in_lru_fault:1;
921#endif
ff303e66 922#ifdef CONFIG_COMPAT_BRK
5eca1c10 923 unsigned brk_randomized:1;
ff303e66 924#endif
77f88796
TH
925#ifdef CONFIG_CGROUPS
926 /* disallow userland-initiated cgroup migration */
927 unsigned no_cgroup_migration:1;
76f969e8
RG
928 /* task is frozen/stopped (used by the cgroup freezer) */
929 unsigned frozen:1;
77f88796 930#endif
d09d8df3 931#ifdef CONFIG_BLK_CGROUP
d09d8df3
JB
932 unsigned use_memdelay:1;
933#endif
1066d1b6
YS
934#ifdef CONFIG_PSI
935 /* Stalled due to lack of memory */
936 unsigned in_memstall:1;
937#endif
8e9b16c4
ST
938#ifdef CONFIG_PAGE_OWNER
939 /* Used by page_owner=on to detect recursion in page tracking. */
940 unsigned in_page_owner:1;
941#endif
b542e383
TG
942#ifdef CONFIG_EVENTFD
943 /* Recursion prevention for eventfd_signal() */
9f0deaa1 944 unsigned in_eventfd:1;
b542e383 945#endif
a3d29e82
PZ
946#ifdef CONFIG_IOMMU_SVA
947 unsigned pasid_activated:1;
948#endif
b041b525
TL
949#ifdef CONFIG_CPU_SUP_INTEL
950 unsigned reported_split_lock:1;
951#endif
aa1cf99b
YY
952#ifdef CONFIG_TASK_DELAY_ACCT
953 /* delay due to memory thrashing */
954 unsigned in_thrashing:1;
955#endif
6f185c29 956
5eca1c10 957 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 958
5eca1c10 959 struct restart_block restart_block;
f56141e3 960
5eca1c10
IM
961 pid_t pid;
962 pid_t tgid;
0a425405 963
050e9baa 964#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
965 /* Canary value for the -fstack-protector GCC feature: */
966 unsigned long stack_canary;
1314562a 967#endif
4d1d61a6 968 /*
5eca1c10 969 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 970 * older sibling, respectively. (p->father can be replaced with
f470021a 971 * p->real_parent->pid)
1da177e4 972 */
5eca1c10
IM
973
974 /* Real parent process: */
975 struct task_struct __rcu *real_parent;
976
977 /* Recipient of SIGCHLD, wait4() reports: */
978 struct task_struct __rcu *parent;
979
1da177e4 980 /*
5eca1c10 981 * Children/sibling form the list of natural children:
1da177e4 982 */
5eca1c10
IM
983 struct list_head children;
984 struct list_head sibling;
985 struct task_struct *group_leader;
1da177e4 986
f470021a 987 /*
5eca1c10
IM
988 * 'ptraced' is the list of tasks this task is using ptrace() on.
989 *
f470021a 990 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 991 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 992 */
5eca1c10
IM
993 struct list_head ptraced;
994 struct list_head ptrace_entry;
f470021a 995
1da177e4 996 /* PID/PID hash table linkage. */
2c470475
EB
997 struct pid *thread_pid;
998 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
999 struct list_head thread_group;
1000 struct list_head thread_node;
1001
1002 struct completion *vfork_done;
1da177e4 1003
5eca1c10
IM
1004 /* CLONE_CHILD_SETTID: */
1005 int __user *set_child_tid;
1da177e4 1006
5eca1c10
IM
1007 /* CLONE_CHILD_CLEARTID: */
1008 int __user *clear_child_tid;
1009
e32cf5df
EB
1010 /* PF_KTHREAD | PF_IO_WORKER */
1011 void *worker_private;
3bfe6106 1012
5eca1c10
IM
1013 u64 utime;
1014 u64 stime;
40565b5a 1015#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
1016 u64 utimescaled;
1017 u64 stimescaled;
40565b5a 1018#endif
5eca1c10
IM
1019 u64 gtime;
1020 struct prev_cputime prev_cputime;
6a61671b 1021#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 1022 struct vtime vtime;
d99ca3b9 1023#endif
d027d45d
FW
1024
1025#ifdef CONFIG_NO_HZ_FULL
5eca1c10 1026 atomic_t tick_dep_mask;
d027d45d 1027#endif
5eca1c10
IM
1028 /* Context switch counts: */
1029 unsigned long nvcsw;
1030 unsigned long nivcsw;
1031
1032 /* Monotonic time in nsecs: */
1033 u64 start_time;
1034
1035 /* Boot based time in nsecs: */
cf25e24d 1036 u64 start_boottime;
5eca1c10
IM
1037
1038 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1039 unsigned long min_flt;
1040 unsigned long maj_flt;
1da177e4 1041
2b69942f
TG
1042 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1043 struct posix_cputimers posix_cputimers;
1da177e4 1044
1fb497dd
TG
1045#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1046 struct posix_cputimers_work posix_cputimers_work;
1047#endif
1048
5eca1c10
IM
1049 /* Process credentials: */
1050
1051 /* Tracer's credentials at attach: */
1052 const struct cred __rcu *ptracer_cred;
1053
1054 /* Objective and real subjective task credentials (COW): */
1055 const struct cred __rcu *real_cred;
1056
1057 /* Effective (overridable) subjective task credentials (COW): */
1058 const struct cred __rcu *cred;
1059
7743c48e
DH
1060#ifdef CONFIG_KEYS
1061 /* Cached requested key. */
1062 struct key *cached_requested_key;
1063#endif
1064
5eca1c10
IM
1065 /*
1066 * executable name, excluding path.
1067 *
1068 * - normally initialized setup_new_exec()
1069 * - access it with [gs]et_task_comm()
1070 * - lock it with task_lock()
1071 */
1072 char comm[TASK_COMM_LEN];
1073
1074 struct nameidata *nameidata;
1075
3d5b6fcc 1076#ifdef CONFIG_SYSVIPC
5eca1c10
IM
1077 struct sysv_sem sysvsem;
1078 struct sysv_shm sysvshm;
3d5b6fcc 1079#endif
e162b39a 1080#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 1081 unsigned long last_switch_count;
a2e51445 1082 unsigned long last_switch_time;
82a1fcb9 1083#endif
5eca1c10
IM
1084 /* Filesystem information: */
1085 struct fs_struct *fs;
1086
1087 /* Open file information: */
1088 struct files_struct *files;
1089
0f212204
JA
1090#ifdef CONFIG_IO_URING
1091 struct io_uring_task *io_uring;
1092#endif
1093
5eca1c10
IM
1094 /* Namespaces: */
1095 struct nsproxy *nsproxy;
1096
1097 /* Signal handlers: */
1098 struct signal_struct *signal;
913292c9 1099 struct sighand_struct __rcu *sighand;
5eca1c10
IM
1100 sigset_t blocked;
1101 sigset_t real_blocked;
1102 /* Restored if set_restore_sigmask() was used: */
1103 sigset_t saved_sigmask;
1104 struct sigpending pending;
1105 unsigned long sas_ss_sp;
1106 size_t sas_ss_size;
1107 unsigned int sas_ss_flags;
1108
1109 struct callback_head *task_works;
1110
4b7d248b 1111#ifdef CONFIG_AUDIT
bfef93a5 1112#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
1113 struct audit_context *audit_context;
1114#endif
5eca1c10
IM
1115 kuid_t loginuid;
1116 unsigned int sessionid;
bfef93a5 1117#endif
5eca1c10 1118 struct seccomp seccomp;
1446e1df 1119 struct syscall_user_dispatch syscall_dispatch;
5eca1c10
IM
1120
1121 /* Thread group tracking: */
d1e7fd64
EB
1122 u64 parent_exec_id;
1123 u64 self_exec_id;
1da177e4 1124
5eca1c10
IM
1125 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1126 spinlock_t alloc_lock;
1da177e4 1127
b29739f9 1128 /* Protection of the PI data structures: */
5eca1c10 1129 raw_spinlock_t pi_lock;
b29739f9 1130
5eca1c10 1131 struct wake_q_node wake_q;
76751049 1132
23f78d4a 1133#ifdef CONFIG_RT_MUTEXES
5eca1c10 1134 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 1135 struct rb_root_cached pi_waiters;
e96a7705
XP
1136 /* Updated under owner's pi_lock and rq lock */
1137 struct task_struct *pi_top_task;
5eca1c10
IM
1138 /* Deadlock detection and priority inheritance handling: */
1139 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1140#endif
1141
408894ee 1142#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
1143 /* Mutex deadlock detection: */
1144 struct mutex_waiter *blocked_on;
408894ee 1145#endif
5eca1c10 1146
312364f3
DV
1147#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1148 int non_block_count;
1149#endif
1150
de30a2b3 1151#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c 1152 struct irqtrace_events irqtrace;
de8f5e4f 1153 unsigned int hardirq_threaded;
c86e9b98 1154 u64 hardirq_chain_key;
5eca1c10
IM
1155 int softirqs_enabled;
1156 int softirq_context;
40db1739 1157 int irq_config;
de30a2b3 1158#endif
728b478d
TG
1159#ifdef CONFIG_PREEMPT_RT
1160 int softirq_disable_cnt;
1161#endif
5eca1c10 1162
fbb9ce95 1163#ifdef CONFIG_LOCKDEP
5eca1c10
IM
1164# define MAX_LOCK_DEPTH 48UL
1165 u64 curr_chain_key;
1166 int lockdep_depth;
1167 unsigned int lockdep_recursion;
1168 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 1169#endif
5eca1c10 1170
5cf53f3c 1171#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
5eca1c10 1172 unsigned int in_ubsan;
c6d30853 1173#endif
408894ee 1174
5eca1c10
IM
1175 /* Journalling filesystem info: */
1176 void *journal_info;
1da177e4 1177
5eca1c10
IM
1178 /* Stacked block device info: */
1179 struct bio_list *bio_list;
d89d8796 1180
5eca1c10
IM
1181 /* Stack plugging: */
1182 struct blk_plug *plug;
73c10101 1183
5eca1c10
IM
1184 /* VM state: */
1185 struct reclaim_state *reclaim_state;
1186
1187 struct backing_dev_info *backing_dev_info;
1da177e4 1188
5eca1c10 1189 struct io_context *io_context;
1da177e4 1190
5e1f0f09
MG
1191#ifdef CONFIG_COMPACTION
1192 struct capture_control *capture_control;
1193#endif
5eca1c10
IM
1194 /* Ptrace state: */
1195 unsigned long ptrace_message;
ae7795bc 1196 kernel_siginfo_t *last_siginfo;
1da177e4 1197
5eca1c10 1198 struct task_io_accounting ioac;
eb414681
JW
1199#ifdef CONFIG_PSI
1200 /* Pressure stall state */
1201 unsigned int psi_flags;
1202#endif
5eca1c10
IM
1203#ifdef CONFIG_TASK_XACCT
1204 /* Accumulated RSS usage: */
1205 u64 acct_rss_mem1;
1206 /* Accumulated virtual memory usage: */
1207 u64 acct_vm_mem1;
1208 /* stime + utime since last update: */
1209 u64 acct_timexpd;
1da177e4
LT
1210#endif
1211#ifdef CONFIG_CPUSETS
5eca1c10
IM
1212 /* Protected by ->alloc_lock: */
1213 nodemask_t mems_allowed;
3b03706f 1214 /* Sequence number to catch updates: */
b7505861 1215 seqcount_spinlock_t mems_allowed_seq;
5eca1c10
IM
1216 int cpuset_mem_spread_rotor;
1217 int cpuset_slab_spread_rotor;
1da177e4 1218#endif
ddbcc7e8 1219#ifdef CONFIG_CGROUPS
5eca1c10
IM
1220 /* Control Group info protected by css_set_lock: */
1221 struct css_set __rcu *cgroups;
1222 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1223 struct list_head cg_list;
ddbcc7e8 1224#endif
e6d42931 1225#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 1226 u32 closid;
d6aaba61 1227 u32 rmid;
e02737d5 1228#endif
42b2dd0a 1229#ifdef CONFIG_FUTEX
5eca1c10 1230 struct robust_list_head __user *robust_list;
34f192c6
IM
1231#ifdef CONFIG_COMPAT
1232 struct compat_robust_list_head __user *compat_robust_list;
1233#endif
5eca1c10
IM
1234 struct list_head pi_state_list;
1235 struct futex_pi_state *pi_state_cache;
3f186d97 1236 struct mutex futex_exit_mutex;
3d4775df 1237 unsigned int futex_state;
c7aceaba 1238#endif
cdd6c482 1239#ifdef CONFIG_PERF_EVENTS
bd275681 1240 struct perf_event_context *perf_event_ctxp;
5eca1c10
IM
1241 struct mutex perf_event_mutex;
1242 struct list_head perf_event_list;
a63eaf34 1243#endif
8f47b187 1244#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1245 unsigned long preempt_disable_ip;
8f47b187 1246#endif
c7aceaba 1247#ifdef CONFIG_NUMA
5eca1c10
IM
1248 /* Protected by alloc_lock: */
1249 struct mempolicy *mempolicy;
45816682 1250 short il_prev;
5eca1c10 1251 short pref_node_fork;
42b2dd0a 1252#endif
cbee9f88 1253#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1254 int numa_scan_seq;
1255 unsigned int numa_scan_period;
1256 unsigned int numa_scan_period_max;
1257 int numa_preferred_nid;
1258 unsigned long numa_migrate_retry;
1259 /* Migration stamp: */
1260 u64 node_stamp;
1261 u64 last_task_numa_placement;
1262 u64 last_sum_exec_runtime;
1263 struct callback_head numa_work;
1264
cb361d8c
JH
1265 /*
1266 * This pointer is only modified for current in syscall and
1267 * pagefault context (and for tasks being destroyed), so it can be read
1268 * from any of the following contexts:
1269 * - RCU read-side critical section
1270 * - current->numa_group from everywhere
1271 * - task's runqueue locked, task not running
1272 */
1273 struct numa_group __rcu *numa_group;
8c8a743c 1274
745d6147 1275 /*
44dba3d5
IM
1276 * numa_faults is an array split into four regions:
1277 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1278 * in this precise order.
1279 *
1280 * faults_memory: Exponential decaying average of faults on a per-node
1281 * basis. Scheduling placement decisions are made based on these
1282 * counts. The values remain static for the duration of a PTE scan.
1283 * faults_cpu: Track the nodes the process was running on when a NUMA
1284 * hinting fault was incurred.
1285 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1286 * during the current scan window. When the scan completes, the counts
1287 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1288 */
5eca1c10
IM
1289 unsigned long *numa_faults;
1290 unsigned long total_numa_faults;
745d6147 1291
04bb2f94
RR
1292 /*
1293 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1294 * scan window were remote/local or failed to migrate. The task scan
1295 * period is adapted based on the locality of the faults with different
1296 * weights depending on whether they were shared or private faults
04bb2f94 1297 */
5eca1c10 1298 unsigned long numa_faults_locality[3];
04bb2f94 1299
5eca1c10 1300 unsigned long numa_pages_migrated;
cbee9f88
PZ
1301#endif /* CONFIG_NUMA_BALANCING */
1302
d7822b1e
MD
1303#ifdef CONFIG_RSEQ
1304 struct rseq __user *rseq;
ee3e3ac0 1305 u32 rseq_len;
d7822b1e
MD
1306 u32 rseq_sig;
1307 /*
1308 * RmW on rseq_event_mask must be performed atomically
1309 * with respect to preemption.
1310 */
1311 unsigned long rseq_event_mask;
1312#endif
1313
af7f588d
MD
1314#ifdef CONFIG_SCHED_MM_CID
1315 int mm_cid; /* Current cid in mm */
1316 int mm_cid_active; /* Whether cid bitmap is active */
1317#endif
1318
5eca1c10 1319 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1320
3fbd7ee2
EB
1321 union {
1322 refcount_t rcu_users;
1323 struct rcu_head rcu;
1324 };
b92ce558 1325
5eca1c10
IM
1326 /* Cache last used pipe for splice(): */
1327 struct pipe_inode_info *splice_pipe;
5640f768 1328
5eca1c10 1329 struct page_frag task_frag;
5640f768 1330
47913d4e
IM
1331#ifdef CONFIG_TASK_DELAY_ACCT
1332 struct task_delay_info *delays;
f4f154fd 1333#endif
47913d4e 1334
f4f154fd 1335#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1336 int make_it_fail;
9049f2f6 1337 unsigned int fail_nth;
ca74e92b 1338#endif
9d823e8f 1339 /*
5eca1c10
IM
1340 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1341 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1342 */
5eca1c10
IM
1343 int nr_dirtied;
1344 int nr_dirtied_pause;
1345 /* Start of a write-and-pause period: */
1346 unsigned long dirty_paused_when;
9d823e8f 1347
9745512c 1348#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1349 int latency_record_count;
1350 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1351#endif
6976675d 1352 /*
5eca1c10 1353 * Time slack values; these are used to round up poll() and
6976675d
AV
1354 * select() etc timeout values. These are in nanoseconds.
1355 */
5eca1c10
IM
1356 u64 timer_slack_ns;
1357 u64 default_timer_slack_ns;
f8d570a4 1358
d73b4936 1359#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
5eca1c10 1360 unsigned int kasan_depth;
0b24becc 1361#endif
92c209ac 1362
dfd402a4
ME
1363#ifdef CONFIG_KCSAN
1364 struct kcsan_ctx kcsan_ctx;
92c209ac
ME
1365#ifdef CONFIG_TRACE_IRQFLAGS
1366 struct irqtrace_events kcsan_save_irqtrace;
1367#endif
69562e49
ME
1368#ifdef CONFIG_KCSAN_WEAK_MEMORY
1369 int kcsan_stack_depth;
1370#endif
dfd402a4 1371#endif
5eca1c10 1372
f80be457
AP
1373#ifdef CONFIG_KMSAN
1374 struct kmsan_ctx kmsan_ctx;
1375#endif
1376
393824f6
PA
1377#if IS_ENABLED(CONFIG_KUNIT)
1378 struct kunit *kunit_test;
1379#endif
1380
fb52607a 1381#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1382 /* Index of current stored address in ret_stack: */
1383 int curr_ret_stack;
39eb456d 1384 int curr_ret_depth;
5eca1c10
IM
1385
1386 /* Stack of return addresses for return function tracing: */
1387 struct ftrace_ret_stack *ret_stack;
1388
1389 /* Timestamp for last schedule: */
1390 unsigned long long ftrace_timestamp;
1391
f201ae23
FW
1392 /*
1393 * Number of functions that haven't been traced
5eca1c10 1394 * because of depth overrun:
f201ae23 1395 */
5eca1c10
IM
1396 atomic_t trace_overrun;
1397
1398 /* Pause tracing: */
1399 atomic_t tracing_graph_pause;
f201ae23 1400#endif
5eca1c10 1401
ea4e2bc4 1402#ifdef CONFIG_TRACING
5eca1c10
IM
1403 /* Bitmask and counter of trace recursion: */
1404 unsigned long trace_recursion;
261842b7 1405#endif /* CONFIG_TRACING */
5eca1c10 1406
5c9a8750 1407#ifdef CONFIG_KCOV
eec028c9
AK
1408 /* See kernel/kcov.c for more details. */
1409
5eca1c10 1410 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1411 unsigned int kcov_mode;
5eca1c10
IM
1412
1413 /* Size of the kcov_area: */
1414 unsigned int kcov_size;
1415
1416 /* Buffer for coverage collection: */
1417 void *kcov_area;
1418
1419 /* KCOV descriptor wired with this task or NULL: */
1420 struct kcov *kcov;
eec028c9
AK
1421
1422 /* KCOV common handle for remote coverage collection: */
1423 u64 kcov_handle;
1424
1425 /* KCOV sequence number: */
1426 int kcov_sequence;
5ff3b30a
AK
1427
1428 /* Collect coverage from softirq context: */
1429 unsigned int kcov_softirq;
5c9a8750 1430#endif
5eca1c10 1431
6f185c29 1432#ifdef CONFIG_MEMCG
5eca1c10
IM
1433 struct mem_cgroup *memcg_in_oom;
1434 gfp_t memcg_oom_gfp_mask;
1435 int memcg_oom_order;
b23afb93 1436
5eca1c10
IM
1437 /* Number of pages to reclaim on returning to userland: */
1438 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1439
1440 /* Used by memcontrol for targeted memcg charge: */
1441 struct mem_cgroup *active_memcg;
569b846d 1442#endif
5eca1c10 1443
d09d8df3 1444#ifdef CONFIG_BLK_CGROUP
f05837ed 1445 struct gendisk *throttle_disk;
d09d8df3
JB
1446#endif
1447
0326f5a9 1448#ifdef CONFIG_UPROBES
5eca1c10 1449 struct uprobe_task *utask;
0326f5a9 1450#endif
cafe5635 1451#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1452 unsigned int sequential_io;
1453 unsigned int sequential_io_avg;
cafe5635 1454#endif
5fbda3ec 1455 struct kmap_ctrl kmap_ctrl;
8eb23b9f 1456#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1457 unsigned long task_state_change;
5f220be2
TG
1458# ifdef CONFIG_PREEMPT_RT
1459 unsigned long saved_state_change;
1460# endif
8eb23b9f 1461#endif
5eca1c10 1462 int pagefault_disabled;
03049269 1463#ifdef CONFIG_MMU
5eca1c10 1464 struct task_struct *oom_reaper_list;
e4a38402 1465 struct timer_list oom_reaper_timer;
03049269 1466#endif
ba14a194 1467#ifdef CONFIG_VMAP_STACK
5eca1c10 1468 struct vm_struct *stack_vm_area;
ba14a194 1469#endif
68f24b08 1470#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1471 /* A live task holds one reference: */
f0b89d39 1472 refcount_t stack_refcount;
d83a7cb3
JP
1473#endif
1474#ifdef CONFIG_LIVEPATCH
1475 int patch_state;
0302e28d 1476#endif
e4e55b47
TH
1477#ifdef CONFIG_SECURITY
1478 /* Used by LSM modules for access restriction: */
1479 void *security;
68f24b08 1480#endif
a10787e6
SL
1481#ifdef CONFIG_BPF_SYSCALL
1482 /* Used by BPF task local storage */
1483 struct bpf_local_storage __rcu *bpf_storage;
c7603cfa
AN
1484 /* Used for BPF run context */
1485 struct bpf_run_ctx *bpf_ctx;
a10787e6 1486#endif
29e48ce8 1487
afaef01c
AP
1488#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1489 unsigned long lowest_stack;
c8d12627 1490 unsigned long prev_lowest_stack;
afaef01c
AP
1491#endif
1492
5567d11c 1493#ifdef CONFIG_X86_MCE
c0ab7ffc
TL
1494 void __user *mce_vaddr;
1495 __u64 mce_kflags;
5567d11c 1496 u64 mce_addr;
17fae129
TL
1497 __u64 mce_ripv : 1,
1498 mce_whole_page : 1,
1499 __mce_reserved : 62;
5567d11c 1500 struct callback_head mce_kill_me;
81065b35 1501 int mce_count;
5567d11c
PZ
1502#endif
1503
d741bf41
PZ
1504#ifdef CONFIG_KRETPROBES
1505 struct llist_head kretprobe_instances;
1506#endif
54ecbe6f
MH
1507#ifdef CONFIG_RETHOOK
1508 struct llist_head rethooks;
1509#endif
d741bf41 1510
58e106e7
BS
1511#ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1512 /*
1513 * If L1D flush is supported on mm context switch
1514 * then we use this callback head to queue kill work
1515 * to kill tasks that are not running on SMT disabled
1516 * cores
1517 */
1518 struct callback_head l1d_flush_kill;
1519#endif
1520
102227b9
DBO
1521#ifdef CONFIG_RV
1522 /*
1523 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1524 * If we find justification for more monitors, we can think
1525 * about adding more or developing a dynamic method. So far,
1526 * none of these are justified.
1527 */
1528 union rv_task_monitor rv[RV_PER_TASK_MONITORS];
1529#endif
1530
29e48ce8
KC
1531 /*
1532 * New fields for task_struct should be added above here, so that
1533 * they are included in the randomized portion of task_struct.
1534 */
1535 randomized_struct_fields_end
1536
5eca1c10
IM
1537 /* CPU-specific state of this task: */
1538 struct thread_struct thread;
1539
1540 /*
1541 * WARNING: on x86, 'thread_struct' contains a variable-sized
1542 * structure. It *MUST* be at the end of 'task_struct'.
1543 *
1544 * Do not put anything below here!
1545 */
1da177e4
LT
1546};
1547
e868171a 1548static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1549{
2c470475 1550 return task->thread_pid;
22c935f4
EB
1551}
1552
7af57294
PE
1553/*
1554 * the helpers to get the task's different pids as they are seen
1555 * from various namespaces
1556 *
1557 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1558 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1559 * current.
7af57294
PE
1560 * task_xid_nr_ns() : id seen from the ns specified;
1561 *
7af57294
PE
1562 * see also pid_nr() etc in include/linux/pid.h
1563 */
5eca1c10 1564pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1565
e868171a 1566static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1567{
1568 return tsk->pid;
1569}
1570
5eca1c10 1571static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1572{
1573 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1574}
7af57294
PE
1575
1576static inline pid_t task_pid_vnr(struct task_struct *tsk)
1577{
52ee2dfd 1578 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1579}
1580
1581
e868171a 1582static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1583{
1584 return tsk->tgid;
1585}
1586
5eca1c10
IM
1587/**
1588 * pid_alive - check that a task structure is not stale
1589 * @p: Task structure to be checked.
1590 *
1591 * Test if a process is not yet dead (at most zombie state)
1592 * If pid_alive fails, then pointers within the task structure
1593 * can be stale and must not be dereferenced.
1594 *
1595 * Return: 1 if the process is alive. 0 otherwise.
1596 */
1597static inline int pid_alive(const struct task_struct *p)
1598{
2c470475 1599 return p->thread_pid != NULL;
5eca1c10 1600}
7af57294 1601
5eca1c10 1602static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1603{
52ee2dfd 1604 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1605}
1606
7af57294
PE
1607static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1608{
52ee2dfd 1609 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1610}
1611
1612
5eca1c10 1613static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1614{
52ee2dfd 1615 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1616}
1617
7af57294
PE
1618static inline pid_t task_session_vnr(struct task_struct *tsk)
1619{
52ee2dfd 1620 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1621}
1622
dd1c1f2f
ON
1623static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1624{
6883f81a 1625 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1626}
1627
1628static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1629{
6883f81a 1630 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1631}
1632
1633static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1634{
1635 pid_t pid = 0;
1636
1637 rcu_read_lock();
1638 if (pid_alive(tsk))
1639 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1640 rcu_read_unlock();
1641
1642 return pid;
1643}
1644
1645static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1646{
1647 return task_ppid_nr_ns(tsk, &init_pid_ns);
1648}
1649
5eca1c10 1650/* Obsolete, do not use: */
1b0f7ffd
ON
1651static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1652{
1653 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1654}
7af57294 1655
06eb6184
PZ
1656#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1657#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1658
fa2c3254
VS
1659static inline unsigned int __task_state_index(unsigned int tsk_state,
1660 unsigned int tsk_exit_state)
20435d84 1661{
fa2c3254 1662 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
20435d84 1663
06eb6184
PZ
1664 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1665
06eb6184
PZ
1666 if (tsk_state == TASK_IDLE)
1667 state = TASK_REPORT_IDLE;
1668
25795ef6
VS
1669 /*
1670 * We're lying here, but rather than expose a completely new task state
1671 * to userspace, we can make this appear as if the task has gone through
1672 * a regular rt_mutex_lock() call.
1673 */
1674 if (tsk_state == TASK_RTLOCK_WAIT)
1675 state = TASK_UNINTERRUPTIBLE;
1676
1593baab
PZ
1677 return fls(state);
1678}
1679
fa2c3254
VS
1680static inline unsigned int task_state_index(struct task_struct *tsk)
1681{
1682 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1683}
1684
1d48b080 1685static inline char task_index_to_char(unsigned int state)
1593baab 1686{
8ef9925b 1687 static const char state_char[] = "RSDTtXZPI";
1593baab 1688
06eb6184 1689 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1690
1593baab
PZ
1691 return state_char[state];
1692}
1693
1694static inline char task_state_to_char(struct task_struct *tsk)
1695{
1d48b080 1696 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1697}
1698
f400e198 1699/**
570f5241
SS
1700 * is_global_init - check if a task structure is init. Since init
1701 * is free to have sub-threads we need to check tgid.
3260259f
H
1702 * @tsk: Task structure to be checked.
1703 *
1704 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1705 *
1706 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1707 */
e868171a 1708static inline int is_global_init(struct task_struct *tsk)
b461cc03 1709{
570f5241 1710 return task_tgid_nr(tsk) == 1;
b461cc03 1711}
b460cbc5 1712
9ec52099
CLG
1713extern struct pid *cad_pid;
1714
1da177e4
LT
1715/*
1716 * Per process flags
1717 */
01ccf592 1718#define PF_VCPU 0x00000001 /* I'm a virtual CPU */
5eca1c10
IM
1719#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1720#define PF_EXITING 0x00000004 /* Getting shut down */
92307383 1721#define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
01ccf592 1722#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
5eca1c10
IM
1723#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1724#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1725#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1726#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1727#define PF_DUMPCORE 0x00000200 /* Dumped core */
1728#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1729#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1730#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1731#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
fb04563d 1732#define PF__HOLE__00004000 0x00004000
5eca1c10 1733#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
fb04563d 1734#define PF__HOLE__00010000 0x00010000
7dea19f9
MH
1735#define PF_KSWAPD 0x00020000 /* I am kswapd */
1736#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1737#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
a37b0715
N
1738#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1739 * I am cleaning dirty pages from some other bdi. */
5eca1c10
IM
1740#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1741#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
fb04563d
PZ
1742#define PF__HOLE__00800000 0x00800000
1743#define PF__HOLE__01000000 0x01000000
1744#define PF__HOLE__02000000 0x02000000
3bd37062 1745#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1746#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1a08ae36 1747#define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
fb04563d
PZ
1748#define PF__HOLE__20000000 0x20000000
1749#define PF__HOLE__40000000 0x40000000
5eca1c10 1750#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1751
1752/*
1753 * Only the _current_ task can read/write to tsk->flags, but other
1754 * tasks can access tsk->flags in readonly mode for example
1755 * with tsk_used_math (like during threaded core dumping).
1756 * There is however an exception to this rule during ptrace
1757 * or during fork: the ptracer task is allowed to write to the
1758 * child->flags of its traced child (same goes for fork, the parent
1759 * can write to the child->flags), because we're guaranteed the
1760 * child is not running and in turn not changing child->flags
1761 * at the same time the parent does it.
1762 */
5eca1c10
IM
1763#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1764#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1765#define clear_used_math() clear_stopped_child_used_math(current)
1766#define set_used_math() set_stopped_child_used_math(current)
1767
1da177e4
LT
1768#define conditional_stopped_child_used_math(condition, child) \
1769 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1770
1771#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1772
1da177e4
LT
1773#define copy_to_stopped_child_used_math(child) \
1774 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1775
1da177e4 1776/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1777#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1778#define used_math() tsk_used_math(current)
1da177e4 1779
83d40a61 1780static __always_inline bool is_percpu_thread(void)
62ec05dd
TG
1781{
1782#ifdef CONFIG_SMP
1783 return (current->flags & PF_NO_SETAFFINITY) &&
1784 (current->nr_cpus_allowed == 1);
1785#else
1786 return true;
1787#endif
1788}
1789
1d4457f9 1790/* Per-process atomic flags. */
5eca1c10
IM
1791#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1792#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1793#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1794#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1795#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1796#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1797#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1798#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1799
e0e5070b
ZL
1800#define TASK_PFA_TEST(name, func) \
1801 static inline bool task_##func(struct task_struct *p) \
1802 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1803
e0e5070b
ZL
1804#define TASK_PFA_SET(name, func) \
1805 static inline void task_set_##func(struct task_struct *p) \
1806 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1807
e0e5070b
ZL
1808#define TASK_PFA_CLEAR(name, func) \
1809 static inline void task_clear_##func(struct task_struct *p) \
1810 { clear_bit(PFA_##name, &p->atomic_flags); }
1811
1812TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1813TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1814
2ad654bc
ZL
1815TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1816TASK_PFA_SET(SPREAD_PAGE, spread_page)
1817TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1818
1819TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1820TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1821TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1822
356e4bff
TG
1823TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1824TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1825TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1826
71368af9
WL
1827TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1828TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1829TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1830
356e4bff
TG
1831TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1832TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1833
9137bb27
TG
1834TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1835TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1836TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1837
1838TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1839TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1840
5eca1c10 1841static inline void
717a94b5 1842current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1843{
717a94b5
N
1844 current->flags &= ~flags;
1845 current->flags |= orig_flags & flags;
907aed48
MG
1846}
1847
5eca1c10 1848extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
b6e8d40d 1849extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_effective_cpus);
1da177e4 1850#ifdef CONFIG_SMP
5eca1c10
IM
1851extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1852extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
b90ca8ba
WD
1853extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1854extern void release_user_cpus_ptr(struct task_struct *p);
234b8ab6 1855extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
07ec77a1
WD
1856extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1857extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1da177e4 1858#else
5eca1c10 1859static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1860{
1861}
5eca1c10 1862static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1863{
96f874e2 1864 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1865 return -EINVAL;
1866 return 0;
1867}
b90ca8ba
WD
1868static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1869{
1870 if (src->user_cpus_ptr)
1871 return -EINVAL;
1872 return 0;
1873}
1874static inline void release_user_cpus_ptr(struct task_struct *p)
1875{
1876 WARN_ON(p->user_cpus_ptr);
1877}
234b8ab6
WD
1878
1879static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1880{
1881 return 0;
1882}
1da177e4 1883#endif
e0ad9556 1884
fa93384f 1885extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1886extern void set_user_nice(struct task_struct *p, long nice);
1887extern int task_prio(const struct task_struct *p);
5eca1c10 1888
d0ea0268
DY
1889/**
1890 * task_nice - return the nice value of a given task.
1891 * @p: the task in question.
1892 *
1893 * Return: The nice value [ -20 ... 0 ... 19 ].
1894 */
1895static inline int task_nice(const struct task_struct *p)
1896{
1897 return PRIO_TO_NICE((p)->static_prio);
1898}
5eca1c10 1899
36c8b586
IM
1900extern int can_nice(const struct task_struct *p, const int nice);
1901extern int task_curr(const struct task_struct *p);
1da177e4 1902extern int idle_cpu(int cpu);
943d355d 1903extern int available_idle_cpu(int cpu);
5eca1c10
IM
1904extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1905extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
8b700983
PZ
1906extern void sched_set_fifo(struct task_struct *p);
1907extern void sched_set_fifo_low(struct task_struct *p);
1908extern void sched_set_normal(struct task_struct *p, int nice);
5eca1c10 1909extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1910extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1911extern struct task_struct *idle_task(int cpu);
5eca1c10 1912
c4f30608
PM
1913/**
1914 * is_idle_task - is the specified task an idle task?
fa757281 1915 * @p: the task in question.
e69f6186
YB
1916 *
1917 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1918 */
c94a88f3 1919static __always_inline bool is_idle_task(const struct task_struct *p)
c4f30608 1920{
c1de45ca 1921 return !!(p->flags & PF_IDLE);
c4f30608 1922}
5eca1c10 1923
36c8b586 1924extern struct task_struct *curr_task(int cpu);
a458ae2e 1925extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1926
1927void yield(void);
1928
1da177e4 1929union thread_union {
0500871f
DH
1930#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1931 struct task_struct task;
1932#endif
c65eacbe 1933#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1934 struct thread_info thread_info;
c65eacbe 1935#endif
1da177e4
LT
1936 unsigned long stack[THREAD_SIZE/sizeof(long)];
1937};
1938
0500871f
DH
1939#ifndef CONFIG_THREAD_INFO_IN_TASK
1940extern struct thread_info init_thread_info;
1941#endif
1942
1943extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1944
f3ac6067 1945#ifdef CONFIG_THREAD_INFO_IN_TASK
bcf9033e 1946# define task_thread_info(task) (&(task)->thread_info)
f3ac6067
IM
1947#elif !defined(__HAVE_THREAD_FUNCTIONS)
1948# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1949#endif
1950
198fe21b
PE
1951/*
1952 * find a task by one of its numerical ids
1953 *
198fe21b
PE
1954 * find_task_by_pid_ns():
1955 * finds a task by its pid in the specified namespace
228ebcbe
PE
1956 * find_task_by_vpid():
1957 * finds a task by its virtual pid
198fe21b 1958 *
e49859e7 1959 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1960 */
1961
228ebcbe 1962extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1963extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1964
2ee08260
MR
1965/*
1966 * find a task by its virtual pid and get the task struct
1967 */
1968extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1969
b3c97528
HH
1970extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1971extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1972extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1973
1da177e4 1974#ifdef CONFIG_SMP
5eca1c10 1975extern void kick_process(struct task_struct *tsk);
1da177e4 1976#else
5eca1c10 1977static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1978#endif
1da177e4 1979
82b89778 1980extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1981
82b89778
AH
1982static inline void set_task_comm(struct task_struct *tsk, const char *from)
1983{
1984 __set_task_comm(tsk, from, false);
1985}
5eca1c10 1986
3756f640
AB
1987extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1988#define get_task_comm(buf, tsk) ({ \
1989 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1990 __get_task_comm(buf, sizeof(buf), tsk); \
1991})
1da177e4
LT
1992
1993#ifdef CONFIG_SMP
2a0a24eb
TG
1994static __always_inline void scheduler_ipi(void)
1995{
1996 /*
1997 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1998 * TIF_NEED_RESCHED remotely (for the first time) will also send
1999 * this IPI.
2000 */
2001 preempt_fold_need_resched();
2002}
2f064a59 2003extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1da177e4 2004#else
184748cc 2005static inline void scheduler_ipi(void) { }
2f064a59 2006static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
85ba2d86
RM
2007{
2008 return 1;
2009}
1da177e4
LT
2010#endif
2011
5eca1c10
IM
2012/*
2013 * Set thread flags in other task's structures.
2014 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
2015 */
2016static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2017{
a1261f54 2018 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2019}
2020
2021static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2022{
a1261f54 2023 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2024}
2025
93ee37c2
DM
2026static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2027 bool value)
2028{
2029 update_ti_thread_flag(task_thread_info(tsk), flag, value);
2030}
2031
1da177e4
LT
2032static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2033{
a1261f54 2034 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2035}
2036
2037static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2038{
a1261f54 2039 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2040}
2041
2042static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2043{
a1261f54 2044 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2045}
2046
2047static inline void set_tsk_need_resched(struct task_struct *tsk)
2048{
2049 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2050}
2051
2052static inline void clear_tsk_need_resched(struct task_struct *tsk)
2053{
2054 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2055}
2056
8ae121ac
GH
2057static inline int test_tsk_need_resched(struct task_struct *tsk)
2058{
2059 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2060}
2061
1da177e4
LT
2062/*
2063 * cond_resched() and cond_resched_lock(): latency reduction via
2064 * explicit rescheduling in places that are safe. The return
2065 * value indicates whether a reschedule was done in fact.
2066 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 2067 */
b965f1dd
PZI
2068#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2069extern int __cond_resched(void);
2070
99cf983c 2071#if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
b965f1dd
PZI
2072
2073DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2074
2075static __always_inline int _cond_resched(void)
2076{
ef72661e 2077 return static_call_mod(cond_resched)();
b965f1dd
PZI
2078}
2079
99cf983c
MR
2080#elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2081extern int dynamic_cond_resched(void);
2082
2083static __always_inline int _cond_resched(void)
2084{
2085 return dynamic_cond_resched();
2086}
2087
35a773a0 2088#else
b965f1dd
PZI
2089
2090static inline int _cond_resched(void)
2091{
2092 return __cond_resched();
2093}
2094
2095#endif /* CONFIG_PREEMPT_DYNAMIC */
2096
2097#else
2098
35a773a0 2099static inline int _cond_resched(void) { return 0; }
b965f1dd
PZI
2100
2101#endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
6f80bd98 2102
613afbf8 2103#define cond_resched() ({ \
874f670e 2104 __might_resched(__FILE__, __LINE__, 0); \
613afbf8
FW
2105 _cond_resched(); \
2106})
6f80bd98 2107
613afbf8 2108extern int __cond_resched_lock(spinlock_t *lock);
f3d4b4b1
BG
2109extern int __cond_resched_rwlock_read(rwlock_t *lock);
2110extern int __cond_resched_rwlock_write(rwlock_t *lock);
613afbf8 2111
50e081b9
TG
2112#define MIGHT_RESCHED_RCU_SHIFT 8
2113#define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2114
3e9cc688
TG
2115#ifndef CONFIG_PREEMPT_RT
2116/*
2117 * Non RT kernels have an elevated preempt count due to the held lock,
2118 * but are not allowed to be inside a RCU read side critical section
2119 */
2120# define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2121#else
2122/*
2123 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2124 * cond_resched*lock() has to take that into account because it checks for
2125 * preempt_count() and rcu_preempt_depth().
2126 */
2127# define PREEMPT_LOCK_RESCHED_OFFSETS \
2128 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2129#endif
2130
2131#define cond_resched_lock(lock) ({ \
2132 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2133 __cond_resched_lock(lock); \
613afbf8
FW
2134})
2135
3e9cc688
TG
2136#define cond_resched_rwlock_read(lock) ({ \
2137 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2138 __cond_resched_rwlock_read(lock); \
f3d4b4b1
BG
2139})
2140
3e9cc688
TG
2141#define cond_resched_rwlock_write(lock) ({ \
2142 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2143 __cond_resched_rwlock_write(lock); \
f3d4b4b1
BG
2144})
2145
f6f3c437
SH
2146static inline void cond_resched_rcu(void)
2147{
2148#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2149 rcu_read_unlock();
2150 cond_resched();
2151 rcu_read_lock();
2152#endif
2153}
2154
cfe43f47
VS
2155#ifdef CONFIG_PREEMPT_DYNAMIC
2156
2157extern bool preempt_model_none(void);
2158extern bool preempt_model_voluntary(void);
2159extern bool preempt_model_full(void);
2160
2161#else
2162
2163static inline bool preempt_model_none(void)
2164{
2165 return IS_ENABLED(CONFIG_PREEMPT_NONE);
2166}
2167static inline bool preempt_model_voluntary(void)
2168{
2169 return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2170}
2171static inline bool preempt_model_full(void)
2172{
2173 return IS_ENABLED(CONFIG_PREEMPT);
2174}
2175
2176#endif
2177
2178static inline bool preempt_model_rt(void)
2179{
2180 return IS_ENABLED(CONFIG_PREEMPT_RT);
2181}
2182
2183/*
2184 * Does the preemption model allow non-cooperative preemption?
2185 *
2186 * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2187 * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2188 * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2189 * PREEMPT_NONE model.
2190 */
2191static inline bool preempt_model_preemptible(void)
2192{
2193 return preempt_model_full() || preempt_model_rt();
2194}
2195
1da177e4
LT
2196/*
2197 * Does a critical section need to be broken due to another
c1a280b6 2198 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
95c354fe 2199 * but a general need for low latency)
1da177e4 2200 */
95c354fe 2201static inline int spin_needbreak(spinlock_t *lock)
1da177e4 2202{
c1a280b6 2203#ifdef CONFIG_PREEMPTION
95c354fe
NP
2204 return spin_is_contended(lock);
2205#else
1da177e4 2206 return 0;
95c354fe 2207#endif
1da177e4
LT
2208}
2209
a09a689a
BG
2210/*
2211 * Check if a rwlock is contended.
2212 * Returns non-zero if there is another task waiting on the rwlock.
2213 * Returns zero if the lock is not contended or the system / underlying
2214 * rwlock implementation does not support contention detection.
2215 * Technically does not depend on CONFIG_PREEMPTION, but a general need
2216 * for low latency.
2217 */
2218static inline int rwlock_needbreak(rwlock_t *lock)
2219{
2220#ifdef CONFIG_PREEMPTION
2221 return rwlock_is_contended(lock);
2222#else
2223 return 0;
2224#endif
2225}
2226
75f93fed
PZ
2227static __always_inline bool need_resched(void)
2228{
2229 return unlikely(tif_need_resched());
2230}
2231
1da177e4
LT
2232/*
2233 * Wrappers for p->thread_info->cpu access. No-op on UP.
2234 */
2235#ifdef CONFIG_SMP
2236
2237static inline unsigned int task_cpu(const struct task_struct *p)
2238{
c546951d 2239 return READ_ONCE(task_thread_info(p)->cpu);
1da177e4
LT
2240}
2241
c65cc870 2242extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
2243
2244#else
2245
2246static inline unsigned int task_cpu(const struct task_struct *p)
2247{
2248 return 0;
2249}
2250
2251static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2252{
2253}
2254
2255#endif /* CONFIG_SMP */
2256
a1dfb631 2257extern bool sched_task_on_rq(struct task_struct *p);
42a20f86 2258extern unsigned long get_wchan(struct task_struct *p);
e386b672 2259extern struct task_struct *cpu_curr_snapshot(int cpu);
a1dfb631 2260
d9345c65
PX
2261/*
2262 * In order to reduce various lock holder preemption latencies provide an
2263 * interface to see if a vCPU is currently running or not.
2264 *
2265 * This allows us to terminate optimistic spin loops and block, analogous to
2266 * the native optimistic spin heuristic of testing if the lock owner task is
2267 * running or not.
2268 */
2269#ifndef vcpu_is_preempted
42fd8baa
QC
2270static inline bool vcpu_is_preempted(int cpu)
2271{
2272 return false;
2273}
d9345c65
PX
2274#endif
2275
96f874e2
RR
2276extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2277extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 2278
82455257
DH
2279#ifndef TASK_SIZE_OF
2280#define TASK_SIZE_OF(tsk) TASK_SIZE
2281#endif
2282
a5418be9 2283#ifdef CONFIG_SMP
c0bed69d
KW
2284static inline bool owner_on_cpu(struct task_struct *owner)
2285{
2286 /*
2287 * As lock holder preemption issue, we both skip spinning if
2288 * task is not on cpu or its cpu is preempted
2289 */
4cf75fd4 2290 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
c0bed69d
KW
2291}
2292
a5418be9 2293/* Returns effective CPU energy utilization, as seen by the scheduler */
bb447999 2294unsigned long sched_cpu_util(int cpu);
a5418be9
VK
2295#endif /* CONFIG_SMP */
2296
d7822b1e
MD
2297#ifdef CONFIG_RSEQ
2298
2299/*
2300 * Map the event mask on the user-space ABI enum rseq_cs_flags
2301 * for direct mask checks.
2302 */
2303enum rseq_event_mask_bits {
2304 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2305 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2306 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2307};
2308
2309enum rseq_event_mask {
2310 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2311 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2312 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2313};
2314
2315static inline void rseq_set_notify_resume(struct task_struct *t)
2316{
2317 if (t->rseq)
2318 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2319}
2320
784e0300 2321void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 2322
784e0300
WD
2323static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2324 struct pt_regs *regs)
d7822b1e
MD
2325{
2326 if (current->rseq)
784e0300 2327 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2328}
2329
784e0300
WD
2330static inline void rseq_signal_deliver(struct ksignal *ksig,
2331 struct pt_regs *regs)
d7822b1e
MD
2332{
2333 preempt_disable();
2334 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2335 preempt_enable();
784e0300 2336 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2337}
2338
2339/* rseq_preempt() requires preemption to be disabled. */
2340static inline void rseq_preempt(struct task_struct *t)
2341{
2342 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2343 rseq_set_notify_resume(t);
2344}
2345
2346/* rseq_migrate() requires preemption to be disabled. */
2347static inline void rseq_migrate(struct task_struct *t)
2348{
2349 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2350 rseq_set_notify_resume(t);
2351}
2352
2353/*
2354 * If parent process has a registered restartable sequences area, the
463f550f 2355 * child inherits. Unregister rseq for a clone with CLONE_VM set.
d7822b1e
MD
2356 */
2357static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2358{
463f550f 2359 if (clone_flags & CLONE_VM) {
d7822b1e 2360 t->rseq = NULL;
ee3e3ac0 2361 t->rseq_len = 0;
d7822b1e
MD
2362 t->rseq_sig = 0;
2363 t->rseq_event_mask = 0;
2364 } else {
2365 t->rseq = current->rseq;
ee3e3ac0 2366 t->rseq_len = current->rseq_len;
d7822b1e
MD
2367 t->rseq_sig = current->rseq_sig;
2368 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
2369 }
2370}
2371
2372static inline void rseq_execve(struct task_struct *t)
2373{
2374 t->rseq = NULL;
ee3e3ac0 2375 t->rseq_len = 0;
d7822b1e
MD
2376 t->rseq_sig = 0;
2377 t->rseq_event_mask = 0;
2378}
2379
2380#else
2381
2382static inline void rseq_set_notify_resume(struct task_struct *t)
2383{
2384}
784e0300
WD
2385static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2386 struct pt_regs *regs)
d7822b1e
MD
2387{
2388}
784e0300
WD
2389static inline void rseq_signal_deliver(struct ksignal *ksig,
2390 struct pt_regs *regs)
d7822b1e
MD
2391{
2392}
2393static inline void rseq_preempt(struct task_struct *t)
2394{
2395}
2396static inline void rseq_migrate(struct task_struct *t)
2397{
2398}
2399static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2400{
2401}
2402static inline void rseq_execve(struct task_struct *t)
2403{
2404}
2405
2406#endif
2407
2408#ifdef CONFIG_DEBUG_RSEQ
2409
2410void rseq_syscall(struct pt_regs *regs);
2411
2412#else
2413
2414static inline void rseq_syscall(struct pt_regs *regs)
2415{
2416}
2417
2418#endif
2419
6e33cad0
PZ
2420#ifdef CONFIG_SCHED_CORE
2421extern void sched_core_free(struct task_struct *tsk);
85dd3f61 2422extern void sched_core_fork(struct task_struct *p);
7ac592aa
CH
2423extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2424 unsigned long uaddr);
6e33cad0
PZ
2425#else
2426static inline void sched_core_free(struct task_struct *tsk) { }
85dd3f61 2427static inline void sched_core_fork(struct task_struct *p) { }
6e33cad0
PZ
2428#endif
2429
d664e399
TG
2430extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2431
1da177e4 2432#endif