Commit | Line | Data |
---|---|---|
a63a5fa9 | 1 | /* SPDX-License-Identifier: GPL-2.0-only */ |
4a11b59d AV |
2 | /* |
3 | * Universal power supply monitor class | |
4 | * | |
5 | * Copyright © 2007 Anton Vorontsov <cbou@mail.ru> | |
6 | * Copyright © 2004 Szabolcs Gyurko | |
7 | * Copyright © 2003 Ian Molton <spyro@f2s.com> | |
8 | * | |
9 | * Modified: 2004, Oct Szabolcs Gyurko | |
4a11b59d AV |
10 | */ |
11 | ||
12 | #ifndef __LINUX_POWER_SUPPLY_H__ | |
13 | #define __LINUX_POWER_SUPPLY_H__ | |
14 | ||
297d716f | 15 | #include <linux/device.h> |
4a11b59d AV |
16 | #include <linux/workqueue.h> |
17 | #include <linux/leds.h> | |
6037802b TW |
18 | #include <linux/rwsem.h> |
19 | #include <linux/list.h> | |
948dcf96 | 20 | #include <linux/spinlock.h> |
d36240d2 | 21 | #include <linux/notifier.h> |
4a11b59d AV |
22 | |
23 | /* | |
24 | * All voltages, currents, charges, energies, time and temperatures in uV, | |
25 | * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise | |
26 | * stated. It's driver's job to convert its raw values to units in which | |
27 | * this class operates. | |
28 | */ | |
29 | ||
30 | /* | |
31 | * For systems where the charger determines the maximum battery capacity | |
32 | * the min and max fields should be used to present these values to user | |
33 | * space. Unused/unknown fields will not appear in sysfs. | |
34 | */ | |
35 | ||
36 | enum { | |
37 | POWER_SUPPLY_STATUS_UNKNOWN = 0, | |
38 | POWER_SUPPLY_STATUS_CHARGING, | |
39 | POWER_SUPPLY_STATUS_DISCHARGING, | |
40 | POWER_SUPPLY_STATUS_NOT_CHARGING, | |
41 | POWER_SUPPLY_STATUS_FULL, | |
42 | }; | |
43 | ||
ba6cc850 | 44 | /* What algorithm is the charger using? */ |
d24bf992 | 45 | enum power_supply_charge_type { |
ee8076ed AS |
46 | POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0, |
47 | POWER_SUPPLY_CHARGE_TYPE_NONE, | |
ba6cc850 NC |
48 | POWER_SUPPLY_CHARGE_TYPE_TRICKLE, /* slow speed */ |
49 | POWER_SUPPLY_CHARGE_TYPE_FAST, /* fast speed */ | |
50 | POWER_SUPPLY_CHARGE_TYPE_STANDARD, /* normal speed */ | |
51 | POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE, /* dynamically adjusted speed */ | |
52 | POWER_SUPPLY_CHARGE_TYPE_CUSTOM, /* use CHARGE_CONTROL_* props */ | |
46cbd0b0 | 53 | POWER_SUPPLY_CHARGE_TYPE_LONGLIFE, /* slow speed, longer life */ |
05f2281b | 54 | POWER_SUPPLY_CHARGE_TYPE_BYPASS, /* bypassing the charger */ |
ee8076ed AS |
55 | }; |
56 | ||
4a11b59d AV |
57 | enum { |
58 | POWER_SUPPLY_HEALTH_UNKNOWN = 0, | |
59 | POWER_SUPPLY_HEALTH_GOOD, | |
60 | POWER_SUPPLY_HEALTH_OVERHEAT, | |
61 | POWER_SUPPLY_HEALTH_DEAD, | |
62 | POWER_SUPPLY_HEALTH_OVERVOLTAGE, | |
df998c22 | 63 | POWER_SUPPLY_HEALTH_UNDERVOLTAGE, |
4a11b59d | 64 | POWER_SUPPLY_HEALTH_UNSPEC_FAILURE, |
7e386e6e | 65 | POWER_SUPPLY_HEALTH_COLD, |
a05be991 RP |
66 | POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE, |
67 | POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE, | |
e3e83cc6 | 68 | POWER_SUPPLY_HEALTH_OVERCURRENT, |
601c2a54 | 69 | POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED, |
98cc1b93 DM |
70 | POWER_SUPPLY_HEALTH_WARM, |
71 | POWER_SUPPLY_HEALTH_COOL, | |
72 | POWER_SUPPLY_HEALTH_HOT, | |
77d641ba | 73 | POWER_SUPPLY_HEALTH_NO_BATTERY, |
f4856c20 AW |
74 | POWER_SUPPLY_HEALTH_BLOWN_FUSE, |
75 | POWER_SUPPLY_HEALTH_CELL_IMBALANCE, | |
4a11b59d AV |
76 | }; |
77 | ||
78 | enum { | |
79 | POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0, | |
80 | POWER_SUPPLY_TECHNOLOGY_NiMH, | |
81 | POWER_SUPPLY_TECHNOLOGY_LION, | |
82 | POWER_SUPPLY_TECHNOLOGY_LIPO, | |
83 | POWER_SUPPLY_TECHNOLOGY_LiFe, | |
84 | POWER_SUPPLY_TECHNOLOGY_NiCd, | |
c7cc930f | 85 | POWER_SUPPLY_TECHNOLOGY_LiMn, |
4a11b59d AV |
86 | }; |
87 | ||
b294a290 AS |
88 | enum { |
89 | POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0, | |
90 | POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL, | |
91 | POWER_SUPPLY_CAPACITY_LEVEL_LOW, | |
92 | POWER_SUPPLY_CAPACITY_LEVEL_NORMAL, | |
93 | POWER_SUPPLY_CAPACITY_LEVEL_HIGH, | |
94 | POWER_SUPPLY_CAPACITY_LEVEL_FULL, | |
95 | }; | |
96 | ||
25a0bc2d JF |
97 | enum { |
98 | POWER_SUPPLY_SCOPE_UNKNOWN = 0, | |
99 | POWER_SUPPLY_SCOPE_SYSTEM, | |
100 | POWER_SUPPLY_SCOPE_DEVICE, | |
101 | }; | |
102 | ||
4a11b59d AV |
103 | enum power_supply_property { |
104 | /* Properties of type `int' */ | |
105 | POWER_SUPPLY_PROP_STATUS = 0, | |
ee8076ed | 106 | POWER_SUPPLY_PROP_CHARGE_TYPE, |
d24bf992 | 107 | POWER_SUPPLY_PROP_CHARGE_TYPES, |
4a11b59d AV |
108 | POWER_SUPPLY_PROP_HEALTH, |
109 | POWER_SUPPLY_PROP_PRESENT, | |
110 | POWER_SUPPLY_PROP_ONLINE, | |
b1b56872 | 111 | POWER_SUPPLY_PROP_AUTHENTIC, |
4a11b59d | 112 | POWER_SUPPLY_PROP_TECHNOLOGY, |
c955fe8e | 113 | POWER_SUPPLY_PROP_CYCLE_COUNT, |
c7cc930f DB |
114 | POWER_SUPPLY_PROP_VOLTAGE_MAX, |
115 | POWER_SUPPLY_PROP_VOLTAGE_MIN, | |
4a11b59d AV |
116 | POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, |
117 | POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, | |
118 | POWER_SUPPLY_PROP_VOLTAGE_NOW, | |
119 | POWER_SUPPLY_PROP_VOLTAGE_AVG, | |
a2ebfe2f | 120 | POWER_SUPPLY_PROP_VOLTAGE_OCV, |
a8adcc90 | 121 | POWER_SUPPLY_PROP_VOLTAGE_BOOT, |
fe3f6d09 | 122 | POWER_SUPPLY_PROP_CURRENT_MAX, |
4a11b59d AV |
123 | POWER_SUPPLY_PROP_CURRENT_NOW, |
124 | POWER_SUPPLY_PROP_CURRENT_AVG, | |
a8adcc90 | 125 | POWER_SUPPLY_PROP_CURRENT_BOOT, |
7faa144a AS |
126 | POWER_SUPPLY_PROP_POWER_NOW, |
127 | POWER_SUPPLY_PROP_POWER_AVG, | |
4a11b59d AV |
128 | POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, |
129 | POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN, | |
130 | POWER_SUPPLY_PROP_CHARGE_FULL, | |
131 | POWER_SUPPLY_PROP_CHARGE_EMPTY, | |
132 | POWER_SUPPLY_PROP_CHARGE_NOW, | |
133 | POWER_SUPPLY_PROP_CHARGE_AVG, | |
8e552c36 | 134 | POWER_SUPPLY_PROP_CHARGE_COUNTER, |
3824c477 | 135 | POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, |
2815b786 | 136 | POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, |
3824c477 | 137 | POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, |
2815b786 | 138 | POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, |
ea2ce92e RP |
139 | POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, |
140 | POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, | |
813cab8f NC |
141 | POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */ |
142 | POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */ | |
1b0b6cc8 | 143 | POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR, |
6bb1d272 | 144 | POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, |
a4496d52 EBS |
145 | POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT, |
146 | POWER_SUPPLY_PROP_INPUT_POWER_LIMIT, | |
4a11b59d AV |
147 | POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, |
148 | POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN, | |
149 | POWER_SUPPLY_PROP_ENERGY_FULL, | |
150 | POWER_SUPPLY_PROP_ENERGY_EMPTY, | |
151 | POWER_SUPPLY_PROP_ENERGY_NOW, | |
152 | POWER_SUPPLY_PROP_ENERGY_AVG, | |
153 | POWER_SUPPLY_PROP_CAPACITY, /* in percents! */ | |
e908c418 RP |
154 | POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */ |
155 | POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */ | |
bac705ab | 156 | POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */ |
b294a290 | 157 | POWER_SUPPLY_PROP_CAPACITY_LEVEL, |
4a11b59d | 158 | POWER_SUPPLY_PROP_TEMP, |
6bb1d272 JT |
159 | POWER_SUPPLY_PROP_TEMP_MAX, |
160 | POWER_SUPPLY_PROP_TEMP_MIN, | |
e908c418 RP |
161 | POWER_SUPPLY_PROP_TEMP_ALERT_MIN, |
162 | POWER_SUPPLY_PROP_TEMP_ALERT_MAX, | |
4a11b59d | 163 | POWER_SUPPLY_PROP_TEMP_AMBIENT, |
e908c418 RP |
164 | POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN, |
165 | POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX, | |
4a11b59d AV |
166 | POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, |
167 | POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, | |
168 | POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, | |
169 | POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, | |
5f487cd3 | 170 | POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */ |
cf450041 | 171 | POWER_SUPPLY_PROP_USB_TYPE, |
25a0bc2d | 172 | POWER_SUPPLY_PROP_SCOPE, |
413de34a | 173 | POWER_SUPPLY_PROP_PRECHARGE_CURRENT, |
6bb1d272 | 174 | POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, |
a8adcc90 | 175 | POWER_SUPPLY_PROP_CALIBRATE, |
feabe49e SR |
176 | POWER_SUPPLY_PROP_MANUFACTURE_YEAR, |
177 | POWER_SUPPLY_PROP_MANUFACTURE_MONTH, | |
178 | POWER_SUPPLY_PROP_MANUFACTURE_DAY, | |
4a11b59d AV |
179 | /* Properties of type `const char *' */ |
180 | POWER_SUPPLY_PROP_MODEL_NAME, | |
181 | POWER_SUPPLY_PROP_MANUFACTURER, | |
7c2670bb | 182 | POWER_SUPPLY_PROP_SERIAL_NUMBER, |
4a11b59d AV |
183 | }; |
184 | ||
185 | enum power_supply_type { | |
9b887227 KM |
186 | POWER_SUPPLY_TYPE_UNKNOWN = 0, |
187 | POWER_SUPPLY_TYPE_BATTERY, | |
4a11b59d AV |
188 | POWER_SUPPLY_TYPE_UPS, |
189 | POWER_SUPPLY_TYPE_MAINS, | |
71399aa5 BL |
190 | POWER_SUPPLY_TYPE_USB, /* Standard Downstream Port */ |
191 | POWER_SUPPLY_TYPE_USB_DCP, /* Dedicated Charging Port */ | |
192 | POWER_SUPPLY_TYPE_USB_CDP, /* Charging Downstream Port */ | |
193 | POWER_SUPPLY_TYPE_USB_ACA, /* Accessory Charger Adapters */ | |
194 | POWER_SUPPLY_TYPE_USB_TYPE_C, /* Type C Port */ | |
195 | POWER_SUPPLY_TYPE_USB_PD, /* Power Delivery Port */ | |
196 | POWER_SUPPLY_TYPE_USB_PD_DRP, /* PD Dual Role Port */ | |
197 | POWER_SUPPLY_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ | |
5ca937fb | 198 | POWER_SUPPLY_TYPE_WIRELESS, /* Wireless */ |
4a11b59d AV |
199 | }; |
200 | ||
cf450041 AT |
201 | enum power_supply_usb_type { |
202 | POWER_SUPPLY_USB_TYPE_UNKNOWN = 0, | |
203 | POWER_SUPPLY_USB_TYPE_SDP, /* Standard Downstream Port */ | |
204 | POWER_SUPPLY_USB_TYPE_DCP, /* Dedicated Charging Port */ | |
205 | POWER_SUPPLY_USB_TYPE_CDP, /* Charging Downstream Port */ | |
206 | POWER_SUPPLY_USB_TYPE_ACA, /* Accessory Charger Adapters */ | |
207 | POWER_SUPPLY_USB_TYPE_C, /* Type C Port */ | |
208 | POWER_SUPPLY_USB_TYPE_PD, /* Power Delivery Port */ | |
209 | POWER_SUPPLY_USB_TYPE_PD_DRP, /* PD Dual Role Port */ | |
210 | POWER_SUPPLY_USB_TYPE_PD_PPS, /* PD Programmable Power Supply */ | |
211 | POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ | |
212 | }; | |
213 | ||
1b0b6cc8 TW |
214 | enum power_supply_charge_behaviour { |
215 | POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0, | |
216 | POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE, | |
6c9ffa2a | 217 | POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE_AWAKE, |
1b0b6cc8 TW |
218 | POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE, |
219 | }; | |
220 | ||
d36240d2 PR |
221 | enum power_supply_notifier_events { |
222 | PSY_EVENT_PROP_CHANGED, | |
223 | }; | |
224 | ||
4a11b59d AV |
225 | union power_supply_propval { |
226 | int intval; | |
227 | const char *strval; | |
228 | }; | |
229 | ||
b50df95c | 230 | struct device_node; |
297d716f | 231 | struct power_supply; |
b50df95c | 232 | |
297d716f | 233 | /* Run-time specific power supply configuration */ |
2dc9215d KK |
234 | struct power_supply_config { |
235 | struct device_node *of_node; | |
ece711b5 AT |
236 | struct fwnode_handle *fwnode; |
237 | ||
2dc9215d KK |
238 | /* Driver private data */ |
239 | void *drv_data; | |
240 | ||
cef8fe6a SR |
241 | /* Device specific sysfs attributes */ |
242 | const struct attribute_group **attr_grp; | |
243 | ||
2dc9215d KK |
244 | char **supplied_to; |
245 | size_t num_supplicants; | |
49000fee TW |
246 | |
247 | bool no_wakeup_source; | |
2dc9215d KK |
248 | }; |
249 | ||
297d716f KK |
250 | /* Description of power supply */ |
251 | struct power_supply_desc { | |
4a11b59d AV |
252 | const char *name; |
253 | enum power_supply_type type; | |
4e61f1e9 | 254 | u8 charge_behaviours; |
d24bf992 | 255 | u32 charge_types; |
364ea7cc | 256 | u32 usb_types; |
9ba2353b | 257 | const enum power_supply_property *properties; |
4a11b59d AV |
258 | size_t num_properties; |
259 | ||
bc154056 KK |
260 | /* |
261 | * Functions for drivers implementing power supply class. | |
262 | * These shouldn't be called directly by other drivers for accessing | |
263 | * this power supply. Instead use power_supply_*() functions (for | |
264 | * example power_supply_get_property()). | |
265 | */ | |
4a11b59d AV |
266 | int (*get_property)(struct power_supply *psy, |
267 | enum power_supply_property psp, | |
268 | union power_supply_propval *val); | |
0011d2d4 DM |
269 | int (*set_property)(struct power_supply *psy, |
270 | enum power_supply_property psp, | |
271 | const union power_supply_propval *val); | |
5c6e3a97 KK |
272 | /* |
273 | * property_is_writeable() will be called during registration | |
274 | * of power supply. If this happens during device probe then it must | |
275 | * not access internal data of device (because probe did not end). | |
276 | */ | |
0011d2d4 DM |
277 | int (*property_is_writeable)(struct power_supply *psy, |
278 | enum power_supply_property psp); | |
4a11b59d AV |
279 | void (*external_power_changed)(struct power_supply *psy); |
280 | ||
a69d82b9 KK |
281 | /* |
282 | * Set if thermal zone should not be created for this power supply. | |
283 | * For example for virtual supplies forwarding calls to actual | |
284 | * sensors or other supplies. | |
285 | */ | |
286 | bool no_thermal; | |
4a11b59d AV |
287 | /* For APM emulation, think legacy userspace. */ |
288 | int use_for_apm; | |
297d716f KK |
289 | }; |
290 | ||
6037802b | 291 | struct power_supply_ext { |
288a2cab | 292 | const char *const name; |
6037802b | 293 | u8 charge_behaviours; |
c1f7375a | 294 | u32 charge_types; |
6037802b TW |
295 | const enum power_supply_property *properties; |
296 | size_t num_properties; | |
297 | ||
298 | int (*get_property)(struct power_supply *psy, | |
299 | const struct power_supply_ext *ext, | |
300 | void *data, | |
301 | enum power_supply_property psp, | |
302 | union power_supply_propval *val); | |
303 | int (*set_property)(struct power_supply *psy, | |
304 | const struct power_supply_ext *ext, | |
305 | void *data, | |
306 | enum power_supply_property psp, | |
307 | const union power_supply_propval *val); | |
308 | int (*property_is_writeable)(struct power_supply *psy, | |
309 | const struct power_supply_ext *ext, | |
310 | void *data, | |
311 | enum power_supply_property psp); | |
312 | }; | |
313 | ||
297d716f KK |
314 | struct power_supply { |
315 | const struct power_supply_desc *desc; | |
316 | ||
317 | char **supplied_to; | |
318 | size_t num_supplicants; | |
319 | ||
320 | char **supplied_from; | |
321 | size_t num_supplies; | |
4a11b59d | 322 | |
e44ea364 KK |
323 | /* Driver private data */ |
324 | void *drv_data; | |
325 | ||
4a11b59d | 326 | /* private */ |
297d716f | 327 | struct device dev; |
4a11b59d | 328 | struct work_struct changed_work; |
7f1a57fd | 329 | struct delayed_work deferred_register_work; |
948dcf96 ZM |
330 | spinlock_t changed_lock; |
331 | bool changed; | |
6037802b | 332 | bool update_groups; |
e3805385 | 333 | bool initialized; |
3ffa6583 | 334 | bool removing; |
bc154056 | 335 | atomic_t use_cnt; |
27a2195e | 336 | struct power_supply_battery_info *battery_info; |
6037802b TW |
337 | struct rw_semaphore extensions_sem; /* protects "extensions" */ |
338 | struct list_head extensions; | |
3be330bf JT |
339 | #ifdef CONFIG_THERMAL |
340 | struct thermal_zone_device *tzd; | |
952aeeb3 | 341 | struct thermal_cooling_device *tcd; |
3be330bf | 342 | #endif |
4a11b59d AV |
343 | |
344 | #ifdef CONFIG_LEDS_TRIGGERS | |
6c951a84 | 345 | struct led_trigger *trig; |
4a11b59d | 346 | struct led_trigger *charging_trig; |
4a11b59d | 347 | struct led_trigger *full_trig; |
6501f728 | 348 | struct led_trigger *charging_blink_full_solid_trig; |
9af12f57 | 349 | struct led_trigger *charging_orange_full_green_trig; |
4a11b59d AV |
350 | #endif |
351 | }; | |
352 | ||
f5220403 TW |
353 | #define dev_to_psy(__dev) container_of_const(__dev, struct power_supply, dev) |
354 | ||
4a11b59d AV |
355 | /* |
356 | * This is recommended structure to specify static power supply parameters. | |
357 | * Generic one, parametrizable for different power supplies. Power supply | |
358 | * class itself does not use it, but that's what implementing most platform | |
359 | * drivers, should try reuse for consistency. | |
360 | */ | |
361 | ||
362 | struct power_supply_info { | |
363 | const char *name; | |
364 | int technology; | |
365 | int voltage_max_design; | |
366 | int voltage_min_design; | |
367 | int charge_full_design; | |
368 | int charge_empty_design; | |
369 | int energy_full_design; | |
370 | int energy_empty_design; | |
371 | int use_for_apm; | |
372 | }; | |
373 | ||
3afb50d7 BW |
374 | struct power_supply_battery_ocv_table { |
375 | int ocv; /* microVolts */ | |
376 | int capacity; /* percent */ | |
377 | }; | |
378 | ||
65dbad71 BW |
379 | struct power_supply_resistance_temp_table { |
380 | int temp; /* celsius */ | |
381 | int resistance; /* internal resistance percent */ | |
382 | }; | |
383 | ||
e9e7d165 LW |
384 | struct power_supply_vbat_ri_table { |
385 | int vbat_uv; /* Battery voltage in microvolt */ | |
386 | int ri_uohm; /* Internal resistance in microohm */ | |
387 | }; | |
388 | ||
d72ce7d3 LW |
389 | /** |
390 | * struct power_supply_maintenance_charge_table - setting for maintenace charging | |
391 | * @charge_current_max_ua: maintenance charging current that is used to keep | |
392 | * the charge of the battery full as current is consumed after full charging. | |
393 | * The corresponding charge_voltage_max_uv is used as a safeguard: when we | |
394 | * reach this voltage the maintenance charging current is turned off. It is | |
395 | * turned back on if we fall below this voltage. | |
396 | * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit | |
397 | * lower than the constant_charge_voltage_max_uv. We can apply this settings | |
398 | * charge_current_max_ua until we get back up to this voltage. | |
399 | * @safety_timer_minutes: maintenance charging safety timer, with an expiry | |
400 | * time in minutes. We will only use maintenance charging in this setting | |
401 | * for a certain amount of time, then we will first move to the next | |
402 | * maintenance charge current and voltage pair in respective array and wait | |
403 | * for the next safety timer timeout, or, if we reached the last maintencance | |
404 | * charging setting, disable charging until we reach | |
405 | * charge_restart_voltage_uv and restart ordinary CC/CV charging from there. | |
406 | * These timers should be chosen to align with the typical discharge curve | |
407 | * for the battery. | |
408 | * | |
a1c7c1a4 LW |
409 | * Ordinary CC/CV charging will stop charging when the charge current goes |
410 | * below charge_term_current_ua, and then restart it (if the device is still | |
411 | * plugged into the charger) at charge_restart_voltage_uv. This happens in most | |
412 | * consumer products because the power usage while connected to a charger is | |
413 | * not zero, and devices are not manufactured to draw power directly from the | |
414 | * charger: instead they will at all times dissipate the battery a little, like | |
415 | * the power used in standby mode. This will over time give a charge graph | |
416 | * such as this: | |
417 | * | |
418 | * Energy | |
419 | * ^ ... ... ... ... ... ... ... | |
420 | * | . . . . . . . . . . . . . | |
421 | * | .. . .. . .. . .. . .. . .. . .. | |
422 | * |. .. .. .. .. .. .. | |
423 | * +-------------------------------------------------------------------> t | |
424 | * | |
425 | * Practically this means that the Li-ions are wandering back and forth in the | |
426 | * battery and this causes degeneration of the battery anode and cathode. | |
427 | * To prolong the life of the battery, maintenance charging is applied after | |
428 | * reaching charge_term_current_ua to hold up the charge in the battery while | |
429 | * consuming power, thus lowering the wear on the battery: | |
430 | * | |
431 | * Energy | |
432 | * ^ ....................................... | |
433 | * | . ...................... | |
434 | * | .. | |
435 | * |. | |
436 | * +-------------------------------------------------------------------> t | |
437 | * | |
438 | * Maintenance charging uses the voltages from this table: a table of settings | |
439 | * is traversed using a slightly lower current and voltage than what is used for | |
d72ce7d3 LW |
440 | * CC/CV charging. The maintenance charging will for safety reasons not go on |
441 | * indefinately: we lower the current and voltage with successive maintenance | |
442 | * settings, then disable charging completely after we reach the last one, | |
443 | * and after that we do not restart charging until we reach | |
444 | * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart | |
445 | * ordinary CC/CV charging from there. | |
446 | * | |
447 | * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged | |
a1c7c1a4 LW |
448 | * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to |
449 | * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours. | |
d72ce7d3 LW |
450 | * After this the charge cycle is restarted waiting for |
451 | * charge_restart_voltage_uv. | |
452 | * | |
453 | * For most mobile electronics this type of maintenance charging is enough for | |
454 | * the user to disconnect the device and make use of it before both maintenance | |
a1c7c1a4 LW |
455 | * charging cycles are complete, if the current and voltage has been chosen |
456 | * appropriately. These need to be determined from battery discharge curves | |
457 | * and expected standby current. | |
458 | * | |
459 | * If the voltage anyway drops to charge_restart_voltage_uv during maintenance | |
460 | * charging, ordinary CC/CV charging is restarted. This can happen if the | |
461 | * device is e.g. actively used during charging, so more current is drawn than | |
462 | * the expected stand-by current. Also overvoltage protection will be applied | |
463 | * as usual. | |
d72ce7d3 LW |
464 | */ |
465 | struct power_supply_maintenance_charge_table { | |
466 | int charge_current_max_ua; | |
467 | int charge_voltage_max_uv; | |
468 | int charge_safety_timer_minutes; | |
469 | }; | |
470 | ||
3afb50d7 BW |
471 | #define POWER_SUPPLY_OCV_TEMP_MAX 20 |
472 | ||
e0dbd7b0 LW |
473 | /** |
474 | * struct power_supply_battery_info - information about batteries | |
475 | * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum | |
476 | * @energy_full_design_uwh: energy content when fully charged in microwatt | |
477 | * hours | |
478 | * @charge_full_design_uah: charge content when fully charged in microampere | |
479 | * hours | |
480 | * @voltage_min_design_uv: minimum voltage across the poles when the battery | |
481 | * is at minimum voltage level in microvolts. If the voltage drops below this | |
482 | * level the battery will need precharging when using CC/CV charging. | |
483 | * @voltage_max_design_uv: voltage across the poles when the battery is fully | |
484 | * charged in microvolts. This is the "nominal voltage" i.e. the voltage | |
485 | * printed on the label of the battery. | |
486 | * @tricklecharge_current_ua: the tricklecharge current used when trickle | |
487 | * charging the battery in microamperes. This is the charging phase when the | |
488 | * battery is completely empty and we need to carefully trickle in some | |
489 | * charge until we reach the precharging voltage. | |
490 | * @precharge_current_ua: current to use in the precharge phase in microamperes, | |
491 | * the precharge rate is limited by limiting the current to this value. | |
492 | * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in | |
493 | * microvolts. When we pass this voltage we will nominally switch over to the | |
494 | * CC (constant current) charging phase defined by constant_charge_current_ua | |
495 | * and constant_charge_voltage_max_uv. | |
496 | * @charge_term_current_ua: when the current in the CV (constant voltage) | |
497 | * charging phase drops below this value in microamperes the charging will | |
498 | * terminate completely and not restart until the voltage over the battery | |
499 | * poles reach charge_restart_voltage_uv unless we use maintenance charging. | |
500 | * @charge_restart_voltage_uv: when the battery has been fully charged by | |
501 | * CC/CV charging and charging has been disabled, and the voltage subsequently | |
502 | * drops below this value in microvolts, the charging will be restarted | |
503 | * (typically using CV charging). | |
504 | * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage | |
505 | * voltage_max_design_uv and we reach this voltage level, all charging must | |
506 | * stop and emergency procedures take place, such as shutting down the system | |
507 | * in some cases. | |
508 | * @constant_charge_current_max_ua: current in microamperes to use in the CC | |
509 | * (constant current) charging phase. The charging rate is limited | |
510 | * by this current. This is the main charging phase and as the current is | |
511 | * constant into the battery the voltage slowly ascends to | |
512 | * constant_charge_voltage_max_uv. | |
513 | * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of | |
514 | * the CC (constant current) charging phase and the beginning of the CV | |
515 | * (constant voltage) charging phase. | |
d72ce7d3 LW |
516 | * @maintenance_charge: an array of maintenance charging settings to be used |
517 | * after the main CC/CV charging phase is complete. | |
518 | * @maintenance_charge_size: the number of maintenance charging settings in | |
519 | * maintenance_charge. | |
0e8b903b LW |
520 | * @alert_low_temp_charge_current_ua: The charging current to use if the battery |
521 | * enters low alert temperature, i.e. if the internal temperature is between | |
522 | * temp_alert_min and temp_min. No matter the charging phase, this | |
523 | * and alert_high_temp_charge_voltage_uv will be applied. | |
524 | * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua, | |
525 | * but for the charging voltage. | |
526 | * @alert_high_temp_charge_current_ua: The charging current to use if the | |
527 | * battery enters high alert temperature, i.e. if the internal temperature is | |
528 | * between temp_alert_max and temp_max. No matter the charging phase, this | |
529 | * and alert_high_temp_charge_voltage_uv will be applied, usually lowering | |
530 | * the charging current as an evasive manouver. | |
531 | * @alert_high_temp_charge_voltage_uv: Same as | |
532 | * alert_high_temp_charge_current_ua, but for the charging voltage. | |
e0dbd7b0 LW |
533 | * @factory_internal_resistance_uohm: the internal resistance of the battery |
534 | * at fabrication time, expressed in microohms. This resistance will vary | |
535 | * depending on the lifetime and charge of the battery, so this is just a | |
e9e7d165 LW |
536 | * nominal ballpark figure. This internal resistance is given for the state |
537 | * when the battery is discharging. | |
538 | * @factory_internal_resistance_charging_uohm: the internal resistance of the | |
539 | * battery at fabrication time while charging, expressed in microohms. | |
540 | * The charging process will affect the internal resistance of the battery | |
541 | * so this value provides a better resistance under these circumstances. | |
542 | * This resistance will vary depending on the lifetime and charge of the | |
543 | * battery, so this is just a nominal ballpark figure. | |
e0dbd7b0 LW |
544 | * @ocv_temp: array indicating the open circuit voltage (OCV) capacity |
545 | * temperature indices. This is an array of temperatures in degrees Celsius | |
546 | * indicating which capacity table to use for a certain temperature, since | |
547 | * the capacity for reasons of chemistry will be different at different | |
548 | * temperatures. Determining capacity is a multivariate problem and the | |
549 | * temperature is the first variable we determine. | |
550 | * @temp_ambient_alert_min: the battery will go outside of operating conditions | |
551 | * when the ambient temperature goes below this temperature in degrees | |
552 | * Celsius. | |
553 | * @temp_ambient_alert_max: the battery will go outside of operating conditions | |
554 | * when the ambient temperature goes above this temperature in degrees | |
555 | * Celsius. | |
556 | * @temp_alert_min: the battery should issue an alert if the internal | |
557 | * temperature goes below this temperature in degrees Celsius. | |
558 | * @temp_alert_max: the battery should issue an alert if the internal | |
559 | * temperature goes above this temperature in degrees Celsius. | |
560 | * @temp_min: the battery will go outside of operating conditions when | |
561 | * the internal temperature goes below this temperature in degrees Celsius. | |
562 | * Normally this means the system should shut down. | |
563 | * @temp_max: the battery will go outside of operating conditions when | |
564 | * the internal temperature goes above this temperature in degrees Celsius. | |
565 | * Normally this means the system should shut down. | |
566 | * @ocv_table: for each entry in ocv_temp there is a corresponding entry in | |
567 | * ocv_table and a size for each entry in ocv_table_size. These arrays | |
568 | * determine the capacity in percent in relation to the voltage in microvolts | |
569 | * at the indexed temperature. | |
570 | * @ocv_table_size: for each entry in ocv_temp this array is giving the size of | |
571 | * each entry in the array of capacity arrays in ocv_table. | |
572 | * @resist_table: this is a table that correlates a battery temperature to the | |
573 | * expected internal resistance at this temperature. The resistance is given | |
574 | * as a percentage of factory_internal_resistance_uohm. Knowing the | |
575 | * resistance of the battery is usually necessary for calculating the open | |
576 | * circuit voltage (OCV) that is then used with the ocv_table to calculate | |
577 | * the capacity of the battery. The resist_table must be ordered descending | |
578 | * by temperature: highest temperature with lowest resistance first, lowest | |
579 | * temperature with highest resistance last. | |
580 | * @resist_table_size: the number of items in the resist_table. | |
e9e7d165 LW |
581 | * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT) |
582 | * to internal resistance (Ri). The resistance is given in microohm for the | |
583 | * corresponding voltage in microvolts. The internal resistance is used to | |
584 | * determine the open circuit voltage so that we can determine the capacity | |
585 | * of the battery. These voltages to resistance tables apply when the battery | |
586 | * is discharging. The table must be ordered descending by voltage: highest | |
587 | * voltage first. | |
588 | * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging | |
589 | * table. | |
590 | * @vbat2ri_charging: same function as vbat2ri_discharging but for the state | |
591 | * when the battery is charging. Being under charge changes the battery's | |
592 | * internal resistance characteristics so a separate table is needed.* | |
593 | * The table must be ordered descending by voltage: highest voltage first. | |
594 | * @vbat2ri_charging_size: the number of items in the vbat2ri_charging | |
595 | * table. | |
1f918e0f LW |
596 | * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance |
597 | * in ohms for this battery, if an identification resistor is mounted | |
598 | * between a third battery terminal and ground. This scheme is used by a lot | |
599 | * of mobile device batteries. | |
600 | * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance, | |
601 | * for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the | |
602 | * tolerance is 10% we will detect a proper battery if the BTI resistance | |
603 | * is between 6300 and 7700 Ohm. | |
e0dbd7b0 | 604 | * |
c08b1f45 LB |
605 | * This is the recommended struct to manage static battery parameters, |
606 | * populated by power_supply_get_battery_info(). Most platform drivers should | |
607 | * use these for consistency. | |
e0dbd7b0 | 608 | * |
c08b1f45 | 609 | * Its field names must correspond to elements in enum power_supply_property. |
e9e7d165 LW |
610 | * The default field value is -EINVAL or NULL for pointers. |
611 | * | |
612 | * CC/CV CHARGING: | |
e0dbd7b0 LW |
613 | * |
614 | * The charging parameters here assume a CC/CV charging scheme. This method | |
615 | * is most common with Lithium Ion batteries (other methods are possible) and | |
616 | * looks as follows: | |
617 | * | |
618 | * ^ Battery voltage | |
619 | * | --- overvoltage_limit_uv | |
620 | * | | |
621 | * | ................................................... | |
622 | * | .. constant_charge_voltage_max_uv | |
623 | * | .. | |
624 | * | . | |
625 | * | . | |
626 | * | . | |
627 | * | . | |
628 | * | . | |
629 | * | .. precharge_voltage_max_uv | |
630 | * | .. | |
631 | * |. (trickle charging) | |
632 | * +------------------------------------------------------------------> time | |
633 | * | |
634 | * ^ Current into the battery | |
635 | * | | |
636 | * | ............. constant_charge_current_max_ua | |
637 | * | . . | |
638 | * | . . | |
639 | * | . . | |
640 | * | . . | |
641 | * | . .. | |
642 | * | . .... | |
643 | * | . ..... | |
644 | * | ... precharge_current_ua ....... charge_term_current_ua | |
645 | * | . . | |
646 | * | . . | |
647 | * |.... tricklecharge_current_ua . | |
648 | * | . | |
649 | * +-----------------------------------------------------------------> time | |
650 | * | |
651 | * These diagrams are synchronized on time and the voltage and current | |
652 | * follow each other. | |
653 | * | |
654 | * With CC/CV charging commence over time like this for an empty battery: | |
655 | * | |
656 | * 1. When the battery is completely empty it may need to be charged with | |
657 | * an especially small current so that electrons just "trickle in", | |
658 | * this is the tricklecharge_current_ua. | |
659 | * | |
660 | * 2. Next a small initial pre-charge current (precharge_current_ua) | |
661 | * is applied if the voltage is below precharge_voltage_max_uv until we | |
662 | * reach precharge_voltage_max_uv. CAUTION: in some texts this is referred | |
663 | * to as "trickle charging" but the use in the Linux kernel is different | |
664 | * see below! | |
665 | * | |
666 | * 3. Then the main charging current is applied, which is called the constant | |
667 | * current (CC) phase. A current regulator is set up to allow | |
668 | * constant_charge_current_max_ua of current to flow into the battery. | |
669 | * The chemical reaction in the battery will make the voltage go up as | |
670 | * charge goes into the battery. This current is applied until we reach | |
671 | * the constant_charge_voltage_max_uv voltage. | |
672 | * | |
673 | * 4. At this voltage we switch over to the constant voltage (CV) phase. This | |
674 | * means we allow current to go into the battery, but we keep the voltage | |
675 | * fixed. This current will continue to charge the battery while keeping | |
676 | * the voltage the same. A chemical reaction in the battery goes on | |
677 | * storing energy without affecting the voltage. Over time the current | |
678 | * will slowly drop and when we reach charge_term_current_ua we will | |
679 | * end the constant voltage phase. | |
680 | * | |
681 | * After this the battery is fully charged, and if we do not support maintenance | |
682 | * charging, the charging will not restart until power dissipation makes the | |
683 | * voltage fall so that we reach charge_restart_voltage_uv and at this point | |
684 | * we restart charging at the appropriate phase, usually this will be inside | |
685 | * the CV phase. | |
686 | * | |
687 | * If we support maintenance charging the voltage is however kept high after | |
688 | * the CV phase with a very low current. This is meant to let the same charge | |
689 | * go in for usage while the charger is still connected, mainly for | |
690 | * dissipation for the power consuming entity while connected to the | |
691 | * charger. | |
692 | * | |
693 | * All charging MUST terminate if the overvoltage_limit_uv is ever reached. | |
694 | * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or | |
695 | * explosions. | |
696 | * | |
e9e7d165 LW |
697 | * DETERMINING BATTERY CAPACITY: |
698 | * | |
699 | * Several members of the struct deal with trying to determine the remaining | |
700 | * capacity in the battery, usually as a percentage of charge. In practice | |
701 | * many chargers uses a so-called fuel gauge or coloumb counter that measure | |
702 | * how much charge goes into the battery and how much goes out (+/- leak | |
703 | * consumption). This does not help if we do not know how much capacity the | |
704 | * battery has to begin with, such as when it is first used or was taken out | |
705 | * and charged in a separate charger. Therefore many capacity algorithms use | |
706 | * the open circuit voltage with a look-up table to determine the rough | |
707 | * capacity of the battery. The open circuit voltage can be conceptualized | |
708 | * with an ideal voltage source (V) in series with an internal resistance (Ri) | |
709 | * like this: | |
710 | * | |
711 | * +-------> IBAT >----------------+ | |
712 | * | ^ | | |
713 | * [ ] Ri | | | |
714 | * | | VBAT | | |
715 | * o <---------- | | | |
716 | * +| ^ | [ ] Rload | |
717 | * .---. | | | | |
718 | * | V | | OCV | | | |
719 | * '---' | | | | |
720 | * | | | | | |
721 | * GND +-------------------------------+ | |
722 | * | |
723 | * If we disconnect the load (here simplified as a fixed resistance Rload) | |
724 | * and measure VBAT with a infinite impedance voltage meter we will get | |
725 | * VBAT = OCV and this assumption is sometimes made even under load, assuming | |
726 | * Rload is insignificant. However this will be of dubious quality because the | |
727 | * load is rarely that small and Ri is strongly nonlinear depending on | |
728 | * temperature and how much capacity is left in the battery due to the | |
729 | * chemistry involved. | |
730 | * | |
731 | * In many practical applications we cannot just disconnect the battery from | |
732 | * the load, so instead we often try to measure the instantaneous IBAT (the | |
733 | * current out from the battery), estimate the Ri and thus calculate the | |
734 | * voltage drop over Ri and compensate like this: | |
735 | * | |
736 | * OCV = VBAT - (IBAT * Ri) | |
737 | * | |
738 | * The tables vbat2ri_discharging and vbat2ri_charging are used to determine | |
739 | * (by interpolation) the Ri from the VBAT under load. These curves are highly | |
740 | * nonlinear and may need many datapoints but can be found in datasheets for | |
741 | * some batteries. This gives the compensated open circuit voltage (OCV) for | |
742 | * the battery even under load. Using this method will also compensate for | |
743 | * temperature changes in the environment: this will also make the internal | |
744 | * resistance change, and it will affect the VBAT under load, so correlating | |
745 | * VBAT to Ri takes both remaining capacity and temperature into consideration. | |
746 | * | |
747 | * Alternatively a manufacturer can specify how the capacity of the battery | |
748 | * is dependent on the battery temperature which is the main factor affecting | |
749 | * Ri. As we know all checmical reactions are faster when it is warm and slower | |
750 | * when it is cold. You can put in 1500mAh and only get 800mAh out before the | |
751 | * voltage drops too low for example. This effect is also highly nonlinear and | |
752 | * the purpose of the table resist_table: this will take a temperature and | |
753 | * tell us how big percentage of Ri the specified temperature correlates to. | |
754 | * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees | |
755 | * Celsius. | |
756 | * | |
e0dbd7b0 | 757 | * The power supply class itself doesn't use this struct as of now. |
c08b1f45 LB |
758 | */ |
759 | ||
760 | struct power_supply_battery_info { | |
e0dbd7b0 LW |
761 | unsigned int technology; |
762 | int energy_full_design_uwh; | |
763 | int charge_full_design_uah; | |
764 | int voltage_min_design_uv; | |
765 | int voltage_max_design_uv; | |
766 | int tricklecharge_current_ua; | |
767 | int precharge_current_ua; | |
768 | int precharge_voltage_max_uv; | |
769 | int charge_term_current_ua; | |
770 | int charge_restart_voltage_uv; | |
771 | int overvoltage_limit_uv; | |
772 | int constant_charge_current_max_ua; | |
773 | int constant_charge_voltage_max_uv; | |
0b209ec8 | 774 | const struct power_supply_maintenance_charge_table *maintenance_charge; |
d72ce7d3 | 775 | int maintenance_charge_size; |
0e8b903b LW |
776 | int alert_low_temp_charge_current_ua; |
777 | int alert_low_temp_charge_voltage_uv; | |
778 | int alert_high_temp_charge_current_ua; | |
779 | int alert_high_temp_charge_voltage_uv; | |
e0dbd7b0 | 780 | int factory_internal_resistance_uohm; |
e9e7d165 | 781 | int factory_internal_resistance_charging_uohm; |
e0dbd7b0 LW |
782 | int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX]; |
783 | int temp_ambient_alert_min; | |
784 | int temp_ambient_alert_max; | |
785 | int temp_alert_min; | |
786 | int temp_alert_max; | |
787 | int temp_min; | |
788 | int temp_max; | |
ce20d5b9 | 789 | const struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX]; |
3afb50d7 | 790 | int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX]; |
58797abe | 791 | const struct power_supply_resistance_temp_table *resist_table; |
65dbad71 | 792 | int resist_table_size; |
5d55721d | 793 | const struct power_supply_vbat_ri_table *vbat2ri_discharging; |
e9e7d165 | 794 | int vbat2ri_discharging_size; |
5d55721d | 795 | const struct power_supply_vbat_ri_table *vbat2ri_charging; |
e9e7d165 | 796 | int vbat2ri_charging_size; |
1f918e0f LW |
797 | int bti_resistance_ohm; |
798 | int bti_resistance_tolerance; | |
c08b1f45 LB |
799 | }; |
800 | ||
d36240d2 PR |
801 | extern int power_supply_reg_notifier(struct notifier_block *nb); |
802 | extern void power_supply_unreg_notifier(struct notifier_block *nb); | |
f38a1644 | 803 | #if IS_ENABLED(CONFIG_POWER_SUPPLY) |
9f3b795a | 804 | extern struct power_supply *power_supply_get_by_name(const char *name); |
1a352462 | 805 | extern void power_supply_put(struct power_supply *psy); |
f38a1644 RC |
806 | #else |
807 | static inline void power_supply_put(struct power_supply *psy) {} | |
808 | static inline struct power_supply *power_supply_get_by_name(const char *name) | |
809 | { return NULL; } | |
810 | #endif | |
abce9770 SR |
811 | #ifdef CONFIG_OF |
812 | extern struct power_supply *power_supply_get_by_phandle(struct device_node *np, | |
813 | const char *property); | |
fe27e1df HG |
814 | extern struct power_supply *devm_power_supply_get_by_phandle( |
815 | struct device *dev, const char *property); | |
abce9770 SR |
816 | #else /* !CONFIG_OF */ |
817 | static inline struct power_supply * | |
818 | power_supply_get_by_phandle(struct device_node *np, const char *property) | |
819 | { return NULL; } | |
fe27e1df HG |
820 | static inline struct power_supply * |
821 | devm_power_supply_get_by_phandle(struct device *dev, const char *property) | |
822 | { return NULL; } | |
abce9770 | 823 | #endif /* CONFIG_OF */ |
c08b1f45 | 824 | |
27a2195e SR |
825 | extern const enum power_supply_property power_supply_battery_info_properties[]; |
826 | extern const size_t power_supply_battery_info_properties_size; | |
c08b1f45 | 827 | extern int power_supply_get_battery_info(struct power_supply *psy, |
25fd3303 | 828 | struct power_supply_battery_info **info_out); |
3afb50d7 BW |
829 | extern void power_supply_put_battery_info(struct power_supply *psy, |
830 | struct power_supply_battery_info *info); | |
27a2195e SR |
831 | extern bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info, |
832 | enum power_supply_property psp); | |
833 | extern int power_supply_battery_info_get_prop(struct power_supply_battery_info *info, | |
834 | enum power_supply_property psp, | |
835 | union power_supply_propval *val); | |
ce20d5b9 | 836 | extern int power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table *table, |
3afb50d7 | 837 | int table_len, int ocv); |
ce20d5b9 | 838 | extern const struct power_supply_battery_ocv_table * |
3afb50d7 BW |
839 | power_supply_find_ocv2cap_table(struct power_supply_battery_info *info, |
840 | int temp, int *table_len); | |
841 | extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info, | |
842 | int ocv, int temp); | |
65dbad71 | 843 | extern int |
58797abe | 844 | power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table *table, |
65dbad71 | 845 | int table_len, int temp); |
e9e7d165 LW |
846 | extern int power_supply_vbat2ri(struct power_supply_battery_info *info, |
847 | int vbat_uv, bool charging); | |
0b209ec8 | 848 | extern const struct power_supply_maintenance_charge_table * |
d72ce7d3 | 849 | power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index); |
1f918e0f LW |
850 | extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info, |
851 | int resistance); | |
4a11b59d AV |
852 | extern void power_supply_changed(struct power_supply *psy); |
853 | extern int power_supply_am_i_supplied(struct power_supply *psy); | |
2220af8c HG |
854 | int power_supply_get_property_from_supplier(struct power_supply *psy, |
855 | enum power_supply_property psp, | |
856 | union power_supply_propval *val); | |
4a11b59d | 857 | |
d72ce7d3 LW |
858 | static inline bool |
859 | power_supply_supports_maintenance_charging(struct power_supply_battery_info *info) | |
860 | { | |
0b209ec8 | 861 | const struct power_supply_maintenance_charge_table *mt; |
d72ce7d3 LW |
862 | |
863 | mt = power_supply_get_maintenance_charging_setting(info, 0); | |
864 | ||
865 | return (mt != NULL); | |
866 | } | |
867 | ||
e9e7d165 LW |
868 | static inline bool |
869 | power_supply_supports_vbat2ri(struct power_supply_battery_info *info) | |
870 | { | |
871 | return ((info->vbat2ri_discharging != NULL) && | |
872 | info->vbat2ri_discharging_size > 0); | |
873 | } | |
874 | ||
875 | static inline bool | |
876 | power_supply_supports_temp2ri(struct power_supply_battery_info *info) | |
877 | { | |
878 | return ((info->resist_table != NULL) && | |
879 | info->resist_table_size > 0); | |
880 | } | |
1f918e0f | 881 | |
0d4ed4e2 | 882 | #ifdef CONFIG_POWER_SUPPLY |
942ed161 MG |
883 | extern int power_supply_is_system_supplied(void); |
884 | #else | |
885 | static inline int power_supply_is_system_supplied(void) { return -ENOSYS; } | |
886 | #endif | |
887 | ||
bc154056 KK |
888 | extern int power_supply_get_property(struct power_supply *psy, |
889 | enum power_supply_property psp, | |
890 | union power_supply_propval *val); | |
c21161e4 | 891 | #if IS_ENABLED(CONFIG_POWER_SUPPLY) |
bc154056 KK |
892 | extern int power_supply_set_property(struct power_supply *psy, |
893 | enum power_supply_property psp, | |
894 | const union power_supply_propval *val); | |
c21161e4 RC |
895 | #else |
896 | static inline int power_supply_set_property(struct power_supply *psy, | |
897 | enum power_supply_property psp, | |
898 | const union power_supply_propval *val) | |
899 | { return 0; } | |
900 | #endif | |
bc154056 | 901 | extern void power_supply_external_power_changed(struct power_supply *psy); |
297d716f KK |
902 | |
903 | extern struct power_supply *__must_check | |
904 | power_supply_register(struct device *parent, | |
905 | const struct power_supply_desc *desc, | |
2dc9215d | 906 | const struct power_supply_config *cfg); |
297d716f | 907 | extern struct power_supply *__must_check |
297d716f KK |
908 | devm_power_supply_register(struct device *parent, |
909 | const struct power_supply_desc *desc, | |
2dc9215d | 910 | const struct power_supply_config *cfg); |
4a11b59d | 911 | extern void power_supply_unregister(struct power_supply *psy); |
83516651 | 912 | extern int power_supply_powers(struct power_supply *psy, struct device *dev); |
4a11b59d | 913 | |
6037802b TW |
914 | extern int __must_check |
915 | power_supply_register_extension(struct power_supply *psy, | |
916 | const struct power_supply_ext *ext, | |
288a2cab | 917 | struct device *dev, |
6037802b TW |
918 | void *data); |
919 | extern void power_supply_unregister_extension(struct power_supply *psy, | |
920 | const struct power_supply_ext *ext); | |
921 | ||
285995d1 OG |
922 | #define to_power_supply(device) container_of(device, struct power_supply, dev) |
923 | ||
e44ea364 | 924 | extern void *power_supply_get_drvdata(struct power_supply *psy); |
9029409d | 925 | extern int power_supply_for_each_psy(void *data, int (*fn)(struct power_supply *psy, void *data)); |
4a11b59d | 926 | |
51d07566 RK |
927 | static inline bool power_supply_is_amp_property(enum power_supply_property psp) |
928 | { | |
929 | switch (psp) { | |
930 | case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: | |
931 | case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN: | |
932 | case POWER_SUPPLY_PROP_CHARGE_FULL: | |
933 | case POWER_SUPPLY_PROP_CHARGE_EMPTY: | |
934 | case POWER_SUPPLY_PROP_CHARGE_NOW: | |
935 | case POWER_SUPPLY_PROP_CHARGE_AVG: | |
936 | case POWER_SUPPLY_PROP_CHARGE_COUNTER: | |
413de34a LB |
937 | case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: |
938 | case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: | |
3824c477 | 939 | case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: |
2815b786 | 940 | case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: |
51d07566 RK |
941 | case POWER_SUPPLY_PROP_CURRENT_MAX: |
942 | case POWER_SUPPLY_PROP_CURRENT_NOW: | |
943 | case POWER_SUPPLY_PROP_CURRENT_AVG: | |
a8adcc90 | 944 | case POWER_SUPPLY_PROP_CURRENT_BOOT: |
25faa935 | 945 | return true; |
51d07566 RK |
946 | default: |
947 | break; | |
948 | } | |
949 | ||
25faa935 | 950 | return false; |
51d07566 RK |
951 | } |
952 | ||
953 | static inline bool power_supply_is_watt_property(enum power_supply_property psp) | |
954 | { | |
955 | switch (psp) { | |
956 | case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: | |
957 | case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN: | |
958 | case POWER_SUPPLY_PROP_ENERGY_FULL: | |
959 | case POWER_SUPPLY_PROP_ENERGY_EMPTY: | |
960 | case POWER_SUPPLY_PROP_ENERGY_NOW: | |
961 | case POWER_SUPPLY_PROP_ENERGY_AVG: | |
962 | case POWER_SUPPLY_PROP_VOLTAGE_MAX: | |
963 | case POWER_SUPPLY_PROP_VOLTAGE_MIN: | |
964 | case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: | |
965 | case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: | |
966 | case POWER_SUPPLY_PROP_VOLTAGE_NOW: | |
967 | case POWER_SUPPLY_PROP_VOLTAGE_AVG: | |
a2ebfe2f | 968 | case POWER_SUPPLY_PROP_VOLTAGE_OCV: |
a8adcc90 | 969 | case POWER_SUPPLY_PROP_VOLTAGE_BOOT: |
3824c477 | 970 | case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: |
2815b786 | 971 | case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: |
35c9d267 | 972 | case POWER_SUPPLY_PROP_POWER_NOW: |
25faa935 | 973 | return true; |
51d07566 RK |
974 | default: |
975 | break; | |
976 | } | |
977 | ||
25faa935 | 978 | return false; |
51d07566 RK |
979 | } |
980 | ||
539b9c94 TW |
981 | #ifdef CONFIG_SYSFS |
982 | ssize_t power_supply_charge_behaviour_show(struct device *dev, | |
983 | unsigned int available_behaviours, | |
984 | enum power_supply_charge_behaviour behaviour, | |
985 | char *buf); | |
986 | ||
987 | int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf); | |
d24bf992 HG |
988 | ssize_t power_supply_charge_types_show(struct device *dev, |
989 | unsigned int available_types, | |
990 | enum power_supply_charge_type current_type, | |
991 | char *buf); | |
992 | int power_supply_charge_types_parse(unsigned int available_types, const char *buf); | |
3367d1bd TW |
993 | #else |
994 | static inline | |
995 | ssize_t power_supply_charge_behaviour_show(struct device *dev, | |
996 | unsigned int available_behaviours, | |
997 | enum power_supply_charge_behaviour behaviour, | |
998 | char *buf) | |
999 | { | |
1000 | return -EOPNOTSUPP; | |
1001 | } | |
1002 | ||
1003 | static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours, | |
1004 | const char *buf) | |
1005 | { | |
1006 | return -EOPNOTSUPP; | |
1007 | } | |
d24bf992 HG |
1008 | |
1009 | static inline | |
1010 | ssize_t power_supply_charge_types_show(struct device *dev, | |
1011 | unsigned int available_types, | |
1012 | enum power_supply_charge_type current_type, | |
1013 | char *buf) | |
1014 | { | |
1015 | return -EOPNOTSUPP; | |
1016 | } | |
1017 | ||
1018 | static inline int power_supply_charge_types_parse(unsigned int available_types, const char *buf) | |
1019 | { | |
1020 | return -EOPNOTSUPP; | |
1021 | } | |
539b9c94 TW |
1022 | #endif |
1023 | ||
4a11b59d | 1024 | #endif /* __LINUX_POWER_SUPPLY_H__ */ |