net: dev: Makes sure netif_rx() can be invoked in any context.
[linux-block.git] / include / linux / pgtable.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
ca5999fd
MR
2#ifndef _LINUX_PGTABLE_H
3#define _LINUX_PGTABLE_H
1da177e4 4
f25748e3 5#include <linux/pfn.h>
ca5999fd 6#include <asm/pgtable.h>
f25748e3 7
673eae82 8#ifndef __ASSEMBLY__
9535239f 9#ifdef CONFIG_MMU
673eae82 10
fbd71844 11#include <linux/mm_types.h>
187f1882 12#include <linux/bug.h>
e61ce6ad 13#include <linux/errno.h>
5a281062 14#include <asm-generic/pgtable_uffd.h>
fbd71844 15
c2febafc
KS
16#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
17 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
18#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
235a8f02
KS
19#endif
20
6ee8630e
HD
21/*
22 * On almost all architectures and configurations, 0 can be used as the
23 * upper ceiling to free_pgtables(): on many architectures it has the same
24 * effect as using TASK_SIZE. However, there is one configuration which
25 * must impose a more careful limit, to avoid freeing kernel pgtables.
26 */
27#ifndef USER_PGTABLES_CEILING
28#define USER_PGTABLES_CEILING 0UL
29#endif
fac7757e
AK
30
31/*
32 * This defines the first usable user address. Platforms
33 * can override its value with custom FIRST_USER_ADDRESS
34 * defined in their respective <asm/pgtable.h>.
35 */
36#ifndef FIRST_USER_ADDRESS
37#define FIRST_USER_ADDRESS 0UL
38#endif
1c2f7d14
AK
39
40/*
41 * This defines the generic helper for accessing PMD page
42 * table page. Although platforms can still override this
43 * via their respective <asm/pgtable.h>.
44 */
45#ifndef pmd_pgtable
46#define pmd_pgtable(pmd) pmd_page(pmd)
47#endif
6ee8630e 48
974b9b2c
MR
49/*
50 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
51 *
52 * The pXx_index() functions return the index of the entry in the page
53 * table page which would control the given virtual address
54 *
55 * As these functions may be used by the same code for different levels of
56 * the page table folding, they are always available, regardless of
57 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
58 * because in such cases PTRS_PER_PxD equals 1.
59 */
60
61static inline unsigned long pte_index(unsigned long address)
62{
63 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
64}
314c459a 65#define pte_index pte_index
974b9b2c
MR
66
67#ifndef pmd_index
68static inline unsigned long pmd_index(unsigned long address)
69{
70 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
71}
72#define pmd_index pmd_index
73#endif
74
75#ifndef pud_index
76static inline unsigned long pud_index(unsigned long address)
77{
78 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
79}
80#define pud_index pud_index
81#endif
82
83#ifndef pgd_index
84/* Must be a compile-time constant, so implement it as a macro */
85#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
86#endif
87
88#ifndef pte_offset_kernel
89static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
90{
91 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
92}
93#define pte_offset_kernel pte_offset_kernel
94#endif
95
96#if defined(CONFIG_HIGHPTE)
97#define pte_offset_map(dir, address) \
98 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \
99 pte_index((address)))
100#define pte_unmap(pte) kunmap_atomic((pte))
101#else
102#define pte_offset_map(dir, address) pte_offset_kernel((dir), (address))
103#define pte_unmap(pte) ((void)(pte)) /* NOP */
104#endif
105
106/* Find an entry in the second-level page table.. */
107#ifndef pmd_offset
108static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
109{
9cf6fa24 110 return pud_pgtable(*pud) + pmd_index(address);
974b9b2c
MR
111}
112#define pmd_offset pmd_offset
113#endif
114
115#ifndef pud_offset
116static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
117{
dc4875f0 118 return p4d_pgtable(*p4d) + pud_index(address);
974b9b2c
MR
119}
120#define pud_offset pud_offset
121#endif
122
123static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
124{
125 return (pgd + pgd_index(address));
126};
127
128/*
129 * a shortcut to get a pgd_t in a given mm
130 */
131#ifndef pgd_offset
132#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
133#endif
134
135/*
136 * a shortcut which implies the use of the kernel's pgd, instead
137 * of a process's
138 */
bd05220c 139#ifndef pgd_offset_k
974b9b2c 140#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
bd05220c 141#endif
974b9b2c 142
e05c7b1f
MR
143/*
144 * In many cases it is known that a virtual address is mapped at PMD or PTE
145 * level, so instead of traversing all the page table levels, we can get a
146 * pointer to the PMD entry in user or kernel page table or translate a virtual
147 * address to the pointer in the PTE in the kernel page tables with simple
148 * helpers.
149 */
150static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
151{
152 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
153}
154
155static inline pmd_t *pmd_off_k(unsigned long va)
156{
157 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
158}
159
160static inline pte_t *virt_to_kpte(unsigned long vaddr)
161{
162 pmd_t *pmd = pmd_off_k(vaddr);
163
164 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
165}
166
1da177e4 167#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
e2cda322
AA
168extern int ptep_set_access_flags(struct vm_area_struct *vma,
169 unsigned long address, pte_t *ptep,
170 pte_t entry, int dirty);
171#endif
172
173#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
bd5e88ad 174#ifdef CONFIG_TRANSPARENT_HUGEPAGE
e2cda322
AA
175extern int pmdp_set_access_flags(struct vm_area_struct *vma,
176 unsigned long address, pmd_t *pmdp,
177 pmd_t entry, int dirty);
a00cc7d9
MW
178extern int pudp_set_access_flags(struct vm_area_struct *vma,
179 unsigned long address, pud_t *pudp,
180 pud_t entry, int dirty);
bd5e88ad
VG
181#else
182static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
183 unsigned long address, pmd_t *pmdp,
184 pmd_t entry, int dirty)
185{
186 BUILD_BUG();
187 return 0;
188}
a00cc7d9
MW
189static inline int pudp_set_access_flags(struct vm_area_struct *vma,
190 unsigned long address, pud_t *pudp,
191 pud_t entry, int dirty)
192{
193 BUILD_BUG();
194 return 0;
195}
bd5e88ad 196#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
197#endif
198
199#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
e2cda322
AA
200static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
201 unsigned long address,
202 pte_t *ptep)
203{
204 pte_t pte = *ptep;
205 int r = 1;
206 if (!pte_young(pte))
207 r = 0;
208 else
209 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
210 return r;
211}
212#endif
213
214#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
215#ifdef CONFIG_TRANSPARENT_HUGEPAGE
216static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
217 unsigned long address,
218 pmd_t *pmdp)
219{
220 pmd_t pmd = *pmdp;
221 int r = 1;
222 if (!pmd_young(pmd))
223 r = 0;
224 else
225 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
226 return r;
227}
bd5e88ad 228#else
e2cda322
AA
229static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
230 unsigned long address,
231 pmd_t *pmdp)
232{
bd5e88ad 233 BUILD_BUG();
e2cda322
AA
234 return 0;
235}
236#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
237#endif
238
239#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
e2cda322
AA
240int ptep_clear_flush_young(struct vm_area_struct *vma,
241 unsigned long address, pte_t *ptep);
242#endif
243
244#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
bd5e88ad
VG
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
247 unsigned long address, pmd_t *pmdp);
248#else
249/*
250 * Despite relevant to THP only, this API is called from generic rmap code
251 * under PageTransHuge(), hence needs a dummy implementation for !THP
252 */
253static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
254 unsigned long address, pmd_t *pmdp)
255{
256 BUILD_BUG();
257 return 0;
258}
259#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
260#endif
261
08d5b29e
PT
262#ifndef __HAVE_ARCH_PTEP_CLEAR
263static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
264 pte_t *ptep)
265{
266 pte_clear(mm, addr, ptep);
267}
268#endif
269
1da177e4 270#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
e2cda322
AA
271static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
272 unsigned long address,
273 pte_t *ptep)
274{
275 pte_t pte = *ptep;
276 pte_clear(mm, address, ptep);
277 return pte;
278}
279#endif
280
481e980a
CL
281#ifndef __HAVE_ARCH_PTEP_GET
282static inline pte_t ptep_get(pte_t *ptep)
283{
284 return READ_ONCE(*ptep);
285}
286#endif
287
2a4a06da
PZ
288#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
289/*
290 * WARNING: only to be used in the get_user_pages_fast() implementation.
291 *
292 * With get_user_pages_fast(), we walk down the pagetables without taking any
293 * locks. For this we would like to load the pointers atomically, but sometimes
294 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
295 * we do have is the guarantee that a PTE will only either go from not present
296 * to present, or present to not present or both -- it will not switch to a
297 * completely different present page without a TLB flush in between; something
298 * that we are blocking by holding interrupts off.
299 *
300 * Setting ptes from not present to present goes:
301 *
302 * ptep->pte_high = h;
303 * smp_wmb();
304 * ptep->pte_low = l;
305 *
306 * And present to not present goes:
307 *
308 * ptep->pte_low = 0;
309 * smp_wmb();
310 * ptep->pte_high = 0;
311 *
312 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
313 * We load pte_high *after* loading pte_low, which ensures we don't see an older
314 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
315 * picked up a changed pte high. We might have gotten rubbish values from
316 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
317 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
318 * operates on present ptes we're safe.
319 */
320static inline pte_t ptep_get_lockless(pte_t *ptep)
321{
322 pte_t pte;
323
324 do {
325 pte.pte_low = ptep->pte_low;
326 smp_rmb();
327 pte.pte_high = ptep->pte_high;
328 smp_rmb();
329 } while (unlikely(pte.pte_low != ptep->pte_low));
330
331 return pte;
332}
333#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
334/*
335 * We require that the PTE can be read atomically.
336 */
337static inline pte_t ptep_get_lockless(pte_t *ptep)
338{
339 return ptep_get(ptep);
340}
341#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
342
e2cda322 343#ifdef CONFIG_TRANSPARENT_HUGEPAGE
a00cc7d9 344#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
8809aa2d
AK
345static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
346 unsigned long address,
347 pmd_t *pmdp)
e2cda322
AA
348{
349 pmd_t pmd = *pmdp;
2d28a227 350 pmd_clear(pmdp);
e2cda322 351 return pmd;
49b24d6b 352}
a00cc7d9
MW
353#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
354#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
355static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
356 unsigned long address,
357 pud_t *pudp)
358{
359 pud_t pud = *pudp;
360
361 pud_clear(pudp);
362 return pud;
363}
364#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
e2cda322 365#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4 366
fcbe08d6 367#ifdef CONFIG_TRANSPARENT_HUGEPAGE
a00cc7d9 368#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
93a98695 369static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
fcbe08d6
MS
370 unsigned long address, pmd_t *pmdp,
371 int full)
372{
93a98695 373 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
fcbe08d6 374}
fcbe08d6
MS
375#endif
376
a00cc7d9
MW
377#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
378static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
379 unsigned long address, pud_t *pudp,
380 int full)
381{
382 return pudp_huge_get_and_clear(mm, address, pudp);
383}
384#endif
385#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
386
a600388d 387#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
e2cda322
AA
388static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
389 unsigned long address, pte_t *ptep,
390 int full)
391{
392 pte_t pte;
393 pte = ptep_get_and_clear(mm, address, ptep);
394 return pte;
395}
a600388d
ZA
396#endif
397
7df67697
BM
398
399/*
400 * If two threads concurrently fault at the same page, the thread that
401 * won the race updates the PTE and its local TLB/Cache. The other thread
402 * gives up, simply does nothing, and continues; on architectures where
403 * software can update TLB, local TLB can be updated here to avoid next page
404 * fault. This function updates TLB only, do nothing with cache or others.
405 * It is the difference with function update_mmu_cache.
406 */
407#ifndef __HAVE_ARCH_UPDATE_MMU_TLB
408static inline void update_mmu_tlb(struct vm_area_struct *vma,
409 unsigned long address, pte_t *ptep)
410{
411}
412#define __HAVE_ARCH_UPDATE_MMU_TLB
413#endif
414
9888a1ca
ZA
415/*
416 * Some architectures may be able to avoid expensive synchronization
417 * primitives when modifications are made to PTE's which are already
418 * not present, or in the process of an address space destruction.
419 */
420#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
e2cda322
AA
421static inline void pte_clear_not_present_full(struct mm_struct *mm,
422 unsigned long address,
423 pte_t *ptep,
424 int full)
425{
426 pte_clear(mm, address, ptep);
427}
a600388d
ZA
428#endif
429
1da177e4 430#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
e2cda322
AA
431extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
432 unsigned long address,
433 pte_t *ptep);
434#endif
435
8809aa2d
AK
436#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
437extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
e2cda322
AA
438 unsigned long address,
439 pmd_t *pmdp);
a00cc7d9
MW
440extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
441 unsigned long address,
442 pud_t *pudp);
1da177e4
LT
443#endif
444
445#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
8c65b4a6 446struct mm_struct;
1da177e4
LT
447static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
448{
449 pte_t old_pte = *ptep;
450 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
451}
452#endif
453
44bf431b
BM
454/*
455 * On some architectures hardware does not set page access bit when accessing
2eb70aab 456 * memory page, it is responsibility of software setting this bit. It brings
44bf431b
BM
457 * out extra page fault penalty to track page access bit. For optimization page
458 * access bit can be set during all page fault flow on these arches.
459 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
460 * where software maintains page access bit.
461 */
50c25ee9
TB
462#ifndef pte_sw_mkyoung
463static inline pte_t pte_sw_mkyoung(pte_t pte)
464{
465 return pte;
466}
467#define pte_sw_mkyoung pte_sw_mkyoung
468#endif
469
288bc549
AK
470#ifndef pte_savedwrite
471#define pte_savedwrite pte_write
472#endif
473
474#ifndef pte_mk_savedwrite
475#define pte_mk_savedwrite pte_mkwrite
476#endif
477
595cd8f2
AK
478#ifndef pte_clear_savedwrite
479#define pte_clear_savedwrite pte_wrprotect
480#endif
481
288bc549
AK
482#ifndef pmd_savedwrite
483#define pmd_savedwrite pmd_write
484#endif
485
486#ifndef pmd_mk_savedwrite
487#define pmd_mk_savedwrite pmd_mkwrite
488#endif
489
595cd8f2
AK
490#ifndef pmd_clear_savedwrite
491#define pmd_clear_savedwrite pmd_wrprotect
492#endif
493
e2cda322
AA
494#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
495#ifdef CONFIG_TRANSPARENT_HUGEPAGE
496static inline void pmdp_set_wrprotect(struct mm_struct *mm,
497 unsigned long address, pmd_t *pmdp)
498{
499 pmd_t old_pmd = *pmdp;
500 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
501}
bd5e88ad 502#else
e2cda322
AA
503static inline void pmdp_set_wrprotect(struct mm_struct *mm,
504 unsigned long address, pmd_t *pmdp)
505{
bd5e88ad 506 BUILD_BUG();
e2cda322
AA
507}
508#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
509#endif
a00cc7d9
MW
510#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
511#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
512static inline void pudp_set_wrprotect(struct mm_struct *mm,
513 unsigned long address, pud_t *pudp)
514{
515 pud_t old_pud = *pudp;
516
517 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
518}
519#else
520static inline void pudp_set_wrprotect(struct mm_struct *mm,
521 unsigned long address, pud_t *pudp)
522{
523 BUILD_BUG();
524}
525#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
526#endif
e2cda322 527
15a25b2e
AK
528#ifndef pmdp_collapse_flush
529#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f28b6ff8
AK
530extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
531 unsigned long address, pmd_t *pmdp);
15a25b2e
AK
532#else
533static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
534 unsigned long address,
535 pmd_t *pmdp)
536{
537 BUILD_BUG();
538 return *pmdp;
539}
540#define pmdp_collapse_flush pmdp_collapse_flush
541#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
542#endif
543
e3ebcf64 544#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
6b0b50b0
AK
545extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
546 pgtable_t pgtable);
e3ebcf64
GS
547#endif
548
549#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
6b0b50b0 550extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
e3ebcf64
GS
551#endif
552
c58f0bb7
KS
553#ifdef CONFIG_TRANSPARENT_HUGEPAGE
554/*
555 * This is an implementation of pmdp_establish() that is only suitable for an
556 * architecture that doesn't have hardware dirty/accessed bits. In this case we
2eb70aab 557 * can't race with CPU which sets these bits and non-atomic approach is fine.
c58f0bb7
KS
558 */
559static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
560 unsigned long address, pmd_t *pmdp, pmd_t pmd)
561{
562 pmd_t old_pmd = *pmdp;
563 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
564 return old_pmd;
565}
566#endif
567
46dcde73 568#ifndef __HAVE_ARCH_PMDP_INVALIDATE
d52605d7 569extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
46dcde73
GS
570 pmd_t *pmdp);
571#endif
572
1da177e4 573#ifndef __HAVE_ARCH_PTE_SAME
e2cda322
AA
574static inline int pte_same(pte_t pte_a, pte_t pte_b)
575{
576 return pte_val(pte_a) == pte_val(pte_b);
577}
578#endif
579
45961722
KW
580#ifndef __HAVE_ARCH_PTE_UNUSED
581/*
582 * Some architectures provide facilities to virtualization guests
583 * so that they can flag allocated pages as unused. This allows the
584 * host to transparently reclaim unused pages. This function returns
585 * whether the pte's page is unused.
586 */
587static inline int pte_unused(pte_t pte)
588{
589 return 0;
590}
591#endif
592
e7884f8e
KS
593#ifndef pte_access_permitted
594#define pte_access_permitted(pte, write) \
595 (pte_present(pte) && (!(write) || pte_write(pte)))
596#endif
597
598#ifndef pmd_access_permitted
599#define pmd_access_permitted(pmd, write) \
600 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
601#endif
602
603#ifndef pud_access_permitted
604#define pud_access_permitted(pud, write) \
605 (pud_present(pud) && (!(write) || pud_write(pud)))
606#endif
607
608#ifndef p4d_access_permitted
609#define p4d_access_permitted(p4d, write) \
610 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
611#endif
612
613#ifndef pgd_access_permitted
614#define pgd_access_permitted(pgd, write) \
615 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
616#endif
617
e2cda322 618#ifndef __HAVE_ARCH_PMD_SAME
e2cda322
AA
619static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
620{
621 return pmd_val(pmd_a) == pmd_val(pmd_b);
622}
a00cc7d9
MW
623
624static inline int pud_same(pud_t pud_a, pud_t pud_b)
625{
626 return pud_val(pud_a) == pud_val(pud_b);
627}
1da177e4
LT
628#endif
629
0cebbb60
DW
630#ifndef __HAVE_ARCH_P4D_SAME
631static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
632{
633 return p4d_val(p4d_a) == p4d_val(p4d_b);
634}
635#endif
636
637#ifndef __HAVE_ARCH_PGD_SAME
638static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
639{
640 return pgd_val(pgd_a) == pgd_val(pgd_b);
641}
642#endif
643
4369deaa
DW
644/*
645 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
646 * TLB flush will be required as a result of the "set". For example, use
647 * in scenarios where it is known ahead of time that the routine is
648 * setting non-present entries, or re-setting an existing entry to the
649 * same value. Otherwise, use the typical "set" helpers and flush the
650 * TLB.
651 */
652#define set_pte_safe(ptep, pte) \
653({ \
654 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
655 set_pte(ptep, pte); \
656})
657
658#define set_pmd_safe(pmdp, pmd) \
659({ \
660 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
661 set_pmd(pmdp, pmd); \
662})
663
664#define set_pud_safe(pudp, pud) \
665({ \
666 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
667 set_pud(pudp, pud); \
668})
669
670#define set_p4d_safe(p4dp, p4d) \
671({ \
672 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
673 set_p4d(p4dp, p4d); \
674})
675
676#define set_pgd_safe(pgdp, pgd) \
677({ \
678 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
679 set_pgd(pgdp, pgd); \
680})
681
ca827d55
KA
682#ifndef __HAVE_ARCH_DO_SWAP_PAGE
683/*
684 * Some architectures support metadata associated with a page. When a
685 * page is being swapped out, this metadata must be saved so it can be
686 * restored when the page is swapped back in. SPARC M7 and newer
687 * processors support an ADI (Application Data Integrity) tag for the
688 * page as metadata for the page. arch_do_swap_page() can restore this
689 * metadata when a page is swapped back in.
690 */
691static inline void arch_do_swap_page(struct mm_struct *mm,
692 struct vm_area_struct *vma,
693 unsigned long addr,
694 pte_t pte, pte_t oldpte)
695{
696
697}
698#endif
699
700#ifndef __HAVE_ARCH_UNMAP_ONE
701/*
702 * Some architectures support metadata associated with a page. When a
703 * page is being swapped out, this metadata must be saved so it can be
704 * restored when the page is swapped back in. SPARC M7 and newer
705 * processors support an ADI (Application Data Integrity) tag for the
706 * page as metadata for the page. arch_unmap_one() can save this
707 * metadata on a swap-out of a page.
708 */
709static inline int arch_unmap_one(struct mm_struct *mm,
710 struct vm_area_struct *vma,
711 unsigned long addr,
712 pte_t orig_pte)
713{
714 return 0;
715}
716#endif
717
8a84802e
SP
718/*
719 * Allow architectures to preserve additional metadata associated with
720 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
721 * prototypes must be defined in the arch-specific asm/pgtable.h file.
722 */
723#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
724static inline int arch_prepare_to_swap(struct page *page)
725{
726 return 0;
727}
728#endif
729
730#ifndef __HAVE_ARCH_SWAP_INVALIDATE
731static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
732{
733}
734
735static inline void arch_swap_invalidate_area(int type)
736{
737}
738#endif
739
740#ifndef __HAVE_ARCH_SWAP_RESTORE
741static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
742{
743}
744#endif
745
1da177e4
LT
746#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
747#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
748#endif
749
0b0968a3 750#ifndef __HAVE_ARCH_MOVE_PTE
8b1f3124 751#define move_pte(pte, prot, old_addr, new_addr) (pte)
8b1f3124
NP
752#endif
753
2c3cf556 754#ifndef pte_accessible
20841405 755# define pte_accessible(mm, pte) ((void)(pte), 1)
2c3cf556
RR
756#endif
757
61c77326
SL
758#ifndef flush_tlb_fix_spurious_fault
759#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
760#endif
761
1da177e4 762/*
8f6c99c1
HD
763 * When walking page tables, get the address of the next boundary,
764 * or the end address of the range if that comes earlier. Although no
765 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1da177e4
LT
766 */
767
1da177e4
LT
768#define pgd_addr_end(addr, end) \
769({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
770 (__boundary - 1 < (end) - 1)? __boundary: (end); \
771})
1da177e4 772
c2febafc
KS
773#ifndef p4d_addr_end
774#define p4d_addr_end(addr, end) \
775({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
776 (__boundary - 1 < (end) - 1)? __boundary: (end); \
777})
778#endif
779
1da177e4
LT
780#ifndef pud_addr_end
781#define pud_addr_end(addr, end) \
782({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
783 (__boundary - 1 < (end) - 1)? __boundary: (end); \
784})
785#endif
786
787#ifndef pmd_addr_end
788#define pmd_addr_end(addr, end) \
789({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
790 (__boundary - 1 < (end) - 1)? __boundary: (end); \
791})
792#endif
793
1da177e4
LT
794/*
795 * When walking page tables, we usually want to skip any p?d_none entries;
796 * and any p?d_bad entries - reporting the error before resetting to none.
797 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
798 */
799void pgd_clear_bad(pgd_t *);
f2400abc
VG
800
801#ifndef __PAGETABLE_P4D_FOLDED
c2febafc 802void p4d_clear_bad(p4d_t *);
f2400abc
VG
803#else
804#define p4d_clear_bad(p4d) do { } while (0)
805#endif
806
807#ifndef __PAGETABLE_PUD_FOLDED
1da177e4 808void pud_clear_bad(pud_t *);
f2400abc
VG
809#else
810#define pud_clear_bad(p4d) do { } while (0)
811#endif
812
1da177e4
LT
813void pmd_clear_bad(pmd_t *);
814
815static inline int pgd_none_or_clear_bad(pgd_t *pgd)
816{
817 if (pgd_none(*pgd))
818 return 1;
819 if (unlikely(pgd_bad(*pgd))) {
820 pgd_clear_bad(pgd);
821 return 1;
822 }
823 return 0;
824}
825
c2febafc
KS
826static inline int p4d_none_or_clear_bad(p4d_t *p4d)
827{
828 if (p4d_none(*p4d))
829 return 1;
830 if (unlikely(p4d_bad(*p4d))) {
831 p4d_clear_bad(p4d);
832 return 1;
833 }
834 return 0;
835}
836
1da177e4
LT
837static inline int pud_none_or_clear_bad(pud_t *pud)
838{
839 if (pud_none(*pud))
840 return 1;
841 if (unlikely(pud_bad(*pud))) {
842 pud_clear_bad(pud);
843 return 1;
844 }
845 return 0;
846}
847
848static inline int pmd_none_or_clear_bad(pmd_t *pmd)
849{
850 if (pmd_none(*pmd))
851 return 1;
852 if (unlikely(pmd_bad(*pmd))) {
853 pmd_clear_bad(pmd);
854 return 1;
855 }
856 return 0;
857}
9535239f 858
0cbe3e26 859static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1ea0704e
JF
860 unsigned long addr,
861 pte_t *ptep)
862{
863 /*
864 * Get the current pte state, but zero it out to make it
865 * non-present, preventing the hardware from asynchronously
866 * updating it.
867 */
0cbe3e26 868 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1ea0704e
JF
869}
870
0cbe3e26 871static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1ea0704e
JF
872 unsigned long addr,
873 pte_t *ptep, pte_t pte)
874{
875 /*
876 * The pte is non-present, so there's no hardware state to
877 * preserve.
878 */
0cbe3e26 879 set_pte_at(vma->vm_mm, addr, ptep, pte);
1ea0704e
JF
880}
881
882#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
883/*
884 * Start a pte protection read-modify-write transaction, which
885 * protects against asynchronous hardware modifications to the pte.
886 * The intention is not to prevent the hardware from making pte
887 * updates, but to prevent any updates it may make from being lost.
888 *
889 * This does not protect against other software modifications of the
2eb70aab 890 * pte; the appropriate pte lock must be held over the transaction.
1ea0704e
JF
891 *
892 * Note that this interface is intended to be batchable, meaning that
893 * ptep_modify_prot_commit may not actually update the pte, but merely
894 * queue the update to be done at some later time. The update must be
895 * actually committed before the pte lock is released, however.
896 */
0cbe3e26 897static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1ea0704e
JF
898 unsigned long addr,
899 pte_t *ptep)
900{
0cbe3e26 901 return __ptep_modify_prot_start(vma, addr, ptep);
1ea0704e
JF
902}
903
904/*
905 * Commit an update to a pte, leaving any hardware-controlled bits in
906 * the PTE unmodified.
907 */
0cbe3e26 908static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1ea0704e 909 unsigned long addr,
04a86453 910 pte_t *ptep, pte_t old_pte, pte_t pte)
1ea0704e 911{
0cbe3e26 912 __ptep_modify_prot_commit(vma, addr, ptep, pte);
1ea0704e
JF
913}
914#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
fe1a6875 915#endif /* CONFIG_MMU */
1ea0704e 916
21729f81
TL
917/*
918 * No-op macros that just return the current protection value. Defined here
1067b261 919 * because these macros can be used even if CONFIG_MMU is not defined.
21729f81 920 */
63bb76de
PE
921
922#ifndef pgprot_nx
923#define pgprot_nx(prot) (prot)
924#endif
925
926#ifndef pgprot_noncached
927#define pgprot_noncached(prot) (prot)
928#endif
929
930#ifndef pgprot_writecombine
931#define pgprot_writecombine pgprot_noncached
932#endif
933
934#ifndef pgprot_writethrough
935#define pgprot_writethrough pgprot_noncached
936#endif
937
938#ifndef pgprot_device
939#define pgprot_device pgprot_noncached
940#endif
941
d15dfd31
CM
942#ifndef pgprot_mhp
943#define pgprot_mhp(prot) (prot)
944#endif
945
63bb76de
PE
946#ifdef CONFIG_MMU
947#ifndef pgprot_modify
948#define pgprot_modify pgprot_modify
949static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
950{
951 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
952 newprot = pgprot_noncached(newprot);
953 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
954 newprot = pgprot_writecombine(newprot);
955 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
956 newprot = pgprot_device(newprot);
957 return newprot;
958}
959#endif
960#endif /* CONFIG_MMU */
961
21729f81
TL
962#ifndef pgprot_encrypted
963#define pgprot_encrypted(prot) (prot)
964#endif
965
966#ifndef pgprot_decrypted
967#define pgprot_decrypted(prot) (prot)
968#endif
969
9535239f
GU
970/*
971 * A facility to provide lazy MMU batching. This allows PTE updates and
972 * page invalidations to be delayed until a call to leave lazy MMU mode
973 * is issued. Some architectures may benefit from doing this, and it is
974 * beneficial for both shadow and direct mode hypervisors, which may batch
975 * the PTE updates which happen during this window. Note that using this
976 * interface requires that read hazards be removed from the code. A read
977 * hazard could result in the direct mode hypervisor case, since the actual
978 * write to the page tables may not yet have taken place, so reads though
979 * a raw PTE pointer after it has been modified are not guaranteed to be
980 * up to date. This mode can only be entered and left under the protection of
981 * the page table locks for all page tables which may be modified. In the UP
982 * case, this is required so that preemption is disabled, and in the SMP case,
983 * it must synchronize the delayed page table writes properly on other CPUs.
984 */
985#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
986#define arch_enter_lazy_mmu_mode() do {} while (0)
987#define arch_leave_lazy_mmu_mode() do {} while (0)
988#define arch_flush_lazy_mmu_mode() do {} while (0)
989#endif
990
991/*
7fd7d83d
JF
992 * A facility to provide batching of the reload of page tables and
993 * other process state with the actual context switch code for
994 * paravirtualized guests. By convention, only one of the batched
995 * update (lazy) modes (CPU, MMU) should be active at any given time,
996 * entry should never be nested, and entry and exits should always be
997 * paired. This is for sanity of maintaining and reasoning about the
998 * kernel code. In this case, the exit (end of the context switch) is
999 * in architecture-specific code, and so doesn't need a generic
1000 * definition.
9535239f 1001 */
7fd7d83d 1002#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
224101ed 1003#define arch_start_context_switch(prev) do {} while (0)
9535239f
GU
1004#endif
1005
ab6e3d09
NH
1006#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1007#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1008static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1009{
1010 return pmd;
1011}
1012
1013static inline int pmd_swp_soft_dirty(pmd_t pmd)
1014{
1015 return 0;
1016}
1017
1018static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1019{
1020 return pmd;
1021}
1022#endif
1023#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
0f8975ec
PE
1024static inline int pte_soft_dirty(pte_t pte)
1025{
1026 return 0;
1027}
1028
1029static inline int pmd_soft_dirty(pmd_t pmd)
1030{
1031 return 0;
1032}
1033
1034static inline pte_t pte_mksoft_dirty(pte_t pte)
1035{
1036 return pte;
1037}
1038
1039static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1040{
1041 return pmd;
1042}
179ef71c 1043
a7b76174
MS
1044static inline pte_t pte_clear_soft_dirty(pte_t pte)
1045{
1046 return pte;
1047}
1048
1049static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1050{
1051 return pmd;
1052}
1053
179ef71c
CG
1054static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1055{
1056 return pte;
1057}
1058
1059static inline int pte_swp_soft_dirty(pte_t pte)
1060{
1061 return 0;
1062}
1063
1064static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1065{
1066 return pte;
1067}
ab6e3d09
NH
1068
1069static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1070{
1071 return pmd;
1072}
1073
1074static inline int pmd_swp_soft_dirty(pmd_t pmd)
1075{
1076 return 0;
1077}
1078
1079static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1080{
1081 return pmd;
1082}
0f8975ec
PE
1083#endif
1084
34801ba9 1085#ifndef __HAVE_PFNMAP_TRACKING
1086/*
5180da41
SS
1087 * Interfaces that can be used by architecture code to keep track of
1088 * memory type of pfn mappings specified by the remap_pfn_range,
67fa1666 1089 * vmf_insert_pfn.
5180da41
SS
1090 */
1091
1092/*
1093 * track_pfn_remap is called when a _new_ pfn mapping is being established
1094 * by remap_pfn_range() for physical range indicated by pfn and size.
34801ba9 1095 */
5180da41 1096static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
b3b9c293
KK
1097 unsigned long pfn, unsigned long addr,
1098 unsigned long size)
34801ba9 1099{
1100 return 0;
1101}
1102
1103/*
5180da41 1104 * track_pfn_insert is called when a _new_ single pfn is established
67fa1666 1105 * by vmf_insert_pfn().
5180da41 1106 */
308a047c
BP
1107static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1108 pfn_t pfn)
5180da41 1109{
5180da41
SS
1110}
1111
1112/*
1113 * track_pfn_copy is called when vma that is covering the pfnmap gets
34801ba9 1114 * copied through copy_page_range().
1115 */
5180da41 1116static inline int track_pfn_copy(struct vm_area_struct *vma)
34801ba9 1117{
1118 return 0;
1119}
1120
1121/*
d9fe4fab 1122 * untrack_pfn is called while unmapping a pfnmap for a region.
34801ba9 1123 * untrack can be called for a specific region indicated by pfn and size or
5180da41 1124 * can be for the entire vma (in which case pfn, size are zero).
34801ba9 1125 */
5180da41
SS
1126static inline void untrack_pfn(struct vm_area_struct *vma,
1127 unsigned long pfn, unsigned long size)
34801ba9 1128{
1129}
d9fe4fab
TK
1130
1131/*
1132 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1133 */
1134static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1135{
1136}
34801ba9 1137#else
5180da41 1138extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
b3b9c293
KK
1139 unsigned long pfn, unsigned long addr,
1140 unsigned long size);
308a047c
BP
1141extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1142 pfn_t pfn);
5180da41
SS
1143extern int track_pfn_copy(struct vm_area_struct *vma);
1144extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1145 unsigned long size);
d9fe4fab 1146extern void untrack_pfn_moved(struct vm_area_struct *vma);
34801ba9 1147#endif
1148
9afaf30f 1149#ifdef CONFIG_MMU
816422ad
KS
1150#ifdef __HAVE_COLOR_ZERO_PAGE
1151static inline int is_zero_pfn(unsigned long pfn)
1152{
1153 extern unsigned long zero_pfn;
1154 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1155 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1156}
1157
2f91ec8c
KS
1158#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1159
816422ad
KS
1160#else
1161static inline int is_zero_pfn(unsigned long pfn)
1162{
1163 extern unsigned long zero_pfn;
1164 return pfn == zero_pfn;
1165}
1166
1167static inline unsigned long my_zero_pfn(unsigned long addr)
1168{
1169 extern unsigned long zero_pfn;
1170 return zero_pfn;
1171}
1172#endif
9afaf30f
PT
1173#else
1174static inline int is_zero_pfn(unsigned long pfn)
1175{
1176 return 0;
1177}
1178
1179static inline unsigned long my_zero_pfn(unsigned long addr)
1180{
1181 return 0;
1182}
1183#endif /* CONFIG_MMU */
816422ad 1184
1a5a9906
AA
1185#ifdef CONFIG_MMU
1186
5f6e8da7
AA
1187#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1188static inline int pmd_trans_huge(pmd_t pmd)
1189{
1190 return 0;
1191}
e4e40e02 1192#ifndef pmd_write
e2cda322
AA
1193static inline int pmd_write(pmd_t pmd)
1194{
1195 BUG();
1196 return 0;
1197}
e4e40e02 1198#endif /* pmd_write */
1a5a9906
AA
1199#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1200
1501899a
DW
1201#ifndef pud_write
1202static inline int pud_write(pud_t pud)
1203{
1204 BUG();
1205 return 0;
1206}
1207#endif /* pud_write */
1208
bf1a12a8
TH
1209#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1210static inline int pmd_devmap(pmd_t pmd)
1211{
1212 return 0;
1213}
1214static inline int pud_devmap(pud_t pud)
1215{
1216 return 0;
1217}
1218static inline int pgd_devmap(pgd_t pgd)
1219{
1220 return 0;
1221}
1222#endif
1223
a00cc7d9
MW
1224#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1225 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1226 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
1227static inline int pud_trans_huge(pud_t pud)
1228{
1229 return 0;
1230}
1231#endif
1232
625110b5
TH
1233/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1234static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1235{
1236 pud_t pudval = READ_ONCE(*pud);
1237
1238 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1239 return 1;
1240 if (unlikely(pud_bad(pudval))) {
1241 pud_clear_bad(pud);
1242 return 1;
1243 }
1244 return 0;
1245}
1246
1247/* See pmd_trans_unstable for discussion. */
1248static inline int pud_trans_unstable(pud_t *pud)
1249{
1250#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1251 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1252 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1253#else
1254 return 0;
1255#endif
1256}
1257
26c19178
AA
1258#ifndef pmd_read_atomic
1259static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1260{
1261 /*
1262 * Depend on compiler for an atomic pmd read. NOTE: this is
1263 * only going to work, if the pmdval_t isn't larger than
1264 * an unsigned long.
1265 */
1266 return *pmdp;
1267}
1268#endif
1269
953c66c2
AK
1270#ifndef arch_needs_pgtable_deposit
1271#define arch_needs_pgtable_deposit() (false)
1272#endif
1a5a9906
AA
1273/*
1274 * This function is meant to be used by sites walking pagetables with
c1e8d7c6 1275 * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1a5a9906
AA
1276 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1277 * into a null pmd and the transhuge page fault can convert a null pmd
1278 * into an hugepmd or into a regular pmd (if the hugepage allocation
c1e8d7c6 1279 * fails). While holding the mmap_lock in read mode the pmd becomes
1a5a9906
AA
1280 * stable and stops changing under us only if it's not null and not a
1281 * transhuge pmd. When those races occurs and this function makes a
1282 * difference vs the standard pmd_none_or_clear_bad, the result is
1283 * undefined so behaving like if the pmd was none is safe (because it
1284 * can return none anyway). The compiler level barrier() is critically
1285 * important to compute the two checks atomically on the same pmdval.
26c19178
AA
1286 *
1287 * For 32bit kernels with a 64bit large pmd_t this automatically takes
1288 * care of reading the pmd atomically to avoid SMP race conditions
c1e8d7c6 1289 * against pmd_populate() when the mmap_lock is hold for reading by the
26c19178
AA
1290 * caller (a special atomic read not done by "gcc" as in the generic
1291 * version above, is also needed when THP is disabled because the page
1292 * fault can populate the pmd from under us).
1a5a9906
AA
1293 */
1294static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1295{
26c19178 1296 pmd_t pmdval = pmd_read_atomic(pmd);
1a5a9906
AA
1297 /*
1298 * The barrier will stabilize the pmdval in a register or on
1299 * the stack so that it will stop changing under the code.
e4eed03f
AA
1300 *
1301 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1302 * pmd_read_atomic is allowed to return a not atomic pmdval
1303 * (for example pointing to an hugepage that has never been
1304 * mapped in the pmd). The below checks will only care about
1305 * the low part of the pmd with 32bit PAE x86 anyway, with the
1306 * exception of pmd_none(). So the important thing is that if
1307 * the low part of the pmd is found null, the high part will
1308 * be also null or the pmd_none() check below would be
1309 * confused.
1a5a9906
AA
1310 */
1311#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1312 barrier();
1313#endif
84c3fc4e
ZY
1314 /*
1315 * !pmd_present() checks for pmd migration entries
1316 *
1317 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1318 * But using that requires moving current function and pmd_trans_unstable()
2eb70aab 1319 * to linux/swapops.h to resolve dependency, which is too much code move.
84c3fc4e
ZY
1320 *
1321 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1322 * because !pmd_present() pages can only be under migration not swapped
1323 * out.
1324 *
2eb70aab 1325 * pmd_none() is preserved for future condition checks on pmd migration
84c3fc4e
ZY
1326 * entries and not confusing with this function name, although it is
1327 * redundant with !pmd_present().
1328 */
1329 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1330 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1a5a9906
AA
1331 return 1;
1332 if (unlikely(pmd_bad(pmdval))) {
ee53664b 1333 pmd_clear_bad(pmd);
1a5a9906
AA
1334 return 1;
1335 }
1336 return 0;
1337}
1338
1339/*
1340 * This is a noop if Transparent Hugepage Support is not built into
1341 * the kernel. Otherwise it is equivalent to
1342 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1343 * places that already verified the pmd is not none and they want to
1344 * walk ptes while holding the mmap sem in read mode (write mode don't
1345 * need this). If THP is not enabled, the pmd can't go away under the
1346 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1347 * run a pmd_trans_unstable before walking the ptes after
9ef258ba
KW
1348 * split_huge_pmd returns (because it may have run when the pmd become
1349 * null, but then a page fault can map in a THP and not a regular page).
1a5a9906
AA
1350 */
1351static inline int pmd_trans_unstable(pmd_t *pmd)
1352{
1353#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1354 return pmd_none_or_trans_huge_or_clear_bad(pmd);
1355#else
1356 return 0;
5f6e8da7 1357#endif
1a5a9906
AA
1358}
1359
f9ce0be7
KS
1360/*
1361 * the ordering of these checks is important for pmds with _page_devmap set.
1362 * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
1363 * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
1364 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
1365 */
1366static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
1367{
1368 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
1369}
1370
e7bb4b6d
MG
1371#ifndef CONFIG_NUMA_BALANCING
1372/*
1373 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1374 * the only case the kernel cares is for NUMA balancing and is only ever set
1375 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1067b261 1376 * _PAGE_PROTNONE so by default, implement the helper as "always no". It
e7bb4b6d
MG
1377 * is the responsibility of the caller to distinguish between PROT_NONE
1378 * protections and NUMA hinting fault protections.
1379 */
1380static inline int pte_protnone(pte_t pte)
1381{
1382 return 0;
1383}
1384
1385static inline int pmd_protnone(pmd_t pmd)
1386{
1387 return 0;
1388}
1389#endif /* CONFIG_NUMA_BALANCING */
1390
1a5a9906 1391#endif /* CONFIG_MMU */
5f6e8da7 1392
e61ce6ad 1393#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
c2febafc
KS
1394
1395#ifndef __PAGETABLE_P4D_FOLDED
1396int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1397int p4d_clear_huge(p4d_t *p4d);
1398#else
1399static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1400{
1401 return 0;
1402}
1403static inline int p4d_clear_huge(p4d_t *p4d)
1404{
1405 return 0;
1406}
1407#endif /* !__PAGETABLE_P4D_FOLDED */
1408
e61ce6ad 1409int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
c742199a 1410int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
d8a71905 1411int pud_clear_huge(pud_t *pud);
b9820d8f 1412int pmd_clear_huge(pmd_t *pmd);
8e2d4340 1413int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
785a19f9
CP
1414int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1415int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
e61ce6ad 1416#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
c2febafc
KS
1417static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1418{
1419 return 0;
1420}
e61ce6ad
TK
1421static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1422{
1423 return 0;
1424}
1425static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1426{
1427 return 0;
1428}
c2febafc
KS
1429static inline int p4d_clear_huge(p4d_t *p4d)
1430{
1431 return 0;
1432}
b9820d8f
TK
1433static inline int pud_clear_huge(pud_t *pud)
1434{
1435 return 0;
1436}
1437static inline int pmd_clear_huge(pmd_t *pmd)
1438{
1439 return 0;
1440}
8e2d4340
WD
1441static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1442{
1443 return 0;
1444}
785a19f9 1445static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
b6bdb751
TK
1446{
1447 return 0;
1448}
785a19f9 1449static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
b6bdb751
TK
1450{
1451 return 0;
1452}
e61ce6ad
TK
1453#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1454
458aa76d
AK
1455#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1456#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1457/*
1458 * ARCHes with special requirements for evicting THP backing TLB entries can
1459 * implement this. Otherwise also, it can help optimize normal TLB flush in
1067b261
RD
1460 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1461 * entire TLB if flush span is greater than a threshold, which will
1462 * likely be true for a single huge page. Thus a single THP flush will
1463 * invalidate the entire TLB which is not desirable.
458aa76d
AK
1464 * e.g. see arch/arc: flush_pmd_tlb_range
1465 */
1466#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
a00cc7d9 1467#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
458aa76d
AK
1468#else
1469#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
a00cc7d9 1470#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
458aa76d
AK
1471#endif
1472#endif
1473
08ea8c07
BX
1474struct file;
1475int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1476 unsigned long size, pgprot_t *vma_prot);
613e396b
TG
1477
1478#ifndef CONFIG_X86_ESPFIX64
1479static inline void init_espfix_bsp(void) { }
1480#endif
1481
782de70c 1482extern void __init pgtable_cache_init(void);
caa84136 1483
6c26fcd2
JK
1484#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1485static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1486{
1487 return true;
1488}
1489
1490static inline bool arch_has_pfn_modify_check(void)
1491{
1492 return false;
1493}
1494#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1495
a3266bd4
LR
1496/*
1497 * Architecture PAGE_KERNEL_* fallbacks
1498 *
1499 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1500 * because they really don't support them, or the port needs to be updated to
1501 * reflect the required functionality. Below are a set of relatively safe
1502 * fallbacks, as best effort, which we can count on in lieu of the architectures
1503 * not defining them on their own yet.
1504 */
1505
1506#ifndef PAGE_KERNEL_RO
1507# define PAGE_KERNEL_RO PAGE_KERNEL
1508#endif
1509
1a9b4b3d
LR
1510#ifndef PAGE_KERNEL_EXEC
1511# define PAGE_KERNEL_EXEC PAGE_KERNEL
1512#endif
1513
d8626138
JR
1514/*
1515 * Page Table Modification bits for pgtbl_mod_mask.
1516 *
1517 * These are used by the p?d_alloc_track*() set of functions an in the generic
1518 * vmalloc/ioremap code to track at which page-table levels entries have been
1519 * modified. Based on that the code can better decide when vmalloc and ioremap
1520 * mapping changes need to be synchronized to other page-tables in the system.
1521 */
1522#define __PGTBL_PGD_MODIFIED 0
1523#define __PGTBL_P4D_MODIFIED 1
1524#define __PGTBL_PUD_MODIFIED 2
1525#define __PGTBL_PMD_MODIFIED 3
1526#define __PGTBL_PTE_MODIFIED 4
1527
1528#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1529#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1530#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1531#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1532#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1533
1534/* Page-Table Modification Mask */
1535typedef unsigned int pgtbl_mod_mask;
1536
1da177e4
LT
1537#endif /* !__ASSEMBLY__ */
1538
cef39703
AB
1539#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1540#ifdef CONFIG_PHYS_ADDR_T_64BIT
1541/*
1542 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1543 * with physical address space extension, but falls back to
1544 * BITS_PER_LONG otherwise.
1545 */
1546#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1547#else
1548#define MAX_POSSIBLE_PHYSMEM_BITS 32
1549#endif
1550#endif
1551
fd8cfd30
HD
1552#ifndef has_transparent_hugepage
1553#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1554#define has_transparent_hugepage() 1
1555#else
1556#define has_transparent_hugepage() 0
1557#endif
1558#endif
1559
1071fc57
MS
1560/*
1561 * On some architectures it depends on the mm if the p4d/pud or pmd
1562 * layer of the page table hierarchy is folded or not.
1563 */
1564#ifndef mm_p4d_folded
1565#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1566#endif
1567
1568#ifndef mm_pud_folded
1569#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1570#endif
1571
1572#ifndef mm_pmd_folded
1573#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1574#endif
1575
d3f7b1bb
VG
1576#ifndef p4d_offset_lockless
1577#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1578#endif
1579#ifndef pud_offset_lockless
1580#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1581#endif
1582#ifndef pmd_offset_lockless
1583#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1584#endif
1585
93fab1b2
SP
1586/*
1587 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1588 * This differs from p?d_huge() by the fact that they are always available (if
1589 * the architecture supports large pages at the appropriate level) even
1590 * if CONFIG_HUGETLB_PAGE is not defined.
1591 * Only meaningful when called on a valid entry.
1592 */
1593#ifndef pgd_leaf
1594#define pgd_leaf(x) 0
1595#endif
1596#ifndef p4d_leaf
1597#define p4d_leaf(x) 0
1598#endif
1599#ifndef pud_leaf
1600#define pud_leaf(x) 0
1601#endif
1602#ifndef pmd_leaf
1603#define pmd_leaf(x) 0
1604#endif
1605
560dabbd
PZ
1606#ifndef pgd_leaf_size
1607#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1608#endif
1609#ifndef p4d_leaf_size
1610#define p4d_leaf_size(x) P4D_SIZE
1611#endif
1612#ifndef pud_leaf_size
1613#define pud_leaf_size(x) PUD_SIZE
1614#endif
1615#ifndef pmd_leaf_size
1616#define pmd_leaf_size(x) PMD_SIZE
1617#endif
1618#ifndef pte_leaf_size
1619#define pte_leaf_size(x) PAGE_SIZE
1620#endif
1621
c0f8aa4f
DA
1622/*
1623 * Some architectures have MMUs that are configurable or selectable at boot
1624 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1625 * helps to have a static maximum value.
1626 */
1627
1628#ifndef MAX_PTRS_PER_PTE
1629#define MAX_PTRS_PER_PTE PTRS_PER_PTE
1630#endif
1631
1632#ifndef MAX_PTRS_PER_PMD
1633#define MAX_PTRS_PER_PMD PTRS_PER_PMD
1634#endif
1635
1636#ifndef MAX_PTRS_PER_PUD
1637#define MAX_PTRS_PER_PUD PTRS_PER_PUD
1638#endif
1639
1640#ifndef MAX_PTRS_PER_P4D
1641#define MAX_PTRS_PER_P4D PTRS_PER_P4D
1642#endif
1643
ca5999fd 1644#endif /* _LINUX_PGTABLE_H */