Merge tag '5.19-rc-ksmbd-server-fixes' of git://git.samba.org/ksmbd
[linux-2.6-block.git] / include / linux / pgtable.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
ca5999fd
MR
2#ifndef _LINUX_PGTABLE_H
3#define _LINUX_PGTABLE_H
1da177e4 4
f25748e3 5#include <linux/pfn.h>
ca5999fd 6#include <asm/pgtable.h>
f25748e3 7
673eae82 8#ifndef __ASSEMBLY__
9535239f 9#ifdef CONFIG_MMU
673eae82 10
fbd71844 11#include <linux/mm_types.h>
187f1882 12#include <linux/bug.h>
e61ce6ad 13#include <linux/errno.h>
5a281062 14#include <asm-generic/pgtable_uffd.h>
de8c8e52 15#include <linux/page_table_check.h>
fbd71844 16
c2febafc
KS
17#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
18 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
19#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
235a8f02
KS
20#endif
21
6ee8630e
HD
22/*
23 * On almost all architectures and configurations, 0 can be used as the
24 * upper ceiling to free_pgtables(): on many architectures it has the same
25 * effect as using TASK_SIZE. However, there is one configuration which
26 * must impose a more careful limit, to avoid freeing kernel pgtables.
27 */
28#ifndef USER_PGTABLES_CEILING
29#define USER_PGTABLES_CEILING 0UL
30#endif
fac7757e
AK
31
32/*
33 * This defines the first usable user address. Platforms
34 * can override its value with custom FIRST_USER_ADDRESS
35 * defined in their respective <asm/pgtable.h>.
36 */
37#ifndef FIRST_USER_ADDRESS
38#define FIRST_USER_ADDRESS 0UL
39#endif
1c2f7d14
AK
40
41/*
42 * This defines the generic helper for accessing PMD page
43 * table page. Although platforms can still override this
44 * via their respective <asm/pgtable.h>.
45 */
46#ifndef pmd_pgtable
47#define pmd_pgtable(pmd) pmd_page(pmd)
48#endif
6ee8630e 49
974b9b2c
MR
50/*
51 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
52 *
53 * The pXx_index() functions return the index of the entry in the page
54 * table page which would control the given virtual address
55 *
56 * As these functions may be used by the same code for different levels of
57 * the page table folding, they are always available, regardless of
58 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
59 * because in such cases PTRS_PER_PxD equals 1.
60 */
61
62static inline unsigned long pte_index(unsigned long address)
63{
64 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
65}
314c459a 66#define pte_index pte_index
974b9b2c
MR
67
68#ifndef pmd_index
69static inline unsigned long pmd_index(unsigned long address)
70{
71 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
72}
73#define pmd_index pmd_index
74#endif
75
76#ifndef pud_index
77static inline unsigned long pud_index(unsigned long address)
78{
79 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
80}
81#define pud_index pud_index
82#endif
83
84#ifndef pgd_index
85/* Must be a compile-time constant, so implement it as a macro */
86#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
87#endif
88
89#ifndef pte_offset_kernel
90static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
91{
92 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
93}
94#define pte_offset_kernel pte_offset_kernel
95#endif
96
97#if defined(CONFIG_HIGHPTE)
98#define pte_offset_map(dir, address) \
99 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \
100 pte_index((address)))
101#define pte_unmap(pte) kunmap_atomic((pte))
102#else
103#define pte_offset_map(dir, address) pte_offset_kernel((dir), (address))
104#define pte_unmap(pte) ((void)(pte)) /* NOP */
105#endif
106
107/* Find an entry in the second-level page table.. */
108#ifndef pmd_offset
109static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
110{
9cf6fa24 111 return pud_pgtable(*pud) + pmd_index(address);
974b9b2c
MR
112}
113#define pmd_offset pmd_offset
114#endif
115
116#ifndef pud_offset
117static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
118{
dc4875f0 119 return p4d_pgtable(*p4d) + pud_index(address);
974b9b2c
MR
120}
121#define pud_offset pud_offset
122#endif
123
124static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
125{
126 return (pgd + pgd_index(address));
127};
128
129/*
130 * a shortcut to get a pgd_t in a given mm
131 */
132#ifndef pgd_offset
133#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
134#endif
135
136/*
137 * a shortcut which implies the use of the kernel's pgd, instead
138 * of a process's
139 */
bd05220c 140#ifndef pgd_offset_k
974b9b2c 141#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
bd05220c 142#endif
974b9b2c 143
e05c7b1f
MR
144/*
145 * In many cases it is known that a virtual address is mapped at PMD or PTE
146 * level, so instead of traversing all the page table levels, we can get a
147 * pointer to the PMD entry in user or kernel page table or translate a virtual
148 * address to the pointer in the PTE in the kernel page tables with simple
149 * helpers.
150 */
151static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
152{
153 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
154}
155
156static inline pmd_t *pmd_off_k(unsigned long va)
157{
158 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
159}
160
161static inline pte_t *virt_to_kpte(unsigned long vaddr)
162{
163 pmd_t *pmd = pmd_off_k(vaddr);
164
165 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
166}
167
1da177e4 168#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
e2cda322
AA
169extern int ptep_set_access_flags(struct vm_area_struct *vma,
170 unsigned long address, pte_t *ptep,
171 pte_t entry, int dirty);
172#endif
173
174#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
bd5e88ad 175#ifdef CONFIG_TRANSPARENT_HUGEPAGE
e2cda322
AA
176extern int pmdp_set_access_flags(struct vm_area_struct *vma,
177 unsigned long address, pmd_t *pmdp,
178 pmd_t entry, int dirty);
a00cc7d9
MW
179extern int pudp_set_access_flags(struct vm_area_struct *vma,
180 unsigned long address, pud_t *pudp,
181 pud_t entry, int dirty);
bd5e88ad
VG
182#else
183static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
184 unsigned long address, pmd_t *pmdp,
185 pmd_t entry, int dirty)
186{
187 BUILD_BUG();
188 return 0;
189}
a00cc7d9
MW
190static inline int pudp_set_access_flags(struct vm_area_struct *vma,
191 unsigned long address, pud_t *pudp,
192 pud_t entry, int dirty)
193{
194 BUILD_BUG();
195 return 0;
196}
bd5e88ad 197#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
198#endif
199
200#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
e2cda322
AA
201static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
202 unsigned long address,
203 pte_t *ptep)
204{
205 pte_t pte = *ptep;
206 int r = 1;
207 if (!pte_young(pte))
208 r = 0;
209 else
210 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
211 return r;
212}
213#endif
214
215#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
216#ifdef CONFIG_TRANSPARENT_HUGEPAGE
217static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
218 unsigned long address,
219 pmd_t *pmdp)
220{
221 pmd_t pmd = *pmdp;
222 int r = 1;
223 if (!pmd_young(pmd))
224 r = 0;
225 else
226 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
227 return r;
228}
bd5e88ad 229#else
e2cda322
AA
230static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
231 unsigned long address,
232 pmd_t *pmdp)
233{
bd5e88ad 234 BUILD_BUG();
e2cda322
AA
235 return 0;
236}
237#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
238#endif
239
240#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
e2cda322
AA
241int ptep_clear_flush_young(struct vm_area_struct *vma,
242 unsigned long address, pte_t *ptep);
243#endif
244
245#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
bd5e88ad
VG
246#ifdef CONFIG_TRANSPARENT_HUGEPAGE
247extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
248 unsigned long address, pmd_t *pmdp);
249#else
250/*
251 * Despite relevant to THP only, this API is called from generic rmap code
252 * under PageTransHuge(), hence needs a dummy implementation for !THP
253 */
254static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
255 unsigned long address, pmd_t *pmdp)
256{
257 BUILD_BUG();
258 return 0;
259}
260#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
261#endif
262
1da177e4 263#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
e2cda322
AA
264static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
265 unsigned long address,
266 pte_t *ptep)
267{
268 pte_t pte = *ptep;
269 pte_clear(mm, address, ptep);
de8c8e52 270 page_table_check_pte_clear(mm, address, pte);
e2cda322
AA
271 return pte;
272}
273#endif
274
de8c8e52
TT
275static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
276 pte_t *ptep)
277{
278 ptep_get_and_clear(mm, addr, ptep);
279}
de8c8e52 280
481e980a
CL
281#ifndef __HAVE_ARCH_PTEP_GET
282static inline pte_t ptep_get(pte_t *ptep)
283{
284 return READ_ONCE(*ptep);
285}
286#endif
287
2a4a06da
PZ
288#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
289/*
290 * WARNING: only to be used in the get_user_pages_fast() implementation.
291 *
292 * With get_user_pages_fast(), we walk down the pagetables without taking any
293 * locks. For this we would like to load the pointers atomically, but sometimes
294 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
295 * we do have is the guarantee that a PTE will only either go from not present
296 * to present, or present to not present or both -- it will not switch to a
297 * completely different present page without a TLB flush in between; something
298 * that we are blocking by holding interrupts off.
299 *
300 * Setting ptes from not present to present goes:
301 *
302 * ptep->pte_high = h;
303 * smp_wmb();
304 * ptep->pte_low = l;
305 *
306 * And present to not present goes:
307 *
308 * ptep->pte_low = 0;
309 * smp_wmb();
310 * ptep->pte_high = 0;
311 *
312 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
313 * We load pte_high *after* loading pte_low, which ensures we don't see an older
314 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
315 * picked up a changed pte high. We might have gotten rubbish values from
316 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
317 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
318 * operates on present ptes we're safe.
319 */
320static inline pte_t ptep_get_lockless(pte_t *ptep)
321{
322 pte_t pte;
323
324 do {
325 pte.pte_low = ptep->pte_low;
326 smp_rmb();
327 pte.pte_high = ptep->pte_high;
328 smp_rmb();
329 } while (unlikely(pte.pte_low != ptep->pte_low));
330
331 return pte;
332}
333#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
334/*
335 * We require that the PTE can be read atomically.
336 */
337static inline pte_t ptep_get_lockless(pte_t *ptep)
338{
339 return ptep_get(ptep);
340}
341#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
342
e2cda322 343#ifdef CONFIG_TRANSPARENT_HUGEPAGE
a00cc7d9 344#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
8809aa2d
AK
345static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
346 unsigned long address,
347 pmd_t *pmdp)
e2cda322
AA
348{
349 pmd_t pmd = *pmdp;
de8c8e52 350
2d28a227 351 pmd_clear(pmdp);
de8c8e52
TT
352 page_table_check_pmd_clear(mm, address, pmd);
353
e2cda322 354 return pmd;
49b24d6b 355}
a00cc7d9
MW
356#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
357#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
358static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
359 unsigned long address,
360 pud_t *pudp)
361{
362 pud_t pud = *pudp;
363
364 pud_clear(pudp);
de8c8e52
TT
365 page_table_check_pud_clear(mm, address, pud);
366
a00cc7d9
MW
367 return pud;
368}
369#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
e2cda322 370#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4 371
fcbe08d6 372#ifdef CONFIG_TRANSPARENT_HUGEPAGE
a00cc7d9 373#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
93a98695 374static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
fcbe08d6
MS
375 unsigned long address, pmd_t *pmdp,
376 int full)
377{
93a98695 378 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
fcbe08d6 379}
fcbe08d6
MS
380#endif
381
a00cc7d9
MW
382#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
383static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
384 unsigned long address, pud_t *pudp,
385 int full)
386{
387 return pudp_huge_get_and_clear(mm, address, pudp);
388}
389#endif
390#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
391
a600388d 392#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
e2cda322
AA
393static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
394 unsigned long address, pte_t *ptep,
395 int full)
396{
397 pte_t pte;
398 pte = ptep_get_and_clear(mm, address, ptep);
399 return pte;
400}
a600388d
ZA
401#endif
402
7df67697
BM
403
404/*
405 * If two threads concurrently fault at the same page, the thread that
406 * won the race updates the PTE and its local TLB/Cache. The other thread
407 * gives up, simply does nothing, and continues; on architectures where
408 * software can update TLB, local TLB can be updated here to avoid next page
409 * fault. This function updates TLB only, do nothing with cache or others.
410 * It is the difference with function update_mmu_cache.
411 */
412#ifndef __HAVE_ARCH_UPDATE_MMU_TLB
413static inline void update_mmu_tlb(struct vm_area_struct *vma,
414 unsigned long address, pte_t *ptep)
415{
416}
417#define __HAVE_ARCH_UPDATE_MMU_TLB
418#endif
419
9888a1ca
ZA
420/*
421 * Some architectures may be able to avoid expensive synchronization
422 * primitives when modifications are made to PTE's which are already
423 * not present, or in the process of an address space destruction.
424 */
425#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
e2cda322
AA
426static inline void pte_clear_not_present_full(struct mm_struct *mm,
427 unsigned long address,
428 pte_t *ptep,
429 int full)
430{
431 pte_clear(mm, address, ptep);
432}
a600388d
ZA
433#endif
434
1da177e4 435#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
e2cda322
AA
436extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
437 unsigned long address,
438 pte_t *ptep);
439#endif
440
8809aa2d
AK
441#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
442extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
e2cda322
AA
443 unsigned long address,
444 pmd_t *pmdp);
a00cc7d9
MW
445extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
446 unsigned long address,
447 pud_t *pudp);
1da177e4
LT
448#endif
449
450#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
8c65b4a6 451struct mm_struct;
1da177e4
LT
452static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
453{
454 pte_t old_pte = *ptep;
455 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
456}
457#endif
458
44bf431b
BM
459/*
460 * On some architectures hardware does not set page access bit when accessing
2eb70aab 461 * memory page, it is responsibility of software setting this bit. It brings
44bf431b
BM
462 * out extra page fault penalty to track page access bit. For optimization page
463 * access bit can be set during all page fault flow on these arches.
464 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
465 * where software maintains page access bit.
466 */
50c25ee9
TB
467#ifndef pte_sw_mkyoung
468static inline pte_t pte_sw_mkyoung(pte_t pte)
469{
470 return pte;
471}
472#define pte_sw_mkyoung pte_sw_mkyoung
473#endif
474
288bc549
AK
475#ifndef pte_savedwrite
476#define pte_savedwrite pte_write
477#endif
478
479#ifndef pte_mk_savedwrite
480#define pte_mk_savedwrite pte_mkwrite
481#endif
482
595cd8f2
AK
483#ifndef pte_clear_savedwrite
484#define pte_clear_savedwrite pte_wrprotect
485#endif
486
288bc549
AK
487#ifndef pmd_savedwrite
488#define pmd_savedwrite pmd_write
489#endif
490
491#ifndef pmd_mk_savedwrite
492#define pmd_mk_savedwrite pmd_mkwrite
493#endif
494
595cd8f2
AK
495#ifndef pmd_clear_savedwrite
496#define pmd_clear_savedwrite pmd_wrprotect
497#endif
498
e2cda322
AA
499#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
500#ifdef CONFIG_TRANSPARENT_HUGEPAGE
501static inline void pmdp_set_wrprotect(struct mm_struct *mm,
502 unsigned long address, pmd_t *pmdp)
503{
504 pmd_t old_pmd = *pmdp;
505 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
506}
bd5e88ad 507#else
e2cda322
AA
508static inline void pmdp_set_wrprotect(struct mm_struct *mm,
509 unsigned long address, pmd_t *pmdp)
510{
bd5e88ad 511 BUILD_BUG();
e2cda322
AA
512}
513#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
514#endif
a00cc7d9
MW
515#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
516#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
517static inline void pudp_set_wrprotect(struct mm_struct *mm,
518 unsigned long address, pud_t *pudp)
519{
520 pud_t old_pud = *pudp;
521
522 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
523}
524#else
525static inline void pudp_set_wrprotect(struct mm_struct *mm,
526 unsigned long address, pud_t *pudp)
527{
528 BUILD_BUG();
529}
530#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
531#endif
e2cda322 532
15a25b2e
AK
533#ifndef pmdp_collapse_flush
534#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f28b6ff8
AK
535extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
536 unsigned long address, pmd_t *pmdp);
15a25b2e
AK
537#else
538static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
539 unsigned long address,
540 pmd_t *pmdp)
541{
542 BUILD_BUG();
543 return *pmdp;
544}
545#define pmdp_collapse_flush pmdp_collapse_flush
546#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
547#endif
548
e3ebcf64 549#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
6b0b50b0
AK
550extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
551 pgtable_t pgtable);
e3ebcf64
GS
552#endif
553
554#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
6b0b50b0 555extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
e3ebcf64
GS
556#endif
557
c58f0bb7
KS
558#ifdef CONFIG_TRANSPARENT_HUGEPAGE
559/*
560 * This is an implementation of pmdp_establish() that is only suitable for an
561 * architecture that doesn't have hardware dirty/accessed bits. In this case we
2eb70aab 562 * can't race with CPU which sets these bits and non-atomic approach is fine.
c58f0bb7
KS
563 */
564static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
565 unsigned long address, pmd_t *pmdp, pmd_t pmd)
566{
567 pmd_t old_pmd = *pmdp;
568 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
569 return old_pmd;
570}
571#endif
572
46dcde73 573#ifndef __HAVE_ARCH_PMDP_INVALIDATE
d52605d7 574extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
46dcde73
GS
575 pmd_t *pmdp);
576#endif
577
4f831457
NA
578#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
579
580/*
581 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
582 * hugepage mapping in the page tables. This function is similar to
583 * pmdp_invalidate(), but should only be used if the access and dirty bits would
584 * not be cleared by the software in the new PMD value. The function ensures
585 * that hardware changes of the access and dirty bits updates would not be lost.
586 *
587 * Doing so can allow in certain architectures to avoid a TLB flush in most
588 * cases. Yet, another TLB flush might be necessary later if the PMD update
589 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
590 * even when a TLB flush is needed because of the update, the caller may be able
591 * to batch these TLB flushing operations, so fewer TLB flush operations are
592 * needed.
593 */
594extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
595 unsigned long address, pmd_t *pmdp);
596#endif
597
1da177e4 598#ifndef __HAVE_ARCH_PTE_SAME
e2cda322
AA
599static inline int pte_same(pte_t pte_a, pte_t pte_b)
600{
601 return pte_val(pte_a) == pte_val(pte_b);
602}
603#endif
604
45961722
KW
605#ifndef __HAVE_ARCH_PTE_UNUSED
606/*
607 * Some architectures provide facilities to virtualization guests
608 * so that they can flag allocated pages as unused. This allows the
609 * host to transparently reclaim unused pages. This function returns
610 * whether the pte's page is unused.
611 */
612static inline int pte_unused(pte_t pte)
613{
614 return 0;
615}
616#endif
617
e7884f8e
KS
618#ifndef pte_access_permitted
619#define pte_access_permitted(pte, write) \
620 (pte_present(pte) && (!(write) || pte_write(pte)))
621#endif
622
623#ifndef pmd_access_permitted
624#define pmd_access_permitted(pmd, write) \
625 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
626#endif
627
628#ifndef pud_access_permitted
629#define pud_access_permitted(pud, write) \
630 (pud_present(pud) && (!(write) || pud_write(pud)))
631#endif
632
633#ifndef p4d_access_permitted
634#define p4d_access_permitted(p4d, write) \
635 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
636#endif
637
638#ifndef pgd_access_permitted
639#define pgd_access_permitted(pgd, write) \
640 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
641#endif
642
e2cda322 643#ifndef __HAVE_ARCH_PMD_SAME
e2cda322
AA
644static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
645{
646 return pmd_val(pmd_a) == pmd_val(pmd_b);
647}
a00cc7d9
MW
648
649static inline int pud_same(pud_t pud_a, pud_t pud_b)
650{
651 return pud_val(pud_a) == pud_val(pud_b);
652}
1da177e4
LT
653#endif
654
0cebbb60
DW
655#ifndef __HAVE_ARCH_P4D_SAME
656static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
657{
658 return p4d_val(p4d_a) == p4d_val(p4d_b);
659}
660#endif
661
662#ifndef __HAVE_ARCH_PGD_SAME
663static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
664{
665 return pgd_val(pgd_a) == pgd_val(pgd_b);
666}
667#endif
668
4369deaa
DW
669/*
670 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
671 * TLB flush will be required as a result of the "set". For example, use
672 * in scenarios where it is known ahead of time that the routine is
673 * setting non-present entries, or re-setting an existing entry to the
674 * same value. Otherwise, use the typical "set" helpers and flush the
675 * TLB.
676 */
677#define set_pte_safe(ptep, pte) \
678({ \
679 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
680 set_pte(ptep, pte); \
681})
682
683#define set_pmd_safe(pmdp, pmd) \
684({ \
685 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
686 set_pmd(pmdp, pmd); \
687})
688
689#define set_pud_safe(pudp, pud) \
690({ \
691 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
692 set_pud(pudp, pud); \
693})
694
695#define set_p4d_safe(p4dp, p4d) \
696({ \
697 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
698 set_p4d(p4dp, p4d); \
699})
700
701#define set_pgd_safe(pgdp, pgd) \
702({ \
703 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
704 set_pgd(pgdp, pgd); \
705})
706
ca827d55
KA
707#ifndef __HAVE_ARCH_DO_SWAP_PAGE
708/*
709 * Some architectures support metadata associated with a page. When a
710 * page is being swapped out, this metadata must be saved so it can be
711 * restored when the page is swapped back in. SPARC M7 and newer
712 * processors support an ADI (Application Data Integrity) tag for the
713 * page as metadata for the page. arch_do_swap_page() can restore this
714 * metadata when a page is swapped back in.
715 */
716static inline void arch_do_swap_page(struct mm_struct *mm,
717 struct vm_area_struct *vma,
718 unsigned long addr,
719 pte_t pte, pte_t oldpte)
720{
721
722}
723#endif
724
725#ifndef __HAVE_ARCH_UNMAP_ONE
726/*
727 * Some architectures support metadata associated with a page. When a
728 * page is being swapped out, this metadata must be saved so it can be
729 * restored when the page is swapped back in. SPARC M7 and newer
730 * processors support an ADI (Application Data Integrity) tag for the
731 * page as metadata for the page. arch_unmap_one() can save this
732 * metadata on a swap-out of a page.
733 */
734static inline int arch_unmap_one(struct mm_struct *mm,
735 struct vm_area_struct *vma,
736 unsigned long addr,
737 pte_t orig_pte)
738{
739 return 0;
740}
741#endif
742
8a84802e
SP
743/*
744 * Allow architectures to preserve additional metadata associated with
745 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
746 * prototypes must be defined in the arch-specific asm/pgtable.h file.
747 */
748#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
749static inline int arch_prepare_to_swap(struct page *page)
750{
751 return 0;
752}
753#endif
754
755#ifndef __HAVE_ARCH_SWAP_INVALIDATE
756static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
757{
758}
759
760static inline void arch_swap_invalidate_area(int type)
761{
762}
763#endif
764
765#ifndef __HAVE_ARCH_SWAP_RESTORE
da08e9b7 766static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
8a84802e
SP
767{
768}
769#endif
770
1da177e4
LT
771#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
772#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
773#endif
774
0b0968a3 775#ifndef __HAVE_ARCH_MOVE_PTE
8b1f3124 776#define move_pte(pte, prot, old_addr, new_addr) (pte)
8b1f3124
NP
777#endif
778
2c3cf556 779#ifndef pte_accessible
20841405 780# define pte_accessible(mm, pte) ((void)(pte), 1)
2c3cf556
RR
781#endif
782
61c77326
SL
783#ifndef flush_tlb_fix_spurious_fault
784#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
785#endif
786
1da177e4 787/*
8f6c99c1
HD
788 * When walking page tables, get the address of the next boundary,
789 * or the end address of the range if that comes earlier. Although no
790 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1da177e4
LT
791 */
792
1da177e4
LT
793#define pgd_addr_end(addr, end) \
794({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
795 (__boundary - 1 < (end) - 1)? __boundary: (end); \
796})
1da177e4 797
c2febafc
KS
798#ifndef p4d_addr_end
799#define p4d_addr_end(addr, end) \
800({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
801 (__boundary - 1 < (end) - 1)? __boundary: (end); \
802})
803#endif
804
1da177e4
LT
805#ifndef pud_addr_end
806#define pud_addr_end(addr, end) \
807({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
808 (__boundary - 1 < (end) - 1)? __boundary: (end); \
809})
810#endif
811
812#ifndef pmd_addr_end
813#define pmd_addr_end(addr, end) \
814({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
815 (__boundary - 1 < (end) - 1)? __boundary: (end); \
816})
817#endif
818
1da177e4
LT
819/*
820 * When walking page tables, we usually want to skip any p?d_none entries;
821 * and any p?d_bad entries - reporting the error before resetting to none.
822 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
823 */
824void pgd_clear_bad(pgd_t *);
f2400abc
VG
825
826#ifndef __PAGETABLE_P4D_FOLDED
c2febafc 827void p4d_clear_bad(p4d_t *);
f2400abc
VG
828#else
829#define p4d_clear_bad(p4d) do { } while (0)
830#endif
831
832#ifndef __PAGETABLE_PUD_FOLDED
1da177e4 833void pud_clear_bad(pud_t *);
f2400abc
VG
834#else
835#define pud_clear_bad(p4d) do { } while (0)
836#endif
837
1da177e4
LT
838void pmd_clear_bad(pmd_t *);
839
840static inline int pgd_none_or_clear_bad(pgd_t *pgd)
841{
842 if (pgd_none(*pgd))
843 return 1;
844 if (unlikely(pgd_bad(*pgd))) {
845 pgd_clear_bad(pgd);
846 return 1;
847 }
848 return 0;
849}
850
c2febafc
KS
851static inline int p4d_none_or_clear_bad(p4d_t *p4d)
852{
853 if (p4d_none(*p4d))
854 return 1;
855 if (unlikely(p4d_bad(*p4d))) {
856 p4d_clear_bad(p4d);
857 return 1;
858 }
859 return 0;
860}
861
1da177e4
LT
862static inline int pud_none_or_clear_bad(pud_t *pud)
863{
864 if (pud_none(*pud))
865 return 1;
866 if (unlikely(pud_bad(*pud))) {
867 pud_clear_bad(pud);
868 return 1;
869 }
870 return 0;
871}
872
873static inline int pmd_none_or_clear_bad(pmd_t *pmd)
874{
875 if (pmd_none(*pmd))
876 return 1;
877 if (unlikely(pmd_bad(*pmd))) {
878 pmd_clear_bad(pmd);
879 return 1;
880 }
881 return 0;
882}
9535239f 883
0cbe3e26 884static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1ea0704e
JF
885 unsigned long addr,
886 pte_t *ptep)
887{
888 /*
889 * Get the current pte state, but zero it out to make it
890 * non-present, preventing the hardware from asynchronously
891 * updating it.
892 */
0cbe3e26 893 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1ea0704e
JF
894}
895
0cbe3e26 896static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1ea0704e
JF
897 unsigned long addr,
898 pte_t *ptep, pte_t pte)
899{
900 /*
901 * The pte is non-present, so there's no hardware state to
902 * preserve.
903 */
0cbe3e26 904 set_pte_at(vma->vm_mm, addr, ptep, pte);
1ea0704e
JF
905}
906
907#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
908/*
909 * Start a pte protection read-modify-write transaction, which
910 * protects against asynchronous hardware modifications to the pte.
911 * The intention is not to prevent the hardware from making pte
912 * updates, but to prevent any updates it may make from being lost.
913 *
914 * This does not protect against other software modifications of the
2eb70aab 915 * pte; the appropriate pte lock must be held over the transaction.
1ea0704e
JF
916 *
917 * Note that this interface is intended to be batchable, meaning that
918 * ptep_modify_prot_commit may not actually update the pte, but merely
919 * queue the update to be done at some later time. The update must be
920 * actually committed before the pte lock is released, however.
921 */
0cbe3e26 922static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1ea0704e
JF
923 unsigned long addr,
924 pte_t *ptep)
925{
0cbe3e26 926 return __ptep_modify_prot_start(vma, addr, ptep);
1ea0704e
JF
927}
928
929/*
930 * Commit an update to a pte, leaving any hardware-controlled bits in
931 * the PTE unmodified.
932 */
0cbe3e26 933static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1ea0704e 934 unsigned long addr,
04a86453 935 pte_t *ptep, pte_t old_pte, pte_t pte)
1ea0704e 936{
0cbe3e26 937 __ptep_modify_prot_commit(vma, addr, ptep, pte);
1ea0704e
JF
938}
939#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
fe1a6875 940#endif /* CONFIG_MMU */
1ea0704e 941
21729f81
TL
942/*
943 * No-op macros that just return the current protection value. Defined here
1067b261 944 * because these macros can be used even if CONFIG_MMU is not defined.
21729f81 945 */
63bb76de
PE
946
947#ifndef pgprot_nx
948#define pgprot_nx(prot) (prot)
949#endif
950
951#ifndef pgprot_noncached
952#define pgprot_noncached(prot) (prot)
953#endif
954
955#ifndef pgprot_writecombine
956#define pgprot_writecombine pgprot_noncached
957#endif
958
959#ifndef pgprot_writethrough
960#define pgprot_writethrough pgprot_noncached
961#endif
962
963#ifndef pgprot_device
964#define pgprot_device pgprot_noncached
965#endif
966
d15dfd31
CM
967#ifndef pgprot_mhp
968#define pgprot_mhp(prot) (prot)
969#endif
970
63bb76de
PE
971#ifdef CONFIG_MMU
972#ifndef pgprot_modify
973#define pgprot_modify pgprot_modify
974static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
975{
976 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
977 newprot = pgprot_noncached(newprot);
978 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
979 newprot = pgprot_writecombine(newprot);
980 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
981 newprot = pgprot_device(newprot);
982 return newprot;
983}
984#endif
985#endif /* CONFIG_MMU */
986
21729f81
TL
987#ifndef pgprot_encrypted
988#define pgprot_encrypted(prot) (prot)
989#endif
990
991#ifndef pgprot_decrypted
992#define pgprot_decrypted(prot) (prot)
993#endif
994
9535239f
GU
995/*
996 * A facility to provide lazy MMU batching. This allows PTE updates and
997 * page invalidations to be delayed until a call to leave lazy MMU mode
998 * is issued. Some architectures may benefit from doing this, and it is
999 * beneficial for both shadow and direct mode hypervisors, which may batch
1000 * the PTE updates which happen during this window. Note that using this
1001 * interface requires that read hazards be removed from the code. A read
1002 * hazard could result in the direct mode hypervisor case, since the actual
1003 * write to the page tables may not yet have taken place, so reads though
1004 * a raw PTE pointer after it has been modified are not guaranteed to be
1005 * up to date. This mode can only be entered and left under the protection of
1006 * the page table locks for all page tables which may be modified. In the UP
1007 * case, this is required so that preemption is disabled, and in the SMP case,
1008 * it must synchronize the delayed page table writes properly on other CPUs.
1009 */
1010#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
1011#define arch_enter_lazy_mmu_mode() do {} while (0)
1012#define arch_leave_lazy_mmu_mode() do {} while (0)
1013#define arch_flush_lazy_mmu_mode() do {} while (0)
1014#endif
1015
1016/*
7fd7d83d
JF
1017 * A facility to provide batching of the reload of page tables and
1018 * other process state with the actual context switch code for
1019 * paravirtualized guests. By convention, only one of the batched
1020 * update (lazy) modes (CPU, MMU) should be active at any given time,
1021 * entry should never be nested, and entry and exits should always be
1022 * paired. This is for sanity of maintaining and reasoning about the
1023 * kernel code. In this case, the exit (end of the context switch) is
1024 * in architecture-specific code, and so doesn't need a generic
1025 * definition.
9535239f 1026 */
7fd7d83d 1027#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
224101ed 1028#define arch_start_context_switch(prev) do {} while (0)
9535239f
GU
1029#endif
1030
1493a191
DH
1031/*
1032 * When replacing an anonymous page by a real (!non) swap entry, we clear
1033 * PG_anon_exclusive from the page and instead remember whether the flag was
1034 * set in the swp pte. During fork(), we have to mark the entry as !exclusive
1035 * (possibly shared). On swapin, we use that information to restore
1036 * PG_anon_exclusive, which is very helpful in cases where we might have
1037 * additional (e.g., FOLL_GET) references on a page and wouldn't be able to
1038 * detect exclusivity.
1039 *
1040 * These functions don't apply to non-swap entries (e.g., migration, hwpoison,
1041 * ...).
1042 */
1043#ifndef __HAVE_ARCH_PTE_SWP_EXCLUSIVE
1044static inline pte_t pte_swp_mkexclusive(pte_t pte)
1045{
1046 return pte;
1047}
1048
1049static inline int pte_swp_exclusive(pte_t pte)
1050{
1051 return false;
1052}
1053
1054static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1055{
1056 return pte;
1057}
1058#endif
1059
ab6e3d09
NH
1060#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1061#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1062static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1063{
1064 return pmd;
1065}
1066
1067static inline int pmd_swp_soft_dirty(pmd_t pmd)
1068{
1069 return 0;
1070}
1071
1072static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1073{
1074 return pmd;
1075}
1076#endif
1077#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
0f8975ec
PE
1078static inline int pte_soft_dirty(pte_t pte)
1079{
1080 return 0;
1081}
1082
1083static inline int pmd_soft_dirty(pmd_t pmd)
1084{
1085 return 0;
1086}
1087
1088static inline pte_t pte_mksoft_dirty(pte_t pte)
1089{
1090 return pte;
1091}
1092
1093static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1094{
1095 return pmd;
1096}
179ef71c 1097
a7b76174
MS
1098static inline pte_t pte_clear_soft_dirty(pte_t pte)
1099{
1100 return pte;
1101}
1102
1103static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1104{
1105 return pmd;
1106}
1107
179ef71c
CG
1108static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1109{
1110 return pte;
1111}
1112
1113static inline int pte_swp_soft_dirty(pte_t pte)
1114{
1115 return 0;
1116}
1117
1118static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1119{
1120 return pte;
1121}
ab6e3d09
NH
1122
1123static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1124{
1125 return pmd;
1126}
1127
1128static inline int pmd_swp_soft_dirty(pmd_t pmd)
1129{
1130 return 0;
1131}
1132
1133static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1134{
1135 return pmd;
1136}
0f8975ec
PE
1137#endif
1138
34801ba9 1139#ifndef __HAVE_PFNMAP_TRACKING
1140/*
5180da41
SS
1141 * Interfaces that can be used by architecture code to keep track of
1142 * memory type of pfn mappings specified by the remap_pfn_range,
67fa1666 1143 * vmf_insert_pfn.
5180da41
SS
1144 */
1145
1146/*
1147 * track_pfn_remap is called when a _new_ pfn mapping is being established
1148 * by remap_pfn_range() for physical range indicated by pfn and size.
34801ba9 1149 */
5180da41 1150static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
b3b9c293
KK
1151 unsigned long pfn, unsigned long addr,
1152 unsigned long size)
34801ba9 1153{
1154 return 0;
1155}
1156
1157/*
5180da41 1158 * track_pfn_insert is called when a _new_ single pfn is established
67fa1666 1159 * by vmf_insert_pfn().
5180da41 1160 */
308a047c
BP
1161static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1162 pfn_t pfn)
5180da41 1163{
5180da41
SS
1164}
1165
1166/*
1167 * track_pfn_copy is called when vma that is covering the pfnmap gets
34801ba9 1168 * copied through copy_page_range().
1169 */
5180da41 1170static inline int track_pfn_copy(struct vm_area_struct *vma)
34801ba9 1171{
1172 return 0;
1173}
1174
1175/*
d9fe4fab 1176 * untrack_pfn is called while unmapping a pfnmap for a region.
34801ba9 1177 * untrack can be called for a specific region indicated by pfn and size or
5180da41 1178 * can be for the entire vma (in which case pfn, size are zero).
34801ba9 1179 */
5180da41
SS
1180static inline void untrack_pfn(struct vm_area_struct *vma,
1181 unsigned long pfn, unsigned long size)
34801ba9 1182{
1183}
d9fe4fab
TK
1184
1185/*
1186 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1187 */
1188static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1189{
1190}
34801ba9 1191#else
5180da41 1192extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
b3b9c293
KK
1193 unsigned long pfn, unsigned long addr,
1194 unsigned long size);
308a047c
BP
1195extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1196 pfn_t pfn);
5180da41
SS
1197extern int track_pfn_copy(struct vm_area_struct *vma);
1198extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1199 unsigned long size);
d9fe4fab 1200extern void untrack_pfn_moved(struct vm_area_struct *vma);
34801ba9 1201#endif
1202
9afaf30f 1203#ifdef CONFIG_MMU
816422ad
KS
1204#ifdef __HAVE_COLOR_ZERO_PAGE
1205static inline int is_zero_pfn(unsigned long pfn)
1206{
1207 extern unsigned long zero_pfn;
1208 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1209 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1210}
1211
2f91ec8c
KS
1212#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1213
816422ad
KS
1214#else
1215static inline int is_zero_pfn(unsigned long pfn)
1216{
1217 extern unsigned long zero_pfn;
1218 return pfn == zero_pfn;
1219}
1220
1221static inline unsigned long my_zero_pfn(unsigned long addr)
1222{
1223 extern unsigned long zero_pfn;
1224 return zero_pfn;
1225}
1226#endif
9afaf30f
PT
1227#else
1228static inline int is_zero_pfn(unsigned long pfn)
1229{
1230 return 0;
1231}
1232
1233static inline unsigned long my_zero_pfn(unsigned long addr)
1234{
1235 return 0;
1236}
1237#endif /* CONFIG_MMU */
816422ad 1238
1a5a9906
AA
1239#ifdef CONFIG_MMU
1240
5f6e8da7
AA
1241#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1242static inline int pmd_trans_huge(pmd_t pmd)
1243{
1244 return 0;
1245}
e4e40e02 1246#ifndef pmd_write
e2cda322
AA
1247static inline int pmd_write(pmd_t pmd)
1248{
1249 BUG();
1250 return 0;
1251}
e4e40e02 1252#endif /* pmd_write */
1a5a9906
AA
1253#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1254
1501899a
DW
1255#ifndef pud_write
1256static inline int pud_write(pud_t pud)
1257{
1258 BUG();
1259 return 0;
1260}
1261#endif /* pud_write */
1262
bf1a12a8
TH
1263#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1264static inline int pmd_devmap(pmd_t pmd)
1265{
1266 return 0;
1267}
1268static inline int pud_devmap(pud_t pud)
1269{
1270 return 0;
1271}
1272static inline int pgd_devmap(pgd_t pgd)
1273{
1274 return 0;
1275}
1276#endif
1277
a00cc7d9
MW
1278#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1279 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1280 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
1281static inline int pud_trans_huge(pud_t pud)
1282{
1283 return 0;
1284}
1285#endif
1286
625110b5
TH
1287/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1288static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1289{
1290 pud_t pudval = READ_ONCE(*pud);
1291
1292 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1293 return 1;
1294 if (unlikely(pud_bad(pudval))) {
1295 pud_clear_bad(pud);
1296 return 1;
1297 }
1298 return 0;
1299}
1300
1301/* See pmd_trans_unstable for discussion. */
1302static inline int pud_trans_unstable(pud_t *pud)
1303{
1304#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1305 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1306 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1307#else
1308 return 0;
1309#endif
1310}
1311
26c19178
AA
1312#ifndef pmd_read_atomic
1313static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1314{
1315 /*
1316 * Depend on compiler for an atomic pmd read. NOTE: this is
1317 * only going to work, if the pmdval_t isn't larger than
1318 * an unsigned long.
1319 */
1320 return *pmdp;
1321}
1322#endif
1323
953c66c2
AK
1324#ifndef arch_needs_pgtable_deposit
1325#define arch_needs_pgtable_deposit() (false)
1326#endif
1a5a9906
AA
1327/*
1328 * This function is meant to be used by sites walking pagetables with
c1e8d7c6 1329 * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1a5a9906
AA
1330 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1331 * into a null pmd and the transhuge page fault can convert a null pmd
1332 * into an hugepmd or into a regular pmd (if the hugepage allocation
c1e8d7c6 1333 * fails). While holding the mmap_lock in read mode the pmd becomes
1a5a9906
AA
1334 * stable and stops changing under us only if it's not null and not a
1335 * transhuge pmd. When those races occurs and this function makes a
1336 * difference vs the standard pmd_none_or_clear_bad, the result is
1337 * undefined so behaving like if the pmd was none is safe (because it
1338 * can return none anyway). The compiler level barrier() is critically
1339 * important to compute the two checks atomically on the same pmdval.
26c19178
AA
1340 *
1341 * For 32bit kernels with a 64bit large pmd_t this automatically takes
1342 * care of reading the pmd atomically to avoid SMP race conditions
c1e8d7c6 1343 * against pmd_populate() when the mmap_lock is hold for reading by the
26c19178
AA
1344 * caller (a special atomic read not done by "gcc" as in the generic
1345 * version above, is also needed when THP is disabled because the page
1346 * fault can populate the pmd from under us).
1a5a9906
AA
1347 */
1348static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1349{
26c19178 1350 pmd_t pmdval = pmd_read_atomic(pmd);
1a5a9906
AA
1351 /*
1352 * The barrier will stabilize the pmdval in a register or on
1353 * the stack so that it will stop changing under the code.
e4eed03f
AA
1354 *
1355 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1356 * pmd_read_atomic is allowed to return a not atomic pmdval
1357 * (for example pointing to an hugepage that has never been
1358 * mapped in the pmd). The below checks will only care about
1359 * the low part of the pmd with 32bit PAE x86 anyway, with the
1360 * exception of pmd_none(). So the important thing is that if
1361 * the low part of the pmd is found null, the high part will
1362 * be also null or the pmd_none() check below would be
1363 * confused.
1a5a9906
AA
1364 */
1365#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1366 barrier();
1367#endif
84c3fc4e
ZY
1368 /*
1369 * !pmd_present() checks for pmd migration entries
1370 *
1371 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1372 * But using that requires moving current function and pmd_trans_unstable()
2eb70aab 1373 * to linux/swapops.h to resolve dependency, which is too much code move.
84c3fc4e
ZY
1374 *
1375 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1376 * because !pmd_present() pages can only be under migration not swapped
1377 * out.
1378 *
2eb70aab 1379 * pmd_none() is preserved for future condition checks on pmd migration
84c3fc4e
ZY
1380 * entries and not confusing with this function name, although it is
1381 * redundant with !pmd_present().
1382 */
1383 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1384 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1a5a9906
AA
1385 return 1;
1386 if (unlikely(pmd_bad(pmdval))) {
ee53664b 1387 pmd_clear_bad(pmd);
1a5a9906
AA
1388 return 1;
1389 }
1390 return 0;
1391}
1392
1393/*
1394 * This is a noop if Transparent Hugepage Support is not built into
1395 * the kernel. Otherwise it is equivalent to
1396 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1397 * places that already verified the pmd is not none and they want to
1398 * walk ptes while holding the mmap sem in read mode (write mode don't
1399 * need this). If THP is not enabled, the pmd can't go away under the
1400 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1401 * run a pmd_trans_unstable before walking the ptes after
9ef258ba
KW
1402 * split_huge_pmd returns (because it may have run when the pmd become
1403 * null, but then a page fault can map in a THP and not a regular page).
1a5a9906
AA
1404 */
1405static inline int pmd_trans_unstable(pmd_t *pmd)
1406{
1407#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1408 return pmd_none_or_trans_huge_or_clear_bad(pmd);
1409#else
1410 return 0;
5f6e8da7 1411#endif
1a5a9906
AA
1412}
1413
f9ce0be7
KS
1414/*
1415 * the ordering of these checks is important for pmds with _page_devmap set.
1416 * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
1417 * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
1418 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
1419 */
1420static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
1421{
1422 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
1423}
1424
e7bb4b6d
MG
1425#ifndef CONFIG_NUMA_BALANCING
1426/*
1427 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1428 * the only case the kernel cares is for NUMA balancing and is only ever set
1429 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1067b261 1430 * _PAGE_PROTNONE so by default, implement the helper as "always no". It
e7bb4b6d
MG
1431 * is the responsibility of the caller to distinguish between PROT_NONE
1432 * protections and NUMA hinting fault protections.
1433 */
1434static inline int pte_protnone(pte_t pte)
1435{
1436 return 0;
1437}
1438
1439static inline int pmd_protnone(pmd_t pmd)
1440{
1441 return 0;
1442}
1443#endif /* CONFIG_NUMA_BALANCING */
1444
1a5a9906 1445#endif /* CONFIG_MMU */
5f6e8da7 1446
e61ce6ad 1447#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
c2febafc
KS
1448
1449#ifndef __PAGETABLE_P4D_FOLDED
1450int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
c8db8c26 1451void p4d_clear_huge(p4d_t *p4d);
c2febafc
KS
1452#else
1453static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1454{
1455 return 0;
1456}
c8db8c26 1457static inline void p4d_clear_huge(p4d_t *p4d) { }
c2febafc
KS
1458#endif /* !__PAGETABLE_P4D_FOLDED */
1459
e61ce6ad 1460int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
c742199a 1461int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
d8a71905 1462int pud_clear_huge(pud_t *pud);
b9820d8f 1463int pmd_clear_huge(pmd_t *pmd);
8e2d4340 1464int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
785a19f9
CP
1465int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1466int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
e61ce6ad 1467#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
c2febafc
KS
1468static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1469{
1470 return 0;
1471}
e61ce6ad
TK
1472static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1473{
1474 return 0;
1475}
1476static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1477{
1478 return 0;
1479}
c8db8c26 1480static inline void p4d_clear_huge(p4d_t *p4d) { }
b9820d8f
TK
1481static inline int pud_clear_huge(pud_t *pud)
1482{
1483 return 0;
1484}
1485static inline int pmd_clear_huge(pmd_t *pmd)
1486{
1487 return 0;
1488}
8e2d4340
WD
1489static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1490{
1491 return 0;
1492}
785a19f9 1493static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
b6bdb751
TK
1494{
1495 return 0;
1496}
785a19f9 1497static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
b6bdb751
TK
1498{
1499 return 0;
1500}
e61ce6ad
TK
1501#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1502
458aa76d
AK
1503#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1504#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1505/*
1506 * ARCHes with special requirements for evicting THP backing TLB entries can
1507 * implement this. Otherwise also, it can help optimize normal TLB flush in
1067b261
RD
1508 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1509 * entire TLB if flush span is greater than a threshold, which will
1510 * likely be true for a single huge page. Thus a single THP flush will
1511 * invalidate the entire TLB which is not desirable.
458aa76d
AK
1512 * e.g. see arch/arc: flush_pmd_tlb_range
1513 */
1514#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
a00cc7d9 1515#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
458aa76d
AK
1516#else
1517#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
a00cc7d9 1518#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
458aa76d
AK
1519#endif
1520#endif
1521
08ea8c07
BX
1522struct file;
1523int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1524 unsigned long size, pgprot_t *vma_prot);
613e396b
TG
1525
1526#ifndef CONFIG_X86_ESPFIX64
1527static inline void init_espfix_bsp(void) { }
1528#endif
1529
782de70c 1530extern void __init pgtable_cache_init(void);
caa84136 1531
6c26fcd2
JK
1532#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1533static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1534{
1535 return true;
1536}
1537
1538static inline bool arch_has_pfn_modify_check(void)
1539{
1540 return false;
1541}
1542#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1543
a3266bd4
LR
1544/*
1545 * Architecture PAGE_KERNEL_* fallbacks
1546 *
1547 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1548 * because they really don't support them, or the port needs to be updated to
1549 * reflect the required functionality. Below are a set of relatively safe
1550 * fallbacks, as best effort, which we can count on in lieu of the architectures
1551 * not defining them on their own yet.
1552 */
1553
1554#ifndef PAGE_KERNEL_RO
1555# define PAGE_KERNEL_RO PAGE_KERNEL
1556#endif
1557
1a9b4b3d
LR
1558#ifndef PAGE_KERNEL_EXEC
1559# define PAGE_KERNEL_EXEC PAGE_KERNEL
1560#endif
1561
d8626138
JR
1562/*
1563 * Page Table Modification bits for pgtbl_mod_mask.
1564 *
1565 * These are used by the p?d_alloc_track*() set of functions an in the generic
1566 * vmalloc/ioremap code to track at which page-table levels entries have been
1567 * modified. Based on that the code can better decide when vmalloc and ioremap
1568 * mapping changes need to be synchronized to other page-tables in the system.
1569 */
1570#define __PGTBL_PGD_MODIFIED 0
1571#define __PGTBL_P4D_MODIFIED 1
1572#define __PGTBL_PUD_MODIFIED 2
1573#define __PGTBL_PMD_MODIFIED 3
1574#define __PGTBL_PTE_MODIFIED 4
1575
1576#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1577#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1578#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1579#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1580#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1581
1582/* Page-Table Modification Mask */
1583typedef unsigned int pgtbl_mod_mask;
1584
1da177e4
LT
1585#endif /* !__ASSEMBLY__ */
1586
cef39703
AB
1587#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1588#ifdef CONFIG_PHYS_ADDR_T_64BIT
1589/*
1590 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1591 * with physical address space extension, but falls back to
1592 * BITS_PER_LONG otherwise.
1593 */
1594#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1595#else
1596#define MAX_POSSIBLE_PHYSMEM_BITS 32
1597#endif
1598#endif
1599
fd8cfd30
HD
1600#ifndef has_transparent_hugepage
1601#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1602#define has_transparent_hugepage() 1
1603#else
1604#define has_transparent_hugepage() 0
1605#endif
1606#endif
1607
1071fc57
MS
1608/*
1609 * On some architectures it depends on the mm if the p4d/pud or pmd
1610 * layer of the page table hierarchy is folded or not.
1611 */
1612#ifndef mm_p4d_folded
1613#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1614#endif
1615
1616#ifndef mm_pud_folded
1617#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1618#endif
1619
1620#ifndef mm_pmd_folded
1621#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1622#endif
1623
d3f7b1bb
VG
1624#ifndef p4d_offset_lockless
1625#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1626#endif
1627#ifndef pud_offset_lockless
1628#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1629#endif
1630#ifndef pmd_offset_lockless
1631#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1632#endif
1633
93fab1b2
SP
1634/*
1635 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1636 * This differs from p?d_huge() by the fact that they are always available (if
1637 * the architecture supports large pages at the appropriate level) even
1638 * if CONFIG_HUGETLB_PAGE is not defined.
1639 * Only meaningful when called on a valid entry.
1640 */
1641#ifndef pgd_leaf
1642#define pgd_leaf(x) 0
1643#endif
1644#ifndef p4d_leaf
1645#define p4d_leaf(x) 0
1646#endif
1647#ifndef pud_leaf
1648#define pud_leaf(x) 0
1649#endif
1650#ifndef pmd_leaf
1651#define pmd_leaf(x) 0
1652#endif
1653
560dabbd
PZ
1654#ifndef pgd_leaf_size
1655#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1656#endif
1657#ifndef p4d_leaf_size
1658#define p4d_leaf_size(x) P4D_SIZE
1659#endif
1660#ifndef pud_leaf_size
1661#define pud_leaf_size(x) PUD_SIZE
1662#endif
1663#ifndef pmd_leaf_size
1664#define pmd_leaf_size(x) PMD_SIZE
1665#endif
1666#ifndef pte_leaf_size
1667#define pte_leaf_size(x) PAGE_SIZE
1668#endif
1669
c0f8aa4f
DA
1670/*
1671 * Some architectures have MMUs that are configurable or selectable at boot
1672 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1673 * helps to have a static maximum value.
1674 */
1675
1676#ifndef MAX_PTRS_PER_PTE
1677#define MAX_PTRS_PER_PTE PTRS_PER_PTE
1678#endif
1679
1680#ifndef MAX_PTRS_PER_PMD
1681#define MAX_PTRS_PER_PMD PTRS_PER_PMD
1682#endif
1683
1684#ifndef MAX_PTRS_PER_PUD
1685#define MAX_PTRS_PER_PUD PTRS_PER_PUD
1686#endif
1687
1688#ifndef MAX_PTRS_PER_P4D
1689#define MAX_PTRS_PER_P4D PTRS_PER_P4D
1690#endif
1691
ca5999fd 1692#endif /* _LINUX_PGTABLE_H */