mm/memory-failure: unnecessary amount of unmapping
[linux-2.6-block.git] / include / linux / pagemap.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_PAGEMAP_H
3#define _LINUX_PAGEMAP_H
4
5/*
6 * Copyright 1995 Linus Torvalds
7 */
8#include <linux/mm.h>
9#include <linux/fs.h>
10#include <linux/list.h>
11#include <linux/highmem.h>
12#include <linux/compiler.h>
7c0f6ba6 13#include <linux/uaccess.h>
1da177e4 14#include <linux/gfp.h>
3e9f45bd 15#include <linux/bitops.h>
e286781d 16#include <linux/hardirq.h> /* for in_interrupt() */
8edf344c 17#include <linux/hugetlb_inline.h>
1da177e4 18
aa65c29c
JK
19struct pagevec;
20
1da177e4 21/*
9c5d760b 22 * Bits in mapping->flags.
1da177e4 23 */
9a896c9a 24enum mapping_flags {
9c5d760b
MH
25 AS_EIO = 0, /* IO error on async write */
26 AS_ENOSPC = 1, /* ENOSPC on async write */
27 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
28 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
29 AS_EXITING = 4, /* final truncate in progress */
371a096e 30 /* writeback related tags are not used */
9c5d760b 31 AS_NO_WRITEBACK_TAGS = 5,
01c70267 32 AS_THP_SUPPORT = 6, /* THPs supported */
9a896c9a 33};
1da177e4 34
8ed1e46a
JL
35/**
36 * mapping_set_error - record a writeback error in the address_space
767e5ee5
MWO
37 * @mapping: the mapping in which an error should be set
38 * @error: the error to set in the mapping
8ed1e46a
JL
39 *
40 * When writeback fails in some way, we must record that error so that
41 * userspace can be informed when fsync and the like are called. We endeavor
42 * to report errors on any file that was open at the time of the error. Some
43 * internal callers also need to know when writeback errors have occurred.
44 *
45 * When a writeback error occurs, most filesystems will want to call
46 * mapping_set_error to record the error in the mapping so that it can be
47 * reported when the application calls fsync(2).
48 */
3e9f45bd
GC
49static inline void mapping_set_error(struct address_space *mapping, int error)
50{
8ed1e46a
JL
51 if (likely(!error))
52 return;
53
54 /* Record in wb_err for checkers using errseq_t based tracking */
735e4ae5
JL
55 __filemap_set_wb_err(mapping, error);
56
57 /* Record it in superblock */
8b7b2eb1
MK
58 if (mapping->host)
59 errseq_set(&mapping->host->i_sb->s_wb_err, error);
8ed1e46a
JL
60
61 /* Record it in flags for now, for legacy callers */
62 if (error == -ENOSPC)
63 set_bit(AS_ENOSPC, &mapping->flags);
64 else
65 set_bit(AS_EIO, &mapping->flags);
3e9f45bd
GC
66}
67
ba9ddf49
LS
68static inline void mapping_set_unevictable(struct address_space *mapping)
69{
70 set_bit(AS_UNEVICTABLE, &mapping->flags);
71}
72
89e004ea
LS
73static inline void mapping_clear_unevictable(struct address_space *mapping)
74{
75 clear_bit(AS_UNEVICTABLE, &mapping->flags);
76}
77
1eb6234e 78static inline bool mapping_unevictable(struct address_space *mapping)
ba9ddf49 79{
1eb6234e 80 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
ba9ddf49 81}
ba9ddf49 82
91b0abe3
JW
83static inline void mapping_set_exiting(struct address_space *mapping)
84{
85 set_bit(AS_EXITING, &mapping->flags);
86}
87
88static inline int mapping_exiting(struct address_space *mapping)
89{
90 return test_bit(AS_EXITING, &mapping->flags);
91}
92
371a096e
HY
93static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
94{
95 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
96}
97
98static inline int mapping_use_writeback_tags(struct address_space *mapping)
99{
100 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
101}
102
dd0fc66f 103static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
1da177e4 104{
9c5d760b 105 return mapping->gfp_mask;
1da177e4
LT
106}
107
c62d2555
MH
108/* Restricts the given gfp_mask to what the mapping allows. */
109static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
110 gfp_t gfp_mask)
111{
112 return mapping_gfp_mask(mapping) & gfp_mask;
113}
114
1da177e4
LT
115/*
116 * This is non-atomic. Only to be used before the mapping is activated.
117 * Probably needs a barrier...
118 */
260b2367 119static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
1da177e4 120{
9c5d760b 121 m->gfp_mask = mask;
1da177e4
LT
122}
123
01c70267
MWO
124static inline bool mapping_thp_support(struct address_space *mapping)
125{
126 return test_bit(AS_THP_SUPPORT, &mapping->flags);
127}
128
6f4d2f97
MWO
129static inline int filemap_nr_thps(struct address_space *mapping)
130{
131#ifdef CONFIG_READ_ONLY_THP_FOR_FS
132 return atomic_read(&mapping->nr_thps);
133#else
134 return 0;
135#endif
136}
137
138static inline void filemap_nr_thps_inc(struct address_space *mapping)
139{
140#ifdef CONFIG_READ_ONLY_THP_FOR_FS
141 if (!mapping_thp_support(mapping))
142 atomic_inc(&mapping->nr_thps);
143#else
144 WARN_ON_ONCE(1);
145#endif
146}
147
148static inline void filemap_nr_thps_dec(struct address_space *mapping)
149{
150#ifdef CONFIG_READ_ONLY_THP_FOR_FS
151 if (!mapping_thp_support(mapping))
152 atomic_dec(&mapping->nr_thps);
153#else
154 WARN_ON_ONCE(1);
155#endif
156}
157
c6f92f9f 158void release_pages(struct page **pages, int nr);
1da177e4 159
842ca547
MWO
160/*
161 * For file cache pages, return the address_space, otherwise return NULL
162 */
163static inline struct address_space *page_mapping_file(struct page *page)
164{
165 if (unlikely(PageSwapCache(page)))
166 return NULL;
167 return page_mapping(page);
168}
169
e286781d
NP
170/*
171 * speculatively take a reference to a page.
0139aa7b
JK
172 * If the page is free (_refcount == 0), then _refcount is untouched, and 0
173 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
e286781d
NP
174 *
175 * This function must be called inside the same rcu_read_lock() section as has
176 * been used to lookup the page in the pagecache radix-tree (or page table):
0139aa7b 177 * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
e286781d
NP
178 *
179 * Unless an RCU grace period has passed, the count of all pages coming out
180 * of the allocator must be considered unstable. page_count may return higher
181 * than expected, and put_page must be able to do the right thing when the
182 * page has been finished with, no matter what it is subsequently allocated
183 * for (because put_page is what is used here to drop an invalid speculative
184 * reference).
185 *
186 * This is the interesting part of the lockless pagecache (and lockless
187 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
188 * has the following pattern:
189 * 1. find page in radix tree
190 * 2. conditionally increment refcount
191 * 3. check the page is still in pagecache (if no, goto 1)
192 *
0139aa7b 193 * Remove-side that cares about stability of _refcount (eg. reclaim) has the
b93b0163 194 * following (with the i_pages lock held):
e286781d
NP
195 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
196 * B. remove page from pagecache
197 * C. free the page
198 *
199 * There are 2 critical interleavings that matter:
200 * - 2 runs before A: in this case, A sees elevated refcount and bails out
201 * - A runs before 2: in this case, 2 sees zero refcount and retries;
202 * subsequently, B will complete and 1 will find no page, causing the
203 * lookup to return NULL.
204 *
205 * It is possible that between 1 and 2, the page is removed then the exact same
206 * page is inserted into the same position in pagecache. That's OK: the
b93b0163 207 * old find_get_page using a lock could equally have run before or after
e286781d
NP
208 * such a re-insertion, depending on order that locks are granted.
209 *
210 * Lookups racing against pagecache insertion isn't a big problem: either 1
211 * will find the page or it will not. Likewise, the old find_get_page could run
212 * either before the insertion or afterwards, depending on timing.
213 */
494eec70 214static inline int __page_cache_add_speculative(struct page *page, int count)
e286781d 215{
8375ad98 216#ifdef CONFIG_TINY_RCU
bdd4e85d 217# ifdef CONFIG_PREEMPT_COUNT
591a3d7c 218 VM_BUG_ON(!in_atomic() && !irqs_disabled());
e286781d
NP
219# endif
220 /*
221 * Preempt must be disabled here - we rely on rcu_read_lock doing
222 * this for us.
223 *
224 * Pagecache won't be truncated from interrupt context, so if we have
225 * found a page in the radix tree here, we have pinned its refcount by
226 * disabling preempt, and hence no need for the "speculative get" that
227 * SMP requires.
228 */
309381fe 229 VM_BUG_ON_PAGE(page_count(page) == 0, page);
494eec70 230 page_ref_add(page, count);
e286781d
NP
231
232#else
494eec70 233 if (unlikely(!page_ref_add_unless(page, count, 0))) {
e286781d
NP
234 /*
235 * Either the page has been freed, or will be freed.
236 * In either case, retry here and the caller should
237 * do the right thing (see comments above).
238 */
239 return 0;
240 }
241#endif
309381fe 242 VM_BUG_ON_PAGE(PageTail(page), page);
e286781d
NP
243
244 return 1;
245}
246
494eec70 247static inline int page_cache_get_speculative(struct page *page)
ce0ad7f0 248{
494eec70 249 return __page_cache_add_speculative(page, 1);
250}
ce0ad7f0 251
494eec70 252static inline int page_cache_add_speculative(struct page *page, int count)
253{
254 return __page_cache_add_speculative(page, count);
ce0ad7f0
NP
255}
256
b03143ac
GJ
257/**
258 * attach_page_private - Attach private data to a page.
259 * @page: Page to attach data to.
260 * @data: Data to attach to page.
261 *
262 * Attaching private data to a page increments the page's reference count.
263 * The data must be detached before the page will be freed.
264 */
265static inline void attach_page_private(struct page *page, void *data)
266{
267 get_page(page);
268 set_page_private(page, (unsigned long)data);
269 SetPagePrivate(page);
270}
271
272/**
273 * detach_page_private - Detach private data from a page.
274 * @page: Page to detach data from.
275 *
276 * Removes the data that was previously attached to the page and decrements
277 * the refcount on the page.
278 *
279 * Return: Data that was attached to the page.
280 */
281static inline void *detach_page_private(struct page *page)
282{
283 void *data = (void *)page_private(page);
284
285 if (!PagePrivate(page))
286 return NULL;
287 ClearPagePrivate(page);
288 set_page_private(page, 0);
289 put_page(page);
290
291 return data;
292}
293
44110fe3 294#ifdef CONFIG_NUMA
2ae88149 295extern struct page *__page_cache_alloc(gfp_t gfp);
44110fe3 296#else
2ae88149
NP
297static inline struct page *__page_cache_alloc(gfp_t gfp)
298{
299 return alloc_pages(gfp, 0);
300}
301#endif
302
1da177e4
LT
303static inline struct page *page_cache_alloc(struct address_space *x)
304{
2ae88149 305 return __page_cache_alloc(mapping_gfp_mask(x));
1da177e4
LT
306}
307
8a5c743e 308static inline gfp_t readahead_gfp_mask(struct address_space *x)
7b1de586 309{
453f85d4 310 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
7b1de586
WF
311}
312
1da177e4
LT
313typedef int filler_t(void *, struct page *);
314
0d3f9296 315pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb 316 pgoff_t index, unsigned long max_scan);
0d3f9296 317pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
318 pgoff_t index, unsigned long max_scan);
319
2457aec6
MG
320#define FGP_ACCESSED 0x00000001
321#define FGP_LOCK 0x00000002
322#define FGP_CREAT 0x00000004
323#define FGP_WRITE 0x00000008
324#define FGP_NOFS 0x00000010
325#define FGP_NOWAIT 0x00000020
a75d4c33 326#define FGP_FOR_MMAP 0x00000040
a8cf7f27 327#define FGP_HEAD 0x00000080
44835d20 328#define FGP_ENTRY 0x00000100
2457aec6
MG
329
330struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 331 int fgp_flags, gfp_t cache_gfp_mask);
2457aec6
MG
332
333/**
334 * find_get_page - find and get a page reference
335 * @mapping: the address_space to search
336 * @offset: the page index
337 *
338 * Looks up the page cache slot at @mapping & @offset. If there is a
339 * page cache page, it is returned with an increased refcount.
340 *
341 * Otherwise, %NULL is returned.
342 */
343static inline struct page *find_get_page(struct address_space *mapping,
344 pgoff_t offset)
345{
45f87de5 346 return pagecache_get_page(mapping, offset, 0, 0);
2457aec6
MG
347}
348
349static inline struct page *find_get_page_flags(struct address_space *mapping,
350 pgoff_t offset, int fgp_flags)
351{
45f87de5 352 return pagecache_get_page(mapping, offset, fgp_flags, 0);
2457aec6
MG
353}
354
355/**
356 * find_lock_page - locate, pin and lock a pagecache page
2457aec6 357 * @mapping: the address_space to search
89b42235 358 * @index: the page index
2457aec6 359 *
89b42235 360 * Looks up the page cache entry at @mapping & @index. If there is a
2457aec6
MG
361 * page cache page, it is returned locked and with an increased
362 * refcount.
363 *
a8cf7f27
MWO
364 * Context: May sleep.
365 * Return: A struct page or %NULL if there is no page in the cache for this
366 * index.
2457aec6
MG
367 */
368static inline struct page *find_lock_page(struct address_space *mapping,
a8cf7f27
MWO
369 pgoff_t index)
370{
371 return pagecache_get_page(mapping, index, FGP_LOCK, 0);
372}
373
374/**
375 * find_lock_head - Locate, pin and lock a pagecache page.
376 * @mapping: The address_space to search.
89b42235 377 * @index: The page index.
a8cf7f27 378 *
89b42235 379 * Looks up the page cache entry at @mapping & @index. If there is a
a8cf7f27
MWO
380 * page cache page, its head page is returned locked and with an increased
381 * refcount.
382 *
383 * Context: May sleep.
384 * Return: A struct page which is !PageTail, or %NULL if there is no page
385 * in the cache for this index.
386 */
387static inline struct page *find_lock_head(struct address_space *mapping,
388 pgoff_t index)
2457aec6 389{
a8cf7f27 390 return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0);
2457aec6
MG
391}
392
393/**
394 * find_or_create_page - locate or add a pagecache page
395 * @mapping: the page's address_space
396 * @index: the page's index into the mapping
397 * @gfp_mask: page allocation mode
398 *
399 * Looks up the page cache slot at @mapping & @offset. If there is a
400 * page cache page, it is returned locked and with an increased
401 * refcount.
402 *
403 * If the page is not present, a new page is allocated using @gfp_mask
404 * and added to the page cache and the VM's LRU list. The page is
405 * returned locked and with an increased refcount.
406 *
407 * On memory exhaustion, %NULL is returned.
408 *
409 * find_or_create_page() may sleep, even if @gfp_flags specifies an
410 * atomic allocation!
411 */
412static inline struct page *find_or_create_page(struct address_space *mapping,
767e5ee5 413 pgoff_t index, gfp_t gfp_mask)
2457aec6 414{
767e5ee5 415 return pagecache_get_page(mapping, index,
2457aec6 416 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
45f87de5 417 gfp_mask);
2457aec6
MG
418}
419
420/**
421 * grab_cache_page_nowait - returns locked page at given index in given cache
422 * @mapping: target address_space
423 * @index: the page index
424 *
425 * Same as grab_cache_page(), but do not wait if the page is unavailable.
426 * This is intended for speculative data generators, where the data can
427 * be regenerated if the page couldn't be grabbed. This routine should
428 * be safe to call while holding the lock for another page.
429 *
430 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
431 * and deadlock against the caller's locked page.
432 */
433static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
434 pgoff_t index)
435{
436 return pagecache_get_page(mapping, index,
437 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
45f87de5 438 mapping_gfp_mask(mapping));
2457aec6
MG
439}
440
63ec1973
MWO
441/* Does this page contain this index? */
442static inline bool thp_contains(struct page *head, pgoff_t index)
443{
444 /* HugeTLBfs indexes the page cache in units of hpage_size */
445 if (PageHuge(head))
446 return head->index == index;
447 return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL));
448}
449
ec848215
MWO
450/*
451 * Given the page we found in the page cache, return the page corresponding
452 * to this index in the file
453 */
454static inline struct page *find_subpage(struct page *head, pgoff_t index)
4101196b 455{
ec848215
MWO
456 /* HugeTLBfs wants the head page regardless */
457 if (PageHuge(head))
458 return head;
4101196b 459
6c357848 460 return head + (index & (thp_nr_pages(head) - 1));
4101196b
MWO
461}
462
0cd6144a 463unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
cf2039af 464 pgoff_t end, struct pagevec *pvec, pgoff_t *indices);
b947cee4
JK
465unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
466 pgoff_t end, unsigned int nr_pages,
467 struct page **pages);
468static inline unsigned find_get_pages(struct address_space *mapping,
469 pgoff_t *start, unsigned int nr_pages,
470 struct page **pages)
471{
472 return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
473 pages);
474}
ebf43500
JA
475unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
476 unsigned int nr_pages, struct page **pages);
72b045ae 477unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 478 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae
JK
479 struct page **pages);
480static inline unsigned find_get_pages_tag(struct address_space *mapping,
a6906972 481 pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
72b045ae
JK
482 struct page **pages)
483{
484 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
485 nr_pages, pages);
486}
1da177e4 487
54566b2c
NP
488struct page *grab_cache_page_write_begin(struct address_space *mapping,
489 pgoff_t index, unsigned flags);
afddba49 490
1da177e4
LT
491/*
492 * Returns locked page at given index in given cache, creating it if needed.
493 */
57f6b96c
FW
494static inline struct page *grab_cache_page(struct address_space *mapping,
495 pgoff_t index)
1da177e4
LT
496{
497 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
498}
499
1da177e4 500extern struct page * read_cache_page(struct address_space *mapping,
5e5358e7 501 pgoff_t index, filler_t *filler, void *data);
0531b2aa
LT
502extern struct page * read_cache_page_gfp(struct address_space *mapping,
503 pgoff_t index, gfp_t gfp_mask);
1da177e4
LT
504extern int read_cache_pages(struct address_space *mapping,
505 struct list_head *pages, filler_t *filler, void *data);
506
090d2b18 507static inline struct page *read_mapping_page(struct address_space *mapping,
5e5358e7 508 pgoff_t index, void *data)
090d2b18 509{
6c45b454 510 return read_cache_page(mapping, index, NULL, data);
090d2b18
PE
511}
512
a0f7a756 513/*
5cbc198a
KS
514 * Get index of the page with in radix-tree
515 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
a0f7a756 516 */
5cbc198a 517static inline pgoff_t page_to_index(struct page *page)
a0f7a756 518{
e9b61f19
KS
519 pgoff_t pgoff;
520
e9b61f19 521 if (likely(!PageTransTail(page)))
09cbfeaf 522 return page->index;
e9b61f19
KS
523
524 /*
525 * We don't initialize ->index for tail pages: calculate based on
526 * head page
527 */
09cbfeaf 528 pgoff = compound_head(page)->index;
e9b61f19
KS
529 pgoff += page - compound_head(page);
530 return pgoff;
a0f7a756
NH
531}
532
5cbc198a
KS
533/*
534 * Get the offset in PAGE_SIZE.
535 * (TODO: hugepage should have ->index in PAGE_SIZE)
536 */
537static inline pgoff_t page_to_pgoff(struct page *page)
538{
539 if (unlikely(PageHeadHuge(page)))
540 return page->index << compound_order(page);
541
542 return page_to_index(page);
543}
544
1da177e4
LT
545/*
546 * Return byte-offset into filesystem object for page.
547 */
548static inline loff_t page_offset(struct page *page)
549{
09cbfeaf 550 return ((loff_t)page->index) << PAGE_SHIFT;
1da177e4
LT
551}
552
f981c595
MG
553static inline loff_t page_file_offset(struct page *page)
554{
8cd79788 555 return ((loff_t)page_index(page)) << PAGE_SHIFT;
f981c595
MG
556}
557
0fe6e20b
NH
558extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
559 unsigned long address);
560
1da177e4
LT
561static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
562 unsigned long address)
563{
0fe6e20b
NH
564 pgoff_t pgoff;
565 if (unlikely(is_vm_hugetlb_page(vma)))
566 return linear_hugepage_index(vma, address);
567 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
1da177e4 568 pgoff += vma->vm_pgoff;
09cbfeaf 569 return pgoff;
1da177e4
LT
570}
571
c7510ab2
JA
572struct wait_page_key {
573 struct page *page;
574 int bit_nr;
575 int page_match;
576};
577
578struct wait_page_queue {
579 struct page *page;
580 int bit_nr;
581 wait_queue_entry_t wait;
582};
583
cdc8fcb4 584static inline bool wake_page_match(struct wait_page_queue *wait_page,
c7510ab2
JA
585 struct wait_page_key *key)
586{
587 if (wait_page->page != key->page)
cdc8fcb4 588 return false;
c7510ab2
JA
589 key->page_match = 1;
590
591 if (wait_page->bit_nr != key->bit_nr)
cdc8fcb4 592 return false;
d1932dc3 593
cdc8fcb4 594 return true;
d1932dc3
JA
595}
596
b3c97528
HH
597extern void __lock_page(struct page *page);
598extern int __lock_page_killable(struct page *page);
dd3e6d50 599extern int __lock_page_async(struct page *page, struct wait_page_queue *wait);
d065bd81
ML
600extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
601 unsigned int flags);
b3c97528 602extern void unlock_page(struct page *page);
1da177e4 603
f4458845
AM
604/*
605 * Return true if the page was successfully locked
606 */
529ae9aa
NP
607static inline int trylock_page(struct page *page)
608{
48c935ad 609 page = compound_head(page);
8413ac9d 610 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
529ae9aa
NP
611}
612
db37648c
NP
613/*
614 * lock_page may only be called if we have the page's inode pinned.
615 */
1da177e4
LT
616static inline void lock_page(struct page *page)
617{
618 might_sleep();
529ae9aa 619 if (!trylock_page(page))
1da177e4
LT
620 __lock_page(page);
621}
db37648c 622
2687a356
MW
623/*
624 * lock_page_killable is like lock_page but can be interrupted by fatal
625 * signals. It returns 0 if it locked the page and -EINTR if it was
626 * killed while waiting.
627 */
628static inline int lock_page_killable(struct page *page)
629{
630 might_sleep();
529ae9aa 631 if (!trylock_page(page))
2687a356
MW
632 return __lock_page_killable(page);
633 return 0;
634}
635
dd3e6d50
JA
636/*
637 * lock_page_async - Lock the page, unless this would block. If the page
638 * is already locked, then queue a callback when the page becomes unlocked.
639 * This callback can then retry the operation.
640 *
641 * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page
642 * was already locked and the callback defined in 'wait' was queued.
643 */
644static inline int lock_page_async(struct page *page,
645 struct wait_page_queue *wait)
646{
647 if (!trylock_page(page))
648 return __lock_page_async(page, wait);
649 return 0;
650}
651
d065bd81
ML
652/*
653 * lock_page_or_retry - Lock the page, unless this would block and the
654 * caller indicated that it can handle a retry.
9a95f3cf 655 *
c1e8d7c6 656 * Return value and mmap_lock implications depend on flags; see
9a95f3cf 657 * __lock_page_or_retry().
d065bd81
ML
658 */
659static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
660 unsigned int flags)
661{
662 might_sleep();
663 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
664}
665
1da177e4 666/*
74d81bfa
NP
667 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
668 * and should not be used directly.
1da177e4 669 */
b3c97528 670extern void wait_on_page_bit(struct page *page, int bit_nr);
f62e00cc 671extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
a4796e37 672
1da177e4
LT
673/*
674 * Wait for a page to be unlocked.
675 *
676 * This must be called with the caller "holding" the page,
677 * ie with increased "page->count" so that the page won't
678 * go away during the wait..
679 */
680static inline void wait_on_page_locked(struct page *page)
681{
682 if (PageLocked(page))
48c935ad 683 wait_on_page_bit(compound_head(page), PG_locked);
1da177e4
LT
684}
685
62906027
NP
686static inline int wait_on_page_locked_killable(struct page *page)
687{
688 if (!PageLocked(page))
689 return 0;
690 return wait_on_page_bit_killable(compound_head(page), PG_locked);
691}
692
48054625 693int put_and_wait_on_page_locked(struct page *page, int state);
19343b5b 694void wait_on_page_writeback(struct page *page);
e5dbd332 695int wait_on_page_writeback_killable(struct page *page);
1da177e4 696extern void end_page_writeback(struct page *page);
1d1d1a76 697void wait_for_stable_page(struct page *page);
1da177e4 698
c11f0c0b 699void page_endio(struct page *page, bool is_write, int err);
57d99845 700
73e10ded
DH
701/**
702 * set_page_private_2 - Set PG_private_2 on a page and take a ref
703 * @page: The page.
704 *
705 * Set the PG_private_2 flag on a page and take the reference needed for the VM
706 * to handle its lifetime correctly. This sets the flag and takes the
707 * reference unconditionally, so care must be taken not to set the flag again
708 * if it's already set.
709 */
710static inline void set_page_private_2(struct page *page)
711{
712 page = compound_head(page);
713 get_page(page);
714 SetPagePrivate2(page);
715}
716
717void end_page_private_2(struct page *page);
718void wait_on_page_private_2(struct page *page);
719int wait_on_page_private_2_killable(struct page *page);
720
385e1ca5
DH
721/*
722 * Add an arbitrary waiter to a page's wait queue
723 */
ac6424b9 724extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
385e1ca5 725
1da177e4 726/*
4bce9f6e 727 * Fault everything in given userspace address range in.
1da177e4
LT
728 */
729static inline int fault_in_pages_writeable(char __user *uaddr, int size)
f56f821f 730{
9923777d 731 char __user *end = uaddr + size - 1;
f56f821f
DV
732
733 if (unlikely(size == 0))
e23d4159 734 return 0;
f56f821f 735
e23d4159
AV
736 if (unlikely(uaddr > end))
737 return -EFAULT;
f56f821f
DV
738 /*
739 * Writing zeroes into userspace here is OK, because we know that if
740 * the zero gets there, we'll be overwriting it.
741 */
e23d4159
AV
742 do {
743 if (unlikely(__put_user(0, uaddr) != 0))
744 return -EFAULT;
f56f821f 745 uaddr += PAGE_SIZE;
e23d4159 746 } while (uaddr <= end);
f56f821f
DV
747
748 /* Check whether the range spilled into the next page. */
749 if (((unsigned long)uaddr & PAGE_MASK) ==
750 ((unsigned long)end & PAGE_MASK))
e23d4159 751 return __put_user(0, end);
f56f821f 752
e23d4159 753 return 0;
f56f821f
DV
754}
755
4bce9f6e 756static inline int fault_in_pages_readable(const char __user *uaddr, int size)
f56f821f
DV
757{
758 volatile char c;
f56f821f
DV
759 const char __user *end = uaddr + size - 1;
760
761 if (unlikely(size == 0))
e23d4159 762 return 0;
f56f821f 763
e23d4159
AV
764 if (unlikely(uaddr > end))
765 return -EFAULT;
766
767 do {
768 if (unlikely(__get_user(c, uaddr) != 0))
769 return -EFAULT;
f56f821f 770 uaddr += PAGE_SIZE;
e23d4159 771 } while (uaddr <= end);
f56f821f
DV
772
773 /* Check whether the range spilled into the next page. */
774 if (((unsigned long)uaddr & PAGE_MASK) ==
775 ((unsigned long)end & PAGE_MASK)) {
e23d4159 776 return __get_user(c, end);
f56f821f
DV
777 }
778
90b75db6 779 (void)c;
e23d4159 780 return 0;
f56f821f
DV
781}
782
529ae9aa
NP
783int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
784 pgoff_t index, gfp_t gfp_mask);
785int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
786 pgoff_t index, gfp_t gfp_mask);
97cecb5a 787extern void delete_from_page_cache(struct page *page);
62cccb8c 788extern void __delete_from_page_cache(struct page *page, void *shadow);
1f7ef657 789void replace_page_cache_page(struct page *old, struct page *new);
aa65c29c
JK
790void delete_from_page_cache_batch(struct address_space *mapping,
791 struct pagevec *pvec);
41139aa4
MWO
792loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
793 int whence);
529ae9aa
NP
794
795/*
796 * Like add_to_page_cache_locked, but used to add newly allocated pages:
48c935ad 797 * the page is new, so we can just run __SetPageLocked() against it.
529ae9aa
NP
798 */
799static inline int add_to_page_cache(struct page *page,
800 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
801{
802 int error;
803
48c935ad 804 __SetPageLocked(page);
529ae9aa
NP
805 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
806 if (unlikely(error))
48c935ad 807 __ClearPageLocked(page);
529ae9aa
NP
808 return error;
809}
810
042124cc
MWO
811/**
812 * struct readahead_control - Describes a readahead request.
813 *
814 * A readahead request is for consecutive pages. Filesystems which
815 * implement the ->readahead method should call readahead_page() or
816 * readahead_page_batch() in a loop and attempt to start I/O against
817 * each page in the request.
818 *
819 * Most of the fields in this struct are private and should be accessed
820 * by the functions below.
821 *
822 * @file: The file, used primarily by network filesystems for authentication.
823 * May be NULL if invoked internally by the filesystem.
824 * @mapping: Readahead this filesystem object.
fcd9ae4f 825 * @ra: File readahead state. May be NULL.
042124cc
MWO
826 */
827struct readahead_control {
828 struct file *file;
829 struct address_space *mapping;
fcd9ae4f 830 struct file_ra_state *ra;
042124cc
MWO
831/* private: use the readahead_* accessors instead */
832 pgoff_t _index;
833 unsigned int _nr_pages;
834 unsigned int _batch_count;
835};
836
fcd9ae4f
MWO
837#define DEFINE_READAHEAD(ractl, f, r, m, i) \
838 struct readahead_control ractl = { \
1aa83cfa
MWO
839 .file = f, \
840 .mapping = m, \
fcd9ae4f 841 .ra = r, \
1aa83cfa
MWO
842 ._index = i, \
843 }
844
fefa7c47
MWO
845#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
846
847void page_cache_ra_unbounded(struct readahead_control *,
848 unsigned long nr_to_read, unsigned long lookahead_count);
fcd9ae4f
MWO
849void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
850void page_cache_async_ra(struct readahead_control *, struct page *,
fefa7c47 851 unsigned long req_count);
3ca23644
DH
852void readahead_expand(struct readahead_control *ractl,
853 loff_t new_start, size_t new_len);
fefa7c47
MWO
854
855/**
856 * page_cache_sync_readahead - generic file readahead
857 * @mapping: address_space which holds the pagecache and I/O vectors
858 * @ra: file_ra_state which holds the readahead state
859 * @file: Used by the filesystem for authentication.
860 * @index: Index of first page to be read.
861 * @req_count: Total number of pages being read by the caller.
862 *
863 * page_cache_sync_readahead() should be called when a cache miss happened:
864 * it will submit the read. The readahead logic may decide to piggyback more
865 * pages onto the read request if access patterns suggest it will improve
866 * performance.
867 */
868static inline
869void page_cache_sync_readahead(struct address_space *mapping,
870 struct file_ra_state *ra, struct file *file, pgoff_t index,
871 unsigned long req_count)
872{
fcd9ae4f
MWO
873 DEFINE_READAHEAD(ractl, file, ra, mapping, index);
874 page_cache_sync_ra(&ractl, req_count);
fefa7c47
MWO
875}
876
877/**
878 * page_cache_async_readahead - file readahead for marked pages
879 * @mapping: address_space which holds the pagecache and I/O vectors
880 * @ra: file_ra_state which holds the readahead state
881 * @file: Used by the filesystem for authentication.
882 * @page: The page at @index which triggered the readahead call.
883 * @index: Index of first page to be read.
884 * @req_count: Total number of pages being read by the caller.
885 *
886 * page_cache_async_readahead() should be called when a page is used which
887 * is marked as PageReadahead; this is a marker to suggest that the application
888 * has used up enough of the readahead window that we should start pulling in
889 * more pages.
890 */
891static inline
892void page_cache_async_readahead(struct address_space *mapping,
893 struct file_ra_state *ra, struct file *file,
894 struct page *page, pgoff_t index, unsigned long req_count)
895{
fcd9ae4f
MWO
896 DEFINE_READAHEAD(ractl, file, ra, mapping, index);
897 page_cache_async_ra(&ractl, page, req_count);
fefa7c47
MWO
898}
899
042124cc
MWO
900/**
901 * readahead_page - Get the next page to read.
902 * @rac: The current readahead request.
903 *
904 * Context: The page is locked and has an elevated refcount. The caller
905 * should decreases the refcount once the page has been submitted for I/O
906 * and unlock the page once all I/O to that page has completed.
907 * Return: A pointer to the next page, or %NULL if we are done.
908 */
909static inline struct page *readahead_page(struct readahead_control *rac)
910{
911 struct page *page;
912
913 BUG_ON(rac->_batch_count > rac->_nr_pages);
914 rac->_nr_pages -= rac->_batch_count;
915 rac->_index += rac->_batch_count;
916
917 if (!rac->_nr_pages) {
918 rac->_batch_count = 0;
919 return NULL;
920 }
921
922 page = xa_load(&rac->mapping->i_pages, rac->_index);
923 VM_BUG_ON_PAGE(!PageLocked(page), page);
6c357848 924 rac->_batch_count = thp_nr_pages(page);
042124cc
MWO
925
926 return page;
927}
928
929static inline unsigned int __readahead_batch(struct readahead_control *rac,
930 struct page **array, unsigned int array_sz)
931{
932 unsigned int i = 0;
933 XA_STATE(xas, &rac->mapping->i_pages, 0);
934 struct page *page;
935
936 BUG_ON(rac->_batch_count > rac->_nr_pages);
937 rac->_nr_pages -= rac->_batch_count;
938 rac->_index += rac->_batch_count;
939 rac->_batch_count = 0;
940
941 xas_set(&xas, rac->_index);
942 rcu_read_lock();
943 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
4349a83a
MWO
944 if (xas_retry(&xas, page))
945 continue;
042124cc
MWO
946 VM_BUG_ON_PAGE(!PageLocked(page), page);
947 VM_BUG_ON_PAGE(PageTail(page), page);
948 array[i++] = page;
6c357848 949 rac->_batch_count += thp_nr_pages(page);
042124cc
MWO
950
951 /*
952 * The page cache isn't using multi-index entries yet,
953 * so the xas cursor needs to be manually moved to the
954 * next index. This can be removed once the page cache
955 * is converted.
956 */
957 if (PageHead(page))
958 xas_set(&xas, rac->_index + rac->_batch_count);
959
960 if (i == array_sz)
961 break;
962 }
963 rcu_read_unlock();
964
965 return i;
966}
967
968/**
969 * readahead_page_batch - Get a batch of pages to read.
970 * @rac: The current readahead request.
971 * @array: An array of pointers to struct page.
972 *
973 * Context: The pages are locked and have an elevated refcount. The caller
974 * should decreases the refcount once the page has been submitted for I/O
975 * and unlock the page once all I/O to that page has completed.
976 * Return: The number of pages placed in the array. 0 indicates the request
977 * is complete.
978 */
979#define readahead_page_batch(rac, array) \
980 __readahead_batch(rac, array, ARRAY_SIZE(array))
981
982/**
983 * readahead_pos - The byte offset into the file of this readahead request.
984 * @rac: The readahead request.
985 */
986static inline loff_t readahead_pos(struct readahead_control *rac)
987{
988 return (loff_t)rac->_index * PAGE_SIZE;
989}
990
991/**
992 * readahead_length - The number of bytes in this readahead request.
993 * @rac: The readahead request.
994 */
995static inline loff_t readahead_length(struct readahead_control *rac)
996{
997 return (loff_t)rac->_nr_pages * PAGE_SIZE;
998}
999
1000/**
1001 * readahead_index - The index of the first page in this readahead request.
1002 * @rac: The readahead request.
1003 */
1004static inline pgoff_t readahead_index(struct readahead_control *rac)
1005{
1006 return rac->_index;
1007}
1008
1009/**
1010 * readahead_count - The number of pages in this readahead request.
1011 * @rac: The readahead request.
1012 */
1013static inline unsigned int readahead_count(struct readahead_control *rac)
1014{
1015 return rac->_nr_pages;
1016}
1017
32c0a6bc
MWO
1018/**
1019 * readahead_batch_length - The number of bytes in the current batch.
1020 * @rac: The readahead request.
1021 */
1022static inline loff_t readahead_batch_length(struct readahead_control *rac)
1023{
1024 return rac->_batch_count * PAGE_SIZE;
1025}
1026
b57c2cb9
FF
1027static inline unsigned long dir_pages(struct inode *inode)
1028{
09cbfeaf
KS
1029 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1030 PAGE_SHIFT;
b57c2cb9
FF
1031}
1032
243145bc
AG
1033/**
1034 * page_mkwrite_check_truncate - check if page was truncated
1035 * @page: the page to check
1036 * @inode: the inode to check the page against
1037 *
1038 * Returns the number of bytes in the page up to EOF,
1039 * or -EFAULT if the page was truncated.
1040 */
1041static inline int page_mkwrite_check_truncate(struct page *page,
1042 struct inode *inode)
1043{
1044 loff_t size = i_size_read(inode);
1045 pgoff_t index = size >> PAGE_SHIFT;
1046 int offset = offset_in_page(size);
1047
1048 if (page->mapping != inode->i_mapping)
1049 return -EFAULT;
1050
1051 /* page is wholly inside EOF */
1052 if (page->index < index)
1053 return PAGE_SIZE;
1054 /* page is wholly past EOF */
1055 if (page->index > index || !offset)
1056 return -EFAULT;
1057 /* page is partially inside EOF */
1058 return offset;
1059}
1060
24addd84
MWO
1061/**
1062 * i_blocks_per_page - How many blocks fit in this page.
1063 * @inode: The inode which contains the blocks.
1064 * @page: The page (head page if the page is a THP).
1065 *
1066 * If the block size is larger than the size of this page, return zero.
1067 *
1068 * Context: The caller should hold a refcount on the page to prevent it
1069 * from being split.
1070 * Return: The number of filesystem blocks covered by this page.
1071 */
1072static inline
1073unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1074{
1075 return thp_size(page) >> inode->i_blkbits;
1076}
1da177e4 1077#endif /* _LINUX_PAGEMAP_H */