btrfs: move forward declarations to the beginning of extent_io.h
[linux-2.6-block.git] / include / linux / pagemap.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_PAGEMAP_H
3#define _LINUX_PAGEMAP_H
4
5/*
6 * Copyright 1995 Linus Torvalds
7 */
8#include <linux/mm.h>
9#include <linux/fs.h>
10#include <linux/list.h>
11#include <linux/highmem.h>
12#include <linux/compiler.h>
7c0f6ba6 13#include <linux/uaccess.h>
1da177e4 14#include <linux/gfp.h>
3e9f45bd 15#include <linux/bitops.h>
e286781d 16#include <linux/hardirq.h> /* for in_interrupt() */
8edf344c 17#include <linux/hugetlb_inline.h>
1da177e4 18
aa65c29c
JK
19struct pagevec;
20
1da177e4 21/*
9c5d760b 22 * Bits in mapping->flags.
1da177e4 23 */
9a896c9a 24enum mapping_flags {
9c5d760b
MH
25 AS_EIO = 0, /* IO error on async write */
26 AS_ENOSPC = 1, /* ENOSPC on async write */
27 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
28 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
29 AS_EXITING = 4, /* final truncate in progress */
371a096e 30 /* writeback related tags are not used */
9c5d760b 31 AS_NO_WRITEBACK_TAGS = 5,
01c70267 32 AS_THP_SUPPORT = 6, /* THPs supported */
9a896c9a 33};
1da177e4 34
8ed1e46a
JL
35/**
36 * mapping_set_error - record a writeback error in the address_space
767e5ee5
MWO
37 * @mapping: the mapping in which an error should be set
38 * @error: the error to set in the mapping
8ed1e46a
JL
39 *
40 * When writeback fails in some way, we must record that error so that
41 * userspace can be informed when fsync and the like are called. We endeavor
42 * to report errors on any file that was open at the time of the error. Some
43 * internal callers also need to know when writeback errors have occurred.
44 *
45 * When a writeback error occurs, most filesystems will want to call
46 * mapping_set_error to record the error in the mapping so that it can be
47 * reported when the application calls fsync(2).
48 */
3e9f45bd
GC
49static inline void mapping_set_error(struct address_space *mapping, int error)
50{
8ed1e46a
JL
51 if (likely(!error))
52 return;
53
54 /* Record in wb_err for checkers using errseq_t based tracking */
735e4ae5
JL
55 __filemap_set_wb_err(mapping, error);
56
57 /* Record it in superblock */
8b7b2eb1
MK
58 if (mapping->host)
59 errseq_set(&mapping->host->i_sb->s_wb_err, error);
8ed1e46a
JL
60
61 /* Record it in flags for now, for legacy callers */
62 if (error == -ENOSPC)
63 set_bit(AS_ENOSPC, &mapping->flags);
64 else
65 set_bit(AS_EIO, &mapping->flags);
3e9f45bd
GC
66}
67
ba9ddf49
LS
68static inline void mapping_set_unevictable(struct address_space *mapping)
69{
70 set_bit(AS_UNEVICTABLE, &mapping->flags);
71}
72
89e004ea
LS
73static inline void mapping_clear_unevictable(struct address_space *mapping)
74{
75 clear_bit(AS_UNEVICTABLE, &mapping->flags);
76}
77
1eb6234e 78static inline bool mapping_unevictable(struct address_space *mapping)
ba9ddf49 79{
1eb6234e 80 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
ba9ddf49 81}
ba9ddf49 82
91b0abe3
JW
83static inline void mapping_set_exiting(struct address_space *mapping)
84{
85 set_bit(AS_EXITING, &mapping->flags);
86}
87
88static inline int mapping_exiting(struct address_space *mapping)
89{
90 return test_bit(AS_EXITING, &mapping->flags);
91}
92
371a096e
HY
93static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
94{
95 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
96}
97
98static inline int mapping_use_writeback_tags(struct address_space *mapping)
99{
100 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
101}
102
dd0fc66f 103static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
1da177e4 104{
9c5d760b 105 return mapping->gfp_mask;
1da177e4
LT
106}
107
c62d2555
MH
108/* Restricts the given gfp_mask to what the mapping allows. */
109static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
110 gfp_t gfp_mask)
111{
112 return mapping_gfp_mask(mapping) & gfp_mask;
113}
114
1da177e4
LT
115/*
116 * This is non-atomic. Only to be used before the mapping is activated.
117 * Probably needs a barrier...
118 */
260b2367 119static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
1da177e4 120{
9c5d760b 121 m->gfp_mask = mask;
1da177e4
LT
122}
123
01c70267
MWO
124static inline bool mapping_thp_support(struct address_space *mapping)
125{
126 return test_bit(AS_THP_SUPPORT, &mapping->flags);
127}
128
6f4d2f97
MWO
129static inline int filemap_nr_thps(struct address_space *mapping)
130{
131#ifdef CONFIG_READ_ONLY_THP_FOR_FS
132 return atomic_read(&mapping->nr_thps);
133#else
134 return 0;
135#endif
136}
137
138static inline void filemap_nr_thps_inc(struct address_space *mapping)
139{
140#ifdef CONFIG_READ_ONLY_THP_FOR_FS
141 if (!mapping_thp_support(mapping))
142 atomic_inc(&mapping->nr_thps);
143#else
144 WARN_ON_ONCE(1);
145#endif
146}
147
148static inline void filemap_nr_thps_dec(struct address_space *mapping)
149{
150#ifdef CONFIG_READ_ONLY_THP_FOR_FS
151 if (!mapping_thp_support(mapping))
152 atomic_dec(&mapping->nr_thps);
153#else
154 WARN_ON_ONCE(1);
155#endif
156}
157
c6f92f9f 158void release_pages(struct page **pages, int nr);
1da177e4 159
e286781d
NP
160/*
161 * speculatively take a reference to a page.
0139aa7b
JK
162 * If the page is free (_refcount == 0), then _refcount is untouched, and 0
163 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
e286781d
NP
164 *
165 * This function must be called inside the same rcu_read_lock() section as has
166 * been used to lookup the page in the pagecache radix-tree (or page table):
0139aa7b 167 * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
e286781d
NP
168 *
169 * Unless an RCU grace period has passed, the count of all pages coming out
170 * of the allocator must be considered unstable. page_count may return higher
171 * than expected, and put_page must be able to do the right thing when the
172 * page has been finished with, no matter what it is subsequently allocated
173 * for (because put_page is what is used here to drop an invalid speculative
174 * reference).
175 *
176 * This is the interesting part of the lockless pagecache (and lockless
177 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
178 * has the following pattern:
179 * 1. find page in radix tree
180 * 2. conditionally increment refcount
181 * 3. check the page is still in pagecache (if no, goto 1)
182 *
0139aa7b 183 * Remove-side that cares about stability of _refcount (eg. reclaim) has the
b93b0163 184 * following (with the i_pages lock held):
e286781d
NP
185 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
186 * B. remove page from pagecache
187 * C. free the page
188 *
189 * There are 2 critical interleavings that matter:
190 * - 2 runs before A: in this case, A sees elevated refcount and bails out
191 * - A runs before 2: in this case, 2 sees zero refcount and retries;
192 * subsequently, B will complete and 1 will find no page, causing the
193 * lookup to return NULL.
194 *
195 * It is possible that between 1 and 2, the page is removed then the exact same
196 * page is inserted into the same position in pagecache. That's OK: the
b93b0163 197 * old find_get_page using a lock could equally have run before or after
e286781d
NP
198 * such a re-insertion, depending on order that locks are granted.
199 *
200 * Lookups racing against pagecache insertion isn't a big problem: either 1
201 * will find the page or it will not. Likewise, the old find_get_page could run
202 * either before the insertion or afterwards, depending on timing.
203 */
494eec70 204static inline int __page_cache_add_speculative(struct page *page, int count)
e286781d 205{
8375ad98 206#ifdef CONFIG_TINY_RCU
bdd4e85d 207# ifdef CONFIG_PREEMPT_COUNT
591a3d7c 208 VM_BUG_ON(!in_atomic() && !irqs_disabled());
e286781d
NP
209# endif
210 /*
211 * Preempt must be disabled here - we rely on rcu_read_lock doing
212 * this for us.
213 *
214 * Pagecache won't be truncated from interrupt context, so if we have
215 * found a page in the radix tree here, we have pinned its refcount by
216 * disabling preempt, and hence no need for the "speculative get" that
217 * SMP requires.
218 */
309381fe 219 VM_BUG_ON_PAGE(page_count(page) == 0, page);
494eec70 220 page_ref_add(page, count);
e286781d
NP
221
222#else
494eec70 223 if (unlikely(!page_ref_add_unless(page, count, 0))) {
e286781d
NP
224 /*
225 * Either the page has been freed, or will be freed.
226 * In either case, retry here and the caller should
227 * do the right thing (see comments above).
228 */
229 return 0;
230 }
231#endif
309381fe 232 VM_BUG_ON_PAGE(PageTail(page), page);
e286781d
NP
233
234 return 1;
235}
236
494eec70 237static inline int page_cache_get_speculative(struct page *page)
ce0ad7f0 238{
494eec70 239 return __page_cache_add_speculative(page, 1);
240}
ce0ad7f0 241
494eec70 242static inline int page_cache_add_speculative(struct page *page, int count)
243{
244 return __page_cache_add_speculative(page, count);
ce0ad7f0
NP
245}
246
b03143ac
GJ
247/**
248 * attach_page_private - Attach private data to a page.
249 * @page: Page to attach data to.
250 * @data: Data to attach to page.
251 *
252 * Attaching private data to a page increments the page's reference count.
253 * The data must be detached before the page will be freed.
254 */
255static inline void attach_page_private(struct page *page, void *data)
256{
257 get_page(page);
258 set_page_private(page, (unsigned long)data);
259 SetPagePrivate(page);
260}
261
262/**
263 * detach_page_private - Detach private data from a page.
264 * @page: Page to detach data from.
265 *
266 * Removes the data that was previously attached to the page and decrements
267 * the refcount on the page.
268 *
269 * Return: Data that was attached to the page.
270 */
271static inline void *detach_page_private(struct page *page)
272{
273 void *data = (void *)page_private(page);
274
275 if (!PagePrivate(page))
276 return NULL;
277 ClearPagePrivate(page);
278 set_page_private(page, 0);
279 put_page(page);
280
281 return data;
282}
283
44110fe3 284#ifdef CONFIG_NUMA
2ae88149 285extern struct page *__page_cache_alloc(gfp_t gfp);
44110fe3 286#else
2ae88149
NP
287static inline struct page *__page_cache_alloc(gfp_t gfp)
288{
289 return alloc_pages(gfp, 0);
290}
291#endif
292
1da177e4
LT
293static inline struct page *page_cache_alloc(struct address_space *x)
294{
2ae88149 295 return __page_cache_alloc(mapping_gfp_mask(x));
1da177e4
LT
296}
297
8a5c743e 298static inline gfp_t readahead_gfp_mask(struct address_space *x)
7b1de586 299{
453f85d4 300 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
7b1de586
WF
301}
302
1da177e4
LT
303typedef int filler_t(void *, struct page *);
304
0d3f9296 305pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb 306 pgoff_t index, unsigned long max_scan);
0d3f9296 307pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
308 pgoff_t index, unsigned long max_scan);
309
2457aec6
MG
310#define FGP_ACCESSED 0x00000001
311#define FGP_LOCK 0x00000002
312#define FGP_CREAT 0x00000004
313#define FGP_WRITE 0x00000008
314#define FGP_NOFS 0x00000010
315#define FGP_NOWAIT 0x00000020
a75d4c33 316#define FGP_FOR_MMAP 0x00000040
a8cf7f27 317#define FGP_HEAD 0x00000080
44835d20 318#define FGP_ENTRY 0x00000100
2457aec6
MG
319
320struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 321 int fgp_flags, gfp_t cache_gfp_mask);
2457aec6
MG
322
323/**
324 * find_get_page - find and get a page reference
325 * @mapping: the address_space to search
326 * @offset: the page index
327 *
328 * Looks up the page cache slot at @mapping & @offset. If there is a
329 * page cache page, it is returned with an increased refcount.
330 *
331 * Otherwise, %NULL is returned.
332 */
333static inline struct page *find_get_page(struct address_space *mapping,
334 pgoff_t offset)
335{
45f87de5 336 return pagecache_get_page(mapping, offset, 0, 0);
2457aec6
MG
337}
338
339static inline struct page *find_get_page_flags(struct address_space *mapping,
340 pgoff_t offset, int fgp_flags)
341{
45f87de5 342 return pagecache_get_page(mapping, offset, fgp_flags, 0);
2457aec6
MG
343}
344
345/**
346 * find_lock_page - locate, pin and lock a pagecache page
2457aec6 347 * @mapping: the address_space to search
89b42235 348 * @index: the page index
2457aec6 349 *
89b42235 350 * Looks up the page cache entry at @mapping & @index. If there is a
2457aec6
MG
351 * page cache page, it is returned locked and with an increased
352 * refcount.
353 *
a8cf7f27
MWO
354 * Context: May sleep.
355 * Return: A struct page or %NULL if there is no page in the cache for this
356 * index.
2457aec6
MG
357 */
358static inline struct page *find_lock_page(struct address_space *mapping,
a8cf7f27
MWO
359 pgoff_t index)
360{
361 return pagecache_get_page(mapping, index, FGP_LOCK, 0);
362}
363
364/**
365 * find_lock_head - Locate, pin and lock a pagecache page.
366 * @mapping: The address_space to search.
89b42235 367 * @index: The page index.
a8cf7f27 368 *
89b42235 369 * Looks up the page cache entry at @mapping & @index. If there is a
a8cf7f27
MWO
370 * page cache page, its head page is returned locked and with an increased
371 * refcount.
372 *
373 * Context: May sleep.
374 * Return: A struct page which is !PageTail, or %NULL if there is no page
375 * in the cache for this index.
376 */
377static inline struct page *find_lock_head(struct address_space *mapping,
378 pgoff_t index)
2457aec6 379{
a8cf7f27 380 return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0);
2457aec6
MG
381}
382
383/**
384 * find_or_create_page - locate or add a pagecache page
385 * @mapping: the page's address_space
386 * @index: the page's index into the mapping
387 * @gfp_mask: page allocation mode
388 *
389 * Looks up the page cache slot at @mapping & @offset. If there is a
390 * page cache page, it is returned locked and with an increased
391 * refcount.
392 *
393 * If the page is not present, a new page is allocated using @gfp_mask
394 * and added to the page cache and the VM's LRU list. The page is
395 * returned locked and with an increased refcount.
396 *
397 * On memory exhaustion, %NULL is returned.
398 *
399 * find_or_create_page() may sleep, even if @gfp_flags specifies an
400 * atomic allocation!
401 */
402static inline struct page *find_or_create_page(struct address_space *mapping,
767e5ee5 403 pgoff_t index, gfp_t gfp_mask)
2457aec6 404{
767e5ee5 405 return pagecache_get_page(mapping, index,
2457aec6 406 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
45f87de5 407 gfp_mask);
2457aec6
MG
408}
409
410/**
411 * grab_cache_page_nowait - returns locked page at given index in given cache
412 * @mapping: target address_space
413 * @index: the page index
414 *
415 * Same as grab_cache_page(), but do not wait if the page is unavailable.
416 * This is intended for speculative data generators, where the data can
417 * be regenerated if the page couldn't be grabbed. This routine should
418 * be safe to call while holding the lock for another page.
419 *
420 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
421 * and deadlock against the caller's locked page.
422 */
423static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
424 pgoff_t index)
425{
426 return pagecache_get_page(mapping, index,
427 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
45f87de5 428 mapping_gfp_mask(mapping));
2457aec6
MG
429}
430
63ec1973
MWO
431/* Does this page contain this index? */
432static inline bool thp_contains(struct page *head, pgoff_t index)
433{
434 /* HugeTLBfs indexes the page cache in units of hpage_size */
435 if (PageHuge(head))
436 return head->index == index;
437 return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL));
438}
439
ec848215
MWO
440/*
441 * Given the page we found in the page cache, return the page corresponding
442 * to this index in the file
443 */
444static inline struct page *find_subpage(struct page *head, pgoff_t index)
4101196b 445{
ec848215
MWO
446 /* HugeTLBfs wants the head page regardless */
447 if (PageHuge(head))
448 return head;
4101196b 449
6c357848 450 return head + (index & (thp_nr_pages(head) - 1));
4101196b
MWO
451}
452
0cd6144a 453unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
cf2039af 454 pgoff_t end, struct pagevec *pvec, pgoff_t *indices);
b947cee4
JK
455unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
456 pgoff_t end, unsigned int nr_pages,
457 struct page **pages);
458static inline unsigned find_get_pages(struct address_space *mapping,
459 pgoff_t *start, unsigned int nr_pages,
460 struct page **pages)
461{
462 return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
463 pages);
464}
ebf43500
JA
465unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
466 unsigned int nr_pages, struct page **pages);
72b045ae 467unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 468 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae
JK
469 struct page **pages);
470static inline unsigned find_get_pages_tag(struct address_space *mapping,
a6906972 471 pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
72b045ae
JK
472 struct page **pages)
473{
474 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
475 nr_pages, pages);
476}
1da177e4 477
54566b2c
NP
478struct page *grab_cache_page_write_begin(struct address_space *mapping,
479 pgoff_t index, unsigned flags);
afddba49 480
1da177e4
LT
481/*
482 * Returns locked page at given index in given cache, creating it if needed.
483 */
57f6b96c
FW
484static inline struct page *grab_cache_page(struct address_space *mapping,
485 pgoff_t index)
1da177e4
LT
486{
487 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
488}
489
1da177e4 490extern struct page * read_cache_page(struct address_space *mapping,
5e5358e7 491 pgoff_t index, filler_t *filler, void *data);
0531b2aa
LT
492extern struct page * read_cache_page_gfp(struct address_space *mapping,
493 pgoff_t index, gfp_t gfp_mask);
1da177e4
LT
494extern int read_cache_pages(struct address_space *mapping,
495 struct list_head *pages, filler_t *filler, void *data);
496
090d2b18 497static inline struct page *read_mapping_page(struct address_space *mapping,
5e5358e7 498 pgoff_t index, void *data)
090d2b18 499{
6c45b454 500 return read_cache_page(mapping, index, NULL, data);
090d2b18
PE
501}
502
a0f7a756 503/*
5cbc198a
KS
504 * Get index of the page with in radix-tree
505 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
a0f7a756 506 */
5cbc198a 507static inline pgoff_t page_to_index(struct page *page)
a0f7a756 508{
e9b61f19
KS
509 pgoff_t pgoff;
510
e9b61f19 511 if (likely(!PageTransTail(page)))
09cbfeaf 512 return page->index;
e9b61f19
KS
513
514 /*
515 * We don't initialize ->index for tail pages: calculate based on
516 * head page
517 */
09cbfeaf 518 pgoff = compound_head(page)->index;
e9b61f19
KS
519 pgoff += page - compound_head(page);
520 return pgoff;
a0f7a756
NH
521}
522
5cbc198a
KS
523/*
524 * Get the offset in PAGE_SIZE.
525 * (TODO: hugepage should have ->index in PAGE_SIZE)
526 */
527static inline pgoff_t page_to_pgoff(struct page *page)
528{
529 if (unlikely(PageHeadHuge(page)))
530 return page->index << compound_order(page);
531
532 return page_to_index(page);
533}
534
1da177e4
LT
535/*
536 * Return byte-offset into filesystem object for page.
537 */
538static inline loff_t page_offset(struct page *page)
539{
09cbfeaf 540 return ((loff_t)page->index) << PAGE_SHIFT;
1da177e4
LT
541}
542
f981c595
MG
543static inline loff_t page_file_offset(struct page *page)
544{
8cd79788 545 return ((loff_t)page_index(page)) << PAGE_SHIFT;
f981c595
MG
546}
547
0fe6e20b
NH
548extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
549 unsigned long address);
550
1da177e4
LT
551static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
552 unsigned long address)
553{
0fe6e20b
NH
554 pgoff_t pgoff;
555 if (unlikely(is_vm_hugetlb_page(vma)))
556 return linear_hugepage_index(vma, address);
557 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
1da177e4 558 pgoff += vma->vm_pgoff;
09cbfeaf 559 return pgoff;
1da177e4
LT
560}
561
c7510ab2
JA
562struct wait_page_key {
563 struct page *page;
564 int bit_nr;
565 int page_match;
566};
567
568struct wait_page_queue {
569 struct page *page;
570 int bit_nr;
571 wait_queue_entry_t wait;
572};
573
cdc8fcb4 574static inline bool wake_page_match(struct wait_page_queue *wait_page,
c7510ab2
JA
575 struct wait_page_key *key)
576{
577 if (wait_page->page != key->page)
cdc8fcb4 578 return false;
c7510ab2
JA
579 key->page_match = 1;
580
581 if (wait_page->bit_nr != key->bit_nr)
cdc8fcb4 582 return false;
d1932dc3 583
cdc8fcb4 584 return true;
d1932dc3
JA
585}
586
b3c97528
HH
587extern void __lock_page(struct page *page);
588extern int __lock_page_killable(struct page *page);
dd3e6d50 589extern int __lock_page_async(struct page *page, struct wait_page_queue *wait);
d065bd81
ML
590extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
591 unsigned int flags);
b3c97528 592extern void unlock_page(struct page *page);
1da177e4 593
f4458845
AM
594/*
595 * Return true if the page was successfully locked
596 */
529ae9aa
NP
597static inline int trylock_page(struct page *page)
598{
48c935ad 599 page = compound_head(page);
8413ac9d 600 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
529ae9aa
NP
601}
602
db37648c
NP
603/*
604 * lock_page may only be called if we have the page's inode pinned.
605 */
1da177e4
LT
606static inline void lock_page(struct page *page)
607{
608 might_sleep();
529ae9aa 609 if (!trylock_page(page))
1da177e4
LT
610 __lock_page(page);
611}
db37648c 612
2687a356
MW
613/*
614 * lock_page_killable is like lock_page but can be interrupted by fatal
615 * signals. It returns 0 if it locked the page and -EINTR if it was
616 * killed while waiting.
617 */
618static inline int lock_page_killable(struct page *page)
619{
620 might_sleep();
529ae9aa 621 if (!trylock_page(page))
2687a356
MW
622 return __lock_page_killable(page);
623 return 0;
624}
625
dd3e6d50
JA
626/*
627 * lock_page_async - Lock the page, unless this would block. If the page
628 * is already locked, then queue a callback when the page becomes unlocked.
629 * This callback can then retry the operation.
630 *
631 * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page
632 * was already locked and the callback defined in 'wait' was queued.
633 */
634static inline int lock_page_async(struct page *page,
635 struct wait_page_queue *wait)
636{
637 if (!trylock_page(page))
638 return __lock_page_async(page, wait);
639 return 0;
640}
641
d065bd81
ML
642/*
643 * lock_page_or_retry - Lock the page, unless this would block and the
644 * caller indicated that it can handle a retry.
9a95f3cf 645 *
c1e8d7c6 646 * Return value and mmap_lock implications depend on flags; see
9a95f3cf 647 * __lock_page_or_retry().
d065bd81
ML
648 */
649static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
650 unsigned int flags)
651{
652 might_sleep();
653 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
654}
655
1da177e4 656/*
74d81bfa
NP
657 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
658 * and should not be used directly.
1da177e4 659 */
b3c97528 660extern void wait_on_page_bit(struct page *page, int bit_nr);
f62e00cc 661extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
a4796e37 662
1da177e4
LT
663/*
664 * Wait for a page to be unlocked.
665 *
666 * This must be called with the caller "holding" the page,
667 * ie with increased "page->count" so that the page won't
668 * go away during the wait..
669 */
670static inline void wait_on_page_locked(struct page *page)
671{
672 if (PageLocked(page))
48c935ad 673 wait_on_page_bit(compound_head(page), PG_locked);
1da177e4
LT
674}
675
62906027
NP
676static inline int wait_on_page_locked_killable(struct page *page)
677{
678 if (!PageLocked(page))
679 return 0;
680 return wait_on_page_bit_killable(compound_head(page), PG_locked);
681}
682
48054625 683int put_and_wait_on_page_locked(struct page *page, int state);
19343b5b 684void wait_on_page_writeback(struct page *page);
e5dbd332 685int wait_on_page_writeback_killable(struct page *page);
1da177e4 686extern void end_page_writeback(struct page *page);
1d1d1a76 687void wait_for_stable_page(struct page *page);
1da177e4 688
c11f0c0b 689void page_endio(struct page *page, bool is_write, int err);
57d99845 690
385e1ca5
DH
691/*
692 * Add an arbitrary waiter to a page's wait queue
693 */
ac6424b9 694extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
385e1ca5 695
1da177e4 696/*
4bce9f6e 697 * Fault everything in given userspace address range in.
1da177e4
LT
698 */
699static inline int fault_in_pages_writeable(char __user *uaddr, int size)
f56f821f 700{
9923777d 701 char __user *end = uaddr + size - 1;
f56f821f
DV
702
703 if (unlikely(size == 0))
e23d4159 704 return 0;
f56f821f 705
e23d4159
AV
706 if (unlikely(uaddr > end))
707 return -EFAULT;
f56f821f
DV
708 /*
709 * Writing zeroes into userspace here is OK, because we know that if
710 * the zero gets there, we'll be overwriting it.
711 */
e23d4159
AV
712 do {
713 if (unlikely(__put_user(0, uaddr) != 0))
714 return -EFAULT;
f56f821f 715 uaddr += PAGE_SIZE;
e23d4159 716 } while (uaddr <= end);
f56f821f
DV
717
718 /* Check whether the range spilled into the next page. */
719 if (((unsigned long)uaddr & PAGE_MASK) ==
720 ((unsigned long)end & PAGE_MASK))
e23d4159 721 return __put_user(0, end);
f56f821f 722
e23d4159 723 return 0;
f56f821f
DV
724}
725
4bce9f6e 726static inline int fault_in_pages_readable(const char __user *uaddr, int size)
f56f821f
DV
727{
728 volatile char c;
f56f821f
DV
729 const char __user *end = uaddr + size - 1;
730
731 if (unlikely(size == 0))
e23d4159 732 return 0;
f56f821f 733
e23d4159
AV
734 if (unlikely(uaddr > end))
735 return -EFAULT;
736
737 do {
738 if (unlikely(__get_user(c, uaddr) != 0))
739 return -EFAULT;
f56f821f 740 uaddr += PAGE_SIZE;
e23d4159 741 } while (uaddr <= end);
f56f821f
DV
742
743 /* Check whether the range spilled into the next page. */
744 if (((unsigned long)uaddr & PAGE_MASK) ==
745 ((unsigned long)end & PAGE_MASK)) {
e23d4159 746 return __get_user(c, end);
f56f821f
DV
747 }
748
90b75db6 749 (void)c;
e23d4159 750 return 0;
f56f821f
DV
751}
752
529ae9aa
NP
753int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
754 pgoff_t index, gfp_t gfp_mask);
755int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
756 pgoff_t index, gfp_t gfp_mask);
97cecb5a 757extern void delete_from_page_cache(struct page *page);
62cccb8c 758extern void __delete_from_page_cache(struct page *page, void *shadow);
1f7ef657 759void replace_page_cache_page(struct page *old, struct page *new);
aa65c29c
JK
760void delete_from_page_cache_batch(struct address_space *mapping,
761 struct pagevec *pvec);
41139aa4
MWO
762loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
763 int whence);
529ae9aa
NP
764
765/*
766 * Like add_to_page_cache_locked, but used to add newly allocated pages:
48c935ad 767 * the page is new, so we can just run __SetPageLocked() against it.
529ae9aa
NP
768 */
769static inline int add_to_page_cache(struct page *page,
770 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
771{
772 int error;
773
48c935ad 774 __SetPageLocked(page);
529ae9aa
NP
775 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
776 if (unlikely(error))
48c935ad 777 __ClearPageLocked(page);
529ae9aa
NP
778 return error;
779}
780
042124cc
MWO
781/**
782 * struct readahead_control - Describes a readahead request.
783 *
784 * A readahead request is for consecutive pages. Filesystems which
785 * implement the ->readahead method should call readahead_page() or
786 * readahead_page_batch() in a loop and attempt to start I/O against
787 * each page in the request.
788 *
789 * Most of the fields in this struct are private and should be accessed
790 * by the functions below.
791 *
792 * @file: The file, used primarily by network filesystems for authentication.
793 * May be NULL if invoked internally by the filesystem.
794 * @mapping: Readahead this filesystem object.
795 */
796struct readahead_control {
797 struct file *file;
798 struct address_space *mapping;
799/* private: use the readahead_* accessors instead */
800 pgoff_t _index;
801 unsigned int _nr_pages;
802 unsigned int _batch_count;
803};
804
1aa83cfa
MWO
805#define DEFINE_READAHEAD(rac, f, m, i) \
806 struct readahead_control rac = { \
807 .file = f, \
808 .mapping = m, \
809 ._index = i, \
810 }
811
fefa7c47
MWO
812#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
813
814void page_cache_ra_unbounded(struct readahead_control *,
815 unsigned long nr_to_read, unsigned long lookahead_count);
816void page_cache_sync_ra(struct readahead_control *, struct file_ra_state *,
817 unsigned long req_count);
818void page_cache_async_ra(struct readahead_control *, struct file_ra_state *,
819 struct page *, unsigned long req_count);
820
821/**
822 * page_cache_sync_readahead - generic file readahead
823 * @mapping: address_space which holds the pagecache and I/O vectors
824 * @ra: file_ra_state which holds the readahead state
825 * @file: Used by the filesystem for authentication.
826 * @index: Index of first page to be read.
827 * @req_count: Total number of pages being read by the caller.
828 *
829 * page_cache_sync_readahead() should be called when a cache miss happened:
830 * it will submit the read. The readahead logic may decide to piggyback more
831 * pages onto the read request if access patterns suggest it will improve
832 * performance.
833 */
834static inline
835void page_cache_sync_readahead(struct address_space *mapping,
836 struct file_ra_state *ra, struct file *file, pgoff_t index,
837 unsigned long req_count)
838{
839 DEFINE_READAHEAD(ractl, file, mapping, index);
840 page_cache_sync_ra(&ractl, ra, req_count);
841}
842
843/**
844 * page_cache_async_readahead - file readahead for marked pages
845 * @mapping: address_space which holds the pagecache and I/O vectors
846 * @ra: file_ra_state which holds the readahead state
847 * @file: Used by the filesystem for authentication.
848 * @page: The page at @index which triggered the readahead call.
849 * @index: Index of first page to be read.
850 * @req_count: Total number of pages being read by the caller.
851 *
852 * page_cache_async_readahead() should be called when a page is used which
853 * is marked as PageReadahead; this is a marker to suggest that the application
854 * has used up enough of the readahead window that we should start pulling in
855 * more pages.
856 */
857static inline
858void page_cache_async_readahead(struct address_space *mapping,
859 struct file_ra_state *ra, struct file *file,
860 struct page *page, pgoff_t index, unsigned long req_count)
861{
862 DEFINE_READAHEAD(ractl, file, mapping, index);
863 page_cache_async_ra(&ractl, ra, page, req_count);
864}
865
042124cc
MWO
866/**
867 * readahead_page - Get the next page to read.
868 * @rac: The current readahead request.
869 *
870 * Context: The page is locked and has an elevated refcount. The caller
871 * should decreases the refcount once the page has been submitted for I/O
872 * and unlock the page once all I/O to that page has completed.
873 * Return: A pointer to the next page, or %NULL if we are done.
874 */
875static inline struct page *readahead_page(struct readahead_control *rac)
876{
877 struct page *page;
878
879 BUG_ON(rac->_batch_count > rac->_nr_pages);
880 rac->_nr_pages -= rac->_batch_count;
881 rac->_index += rac->_batch_count;
882
883 if (!rac->_nr_pages) {
884 rac->_batch_count = 0;
885 return NULL;
886 }
887
888 page = xa_load(&rac->mapping->i_pages, rac->_index);
889 VM_BUG_ON_PAGE(!PageLocked(page), page);
6c357848 890 rac->_batch_count = thp_nr_pages(page);
042124cc
MWO
891
892 return page;
893}
894
895static inline unsigned int __readahead_batch(struct readahead_control *rac,
896 struct page **array, unsigned int array_sz)
897{
898 unsigned int i = 0;
899 XA_STATE(xas, &rac->mapping->i_pages, 0);
900 struct page *page;
901
902 BUG_ON(rac->_batch_count > rac->_nr_pages);
903 rac->_nr_pages -= rac->_batch_count;
904 rac->_index += rac->_batch_count;
905 rac->_batch_count = 0;
906
907 xas_set(&xas, rac->_index);
908 rcu_read_lock();
909 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
4349a83a
MWO
910 if (xas_retry(&xas, page))
911 continue;
042124cc
MWO
912 VM_BUG_ON_PAGE(!PageLocked(page), page);
913 VM_BUG_ON_PAGE(PageTail(page), page);
914 array[i++] = page;
6c357848 915 rac->_batch_count += thp_nr_pages(page);
042124cc
MWO
916
917 /*
918 * The page cache isn't using multi-index entries yet,
919 * so the xas cursor needs to be manually moved to the
920 * next index. This can be removed once the page cache
921 * is converted.
922 */
923 if (PageHead(page))
924 xas_set(&xas, rac->_index + rac->_batch_count);
925
926 if (i == array_sz)
927 break;
928 }
929 rcu_read_unlock();
930
931 return i;
932}
933
934/**
935 * readahead_page_batch - Get a batch of pages to read.
936 * @rac: The current readahead request.
937 * @array: An array of pointers to struct page.
938 *
939 * Context: The pages are locked and have an elevated refcount. The caller
940 * should decreases the refcount once the page has been submitted for I/O
941 * and unlock the page once all I/O to that page has completed.
942 * Return: The number of pages placed in the array. 0 indicates the request
943 * is complete.
944 */
945#define readahead_page_batch(rac, array) \
946 __readahead_batch(rac, array, ARRAY_SIZE(array))
947
948/**
949 * readahead_pos - The byte offset into the file of this readahead request.
950 * @rac: The readahead request.
951 */
952static inline loff_t readahead_pos(struct readahead_control *rac)
953{
954 return (loff_t)rac->_index * PAGE_SIZE;
955}
956
957/**
958 * readahead_length - The number of bytes in this readahead request.
959 * @rac: The readahead request.
960 */
961static inline loff_t readahead_length(struct readahead_control *rac)
962{
963 return (loff_t)rac->_nr_pages * PAGE_SIZE;
964}
965
966/**
967 * readahead_index - The index of the first page in this readahead request.
968 * @rac: The readahead request.
969 */
970static inline pgoff_t readahead_index(struct readahead_control *rac)
971{
972 return rac->_index;
973}
974
975/**
976 * readahead_count - The number of pages in this readahead request.
977 * @rac: The readahead request.
978 */
979static inline unsigned int readahead_count(struct readahead_control *rac)
980{
981 return rac->_nr_pages;
982}
983
b57c2cb9
FF
984static inline unsigned long dir_pages(struct inode *inode)
985{
09cbfeaf
KS
986 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
987 PAGE_SHIFT;
b57c2cb9
FF
988}
989
243145bc
AG
990/**
991 * page_mkwrite_check_truncate - check if page was truncated
992 * @page: the page to check
993 * @inode: the inode to check the page against
994 *
995 * Returns the number of bytes in the page up to EOF,
996 * or -EFAULT if the page was truncated.
997 */
998static inline int page_mkwrite_check_truncate(struct page *page,
999 struct inode *inode)
1000{
1001 loff_t size = i_size_read(inode);
1002 pgoff_t index = size >> PAGE_SHIFT;
1003 int offset = offset_in_page(size);
1004
1005 if (page->mapping != inode->i_mapping)
1006 return -EFAULT;
1007
1008 /* page is wholly inside EOF */
1009 if (page->index < index)
1010 return PAGE_SIZE;
1011 /* page is wholly past EOF */
1012 if (page->index > index || !offset)
1013 return -EFAULT;
1014 /* page is partially inside EOF */
1015 return offset;
1016}
1017
24addd84
MWO
1018/**
1019 * i_blocks_per_page - How many blocks fit in this page.
1020 * @inode: The inode which contains the blocks.
1021 * @page: The page (head page if the page is a THP).
1022 *
1023 * If the block size is larger than the size of this page, return zero.
1024 *
1025 * Context: The caller should hold a refcount on the page to prevent it
1026 * from being split.
1027 * Return: The number of filesystem blocks covered by this page.
1028 */
1029static inline
1030unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1031{
1032 return thp_size(page) >> inode->i_blkbits;
1033}
1da177e4 1034#endif /* _LINUX_PAGEMAP_H */