include/linux/page-flags.h: remove unused __[Set|Clear]PagePrivate
[linux-block.git] / include / linux / page-flags.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2/*
3 * Macros for manipulating and testing page->flags
4 */
5
6#ifndef PAGE_FLAGS_H
7#define PAGE_FLAGS_H
8
f886ed44 9#include <linux/types.h>
187f1882 10#include <linux/bug.h>
072bb0aa 11#include <linux/mmdebug.h>
9223b419 12#ifndef __GENERATING_BOUNDS_H
6d777953 13#include <linux/mm_types.h>
01fc0ac1 14#include <generated/bounds.h>
9223b419 15#endif /* !__GENERATING_BOUNDS_H */
f886ed44 16
1da177e4
LT
17/*
18 * Various page->flags bits:
19 *
6e2e07cd
DH
20 * PG_reserved is set for special pages. The "struct page" of such a page
21 * should in general not be touched (e.g. set dirty) except by its owner.
22 * Pages marked as PG_reserved include:
23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24 * initrd, HW tables)
25 * - Pages reserved or allocated early during boot (before the page allocator
26 * was initialized). This includes (depending on the architecture) the
27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28 * much more. Once (if ever) freed, PG_reserved is cleared and they will
29 * be given to the page allocator.
30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31 * to read/write these pages might end badly. Don't touch!
32 * - The zero page(s)
33 * - Pages not added to the page allocator when onlining a section because
34 * they were excluded via the online_page_callback() or because they are
35 * PG_hwpoison.
36 * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37 * control pages, vmcoreinfo)
38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39 * not marked PG_reserved (as they might be in use by somebody else who does
40 * not respect the caching strategy).
41 * - Pages part of an offline section (struct pages of offline sections should
42 * not be trusted as they will be initialized when first onlined).
43 * - MCA pages on ia64
44 * - Pages holding CPU notes for POWER Firmware Assisted Dump
45 * - Device memory (e.g. PMEM, DAX, HMM)
46 * Some PG_reserved pages will be excluded from the hibernation image.
47 * PG_reserved does in general not hinder anybody from dumping or swapping
48 * and is no longer required for remap_pfn_range(). ioremap might require it.
49 * Consequently, PG_reserved for a page mapped into user space can indicate
50 * the zero page, the vDSO, MMIO pages or device memory.
1da177e4 51 *
da6052f7
NP
52 * The PG_private bitflag is set on pagecache pages if they contain filesystem
53 * specific data (which is normally at page->private). It can be used by
54 * private allocations for its own usage.
1da177e4 55 *
da6052f7
NP
56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58 * is set before writeback starts and cleared when it finishes.
59 *
60 * PG_locked also pins a page in pagecache, and blocks truncation of the file
61 * while it is held.
62 *
63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64 * to become unlocked.
1da177e4 65 *
9de4f22a
HY
66 * PG_swapbacked is set when a page uses swap as a backing storage. This are
67 * usually PageAnon or shmem pages but please note that even anonymous pages
68 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
69 * a result of MADV_FREE).
70 *
1da177e4
LT
71 * PG_uptodate tells whether the page's contents is valid. When a read
72 * completes, the page becomes uptodate, unless a disk I/O error happened.
73 *
da6052f7
NP
74 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
75 * file-backed pagecache (see mm/vmscan.c).
1da177e4
LT
76 *
77 * PG_error is set to indicate that an I/O error occurred on this page.
78 *
79 * PG_arch_1 is an architecture specific page state bit. The generic code
80 * guarantees that this bit is cleared for a page when it first is entered into
81 * the page cache.
82 *
d466f2fc
AK
83 * PG_hwpoison indicates that a page got corrupted in hardware and contains
84 * data with incorrect ECC bits that triggered a machine check. Accessing is
85 * not safe since it may cause another machine check. Don't touch!
1da177e4
LT
86 */
87
88/*
89 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break
91fc8ab3
AW
90 * locked- and dirty-page accounting.
91 *
92 * The page flags field is split into two parts, the main flags area
93 * which extends from the low bits upwards, and the fields area which
94 * extends from the high bits downwards.
95 *
96 * | FIELD | ... | FLAGS |
9223b419
CL
97 * N-1 ^ 0
98 * (NR_PAGEFLAGS)
91fc8ab3 99 *
9223b419
CL
100 * The fields area is reserved for fields mapping zone, node (for NUMA) and
101 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
102 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
1da177e4 103 */
e2683181
CL
104enum pageflags {
105 PG_locked, /* Page is locked. Don't touch. */
e2683181
CL
106 PG_referenced,
107 PG_uptodate,
108 PG_dirty,
109 PG_lru,
110 PG_active,
1899ad18 111 PG_workingset,
b91e1302 112 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
1899ad18 113 PG_error,
e2683181
CL
114 PG_slab,
115 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/
e2683181
CL
116 PG_arch_1,
117 PG_reserved,
118 PG_private, /* If pagecache, has fs-private data */
266cf658 119 PG_private_2, /* If pagecache, has fs aux data */
e2683181 120 PG_writeback, /* Page is under writeback */
e20b8cca 121 PG_head, /* A head page */
e2683181
CL
122 PG_mappedtodisk, /* Has blocks allocated on-disk */
123 PG_reclaim, /* To be reclaimed asap */
b2e18538 124 PG_swapbacked, /* Page is backed by RAM/swap */
894bc310 125 PG_unevictable, /* Page is "unevictable" */
af8e3354 126#ifdef CONFIG_MMU
b291f000 127 PG_mlocked, /* Page is vma mlocked */
894bc310 128#endif
46cf98cd 129#ifdef CONFIG_ARCH_USES_PG_UNCACHED
602c4d11 130 PG_uncached, /* Page has been mapped as uncached */
d466f2fc
AK
131#endif
132#ifdef CONFIG_MEMORY_FAILURE
133 PG_hwpoison, /* hardware poisoned page. Don't touch */
e9da73d6 134#endif
33c3fc71
VD
135#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
136 PG_young,
137 PG_idle,
4beba948
SP
138#endif
139#ifdef CONFIG_64BIT
140 PG_arch_2,
f886ed44 141#endif
0cad47cf
AW
142 __NR_PAGEFLAGS,
143
144 /* Filesystems */
145 PG_checked = PG_owner_priv_1,
146
6326fec1
NP
147 /* SwapBacked */
148 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
149
266cf658
DH
150 /* Two page bits are conscripted by FS-Cache to maintain local caching
151 * state. These bits are set on pages belonging to the netfs's inodes
152 * when those inodes are being locally cached.
153 */
154 PG_fscache = PG_private_2, /* page backed by cache */
155
0cad47cf 156 /* XEN */
d8ac3dd4 157 /* Pinned in Xen as a read-only pagetable page. */
0cad47cf 158 PG_pinned = PG_owner_priv_1,
d8ac3dd4 159 /* Pinned as part of domain save (see xen_mm_pin_all()). */
0cad47cf 160 PG_savepinned = PG_dirty,
d8ac3dd4
JH
161 /* Has a grant mapping of another (foreign) domain's page. */
162 PG_foreign = PG_owner_priv_1,
b877ac98
JG
163 /* Remapped by swiotlb-xen. */
164 PG_xen_remapped = PG_owner_priv_1,
8a38082d 165
9023cb7e 166 /* SLOB */
9023cb7e 167 PG_slob_free = PG_private,
53f9263b
KS
168
169 /* Compound pages. Stored in first tail page's flags */
e18c45ff 170 PG_double_map = PG_workingset,
bda807d4
MK
171
172 /* non-lru isolated movable page */
173 PG_isolated = PG_reclaim,
36e66c55
AD
174
175 /* Only valid for buddy pages. Used to track pages that are reported */
176 PG_reported = PG_uptodate,
e2683181 177};
1da177e4 178
9223b419
CL
179#ifndef __GENERATING_BOUNDS_H
180
0e6d31a7
KS
181struct page; /* forward declaration */
182
183static inline struct page *compound_head(struct page *page)
184{
185 unsigned long head = READ_ONCE(page->compound_head);
186
187 if (unlikely(head & 1))
188 return (struct page *) (head - 1);
189 return page;
190}
191
4b0f3261 192static __always_inline int PageTail(struct page *page)
0e6d31a7
KS
193{
194 return READ_ONCE(page->compound_head) & 1;
195}
196
4b0f3261 197static __always_inline int PageCompound(struct page *page)
0e6d31a7
KS
198{
199 return test_bit(PG_head, &page->flags) || PageTail(page);
200}
201
f165b378
PT
202#define PAGE_POISON_PATTERN -1l
203static inline int PagePoisoned(const struct page *page)
204{
205 return page->flags == PAGE_POISON_PATTERN;
206}
207
f682a97a
AD
208#ifdef CONFIG_DEBUG_VM
209void page_init_poison(struct page *page, size_t size);
210#else
211static inline void page_init_poison(struct page *page, size_t size)
212{
213}
214#endif
215
95ad9755
KS
216/*
217 * Page flags policies wrt compound pages
218 *
f165b378
PT
219 * PF_POISONED_CHECK
220 * check if this struct page poisoned/uninitialized
221 *
95ad9755
KS
222 * PF_ANY:
223 * the page flag is relevant for small, head and tail pages.
224 *
225 * PF_HEAD:
226 * for compound page all operations related to the page flag applied to
227 * head page.
228 *
62906027
NP
229 * PF_ONLY_HEAD:
230 * for compound page, callers only ever operate on the head page.
231 *
95ad9755
KS
232 * PF_NO_TAIL:
233 * modifications of the page flag must be done on small or head pages,
234 * checks can be done on tail pages too.
235 *
236 * PF_NO_COMPOUND:
237 * the page flag is not relevant for compound pages.
a08d93e5
MWO
238 *
239 * PF_SECOND:
240 * the page flag is stored in the first tail page.
95ad9755 241 */
f165b378
PT
242#define PF_POISONED_CHECK(page) ({ \
243 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \
244 page; })
245#define PF_ANY(page, enforce) PF_POISONED_CHECK(page)
246#define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page))
62906027
NP
247#define PF_ONLY_HEAD(page, enforce) ({ \
248 VM_BUG_ON_PGFLAGS(PageTail(page), page); \
f165b378 249 PF_POISONED_CHECK(page); })
95ad9755
KS
250#define PF_NO_TAIL(page, enforce) ({ \
251 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \
f165b378 252 PF_POISONED_CHECK(compound_head(page)); })
822cdd11 253#define PF_NO_COMPOUND(page, enforce) ({ \
95ad9755 254 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
f165b378 255 PF_POISONED_CHECK(page); })
a08d93e5
MWO
256#define PF_SECOND(page, enforce) ({ \
257 VM_BUG_ON_PGFLAGS(!PageHead(page), page); \
258 PF_POISONED_CHECK(&page[1]); })
95ad9755 259
f94a62e9
CL
260/*
261 * Macros to create function definitions for page flags
262 */
95ad9755 263#define TESTPAGEFLAG(uname, lname, policy) \
4b0f3261 264static __always_inline int Page##uname(struct page *page) \
95ad9755 265 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
f94a62e9 266
95ad9755 267#define SETPAGEFLAG(uname, lname, policy) \
4b0f3261 268static __always_inline void SetPage##uname(struct page *page) \
95ad9755 269 { set_bit(PG_##lname, &policy(page, 1)->flags); }
f94a62e9 270
95ad9755 271#define CLEARPAGEFLAG(uname, lname, policy) \
4b0f3261 272static __always_inline void ClearPage##uname(struct page *page) \
95ad9755 273 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
f94a62e9 274
95ad9755 275#define __SETPAGEFLAG(uname, lname, policy) \
4b0f3261 276static __always_inline void __SetPage##uname(struct page *page) \
95ad9755 277 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
f94a62e9 278
95ad9755 279#define __CLEARPAGEFLAG(uname, lname, policy) \
4b0f3261 280static __always_inline void __ClearPage##uname(struct page *page) \
95ad9755 281 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
f94a62e9 282
95ad9755 283#define TESTSETFLAG(uname, lname, policy) \
4b0f3261 284static __always_inline int TestSetPage##uname(struct page *page) \
95ad9755 285 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
f94a62e9 286
95ad9755 287#define TESTCLEARFLAG(uname, lname, policy) \
4b0f3261 288static __always_inline int TestClearPage##uname(struct page *page) \
95ad9755 289 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
f94a62e9 290
95ad9755
KS
291#define PAGEFLAG(uname, lname, policy) \
292 TESTPAGEFLAG(uname, lname, policy) \
293 SETPAGEFLAG(uname, lname, policy) \
294 CLEARPAGEFLAG(uname, lname, policy)
f94a62e9 295
95ad9755
KS
296#define __PAGEFLAG(uname, lname, policy) \
297 TESTPAGEFLAG(uname, lname, policy) \
298 __SETPAGEFLAG(uname, lname, policy) \
299 __CLEARPAGEFLAG(uname, lname, policy)
f94a62e9 300
95ad9755
KS
301#define TESTSCFLAG(uname, lname, policy) \
302 TESTSETFLAG(uname, lname, policy) \
303 TESTCLEARFLAG(uname, lname, policy)
f94a62e9 304
2f3e442c
JW
305#define TESTPAGEFLAG_FALSE(uname) \
306static inline int Page##uname(const struct page *page) { return 0; }
307
8a7a8544
LS
308#define SETPAGEFLAG_NOOP(uname) \
309static inline void SetPage##uname(struct page *page) { }
310
311#define CLEARPAGEFLAG_NOOP(uname) \
312static inline void ClearPage##uname(struct page *page) { }
313
314#define __CLEARPAGEFLAG_NOOP(uname) \
315static inline void __ClearPage##uname(struct page *page) { }
316
2f3e442c
JW
317#define TESTSETFLAG_FALSE(uname) \
318static inline int TestSetPage##uname(struct page *page) { return 0; }
319
8a7a8544
LS
320#define TESTCLEARFLAG_FALSE(uname) \
321static inline int TestClearPage##uname(struct page *page) { return 0; }
322
2f3e442c
JW
323#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \
324 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
325
326#define TESTSCFLAG_FALSE(uname) \
327 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
328
48c935ad 329__PAGEFLAG(Locked, locked, PF_NO_TAIL)
62906027 330PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
d72520ad 331PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
8cb38fab
KS
332PAGEFLAG(Referenced, referenced, PF_HEAD)
333 TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
334 __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
df8c94d1
KS
335PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
336 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
8cb38fab
KS
337PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
338PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
339 TESTCLEARFLAG(Active, active, PF_HEAD)
1899ad18
JW
340PAGEFLAG(Workingset, workingset, PF_HEAD)
341 TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
dcb351cd
KS
342__PAGEFLAG(Slab, slab, PF_NO_TAIL)
343__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
df8c94d1 344PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */
c13985fa
KS
345
346/* Xen */
347PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
348 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
349PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
350PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
b877ac98
JG
351PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
352 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
c13985fa 353
de09d31d
KS
354PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
355 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
d483da5b 356 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
da5efc40
KS
357PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
358 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
359 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
95ad9755 360
266cf658
DH
361/*
362 * Private page markings that may be used by the filesystem that owns the page
363 * for its own purposes.
364 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
365 */
2ee08717 366PAGEFLAG(Private, private, PF_ANY)
95ad9755
KS
367PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
368PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
369 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
266cf658 370
6a1e7f77
CL
371/*
372 * Only test-and-set exist for PG_writeback. The unconditional operators are
373 * risky: they bypass page accounting.
374 */
225311a4
HY
375TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
376 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
e2f0a0db 377PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
6a1e7f77 378
579f8290 379/* PG_readahead is only used for reads; PG_reclaim is only for writes */
e2f0a0db
KS
380PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
381 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
df8c94d1
KS
382PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
383 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
6a1e7f77
CL
384
385#ifdef CONFIG_HIGHMEM
1da177e4 386/*
6a1e7f77
CL
387 * Must use a macro here due to header dependency issues. page_zone() is not
388 * available at this point.
1da177e4 389 */
3ca65c19 390#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
6a1e7f77 391#else
ec7cade8 392PAGEFLAG_FALSE(HighMem)
6a1e7f77
CL
393#endif
394
395#ifdef CONFIG_SWAP
6326fec1
NP
396static __always_inline int PageSwapCache(struct page *page)
397{
38d8b4e6
HY
398#ifdef CONFIG_THP_SWAP
399 page = compound_head(page);
400#endif
6326fec1
NP
401 return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
402
403}
38d8b4e6
HY
404SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
405CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
6a1e7f77 406#else
ec7cade8 407PAGEFLAG_FALSE(SwapCache)
6a1e7f77
CL
408#endif
409
8cb38fab
KS
410PAGEFLAG(Unevictable, unevictable, PF_HEAD)
411 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
412 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
b291f000 413
af8e3354 414#ifdef CONFIG_MMU
e4f87d5d
KS
415PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
416 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
417 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
894bc310 418#else
2f3e442c 419PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
685eaade 420 TESTSCFLAG_FALSE(Mlocked)
894bc310
LS
421#endif
422
46cf98cd 423#ifdef CONFIG_ARCH_USES_PG_UNCACHED
b9d41817 424PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
602c4d11 425#else
ec7cade8 426PAGEFLAG_FALSE(Uncached)
6a1e7f77 427#endif
1da177e4 428
d466f2fc 429#ifdef CONFIG_MEMORY_FAILURE
95ad9755
KS
430PAGEFLAG(HWPoison, hwpoison, PF_ANY)
431TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
d466f2fc 432#define __PG_HWPOISON (1UL << PG_hwpoison)
06be6ff3 433extern bool take_page_off_buddy(struct page *page);
d466f2fc
AK
434#else
435PAGEFLAG_FALSE(HWPoison)
436#define __PG_HWPOISON 0
437#endif
438
33c3fc71 439#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
95ad9755
KS
440TESTPAGEFLAG(Young, young, PF_ANY)
441SETPAGEFLAG(Young, young, PF_ANY)
442TESTCLEARFLAG(Young, young, PF_ANY)
443PAGEFLAG(Idle, idle, PF_ANY)
33c3fc71
VD
444#endif
445
36e66c55
AD
446/*
447 * PageReported() is used to track reported free pages within the Buddy
448 * allocator. We can use the non-atomic version of the test and set
449 * operations as both should be shielded with the zone lock to prevent
450 * any possible races on the setting or clearing of the bit.
451 */
452__PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
453
e8c6158f
KS
454/*
455 * On an anonymous page mapped into a user virtual memory area,
456 * page->mapping points to its anon_vma, not to a struct address_space;
457 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
458 *
459 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
bda807d4
MK
460 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
461 * bit; and then page->mapping points, not to an anon_vma, but to a private
e8c6158f
KS
462 * structure which KSM associates with that merged page. See ksm.h.
463 *
bda807d4
MK
464 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
465 * page and then page->mapping points a struct address_space.
e8c6158f
KS
466 *
467 * Please note that, confusingly, "page_mapping" refers to the inode
468 * address_space which maps the page from disk; whereas "page_mapped"
469 * refers to user virtual address space into which the page is mapped.
470 */
bda807d4
MK
471#define PAGE_MAPPING_ANON 0x1
472#define PAGE_MAPPING_MOVABLE 0x2
473#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
474#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
e8c6158f 475
bda807d4 476static __always_inline int PageMappingFlags(struct page *page)
17514574 477{
bda807d4 478 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
17514574
MG
479}
480
4b0f3261 481static __always_inline int PageAnon(struct page *page)
e8c6158f 482{
822cdd11 483 page = compound_head(page);
bda807d4
MK
484 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
485}
486
487static __always_inline int __PageMovable(struct page *page)
488{
489 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
490 PAGE_MAPPING_MOVABLE;
e8c6158f
KS
491}
492
493#ifdef CONFIG_KSM
494/*
495 * A KSM page is one of those write-protected "shared pages" or "merged pages"
496 * which KSM maps into multiple mms, wherever identical anonymous page content
497 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any
498 * anon_vma, but to that page's node of the stable tree.
499 */
4b0f3261 500static __always_inline int PageKsm(struct page *page)
e8c6158f 501{
822cdd11 502 page = compound_head(page);
e8c6158f 503 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
bda807d4 504 PAGE_MAPPING_KSM;
e8c6158f
KS
505}
506#else
507TESTPAGEFLAG_FALSE(Ksm)
508#endif
509
1a9b5b7f
WF
510u64 stable_page_flags(struct page *page);
511
0ed361de
NP
512static inline int PageUptodate(struct page *page)
513{
d2998c4d
KS
514 int ret;
515 page = compound_head(page);
516 ret = test_bit(PG_uptodate, &(page)->flags);
0ed361de
NP
517 /*
518 * Must ensure that the data we read out of the page is loaded
519 * _after_ we've loaded page->flags to check for PageUptodate.
520 * We can skip the barrier if the page is not uptodate, because
521 * we wouldn't be reading anything from it.
522 *
523 * See SetPageUptodate() for the other side of the story.
524 */
525 if (ret)
526 smp_rmb();
527
528 return ret;
529}
530
4b0f3261 531static __always_inline void __SetPageUptodate(struct page *page)
0ed361de 532{
d2998c4d 533 VM_BUG_ON_PAGE(PageTail(page), page);
0ed361de 534 smp_wmb();
df8c94d1 535 __set_bit(PG_uptodate, &page->flags);
0ed361de
NP
536}
537
4b0f3261 538static __always_inline void SetPageUptodate(struct page *page)
2dcea57a 539{
d2998c4d 540 VM_BUG_ON_PAGE(PageTail(page), page);
0ed361de
NP
541 /*
542 * Memory barrier must be issued before setting the PG_uptodate bit,
543 * so that all previous stores issued in order to bring the page
544 * uptodate are actually visible before PageUptodate becomes true.
0ed361de
NP
545 */
546 smp_wmb();
df8c94d1 547 set_bit(PG_uptodate, &page->flags);
0ed361de
NP
548}
549
d2998c4d 550CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
1da177e4 551
6a1e7f77 552int test_clear_page_writeback(struct page *page);
1c8349a1
NJ
553int __test_set_page_writeback(struct page *page, bool keep_write);
554
555#define test_set_page_writeback(page) \
556 __test_set_page_writeback(page, false)
557#define test_set_page_writeback_keepwrite(page) \
558 __test_set_page_writeback(page, true)
1da177e4 559
6a1e7f77
CL
560static inline void set_page_writeback(struct page *page)
561{
562 test_set_page_writeback(page);
563}
1da177e4 564
1c8349a1
NJ
565static inline void set_page_writeback_keepwrite(struct page *page)
566{
567 test_set_page_writeback_keepwrite(page);
568}
569
95ad9755 570__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
e20b8cca 571
4b0f3261 572static __always_inline void set_compound_head(struct page *page, struct page *head)
ad4b3fb7 573{
1d798ca3 574 WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
ad4b3fb7
CD
575}
576
4b0f3261 577static __always_inline void clear_compound_head(struct page *page)
6a1e7f77 578{
1d798ca3 579 WRITE_ONCE(page->compound_head, 0);
6a1e7f77 580}
6d777953 581
4e6af67e
AA
582#ifdef CONFIG_TRANSPARENT_HUGEPAGE
583static inline void ClearPageCompound(struct page *page)
584{
1d798ca3
KS
585 BUG_ON(!PageHead(page));
586 ClearPageHead(page);
4e6af67e
AA
587}
588#endif
589
d2a1a1f0 590#define PG_head_mask ((1UL << PG_head))
dfa7e20c 591
e8c6158f
KS
592#ifdef CONFIG_HUGETLB_PAGE
593int PageHuge(struct page *page);
594int PageHeadHuge(struct page *page);
7e1f049e 595bool page_huge_active(struct page *page);
e8c6158f
KS
596#else
597TESTPAGEFLAG_FALSE(Huge)
598TESTPAGEFLAG_FALSE(HeadHuge)
7e1f049e
NH
599
600static inline bool page_huge_active(struct page *page)
601{
602 return 0;
603}
e8c6158f
KS
604#endif
605
7e1f049e 606
936a5fe6 607#ifdef CONFIG_TRANSPARENT_HUGEPAGE
71e3aac0
AA
608/*
609 * PageHuge() only returns true for hugetlbfs pages, but not for
610 * normal or transparent huge pages.
611 *
612 * PageTransHuge() returns true for both transparent huge and
613 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
614 * called only in the core VM paths where hugetlbfs pages can't exist.
615 */
616static inline int PageTransHuge(struct page *page)
617{
309381fe 618 VM_BUG_ON_PAGE(PageTail(page), page);
71e3aac0
AA
619 return PageHead(page);
620}
621
385de357
DN
622/*
623 * PageTransCompound returns true for both transparent huge pages
624 * and hugetlbfs pages, so it should only be called when it's known
625 * that hugetlbfs pages aren't involved.
626 */
936a5fe6
AA
627static inline int PageTransCompound(struct page *page)
628{
629 return PageCompound(page);
630}
71e3aac0 631
127393fb
AA
632/*
633 * PageTransCompoundMap is the same as PageTransCompound, but it also
634 * guarantees the primary MMU has the entire compound page mapped
635 * through pmd_trans_huge, which in turn guarantees the secondary MMUs
636 * can also map the entire compound page. This allows the secondary
637 * MMUs to call get_user_pages() only once for each compound page and
638 * to immediately map the entire compound page with a single secondary
639 * MMU fault. If there will be a pmd split later, the secondary MMUs
640 * will get an update through the MMU notifier invalidation through
641 * split_huge_pmd().
642 *
643 * Unlike PageTransCompound, this is safe to be called only while
644 * split_huge_pmd() cannot run from under us, like if protected by the
169226f7 645 * MMU notifier, otherwise it may result in page->_mapcount check false
127393fb 646 * positives.
169226f7
YS
647 *
648 * We have to treat page cache THP differently since every subpage of it
649 * would get _mapcount inc'ed once it is PMD mapped. But, it may be PTE
650 * mapped in the current process so comparing subpage's _mapcount to
651 * compound_mapcount to filter out PTE mapped case.
127393fb
AA
652 */
653static inline int PageTransCompoundMap(struct page *page)
654{
169226f7
YS
655 struct page *head;
656
657 if (!PageTransCompound(page))
658 return 0;
659
660 if (PageAnon(page))
661 return atomic_read(&page->_mapcount) < 0;
662
663 head = compound_head(page);
664 /* File THP is PMD mapped and not PTE mapped */
665 return atomic_read(&page->_mapcount) ==
666 atomic_read(compound_mapcount_ptr(head));
127393fb
AA
667}
668
385de357
DN
669/*
670 * PageTransTail returns true for both transparent huge pages
671 * and hugetlbfs pages, so it should only be called when it's known
672 * that hugetlbfs pages aren't involved.
673 */
674static inline int PageTransTail(struct page *page)
675{
676 return PageTail(page);
677}
678
53f9263b
KS
679/*
680 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
681 * as PMDs.
682 *
683 * This is required for optimization of rmap operations for THP: we can postpone
684 * per small page mapcount accounting (and its overhead from atomic operations)
685 * until the first PMD split.
686 *
687 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
688 * by one. This reference will go away with last compound_mapcount.
689 *
690 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
691 */
a08d93e5
MWO
692PAGEFLAG(DoubleMap, double_map, PF_SECOND)
693 TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
936a5fe6 694#else
d8c1bdeb
KS
695TESTPAGEFLAG_FALSE(TransHuge)
696TESTPAGEFLAG_FALSE(TransCompound)
127393fb 697TESTPAGEFLAG_FALSE(TransCompoundMap)
d8c1bdeb 698TESTPAGEFLAG_FALSE(TransTail)
9a73f61b 699PAGEFLAG_FALSE(DoubleMap)
a08d93e5 700 TESTSCFLAG_FALSE(DoubleMap)
936a5fe6
AA
701#endif
702
e8c6158f 703/*
6e292b9b
MW
704 * For pages that are never mapped to userspace (and aren't PageSlab),
705 * page_type may be used. Because it is initialised to -1, we invert the
706 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
707 * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and
708 * low bits so that an underflow or overflow of page_mapcount() won't be
709 * mistaken for a page type value.
e8c6158f 710 */
6e292b9b
MW
711
712#define PAGE_TYPE_BASE 0xf0000000
713/* Reserve 0x0000007f to catch underflows of page_mapcount */
144552ff 714#define PAGE_MAPCOUNT_RESERVE -128
6e292b9b 715#define PG_buddy 0x00000080
ca215086 716#define PG_offline 0x00000100
6e292b9b 717#define PG_kmemcg 0x00000200
1d40a5ea 718#define PG_table 0x00000400
3972f6bb 719#define PG_guard 0x00000800
6e292b9b
MW
720
721#define PageType(page, flag) \
722 ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
723
144552ff
AY
724static inline int page_has_type(struct page *page)
725{
726 return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
727}
728
6e292b9b 729#define PAGE_TYPE_OPS(uname, lname) \
632c0a1a
VD
730static __always_inline int Page##uname(struct page *page) \
731{ \
6e292b9b 732 return PageType(page, PG_##lname); \
632c0a1a
VD
733} \
734static __always_inline void __SetPage##uname(struct page *page) \
735{ \
6e292b9b
MW
736 VM_BUG_ON_PAGE(!PageType(page, 0), page); \
737 page->page_type &= ~PG_##lname; \
632c0a1a
VD
738} \
739static __always_inline void __ClearPage##uname(struct page *page) \
740{ \
741 VM_BUG_ON_PAGE(!Page##uname(page), page); \
6e292b9b 742 page->page_type |= PG_##lname; \
e8c6158f
KS
743}
744
632c0a1a 745/*
6e292b9b 746 * PageBuddy() indicates that the page is free and in the buddy system
632c0a1a
VD
747 * (see mm/page_alloc.c).
748 */
6e292b9b 749PAGE_TYPE_OPS(Buddy, buddy)
e8c6158f 750
632c0a1a 751/*
ca215086
DH
752 * PageOffline() indicates that the page is logically offline although the
753 * containing section is online. (e.g. inflated in a balloon driver or
754 * not onlined when onlining the section).
755 * The content of these pages is effectively stale. Such pages should not
756 * be touched (read/write/dump/save) except by their owner.
aa218795
DH
757 *
758 * If a driver wants to allow to offline unmovable PageOffline() pages without
759 * putting them back to the buddy, it can do so via the memory notifier by
760 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
761 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
762 * pages (now with a reference count of zero) are treated like free pages,
763 * allowing the containing memory block to get offlined. A driver that
764 * relies on this feature is aware that re-onlining the memory block will
765 * require to re-set the pages PageOffline() and not giving them to the
766 * buddy via online_page_callback_t.
632c0a1a 767 */
ca215086 768PAGE_TYPE_OPS(Offline, offline)
e8c6158f 769
4949148a
VD
770/*
771 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on
772 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free.
773 */
6e292b9b 774PAGE_TYPE_OPS(Kmemcg, kmemcg)
4949148a 775
1d40a5ea
MW
776/*
777 * Marks pages in use as page tables.
778 */
779PAGE_TYPE_OPS(Table, table)
780
3972f6bb
VB
781/*
782 * Marks guardpages used with debug_pagealloc.
783 */
784PAGE_TYPE_OPS(Guard, guard)
785
832fc1de
NH
786extern bool is_free_buddy_page(struct page *page);
787
bda807d4
MK
788__PAGEFLAG(Isolated, isolated, PF_ANY);
789
072bb0aa
MG
790/*
791 * If network-based swap is enabled, sl*b must keep track of whether pages
792 * were allocated from pfmemalloc reserves.
793 */
794static inline int PageSlabPfmemalloc(struct page *page)
795{
309381fe 796 VM_BUG_ON_PAGE(!PageSlab(page), page);
072bb0aa
MG
797 return PageActive(page);
798}
799
800static inline void SetPageSlabPfmemalloc(struct page *page)
801{
309381fe 802 VM_BUG_ON_PAGE(!PageSlab(page), page);
072bb0aa
MG
803 SetPageActive(page);
804}
805
806static inline void __ClearPageSlabPfmemalloc(struct page *page)
807{
309381fe 808 VM_BUG_ON_PAGE(!PageSlab(page), page);
072bb0aa
MG
809 __ClearPageActive(page);
810}
811
812static inline void ClearPageSlabPfmemalloc(struct page *page)
813{
309381fe 814 VM_BUG_ON_PAGE(!PageSlab(page), page);
072bb0aa
MG
815 ClearPageActive(page);
816}
817
af8e3354 818#ifdef CONFIG_MMU
d2a1a1f0 819#define __PG_MLOCKED (1UL << PG_mlocked)
33925b25 820#else
b291f000 821#define __PG_MLOCKED 0
894bc310
LS
822#endif
823
dfa7e20c
RA
824/*
825 * Flags checked when a page is freed. Pages being freed should not have
826 * these flags set. It they are, there is a problem.
827 */
6326fec1
NP
828#define PAGE_FLAGS_CHECK_AT_FREE \
829 (1UL << PG_lru | 1UL << PG_locked | \
830 1UL << PG_private | 1UL << PG_private_2 | \
831 1UL << PG_writeback | 1UL << PG_reserved | \
832 1UL << PG_slab | 1UL << PG_active | \
833 1UL << PG_unevictable | __PG_MLOCKED)
dfa7e20c
RA
834
835/*
836 * Flags checked when a page is prepped for return by the page allocator.
f4c18e6f 837 * Pages being prepped should not have these flags set. It they are set,
79f4b7bf 838 * there has been a kernel bug or struct page corruption.
f4c18e6f
NH
839 *
840 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
841 * alloc-free cycle to prevent from reusing the page.
dfa7e20c 842 */
f4c18e6f 843#define PAGE_FLAGS_CHECK_AT_PREP \
d2a1a1f0 844 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
dfa7e20c 845
edcf4748 846#define PAGE_FLAGS_PRIVATE \
d2a1a1f0 847 (1UL << PG_private | 1UL << PG_private_2)
266cf658
DH
848/**
849 * page_has_private - Determine if page has private stuff
850 * @page: The page to be checked
851 *
852 * Determine if a page has private stuff, indicating that release routines
853 * should be invoked upon it.
854 */
edcf4748
JW
855static inline int page_has_private(struct page *page)
856{
857 return !!(page->flags & PAGE_FLAGS_PRIVATE);
858}
859
95ad9755
KS
860#undef PF_ANY
861#undef PF_HEAD
62906027 862#undef PF_ONLY_HEAD
95ad9755
KS
863#undef PF_NO_TAIL
864#undef PF_NO_COMPOUND
a08d93e5 865#undef PF_SECOND
edcf4748 866#endif /* !__GENERATING_BOUNDS_H */
266cf658 867
1da177e4 868#endif /* PAGE_FLAGS_H */