mm, kmsan: fix infinite recursion due to RCU critical section
[linux-block.git] / include / linux / mmzone.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
1da177e4 5#ifndef __ASSEMBLY__
97965478 6#ifndef __GENERATING_BOUNDS_H
1da177e4 7
1da177e4
LT
8#include <linux/spinlock.h>
9#include <linux/list.h>
e4dde56c 10#include <linux/list_nulls.h>
1da177e4 11#include <linux/wait.h>
e815af95 12#include <linux/bitops.h>
1da177e4
LT
13#include <linux/cache.h>
14#include <linux/threads.h>
15#include <linux/numa.h>
16#include <linux/init.h>
bdc8cb98 17#include <linux/seqlock.h>
8357f869 18#include <linux/nodemask.h>
835c134e 19#include <linux/pageblock-flags.h>
bbeae5b0 20#include <linux/page-flags-layout.h>
60063497 21#include <linux/atomic.h>
b03641af
DW
22#include <linux/mm_types.h>
23#include <linux/page-flags.h>
dbbee9d5 24#include <linux/local_lock.h>
b5ba474f 25#include <linux/zswap.h>
93ff66bf 26#include <asm/page.h>
1da177e4
LT
27
28/* Free memory management - zoned buddy allocator. */
0192445c 29#ifndef CONFIG_ARCH_FORCE_MAX_ORDER
5e0a760b 30#define MAX_PAGE_ORDER 10
1da177e4 31#else
5e0a760b 32#define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
1da177e4 33#endif
5e0a760b 34#define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER)
1da177e4 35
3f6dac0f
KS
36#define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
37
5e0a760b 38#define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1)
fd377218 39
5ad333eb
AW
40/*
41 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
42 * costly to service. That is between allocation orders which should
35fca53e 43 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
44 * will not.
45 */
46#define PAGE_ALLOC_COSTLY_ORDER 3
47
a6ffdc07 48enum migratetype {
47118af0 49 MIGRATE_UNMOVABLE,
47118af0 50 MIGRATE_MOVABLE,
016c13da 51 MIGRATE_RECLAIMABLE,
0aaa29a5
MG
52 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
53 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47118af0
MN
54#ifdef CONFIG_CMA
55 /*
56 * MIGRATE_CMA migration type is designed to mimic the way
57 * ZONE_MOVABLE works. Only movable pages can be allocated
58 * from MIGRATE_CMA pageblocks and page allocator never
59 * implicitly change migration type of MIGRATE_CMA pageblock.
60 *
61 * The way to use it is to change migratetype of a range of
62 * pageblocks to MIGRATE_CMA which can be done by
11ac3e87 63 * __free_pageblock_cma() function.
47118af0
MN
64 */
65 MIGRATE_CMA,
66#endif
194159fb 67#ifdef CONFIG_MEMORY_ISOLATION
47118af0 68 MIGRATE_ISOLATE, /* can't allocate from here */
194159fb 69#endif
47118af0
MN
70 MIGRATE_TYPES
71};
72
60f30350 73/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
c999fbd3 74extern const char * const migratetype_names[MIGRATE_TYPES];
60f30350 75
47118af0
MN
76#ifdef CONFIG_CMA
77# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
7c15d9bb 78# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
47118af0
MN
79#else
80# define is_migrate_cma(migratetype) false
7c15d9bb 81# define is_migrate_cma_page(_page) false
47118af0 82#endif
b2a0ac88 83
b682debd
VB
84static inline bool is_migrate_movable(int mt)
85{
86 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
87}
88
1dd214b8
ZY
89/*
90 * Check whether a migratetype can be merged with another migratetype.
91 *
92 * It is only mergeable when it can fall back to other migratetypes for
93 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
94 */
95static inline bool migratetype_is_mergeable(int mt)
96{
97 return mt < MIGRATE_PCPTYPES;
98}
99
b2a0ac88 100#define for_each_migratetype_order(order, type) \
fd377218 101 for (order = 0; order < NR_PAGE_ORDERS; order++) \
b2a0ac88
MG
102 for (type = 0; type < MIGRATE_TYPES; type++)
103
467c996c
MG
104extern int page_group_by_mobility_disabled;
105
d38ac97f 106#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
e58469ba 107
dc4b0caf 108#define get_pageblock_migratetype(page) \
535b81e2 109 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
dc4b0caf 110
28fb54f6
VMO
111#define folio_migratetype(folio) \
112 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \
113 MIGRATETYPE_MASK)
1da177e4 114struct free_area {
b2a0ac88 115 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
116 unsigned long nr_free;
117};
118
119struct pglist_data;
120
3a321d2a
KW
121#ifdef CONFIG_NUMA
122enum numa_stat_item {
123 NUMA_HIT, /* allocated in intended node */
124 NUMA_MISS, /* allocated in non intended node */
125 NUMA_FOREIGN, /* was intended here, hit elsewhere */
126 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
127 NUMA_LOCAL, /* allocation from local node */
128 NUMA_OTHER, /* allocation from other node */
f19298b9 129 NR_VM_NUMA_EVENT_ITEMS
3a321d2a
KW
130};
131#else
f19298b9 132#define NR_VM_NUMA_EVENT_ITEMS 0
3a321d2a
KW
133#endif
134
2244b95a 135enum zone_stat_item {
51ed4491 136 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 137 NR_FREE_PAGES,
71c799f4
MK
138 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
139 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
140 NR_ZONE_ACTIVE_ANON,
141 NR_ZONE_INACTIVE_FILE,
142 NR_ZONE_ACTIVE_FILE,
143 NR_ZONE_UNEVICTABLE,
5a1c84b4 144 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
5344b7e6 145 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
c6a7f572 146 /* Second 128 byte cacheline */
d2c5e30c 147 NR_BOUNCE,
91537fee
MK
148#if IS_ENABLED(CONFIG_ZSMALLOC)
149 NR_ZSPAGES, /* allocated in zsmalloc */
ca889e6c 150#endif
d1ce749a 151 NR_FREE_CMA_PAGES,
dcdfdd40
KS
152#ifdef CONFIG_UNACCEPTED_MEMORY
153 NR_UNACCEPTED,
154#endif
2244b95a
CL
155 NR_VM_ZONE_STAT_ITEMS };
156
75ef7184 157enum node_stat_item {
599d0c95
MG
158 NR_LRU_BASE,
159 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
160 NR_ACTIVE_ANON, /* " " " " " */
161 NR_INACTIVE_FILE, /* " " " " " */
162 NR_ACTIVE_FILE, /* " " " " " */
163 NR_UNEVICTABLE, /* " " " " " */
d42f3245
RG
164 NR_SLAB_RECLAIMABLE_B,
165 NR_SLAB_UNRECLAIMABLE_B,
599d0c95
MG
166 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
167 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
68d48e6a 168 WORKINGSET_NODES,
170b04b7
JK
169 WORKINGSET_REFAULT_BASE,
170 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
171 WORKINGSET_REFAULT_FILE,
172 WORKINGSET_ACTIVATE_BASE,
173 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
174 WORKINGSET_ACTIVATE_FILE,
175 WORKINGSET_RESTORE_BASE,
176 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
177 WORKINGSET_RESTORE_FILE,
1e6b1085 178 WORKINGSET_NODERECLAIM,
4b9d0fab 179 NR_ANON_MAPPED, /* Mapped anonymous pages */
50658e2e
MG
180 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
181 only modified from process context */
11fb9989
MG
182 NR_FILE_PAGES,
183 NR_FILE_DIRTY,
184 NR_WRITEBACK,
185 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
186 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
187 NR_SHMEM_THPS,
188 NR_SHMEM_PMDMAPPED,
60fbf0ab
SL
189 NR_FILE_THPS,
190 NR_FILE_PMDMAPPED,
11fb9989 191 NR_ANON_THPS,
c4a25635
MG
192 NR_VMSCAN_WRITE,
193 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
194 NR_DIRTIED, /* page dirtyings since bootup */
195 NR_WRITTEN, /* page writings since bootup */
8cd7c588 196 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */
b29940c1 197 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
1970dc6f
JH
198 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
199 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
991e7673
SB
200 NR_KERNEL_STACK_KB, /* measured in KiB */
201#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
202 NR_KERNEL_SCS_KB, /* measured in KiB */
203#endif
f0c0c115 204 NR_PAGETABLE, /* used for pagetables */
ebc97a52 205 NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
b6038942
SB
206#ifdef CONFIG_SWAP
207 NR_SWAPCACHE,
e39bb6be
HY
208#endif
209#ifdef CONFIG_NUMA_BALANCING
210 PGPROMOTE_SUCCESS, /* promote successfully */
c6833e10 211 PGPROMOTE_CANDIDATE, /* candidate pages to promote */
b805ab3c 212#endif
23e9f013
LZ
213 /* PGDEMOTE_*: pages demoted */
214 PGDEMOTE_KSWAPD,
215 PGDEMOTE_DIRECT,
216 PGDEMOTE_KHUGEPAGED,
75ef7184
MG
217 NR_VM_NODE_STAT_ITEMS
218};
219
69473e5d
MS
220/*
221 * Returns true if the item should be printed in THPs (/proc/vmstat
222 * currently prints number of anon, file and shmem THPs. But the item
223 * is charged in pages).
224 */
225static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
226{
227 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
228 return false;
229
bf9ecead 230 return item == NR_ANON_THPS ||
57b2847d 231 item == NR_FILE_THPS ||
a1528e21 232 item == NR_SHMEM_THPS ||
380780e7
MS
233 item == NR_SHMEM_PMDMAPPED ||
234 item == NR_FILE_PMDMAPPED;
69473e5d
MS
235}
236
ea426c2a
RG
237/*
238 * Returns true if the value is measured in bytes (most vmstat values are
239 * measured in pages). This defines the API part, the internal representation
240 * might be different.
241 */
242static __always_inline bool vmstat_item_in_bytes(int idx)
243{
d42f3245
RG
244 /*
245 * Global and per-node slab counters track slab pages.
246 * It's expected that changes are multiples of PAGE_SIZE.
247 * Internally values are stored in pages.
248 *
249 * Per-memcg and per-lruvec counters track memory, consumed
250 * by individual slab objects. These counters are actually
251 * byte-precise.
252 */
253 return (idx == NR_SLAB_RECLAIMABLE_B ||
254 idx == NR_SLAB_UNRECLAIMABLE_B);
ea426c2a
RG
255}
256
4f98a2fe
RR
257/*
258 * We do arithmetic on the LRU lists in various places in the code,
259 * so it is important to keep the active lists LRU_ACTIVE higher in
260 * the array than the corresponding inactive lists, and to keep
261 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
262 *
263 * This has to be kept in sync with the statistics in zone_stat_item
264 * above and the descriptions in vmstat_text in mm/vmstat.c
265 */
266#define LRU_BASE 0
267#define LRU_ACTIVE 1
268#define LRU_FILE 2
269
b69408e8 270enum lru_list {
4f98a2fe
RR
271 LRU_INACTIVE_ANON = LRU_BASE,
272 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
273 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
274 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 275 LRU_UNEVICTABLE,
894bc310
LS
276 NR_LRU_LISTS
277};
b69408e8 278
8cd7c588
MG
279enum vmscan_throttle_state {
280 VMSCAN_THROTTLE_WRITEBACK,
d818fca1 281 VMSCAN_THROTTLE_ISOLATED,
69392a40 282 VMSCAN_THROTTLE_NOPROGRESS,
1b4e3f26 283 VMSCAN_THROTTLE_CONGESTED,
8cd7c588
MG
284 NR_VMSCAN_THROTTLE,
285};
286
4111304d 287#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 288
4111304d 289#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 290
b91ac374 291static inline bool is_file_lru(enum lru_list lru)
4f98a2fe 292{
4111304d 293 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
294}
295
b91ac374 296static inline bool is_active_lru(enum lru_list lru)
b69408e8 297{
4111304d 298 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
299}
300
e9c2dbc8
YY
301#define WORKINGSET_ANON 0
302#define WORKINGSET_FILE 1
ed017373
YZ
303#define ANON_AND_FILE 2
304
1b05117d 305enum lruvec_flags {
1bc545bf
YA
306 /*
307 * An lruvec has many dirty pages backed by a congested BDI:
308 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
309 * It can be cleared by cgroup reclaim or kswapd.
310 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
311 * It can only be cleared by kswapd.
312 *
313 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
314 * reclaim, but not vice versa. This only applies to the root cgroup.
315 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
316 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
317 * by kswapd).
318 */
319 LRUVEC_CGROUP_CONGESTED,
320 LRUVEC_NODE_CONGESTED,
1b05117d
JW
321};
322
ec1c86b2
YZ
323#endif /* !__GENERATING_BOUNDS_H */
324
325/*
326 * Evictable pages are divided into multiple generations. The youngest and the
327 * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
328 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
329 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
330 * corresponding generation. The gen counter in folio->flags stores gen+1 while
6df1b221 331 * a page is on one of lrugen->folios[]. Otherwise it stores 0.
ec1c86b2
YZ
332 *
333 * A page is added to the youngest generation on faulting. The aging needs to
334 * check the accessed bit at least twice before handing this page over to the
335 * eviction. The first check takes care of the accessed bit set on the initial
336 * fault; the second check makes sure this page hasn't been used since then.
337 * This process, AKA second chance, requires a minimum of two generations,
338 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
339 * LRU, e.g., /proc/vmstat, these two generations are considered active; the
340 * rest of generations, if they exist, are considered inactive. See
341 * lru_gen_is_active().
342 *
6df1b221
YZ
343 * PG_active is always cleared while a page is on one of lrugen->folios[] so
344 * that the aging needs not to worry about it. And it's set again when a page
ec1c86b2
YZ
345 * considered active is isolated for non-reclaiming purposes, e.g., migration.
346 * See lru_gen_add_folio() and lru_gen_del_folio().
347 *
348 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
349 * number of categories of the active/inactive LRU when keeping track of
350 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
351 * in folio->flags.
352 */
353#define MIN_NR_GENS 2U
354#define MAX_NR_GENS 4U
355
ac35a490
YZ
356/*
357 * Each generation is divided into multiple tiers. A page accessed N times
358 * through file descriptors is in tier order_base_2(N). A page in the first tier
359 * (N=0,1) is marked by PG_referenced unless it was faulted in through page
360 * tables or read ahead. A page in any other tier (N>1) is marked by
361 * PG_referenced and PG_workingset. This implies a minimum of two tiers is
362 * supported without using additional bits in folio->flags.
363 *
364 * In contrast to moving across generations which requires the LRU lock, moving
365 * across tiers only involves atomic operations on folio->flags and therefore
366 * has a negligible cost in the buffered access path. In the eviction path,
367 * comparisons of refaulted/(evicted+protected) from the first tier and the
368 * rest infer whether pages accessed multiple times through file descriptors
369 * are statistically hot and thus worth protecting.
370 *
371 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
372 * number of categories of the active/inactive LRU when keeping track of
373 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
374 * folio->flags.
375 */
376#define MAX_NR_TIERS 4U
377
ec1c86b2
YZ
378#ifndef __GENERATING_BOUNDS_H
379
380struct lruvec;
018ee47f 381struct page_vma_mapped_walk;
ec1c86b2
YZ
382
383#define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
384#define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
385
386#ifdef CONFIG_LRU_GEN
387
388enum {
389 LRU_GEN_ANON,
390 LRU_GEN_FILE,
391};
392
354ed597
YZ
393enum {
394 LRU_GEN_CORE,
395 LRU_GEN_MM_WALK,
396 LRU_GEN_NONLEAF_YOUNG,
397 NR_LRU_GEN_CAPS
398};
399
ac35a490
YZ
400#define MIN_LRU_BATCH BITS_PER_LONG
401#define MAX_LRU_BATCH (MIN_LRU_BATCH * 64)
402
403/* whether to keep historical stats from evicted generations */
404#ifdef CONFIG_LRU_GEN_STATS
405#define NR_HIST_GENS MAX_NR_GENS
406#else
407#define NR_HIST_GENS 1U
408#endif
409
ec1c86b2
YZ
410/*
411 * The youngest generation number is stored in max_seq for both anon and file
412 * types as they are aged on an equal footing. The oldest generation numbers are
413 * stored in min_seq[] separately for anon and file types as clean file pages
414 * can be evicted regardless of swap constraints.
415 *
416 * Normally anon and file min_seq are in sync. But if swapping is constrained,
417 * e.g., out of swap space, file min_seq is allowed to advance and leave anon
418 * min_seq behind.
419 *
420 * The number of pages in each generation is eventually consistent and therefore
bd74fdae 421 * can be transiently negative when reset_batch_size() is pending.
ec1c86b2 422 */
391655fe 423struct lru_gen_folio {
ec1c86b2
YZ
424 /* the aging increments the youngest generation number */
425 unsigned long max_seq;
426 /* the eviction increments the oldest generation numbers */
427 unsigned long min_seq[ANON_AND_FILE];
1332a809
YZ
428 /* the birth time of each generation in jiffies */
429 unsigned long timestamps[MAX_NR_GENS];
ec1c86b2 430 /* the multi-gen LRU lists, lazily sorted on eviction */
6df1b221 431 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
ec1c86b2
YZ
432 /* the multi-gen LRU sizes, eventually consistent */
433 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
ac35a490
YZ
434 /* the exponential moving average of refaulted */
435 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
436 /* the exponential moving average of evicted+protected */
437 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
438 /* the first tier doesn't need protection, hence the minus one */
439 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
440 /* can be modified without holding the LRU lock */
441 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
442 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
354ed597
YZ
443 /* whether the multi-gen LRU is enabled */
444 bool enabled;
e4dde56c
YZ
445 /* the memcg generation this lru_gen_folio belongs to */
446 u8 gen;
447 /* the list segment this lru_gen_folio belongs to */
448 u8 seg;
449 /* per-node lru_gen_folio list for global reclaim */
450 struct hlist_nulls_node list;
ec1c86b2
YZ
451};
452
bd74fdae
YZ
453enum {
454 MM_LEAF_TOTAL, /* total leaf entries */
455 MM_LEAF_OLD, /* old leaf entries */
456 MM_LEAF_YOUNG, /* young leaf entries */
457 MM_NONLEAF_TOTAL, /* total non-leaf entries */
458 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */
459 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */
460 NR_MM_STATS
461};
462
463/* double-buffering Bloom filters */
464#define NR_BLOOM_FILTERS 2
465
466struct lru_gen_mm_state {
467 /* set to max_seq after each iteration */
468 unsigned long seq;
7f63cf2d 469 /* where the current iteration continues after */
bd74fdae 470 struct list_head *head;
7f63cf2d 471 /* where the last iteration ended before */
bd74fdae 472 struct list_head *tail;
bd74fdae
YZ
473 /* Bloom filters flip after each iteration */
474 unsigned long *filters[NR_BLOOM_FILTERS];
475 /* the mm stats for debugging */
476 unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
bd74fdae
YZ
477};
478
479struct lru_gen_mm_walk {
480 /* the lruvec under reclaim */
481 struct lruvec *lruvec;
391655fe 482 /* unstable max_seq from lru_gen_folio */
bd74fdae
YZ
483 unsigned long max_seq;
484 /* the next address within an mm to scan */
485 unsigned long next_addr;
486 /* to batch promoted pages */
487 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
488 /* to batch the mm stats */
489 int mm_stats[NR_MM_STATS];
490 /* total batched items */
491 int batched;
492 bool can_swap;
493 bool force_scan;
494};
495
e4dde56c
YZ
496/*
497 * For each node, memcgs are divided into two generations: the old and the
498 * young. For each generation, memcgs are randomly sharded into multiple bins
499 * to improve scalability. For each bin, the hlist_nulls is virtually divided
500 * into three segments: the head, the tail and the default.
501 *
502 * An onlining memcg is added to the tail of a random bin in the old generation.
503 * The eviction starts at the head of a random bin in the old generation. The
504 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
505 * the old generation, is incremented when all its bins become empty.
506 *
507 * There are four operations:
8aa42061 508 * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
e4dde56c 509 * current generation (old or young) and updates its "seg" to "head";
8aa42061 510 * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
e4dde56c 511 * current generation (old or young) and updates its "seg" to "tail";
8aa42061 512 * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
e4dde56c 513 * generation, updates its "gen" to "old" and resets its "seg" to "default";
8aa42061 514 * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
e4dde56c
YZ
515 * young generation, updates its "gen" to "young" and resets its "seg" to
516 * "default".
517 *
518 * The events that trigger the above operations are:
519 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
8aa42061 520 * 2. The first attempt to reclaim a memcg below low, which triggers
e4dde56c 521 * MEMCG_LRU_TAIL;
4376807b
YZ
522 * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
523 * threshold, which triggers MEMCG_LRU_TAIL;
524 * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
525 * threshold, which triggers MEMCG_LRU_YOUNG;
8aa42061 526 * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
e4dde56c 527 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
8aa42061 528 * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
e4dde56c 529 *
8aa42061
YZ
530 * Notes:
531 * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
532 * of their max_seq counters ensures the eventual fairness to all eligible
533 * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
534 * 2. There are only two valid generations: old (seq) and young (seq+1).
535 * MEMCG_NR_GENS is set to three so that when reading the generation counter
536 * locklessly, a stale value (seq-1) does not wraparound to young.
e4dde56c 537 */
8aa42061 538#define MEMCG_NR_GENS 3
e4dde56c
YZ
539#define MEMCG_NR_BINS 8
540
541struct lru_gen_memcg {
542 /* the per-node memcg generation counter */
543 unsigned long seq;
544 /* each memcg has one lru_gen_folio per node */
545 unsigned long nr_memcgs[MEMCG_NR_GENS];
546 /* per-node lru_gen_folio list for global reclaim */
547 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
548 /* protects the above */
549 spinlock_t lock;
550};
551
552void lru_gen_init_pgdat(struct pglist_data *pgdat);
745b13e6
KH
553void lru_gen_init_lruvec(struct lruvec *lruvec);
554void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
e4dde56c 555
ec1c86b2
YZ
556void lru_gen_init_memcg(struct mem_cgroup *memcg);
557void lru_gen_exit_memcg(struct mem_cgroup *memcg);
e4dde56c
YZ
558void lru_gen_online_memcg(struct mem_cgroup *memcg);
559void lru_gen_offline_memcg(struct mem_cgroup *memcg);
560void lru_gen_release_memcg(struct mem_cgroup *memcg);
5c7e7a0d 561void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
e4dde56c 562
ec1c86b2
YZ
563#else /* !CONFIG_LRU_GEN */
564
e4dde56c
YZ
565static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
566{
567}
568
ec1c86b2
YZ
569static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
570{
571}
572
018ee47f
YZ
573static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
574{
575}
576
ec1c86b2
YZ
577static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
578{
579}
580
581static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
582{
583}
e4dde56c
YZ
584
585static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
586{
587}
588
589static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
590{
591}
592
593static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
594{
595}
596
5c7e7a0d 597static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
e4dde56c
YZ
598{
599}
600
ec1c86b2
YZ
601#endif /* CONFIG_LRU_GEN */
602
6290df54 603struct lruvec {
23047a96 604 struct list_head lists[NR_LRU_LISTS];
6168d0da
AS
605 /* per lruvec lru_lock for memcg */
606 spinlock_t lru_lock;
1431d4d1
JW
607 /*
608 * These track the cost of reclaiming one LRU - file or anon -
609 * over the other. As the observed cost of reclaiming one LRU
610 * increases, the reclaim scan balance tips toward the other.
611 */
612 unsigned long anon_cost;
613 unsigned long file_cost;
31d8fcac
JW
614 /* Non-resident age, driven by LRU movement */
615 atomic_long_t nonresident_age;
ed017373
YZ
616 /* Refaults at the time of last reclaim cycle */
617 unsigned long refaults[ANON_AND_FILE];
1b05117d
JW
618 /* Various lruvec state flags (enum lruvec_flags) */
619 unsigned long flags;
ec1c86b2
YZ
620#ifdef CONFIG_LRU_GEN
621 /* evictable pages divided into generations */
391655fe 622 struct lru_gen_folio lrugen;
61dd3f24 623#ifdef CONFIG_LRU_GEN_WALKS_MMU
bd74fdae
YZ
624 /* to concurrently iterate lru_gen_mm_list */
625 struct lru_gen_mm_state mm_state;
ec1c86b2 626#endif
61dd3f24 627#endif /* CONFIG_LRU_GEN */
c255a458 628#ifdef CONFIG_MEMCG
599d0c95 629 struct pglist_data *pgdat;
7f5e86c2 630#endif
b5ba474f 631 struct zswap_lruvec_state zswap_lruvec_state;
6290df54
JW
632};
633
c8244935 634/* Isolate for asynchronous migration */
f3fd4a61 635#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
e46a2879
MK
636/* Isolate unevictable pages */
637#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
4356f21d
MK
638
639/* LRU Isolation modes. */
9efeccac 640typedef unsigned __bitwise isolate_mode_t;
4356f21d 641
41858966
MG
642enum zone_watermarks {
643 WMARK_MIN,
644 WMARK_LOW,
645 WMARK_HIGH,
c574bbe9 646 WMARK_PROMO,
41858966
MG
647 NR_WMARK
648};
649
44042b44 650/*
5d0a661d
MG
651 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
652 * for THP which will usually be GFP_MOVABLE. Even if it is another type,
653 * it should not contribute to serious fragmentation causing THP allocation
654 * failures.
44042b44
MG
655 */
656#ifdef CONFIG_TRANSPARENT_HUGEPAGE
657#define NR_PCP_THP 1
658#else
659#define NR_PCP_THP 0
660#endif
5d0a661d
MG
661#define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
662#define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
44042b44 663
1c30844d
MG
664#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
665#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
666#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
667#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
41858966 668
ca71fe1a
HY
669/*
670 * Flags used in pcp->flags field.
671 *
672 * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the
673 * previous page freeing. To avoid to drain PCP for an accident
674 * high-order page freeing.
362d37a1
HY
675 *
676 * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before
677 * draining PCP for consecutive high-order pages freeing without
678 * allocation if data cache slice of CPU is large enough. To reduce
679 * zone lock contention and keep cache-hot pages reusing.
ca71fe1a
HY
680 */
681#define PCPF_PREV_FREE_HIGH_ORDER BIT(0)
362d37a1 682#define PCPF_FREE_HIGH_BATCH BIT(1)
ca71fe1a 683
1da177e4 684struct per_cpu_pages {
4b23a68f 685 spinlock_t lock; /* Protects lists field */
1da177e4 686 int count; /* number of pages in the list */
1da177e4 687 int high; /* high watermark, emptying needed */
90b41691
HY
688 int high_min; /* min high watermark */
689 int high_max; /* max high watermark */
1da177e4 690 int batch; /* chunk size for buddy add/remove */
ca71fe1a 691 u8 flags; /* protected by pcp->lock */
c0a24239 692 u8 alloc_factor; /* batch scaling factor during allocate */
28f836b6 693#ifdef CONFIG_NUMA
c0a24239 694 u8 expire; /* When 0, remote pagesets are drained */
28f836b6 695#endif
6ccdcb6d 696 short free_count; /* consecutive free count */
5f8dcc21
MG
697
698 /* Lists of pages, one per migrate type stored on the pcp-lists */
44042b44 699 struct list_head lists[NR_PCP_LISTS];
5d0a661d 700} ____cacheline_aligned_in_smp;
1da177e4 701
28f836b6 702struct per_cpu_zonestat {
2244b95a
CL
703#ifdef CONFIG_SMP
704 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
28f836b6
MG
705 s8 stat_threshold;
706#endif
707#ifdef CONFIG_NUMA
f19298b9
MG
708 /*
709 * Low priority inaccurate counters that are only folded
710 * on demand. Use a large type to avoid the overhead of
711 * folding during refresh_cpu_vm_stats.
712 */
713 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
2244b95a 714#endif
99dcc3e5 715};
e7c8d5c9 716
75ef7184
MG
717struct per_cpu_nodestat {
718 s8 stat_threshold;
719 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
720};
721
97965478
CL
722#endif /* !__GENERATING_BOUNDS.H */
723
2f1b6248
CL
724enum zone_type {
725 /*
734f9246
NSJ
726 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
727 * to DMA to all of the addressable memory (ZONE_NORMAL).
728 * On architectures where this area covers the whole 32 bit address
729 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
730 * DMA addressing constraints. This distinction is important as a 32bit
731 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
732 * platforms may need both zones as they support peripherals with
733 * different DMA addressing limitations.
2f1b6248 734 */
734f9246 735#ifdef CONFIG_ZONE_DMA
2f1b6248 736 ZONE_DMA,
4b51d669 737#endif
fb0e7942 738#ifdef CONFIG_ZONE_DMA32
2f1b6248 739 ZONE_DMA32,
fb0e7942 740#endif
2f1b6248
CL
741 /*
742 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
743 * performed on pages in ZONE_NORMAL if the DMA devices support
744 * transfers to all addressable memory.
745 */
746 ZONE_NORMAL,
e53ef38d 747#ifdef CONFIG_HIGHMEM
2f1b6248
CL
748 /*
749 * A memory area that is only addressable by the kernel through
750 * mapping portions into its own address space. This is for example
751 * used by i386 to allow the kernel to address the memory beyond
752 * 900MB. The kernel will set up special mappings (page
753 * table entries on i386) for each page that the kernel needs to
754 * access.
755 */
756 ZONE_HIGHMEM,
e53ef38d 757#endif
9181a980
DH
758 /*
759 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
760 * movable pages with few exceptional cases described below. Main use
761 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
762 * likely to succeed, and to locally limit unmovable allocations - e.g.,
763 * to increase the number of THP/huge pages. Notable special cases are:
764 *
765 * 1. Pinned pages: (long-term) pinning of movable pages might
d1e153fe
PT
766 * essentially turn such pages unmovable. Therefore, we do not allow
767 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
768 * faulted, they come from the right zone right away. However, it is
769 * still possible that address space already has pages in
770 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has
771 * touches that memory before pinning). In such case we migrate them
772 * to a different zone. When migration fails - pinning fails.
9181a980
DH
773 * 2. memblock allocations: kernelcore/movablecore setups might create
774 * situations where ZONE_MOVABLE contains unmovable allocations
775 * after boot. Memory offlining and allocations fail early.
776 * 3. Memory holes: kernelcore/movablecore setups might create very rare
777 * situations where ZONE_MOVABLE contains memory holes after boot,
778 * for example, if we have sections that are only partially
779 * populated. Memory offlining and allocations fail early.
780 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
781 * memory offlining, such pages cannot be allocated.
782 * 5. Unmovable PG_offline pages: in paravirtualized environments,
783 * hotplugged memory blocks might only partially be managed by the
784 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
785 * parts not manged by the buddy are unmovable PG_offline pages. In
786 * some cases (virtio-mem), such pages can be skipped during
787 * memory offlining, however, cannot be moved/allocated. These
788 * techniques might use alloc_contig_range() to hide previously
789 * exposed pages from the buddy again (e.g., to implement some sort
790 * of memory unplug in virtio-mem).
9afaf30f
PT
791 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
792 * situations where ZERO_PAGE(0) which is allocated differently
793 * on different platforms may end up in a movable zone. ZERO_PAGE(0)
794 * cannot be migrated.
a08a2ae3
OS
795 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
796 * memory to the MOVABLE zone, the vmemmap pages are also placed in
797 * such zone. Such pages cannot be really moved around as they are
798 * self-stored in the range, but they are treated as movable when
799 * the range they describe is about to be offlined.
9181a980
DH
800 *
801 * In general, no unmovable allocations that degrade memory offlining
802 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
803 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
804 * if has_unmovable_pages() states that there are no unmovable pages,
805 * there can be false negatives).
806 */
2a1e274a 807 ZONE_MOVABLE,
033fbae9
DW
808#ifdef CONFIG_ZONE_DEVICE
809 ZONE_DEVICE,
810#endif
97965478 811 __MAX_NR_ZONES
033fbae9 812
2f1b6248 813};
1da177e4 814
97965478
CL
815#ifndef __GENERATING_BOUNDS_H
816
ed017373
YZ
817#define ASYNC_AND_SYNC 2
818
1da177e4 819struct zone {
3484b2de 820 /* Read-mostly fields */
41858966
MG
821
822 /* zone watermarks, access with *_wmark_pages(zone) macros */
a9214443 823 unsigned long _watermark[NR_WMARK];
1c30844d 824 unsigned long watermark_boost;
41858966 825
0aaa29a5
MG
826 unsigned long nr_reserved_highatomic;
827
1da177e4 828 /*
89903327
AM
829 * We don't know if the memory that we're going to allocate will be
830 * freeable or/and it will be released eventually, so to avoid totally
831 * wasting several GB of ram we must reserve some of the lower zone
832 * memory (otherwise we risk to run OOM on the lower zones despite
833 * there being tons of freeable ram on the higher zones). This array is
834 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
835 * changes.
1da177e4 836 */
3484b2de 837 long lowmem_reserve[MAX_NR_ZONES];
ab8fabd4 838
e7c8d5c9 839#ifdef CONFIG_NUMA
d5f541ed 840 int node;
3484b2de 841#endif
3484b2de 842 struct pglist_data *zone_pgdat;
28f836b6
MG
843 struct per_cpu_pages __percpu *per_cpu_pageset;
844 struct per_cpu_zonestat __percpu *per_cpu_zonestats;
952eaf81
VB
845 /*
846 * the high and batch values are copied to individual pagesets for
847 * faster access
848 */
90b41691
HY
849 int pageset_high_min;
850 int pageset_high_max;
952eaf81 851 int pageset_batch;
3484b2de 852
835c134e
MG
853#ifndef CONFIG_SPARSEMEM
854 /*
d9c23400 855 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
856 * In SPARSEMEM, this map is stored in struct mem_section
857 */
858 unsigned long *pageblock_flags;
859#endif /* CONFIG_SPARSEMEM */
860
1da177e4
LT
861 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
862 unsigned long zone_start_pfn;
863
bdc8cb98 864 /*
9feedc9d
JL
865 * spanned_pages is the total pages spanned by the zone, including
866 * holes, which is calculated as:
867 * spanned_pages = zone_end_pfn - zone_start_pfn;
bdc8cb98 868 *
9feedc9d
JL
869 * present_pages is physical pages existing within the zone, which
870 * is calculated as:
8761e31c 871 * present_pages = spanned_pages - absent_pages(pages in holes);
9feedc9d 872 *
4b097002
DH
873 * present_early_pages is present pages existing within the zone
874 * located on memory available since early boot, excluding hotplugged
875 * memory.
876 *
9feedc9d
JL
877 * managed_pages is present pages managed by the buddy system, which
878 * is calculated as (reserved_pages includes pages allocated by the
879 * bootmem allocator):
880 * managed_pages = present_pages - reserved_pages;
881 *
3c381db1
DH
882 * cma pages is present pages that are assigned for CMA use
883 * (MIGRATE_CMA).
884 *
9feedc9d
JL
885 * So present_pages may be used by memory hotplug or memory power
886 * management logic to figure out unmanaged pages by checking
887 * (present_pages - managed_pages). And managed_pages should be used
888 * by page allocator and vm scanner to calculate all kinds of watermarks
889 * and thresholds.
890 *
891 * Locking rules:
892 *
893 * zone_start_pfn and spanned_pages are protected by span_seqlock.
894 * It is a seqlock because it has to be read outside of zone->lock,
895 * and it is done in the main allocator path. But, it is written
896 * quite infrequently.
897 *
898 * The span_seq lock is declared along with zone->lock because it is
bdc8cb98
DH
899 * frequently read in proximity to zone->lock. It's good to
900 * give them a chance of being in the same cacheline.
9feedc9d 901 *
c3d5f5f0 902 * Write access to present_pages at runtime should be protected by
e8da368a
YZL
903 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
904 * present_pages should use get_online_mems() to get a stable value.
bdc8cb98 905 */
9705bea5 906 atomic_long_t managed_pages;
9feedc9d
JL
907 unsigned long spanned_pages;
908 unsigned long present_pages;
4b097002
DH
909#if defined(CONFIG_MEMORY_HOTPLUG)
910 unsigned long present_early_pages;
911#endif
3c381db1
DH
912#ifdef CONFIG_CMA
913 unsigned long cma_pages;
914#endif
3484b2de
MG
915
916 const char *name;
1da177e4 917
ad53f92e
JK
918#ifdef CONFIG_MEMORY_ISOLATION
919 /*
920 * Number of isolated pageblock. It is used to solve incorrect
921 * freepage counting problem due to racy retrieving migratetype
922 * of pageblock. Protected by zone->lock.
923 */
924 unsigned long nr_isolate_pageblock;
925#endif
926
3484b2de
MG
927#ifdef CONFIG_MEMORY_HOTPLUG
928 /* see spanned/present_pages for more description */
929 seqlock_t span_seqlock;
930#endif
931
9dcb8b68 932 int initialized;
3484b2de 933
0f661148 934 /* Write-intensive fields used from the page allocator */
e6ad640b 935 CACHELINE_PADDING(_pad1_);
0f661148 936
3484b2de 937 /* free areas of different sizes */
fd377218 938 struct free_area free_area[NR_PAGE_ORDERS];
3484b2de 939
dcdfdd40 940#ifdef CONFIG_UNACCEPTED_MEMORY
5e0a760b 941 /* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */
dcdfdd40
KS
942 struct list_head unaccepted_pages;
943#endif
944
3484b2de
MG
945 /* zone flags, see below */
946 unsigned long flags;
947
0f661148 948 /* Primarily protects free_area */
a368ab67
MG
949 spinlock_t lock;
950
0f661148 951 /* Write-intensive fields used by compaction and vmstats. */
e6ad640b 952 CACHELINE_PADDING(_pad2_);
3484b2de 953
3484b2de
MG
954 /*
955 * When free pages are below this point, additional steps are taken
956 * when reading the number of free pages to avoid per-cpu counter
957 * drift allowing watermarks to be breached
958 */
959 unsigned long percpu_drift_mark;
960
961#if defined CONFIG_COMPACTION || defined CONFIG_CMA
962 /* pfn where compaction free scanner should start */
963 unsigned long compact_cached_free_pfn;
ed017373
YZ
964 /* pfn where compaction migration scanner should start */
965 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
e332f741
MG
966 unsigned long compact_init_migrate_pfn;
967 unsigned long compact_init_free_pfn;
3484b2de
MG
968#endif
969
970#ifdef CONFIG_COMPACTION
971 /*
972 * On compaction failure, 1<<compact_defer_shift compactions
973 * are skipped before trying again. The number attempted since
974 * last failure is tracked with compact_considered.
860b3272 975 * compact_order_failed is the minimum compaction failed order.
3484b2de
MG
976 */
977 unsigned int compact_considered;
978 unsigned int compact_defer_shift;
979 int compact_order_failed;
980#endif
981
982#if defined CONFIG_COMPACTION || defined CONFIG_CMA
983 /* Set to true when the PG_migrate_skip bits should be cleared */
984 bool compact_blockskip_flush;
985#endif
986
7cf91a98
JK
987 bool contiguous;
988
e6ad640b 989 CACHELINE_PADDING(_pad3_);
3484b2de
MG
990 /* Zone statistics */
991 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
f19298b9 992 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
22fc6ecc 993} ____cacheline_internodealigned_in_smp;
1da177e4 994
599d0c95 995enum pgdat_flags {
599d0c95 996 PGDAT_DIRTY, /* reclaim scanning has recently found
d43006d5
MG
997 * many dirty file pages at the tail
998 * of the LRU.
999 */
599d0c95 1000 PGDAT_WRITEBACK, /* reclaim scanning has recently found
283aba9f
MG
1001 * many pages under writeback
1002 */
a5f5f91d 1003 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
57054651 1004};
e815af95 1005
73444bc4
MG
1006enum zone_flags {
1007 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
1008 * Cleared when kswapd is woken.
1009 */
c49c2c47 1010 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */
57c0419c 1011 ZONE_BELOW_HIGH, /* zone is below high watermark. */
73444bc4
MG
1012};
1013
9705bea5
AK
1014static inline unsigned long zone_managed_pages(struct zone *zone)
1015{
1016 return (unsigned long)atomic_long_read(&zone->managed_pages);
1017}
1018
3c381db1
DH
1019static inline unsigned long zone_cma_pages(struct zone *zone)
1020{
1021#ifdef CONFIG_CMA
1022 return zone->cma_pages;
1023#else
1024 return 0;
1025#endif
1026}
1027
f9228b20 1028static inline unsigned long zone_end_pfn(const struct zone *zone)
108bcc96
CS
1029{
1030 return zone->zone_start_pfn + zone->spanned_pages;
1031}
1032
1033static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1034{
1035 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1036}
1037
2a6e3ebe
CS
1038static inline bool zone_is_initialized(struct zone *zone)
1039{
9dcb8b68 1040 return zone->initialized;
2a6e3ebe
CS
1041}
1042
1043static inline bool zone_is_empty(struct zone *zone)
1044{
1045 return zone->spanned_pages == 0;
1046}
1047
5bb88dc5
AS
1048#ifndef BUILD_VDSO32_64
1049/*
1050 * The zone field is never updated after free_area_init_core()
1051 * sets it, so none of the operations on it need to be atomic.
1052 */
1053
1054/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1055#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1056#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1057#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1058#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1059#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
ec1c86b2
YZ
1060#define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1061#define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH)
5bb88dc5
AS
1062
1063/*
1064 * Define the bit shifts to access each section. For non-existent
1065 * sections we define the shift as 0; that plus a 0 mask ensures
1066 * the compiler will optimise away reference to them.
1067 */
1068#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1069#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1070#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1071#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1072#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1073
1074/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1075#ifdef NODE_NOT_IN_PAGE_FLAGS
1076#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1077#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1078 SECTIONS_PGOFF : ZONES_PGOFF)
1079#else
1080#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1081#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \
1082 NODES_PGOFF : ZONES_PGOFF)
1083#endif
1084
1085#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1086
1087#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1088#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1089#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1090#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1091#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1092#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1093
1094static inline enum zone_type page_zonenum(const struct page *page)
1095{
1096 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1097 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1098}
1099
1100static inline enum zone_type folio_zonenum(const struct folio *folio)
1101{
1102 return page_zonenum(&folio->page);
1103}
1104
1105#ifdef CONFIG_ZONE_DEVICE
1106static inline bool is_zone_device_page(const struct page *page)
1107{
1108 return page_zonenum(page) == ZONE_DEVICE;
1109}
49580e69
LG
1110
1111/*
1112 * Consecutive zone device pages should not be merged into the same sgl
1113 * or bvec segment with other types of pages or if they belong to different
1114 * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1115 * without scanning the entire segment. This helper returns true either if
1116 * both pages are not zone device pages or both pages are zone device pages
1117 * with the same pgmap.
1118 */
1119static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1120 const struct page *b)
1121{
1122 if (is_zone_device_page(a) != is_zone_device_page(b))
1123 return false;
1124 if (!is_zone_device_page(a))
1125 return true;
1126 return a->pgmap == b->pgmap;
1127}
1128
5bb88dc5
AS
1129extern void memmap_init_zone_device(struct zone *, unsigned long,
1130 unsigned long, struct dev_pagemap *);
1131#else
1132static inline bool is_zone_device_page(const struct page *page)
1133{
1134 return false;
1135}
49580e69
LG
1136static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1137 const struct page *b)
1138{
1139 return true;
1140}
5bb88dc5
AS
1141#endif
1142
1143static inline bool folio_is_zone_device(const struct folio *folio)
1144{
1145 return is_zone_device_page(&folio->page);
1146}
1147
1148static inline bool is_zone_movable_page(const struct page *page)
1149{
1150 return page_zonenum(page) == ZONE_MOVABLE;
1151}
708ff491
VMO
1152
1153static inline bool folio_is_zone_movable(const struct folio *folio)
1154{
1155 return folio_zonenum(folio) == ZONE_MOVABLE;
1156}
5bb88dc5
AS
1157#endif
1158
f1dd2cd1
MH
1159/*
1160 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1161 * intersection with the given zone
1162 */
1163static inline bool zone_intersects(struct zone *zone,
1164 unsigned long start_pfn, unsigned long nr_pages)
1165{
1166 if (zone_is_empty(zone))
1167 return false;
1168 if (start_pfn >= zone_end_pfn(zone) ||
1169 start_pfn + nr_pages <= zone->zone_start_pfn)
1170 return false;
1171
1172 return true;
1173}
1174
1da177e4
LT
1175/*
1176 * The "priority" of VM scanning is how much of the queues we will scan in one
1177 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1178 * queues ("queue_length >> 12") during an aging round.
1179 */
1180#define DEF_PRIORITY 12
1181
9276b1bc
PJ
1182/* Maximum number of zones on a zonelist */
1183#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1184
c00eb15a
YB
1185enum {
1186 ZONELIST_FALLBACK, /* zonelist with fallback */
9276b1bc 1187#ifdef CONFIG_NUMA
c00eb15a
YB
1188 /*
1189 * The NUMA zonelists are doubled because we need zonelists that
1190 * restrict the allocations to a single node for __GFP_THISNODE.
1191 */
1192 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
9276b1bc 1193#endif
c00eb15a
YB
1194 MAX_ZONELISTS
1195};
9276b1bc 1196
dd1a239f
MG
1197/*
1198 * This struct contains information about a zone in a zonelist. It is stored
1199 * here to avoid dereferences into large structures and lookups of tables
1200 */
1201struct zoneref {
1202 struct zone *zone; /* Pointer to actual zone */
1203 int zone_idx; /* zone_idx(zoneref->zone) */
1204};
1205
1da177e4
LT
1206/*
1207 * One allocation request operates on a zonelist. A zonelist
1208 * is a list of zones, the first one is the 'goal' of the
1209 * allocation, the other zones are fallback zones, in decreasing
1210 * priority.
1211 *
dd1a239f
MG
1212 * To speed the reading of the zonelist, the zonerefs contain the zone index
1213 * of the entry being read. Helper functions to access information given
1214 * a struct zoneref are
1215 *
1216 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
1217 * zonelist_zone_idx() - Return the index of the zone for an entry
1218 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
1219 */
1220struct zonelist {
dd1a239f 1221 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1da177e4
LT
1222};
1223
bb1c50d3
MR
1224/*
1225 * The array of struct pages for flatmem.
1226 * It must be declared for SPARSEMEM as well because there are configurations
1227 * that rely on that.
1228 */
5b99cd0e 1229extern struct page *mem_map;
5b99cd0e 1230
364c1eeb
YS
1231#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1232struct deferred_split {
1233 spinlock_t split_queue_lock;
1234 struct list_head split_queue;
1235 unsigned long split_queue_len;
1236};
1237#endif
1238
44b8f8bf
JY
1239#ifdef CONFIG_MEMORY_FAILURE
1240/*
1241 * Per NUMA node memory failure handling statistics.
1242 */
1243struct memory_failure_stats {
1244 /*
1245 * Number of raw pages poisoned.
1246 * Cases not accounted: memory outside kernel control, offline page,
1247 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1248 * error events, and unpoison actions from hwpoison_unpoison.
1249 */
1250 unsigned long total;
1251 /*
1252 * Recovery results of poisoned raw pages handled by memory_failure,
1253 * in sync with mf_result.
1254 * total = ignored + failed + delayed + recovered.
1255 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1256 */
1257 unsigned long ignored;
1258 unsigned long failed;
1259 unsigned long delayed;
1260 unsigned long recovered;
1261};
1262#endif
1263
1da177e4 1264/*
1da177e4 1265 * On NUMA machines, each NUMA node would have a pg_data_t to describe
618b8c20
NB
1266 * it's memory layout. On UMA machines there is a single pglist_data which
1267 * describes the whole memory.
1da177e4
LT
1268 *
1269 * Memory statistics and page replacement data structures are maintained on a
1270 * per-zone basis.
1271 */
1da177e4 1272typedef struct pglist_data {
496df3d3
BW
1273 /*
1274 * node_zones contains just the zones for THIS node. Not all of the
1275 * zones may be populated, but it is the full list. It is referenced by
1276 * this node's node_zonelists as well as other node's node_zonelists.
1277 */
1da177e4 1278 struct zone node_zones[MAX_NR_ZONES];
496df3d3
BW
1279
1280 /*
1281 * node_zonelists contains references to all zones in all nodes.
1282 * Generally the first zones will be references to this node's
1283 * node_zones.
1284 */
523b9458 1285 struct zonelist node_zonelists[MAX_ZONELISTS];
496df3d3
BW
1286
1287 int nr_zones; /* number of populated zones in this node */
43b02ba9 1288#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */
1da177e4 1289 struct page *node_mem_map;
eefa864b
JK
1290#ifdef CONFIG_PAGE_EXTENSION
1291 struct page_ext *node_page_ext;
1292#endif
d41dee36 1293#endif
3a2d7fa8 1294#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
208d54e5 1295 /*
fa004ab7
WY
1296 * Must be held any time you expect node_start_pfn,
1297 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
3d060856
PT
1298 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1299 * init.
208d54e5 1300 *
114d4b79 1301 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
3a2d7fa8
PT
1302 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1303 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
114d4b79 1304 *
72c3b51b 1305 * Nests above zone->lock and zone->span_seqlock
208d54e5
DH
1306 */
1307 spinlock_t node_size_lock;
1308#endif
1da177e4
LT
1309 unsigned long node_start_pfn;
1310 unsigned long node_present_pages; /* total number of physical pages */
1311 unsigned long node_spanned_pages; /* total size of physical page
1312 range, including holes */
1313 int node_id;
1da177e4 1314 wait_queue_head_t kswapd_wait;
5515061d 1315 wait_queue_head_t pfmemalloc_wait;
8cd7c588
MG
1316
1317 /* workqueues for throttling reclaim for different reasons. */
1318 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1319
1320 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1321 unsigned long nr_reclaim_start; /* nr pages written while throttled
1322 * when throttling started. */
b4a0215e
KW
1323#ifdef CONFIG_MEMORY_HOTPLUG
1324 struct mutex kswapd_lock;
1325#endif
1326 struct task_struct *kswapd; /* Protected by kswapd_lock */
38087d9b 1327 int kswapd_order;
97a225e6 1328 enum zone_type kswapd_highest_zoneidx;
38087d9b 1329
c73322d0
JW
1330 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
1331
698b1b30
VB
1332#ifdef CONFIG_COMPACTION
1333 int kcompactd_max_order;
97a225e6 1334 enum zone_type kcompactd_highest_zoneidx;
698b1b30
VB
1335 wait_queue_head_t kcompactd_wait;
1336 struct task_struct *kcompactd;
65d759c8 1337 bool proactive_compact_trigger;
8177a420 1338#endif
281e3726
MG
1339 /*
1340 * This is a per-node reserve of pages that are not available
1341 * to userspace allocations.
1342 */
1343 unsigned long totalreserve_pages;
1344
a5f5f91d
MG
1345#ifdef CONFIG_NUMA
1346 /*
0a3c5772 1347 * node reclaim becomes active if more unmapped pages exist.
a5f5f91d
MG
1348 */
1349 unsigned long min_unmapped_pages;
1350 unsigned long min_slab_pages;
1351#endif /* CONFIG_NUMA */
1352
a52633d8 1353 /* Write-intensive fields used by page reclaim */
e6ad640b 1354 CACHELINE_PADDING(_pad1_);
3a80a7fa
MG
1355
1356#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1357 /*
1358 * If memory initialisation on large machines is deferred then this
1359 * is the first PFN that needs to be initialised.
1360 */
1361 unsigned long first_deferred_pfn;
1362#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
a3d0a918
KS
1363
1364#ifdef CONFIG_TRANSPARENT_HUGEPAGE
364c1eeb 1365 struct deferred_split deferred_split_queue;
a3d0a918 1366#endif
75ef7184 1367
c6833e10
HY
1368#ifdef CONFIG_NUMA_BALANCING
1369 /* start time in ms of current promote rate limit period */
1370 unsigned int nbp_rl_start;
1371 /* number of promote candidate pages at start time of current rate limit period */
1372 unsigned long nbp_rl_nr_cand;
c959924b
HY
1373 /* promote threshold in ms */
1374 unsigned int nbp_threshold;
1375 /* start time in ms of current promote threshold adjustment period */
1376 unsigned int nbp_th_start;
1377 /*
c7cdf94e 1378 * number of promote candidate pages at start time of current promote
c959924b
HY
1379 * threshold adjustment period
1380 */
1381 unsigned long nbp_th_nr_cand;
c6833e10 1382#endif
599d0c95 1383 /* Fields commonly accessed by the page reclaim scanner */
867e5e1d
JW
1384
1385 /*
1386 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1387 *
1388 * Use mem_cgroup_lruvec() to look up lruvecs.
1389 */
1390 struct lruvec __lruvec;
599d0c95 1391
599d0c95
MG
1392 unsigned long flags;
1393
bd74fdae
YZ
1394#ifdef CONFIG_LRU_GEN
1395 /* kswap mm walk data */
9a52b2f3 1396 struct lru_gen_mm_walk mm_walk;
e4dde56c
YZ
1397 /* lru_gen_folio list */
1398 struct lru_gen_memcg memcg_lru;
bd74fdae
YZ
1399#endif
1400
e6ad640b 1401 CACHELINE_PADDING(_pad2_);
599d0c95 1402
75ef7184
MG
1403 /* Per-node vmstats */
1404 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1405 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
7766cf7a
AK
1406#ifdef CONFIG_NUMA
1407 struct memory_tier __rcu *memtier;
1408#endif
44b8f8bf
JY
1409#ifdef CONFIG_MEMORY_FAILURE
1410 struct memory_failure_stats mf_stats;
1411#endif
1da177e4
LT
1412} pg_data_t;
1413
1414#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
1415#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
1416
c6830c22 1417#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
da3649e1 1418#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
c6830c22 1419
da3649e1
CS
1420static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1421{
1422 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1423}
1424
208d54e5
DH
1425#include <linux/memory_hotplug.h>
1426
72675e13 1427void build_all_zonelists(pg_data_t *pgdat);
5ecd9d40 1428void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
97a225e6 1429 enum zone_type highest_zoneidx);
86a294a8 1430bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 1431 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 1432 long free_pages);
7aeb09f9 1433bool zone_watermark_ok(struct zone *z, unsigned int order,
97a225e6 1434 unsigned long mark, int highest_zoneidx,
c603844b 1435 unsigned int alloc_flags);
7aeb09f9 1436bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 1437 unsigned long mark, int highest_zoneidx);
c1d0da83
LD
1438/*
1439 * Memory initialization context, use to differentiate memory added by
1440 * the platform statically or via memory hotplug interface.
1441 */
1442enum meminit_context {
1443 MEMINIT_EARLY,
1444 MEMINIT_HOTPLUG,
a2f3aa02 1445};
c1d0da83 1446
dc0bbf3b 1447extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
b171e409 1448 unsigned long size);
718127cc 1449
bea8c150 1450extern void lruvec_init(struct lruvec *lruvec);
7f5e86c2 1451
599d0c95 1452static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
7f5e86c2 1453{
c255a458 1454#ifdef CONFIG_MEMCG
599d0c95 1455 return lruvec->pgdat;
7f5e86c2 1456#else
867e5e1d 1457 return container_of(lruvec, struct pglist_data, __lruvec);
7f5e86c2
KK
1458#endif
1459}
1460
7aac7898
LS
1461#ifdef CONFIG_HAVE_MEMORYLESS_NODES
1462int local_memory_node(int node_id);
1463#else
1464static inline int local_memory_node(int node_id) { return node_id; };
1465#endif
1466
1da177e4
LT
1467/*
1468 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1469 */
1470#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
1471
1f90a347
DW
1472#ifdef CONFIG_ZONE_DEVICE
1473static inline bool zone_is_zone_device(struct zone *zone)
1474{
1475 return zone_idx(zone) == ZONE_DEVICE;
1476}
1477#else
1478static inline bool zone_is_zone_device(struct zone *zone)
1479{
1480 return false;
1481}
1482#endif
1483
6aa303de
MG
1484/*
1485 * Returns true if a zone has pages managed by the buddy allocator.
1486 * All the reclaim decisions have to use this function rather than
1487 * populated_zone(). If the whole zone is reserved then we can easily
1488 * end up with populated_zone() && !managed_zone().
1489 */
1490static inline bool managed_zone(struct zone *zone)
1491{
9705bea5 1492 return zone_managed_pages(zone);
6aa303de
MG
1493}
1494
1495/* Returns true if a zone has memory */
1496static inline bool populated_zone(struct zone *zone)
f3fe6512 1497{
6aa303de 1498 return zone->present_pages;
f3fe6512
CK
1499}
1500
c1093b74
PT
1501#ifdef CONFIG_NUMA
1502static inline int zone_to_nid(struct zone *zone)
1503{
1504 return zone->node;
1505}
1506
1507static inline void zone_set_nid(struct zone *zone, int nid)
1508{
1509 zone->node = nid;
1510}
1511#else
1512static inline int zone_to_nid(struct zone *zone)
1513{
1514 return 0;
1515}
1516
1517static inline void zone_set_nid(struct zone *zone, int nid) {}
1518#endif
1519
2a1e274a
MG
1520extern int movable_zone;
1521
2f1b6248 1522static inline int is_highmem_idx(enum zone_type idx)
1da177e4 1523{
e53ef38d 1524#ifdef CONFIG_HIGHMEM
2a1e274a 1525 return (idx == ZONE_HIGHMEM ||
b19bd1c9 1526 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
e53ef38d
CL
1527#else
1528 return 0;
1529#endif
1da177e4
LT
1530}
1531
1da177e4 1532/**
b4a991ec 1533 * is_highmem - helper function to quickly check if a struct zone is a
1da177e4
LT
1534 * highmem zone or not. This is an attempt to keep references
1535 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
198fba41
MR
1536 * @zone: pointer to struct zone variable
1537 * Return: 1 for a highmem zone, 0 otherwise
1da177e4
LT
1538 */
1539static inline int is_highmem(struct zone *zone)
1540{
29f9cb53 1541 return is_highmem_idx(zone_idx(zone));
bb077c3f
KW
1542}
1543
1544#ifdef CONFIG_ZONE_DMA
1545bool has_managed_dma(void);
e53ef38d 1546#else
bb077c3f
KW
1547static inline bool has_managed_dma(void)
1548{
1549 return false;
1da177e4 1550}
bb077c3f 1551#endif
1da177e4 1552
f0c0b2b8 1553
a9ee6cf5 1554#ifndef CONFIG_NUMA
1da177e4
LT
1555
1556extern struct pglist_data contig_page_data;
351de44f
MG
1557static inline struct pglist_data *NODE_DATA(int nid)
1558{
1559 return &contig_page_data;
1560}
1da177e4 1561
a9ee6cf5 1562#else /* CONFIG_NUMA */
1da177e4
LT
1563
1564#include <asm/mmzone.h>
1565
a9ee6cf5 1566#endif /* !CONFIG_NUMA */
348f8b6c 1567
95144c78
KH
1568extern struct pglist_data *first_online_pgdat(void);
1569extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1570extern struct zone *next_zone(struct zone *zone);
8357f869
KH
1571
1572/**
12d15f0d 1573 * for_each_online_pgdat - helper macro to iterate over all online nodes
198fba41 1574 * @pgdat: pointer to a pg_data_t variable
8357f869
KH
1575 */
1576#define for_each_online_pgdat(pgdat) \
1577 for (pgdat = first_online_pgdat(); \
1578 pgdat; \
1579 pgdat = next_online_pgdat(pgdat))
8357f869
KH
1580/**
1581 * for_each_zone - helper macro to iterate over all memory zones
198fba41 1582 * @zone: pointer to struct zone variable
8357f869
KH
1583 *
1584 * The user only needs to declare the zone variable, for_each_zone
1585 * fills it in.
1586 */
1587#define for_each_zone(zone) \
1588 for (zone = (first_online_pgdat())->node_zones; \
1589 zone; \
1590 zone = next_zone(zone))
1591
ee99c71c
KM
1592#define for_each_populated_zone(zone) \
1593 for (zone = (first_online_pgdat())->node_zones; \
1594 zone; \
1595 zone = next_zone(zone)) \
1596 if (!populated_zone(zone)) \
1597 ; /* do nothing */ \
1598 else
1599
dd1a239f
MG
1600static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1601{
1602 return zoneref->zone;
1603}
1604
1605static inline int zonelist_zone_idx(struct zoneref *zoneref)
1606{
1607 return zoneref->zone_idx;
1608}
1609
1610static inline int zonelist_node_idx(struct zoneref *zoneref)
1611{
c1093b74 1612 return zone_to_nid(zoneref->zone);
dd1a239f
MG
1613}
1614
682a3385
MG
1615struct zoneref *__next_zones_zonelist(struct zoneref *z,
1616 enum zone_type highest_zoneidx,
1617 nodemask_t *nodes);
1618
19770b32
MG
1619/**
1620 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
198fba41
MR
1621 * @z: The cursor used as a starting point for the search
1622 * @highest_zoneidx: The zone index of the highest zone to return
1623 * @nodes: An optional nodemask to filter the zonelist with
19770b32
MG
1624 *
1625 * This function returns the next zone at or below a given zone index that is
1626 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
1627 * search. The zoneref returned is a cursor that represents the current zone
1628 * being examined. It should be advanced by one before calling
1629 * next_zones_zonelist again.
198fba41
MR
1630 *
1631 * Return: the next zone at or below highest_zoneidx within the allowed
1632 * nodemask using a cursor within a zonelist as a starting point
19770b32 1633 */
682a3385 1634static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
19770b32 1635 enum zone_type highest_zoneidx,
682a3385
MG
1636 nodemask_t *nodes)
1637{
1638 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1639 return z;
1640 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1641}
dd1a239f 1642
19770b32
MG
1643/**
1644 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
198fba41
MR
1645 * @zonelist: The zonelist to search for a suitable zone
1646 * @highest_zoneidx: The zone index of the highest zone to return
1647 * @nodes: An optional nodemask to filter the zonelist with
19770b32
MG
1648 *
1649 * This function returns the first zone at or below a given zone index that is
1650 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
1651 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1652 * one before calling.
ea57485a
VB
1653 *
1654 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1655 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1656 * update due to cpuset modification.
198fba41
MR
1657 *
1658 * Return: Zoneref pointer for the first suitable zone found
19770b32 1659 */
dd1a239f 1660static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32 1661 enum zone_type highest_zoneidx,
c33d6c06 1662 nodemask_t *nodes)
54a6eb5c 1663{
c33d6c06 1664 return next_zones_zonelist(zonelist->_zonerefs,
05891fb0 1665 highest_zoneidx, nodes);
54a6eb5c
MG
1666}
1667
19770b32
MG
1668/**
1669 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
198fba41
MR
1670 * @zone: The current zone in the iterator
1671 * @z: The current pointer within zonelist->_zonerefs being iterated
1672 * @zlist: The zonelist being iterated
1673 * @highidx: The zone index of the highest zone to return
1674 * @nodemask: Nodemask allowed by the allocator
19770b32
MG
1675 *
1676 * This iterator iterates though all zones at or below a given zone index and
1677 * within a given nodemask
1678 */
1679#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
c33d6c06 1680 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
19770b32 1681 zone; \
05891fb0 1682 z = next_zones_zonelist(++z, highidx, nodemask), \
c33d6c06
MG
1683 zone = zonelist_zone(z))
1684
30d8ec73 1685#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
c33d6c06
MG
1686 for (zone = z->zone; \
1687 zone; \
1688 z = next_zones_zonelist(++z, highidx, nodemask), \
1689 zone = zonelist_zone(z))
1690
54a6eb5c
MG
1691
1692/**
1693 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
198fba41
MR
1694 * @zone: The current zone in the iterator
1695 * @z: The current pointer within zonelist->zones being iterated
1696 * @zlist: The zonelist being iterated
1697 * @highidx: The zone index of the highest zone to return
54a6eb5c
MG
1698 *
1699 * This iterator iterates though all zones at or below a given zone index.
1700 */
1701#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 1702 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 1703
8ca1b5a4
FT
1704/* Whether the 'nodes' are all movable nodes */
1705static inline bool movable_only_nodes(nodemask_t *nodes)
1706{
1707 struct zonelist *zonelist;
1708 struct zoneref *z;
1709 int nid;
1710
1711 if (nodes_empty(*nodes))
1712 return false;
1713
1714 /*
1715 * We can chose arbitrary node from the nodemask to get a
1716 * zonelist as they are interlinked. We just need to find
1717 * at least one zone that can satisfy kernel allocations.
1718 */
1719 nid = first_node(*nodes);
1720 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1721 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
1722 return (!z->zone) ? true : false;
1723}
1724
1725
d41dee36
AW
1726#ifdef CONFIG_SPARSEMEM
1727#include <asm/sparsemem.h>
1728#endif
1729
2bdaf115
AW
1730#ifdef CONFIG_FLATMEM
1731#define pfn_to_nid(pfn) (0)
1732#endif
1733
d41dee36
AW
1734#ifdef CONFIG_SPARSEMEM
1735
1736/*
d41dee36
AW
1737 * PA_SECTION_SHIFT physical address to/from section number
1738 * PFN_SECTION_SHIFT pfn to/from section number
1739 */
d41dee36
AW
1740#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1741#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1742
1743#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1744
1745#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1746#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1747
835c134e 1748#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1749 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1750
5e0a760b
KS
1751#if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1752#error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE
d41dee36
AW
1753#endif
1754
1dd2bfc8
YI
1755static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1756{
1757 return pfn >> PFN_SECTION_SHIFT;
1758}
1759static inline unsigned long section_nr_to_pfn(unsigned long sec)
1760{
1761 return sec << PFN_SECTION_SHIFT;
1762}
e3c40f37 1763
a539f353
DK
1764#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1765#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1766
f1eca35a 1767#define SUBSECTION_SHIFT 21
9ffc1d19 1768#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
f1eca35a
DW
1769
1770#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1771#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1772#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1773
1774#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1775#error Subsection size exceeds section size
1776#else
1777#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1778#endif
1779
a3619190
DW
1780#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1781#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1782
f1eca35a 1783struct mem_section_usage {
5ec8e8ea 1784 struct rcu_head rcu;
0a9f9f62 1785#ifdef CONFIG_SPARSEMEM_VMEMMAP
f1eca35a 1786 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
0a9f9f62 1787#endif
f1eca35a
DW
1788 /* See declaration of similar field in struct zone */
1789 unsigned long pageblock_flags[0];
1790};
1791
f46edbd1
DW
1792void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1793
d41dee36 1794struct page;
eefa864b 1795struct page_ext;
d41dee36 1796struct mem_section {
29751f69
AW
1797 /*
1798 * This is, logically, a pointer to an array of struct
1799 * pages. However, it is stored with some other magic.
1800 * (see sparse.c::sparse_init_one_section())
1801 *
30c253e6
AW
1802 * Additionally during early boot we encode node id of
1803 * the location of the section here to guide allocation.
1804 * (see sparse.c::memory_present())
1805 *
29751f69
AW
1806 * Making it a UL at least makes someone do a cast
1807 * before using it wrong.
1808 */
1809 unsigned long section_mem_map;
5c0e3066 1810
f1eca35a 1811 struct mem_section_usage *usage;
eefa864b
JK
1812#ifdef CONFIG_PAGE_EXTENSION
1813 /*
0c9ad804 1814 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
eefa864b
JK
1815 * section. (see page_ext.h about this.)
1816 */
1817 struct page_ext *page_ext;
1818 unsigned long pad;
1819#endif
55878e88
CS
1820 /*
1821 * WARNING: mem_section must be a power-of-2 in size for the
1822 * calculation and use of SECTION_ROOT_MASK to make sense.
1823 */
d41dee36
AW
1824};
1825
3e347261
BP
1826#ifdef CONFIG_SPARSEMEM_EXTREME
1827#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1828#else
1829#define SECTIONS_PER_ROOT 1
1830#endif
802f192e 1831
3e347261 1832#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1833#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1834#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1835
3e347261 1836#ifdef CONFIG_SPARSEMEM_EXTREME
83e3c487 1837extern struct mem_section **mem_section;
802f192e 1838#else
3e347261
BP
1839extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1840#endif
d41dee36 1841
f1eca35a
DW
1842static inline unsigned long *section_to_usemap(struct mem_section *ms)
1843{
1844 return ms->usage->pageblock_flags;
1845}
1846
29751f69
AW
1847static inline struct mem_section *__nr_to_section(unsigned long nr)
1848{
a431dbbc
WL
1849 unsigned long root = SECTION_NR_TO_ROOT(nr);
1850
1851 if (unlikely(root >= NR_SECTION_ROOTS))
1852 return NULL;
1853
83e3c487 1854#ifdef CONFIG_SPARSEMEM_EXTREME
a431dbbc 1855 if (!mem_section || !mem_section[root])
83e3c487
KS
1856 return NULL;
1857#endif
a431dbbc 1858 return &mem_section[root][nr & SECTION_ROOT_MASK];
29751f69 1859}
f1eca35a 1860extern size_t mem_section_usage_size(void);
29751f69
AW
1861
1862/*
1863 * We use the lower bits of the mem_map pointer to store
def9b71e
PT
1864 * a little bit of information. The pointer is calculated
1865 * as mem_map - section_nr_to_pfn(pnum). The result is
1866 * aligned to the minimum alignment of the two values:
1867 * 1. All mem_map arrays are page-aligned.
1868 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1869 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1870 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1871 * worst combination is powerpc with 256k pages,
1872 * which results in PFN_SECTION_SHIFT equal 6.
ed7802dd
MS
1873 * To sum it up, at least 6 bits are available on all architectures.
1874 * However, we can exceed 6 bits on some other architectures except
1875 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1876 * with the worst case of 64K pages on arm64) if we make sure the
1877 * exceeded bit is not applicable to powerpc.
29751f69 1878 */
ed7802dd
MS
1879enum {
1880 SECTION_MARKED_PRESENT_BIT,
1881 SECTION_HAS_MEM_MAP_BIT,
1882 SECTION_IS_ONLINE_BIT,
1883 SECTION_IS_EARLY_BIT,
1884#ifdef CONFIG_ZONE_DEVICE
1885 SECTION_TAINT_ZONE_DEVICE_BIT,
1886#endif
1887 SECTION_MAP_LAST_BIT,
1888};
1889
1890#define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT)
1891#define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT)
1892#define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT)
1893#define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT)
1894#ifdef CONFIG_ZONE_DEVICE
1895#define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1896#endif
1897#define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1))
1898#define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT
29751f69
AW
1899
1900static inline struct page *__section_mem_map_addr(struct mem_section *section)
1901{
1902 unsigned long map = section->section_mem_map;
1903 map &= SECTION_MAP_MASK;
1904 return (struct page *)map;
1905}
1906
540557b9 1907static inline int present_section(struct mem_section *section)
29751f69 1908{
802f192e 1909 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1910}
1911
540557b9
AW
1912static inline int present_section_nr(unsigned long nr)
1913{
1914 return present_section(__nr_to_section(nr));
1915}
1916
1917static inline int valid_section(struct mem_section *section)
29751f69 1918{
802f192e 1919 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1920}
1921
326e1b8f
DW
1922static inline int early_section(struct mem_section *section)
1923{
1924 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1925}
1926
29751f69
AW
1927static inline int valid_section_nr(unsigned long nr)
1928{
1929 return valid_section(__nr_to_section(nr));
1930}
1931
2d070eab
MH
1932static inline int online_section(struct mem_section *section)
1933{
1934 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1935}
1936
ed7802dd 1937#ifdef CONFIG_ZONE_DEVICE
1f90a347
DW
1938static inline int online_device_section(struct mem_section *section)
1939{
1940 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1941
1942 return section && ((section->section_mem_map & flags) == flags);
1943}
ed7802dd
MS
1944#else
1945static inline int online_device_section(struct mem_section *section)
1946{
1947 return 0;
1948}
1949#endif
1f90a347 1950
2d070eab
MH
1951static inline int online_section_nr(unsigned long nr)
1952{
1953 return online_section(__nr_to_section(nr));
1954}
1955
1956#ifdef CONFIG_MEMORY_HOTPLUG
1957void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2d070eab
MH
1958void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1959#endif
2d070eab 1960
d41dee36
AW
1961static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1962{
29751f69 1963 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1964}
1965
2491f0a2 1966extern unsigned long __highest_present_section_nr;
c4e1be9e 1967
f46edbd1
DW
1968static inline int subsection_map_index(unsigned long pfn)
1969{
1970 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1971}
1972
1973#ifdef CONFIG_SPARSEMEM_VMEMMAP
1974static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1975{
1976 int idx = subsection_map_index(pfn);
1977
5ec8e8ea 1978 return test_bit(idx, READ_ONCE(ms->usage)->subsection_map);
f46edbd1
DW
1979}
1980#else
1981static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1982{
1983 return 1;
1984}
1985#endif
1986
7b7bf499 1987#ifndef CONFIG_HAVE_ARCH_PFN_VALID
51c656ae
MR
1988/**
1989 * pfn_valid - check if there is a valid memory map entry for a PFN
1990 * @pfn: the page frame number to check
1991 *
1992 * Check if there is a valid memory map entry aka struct page for the @pfn.
1993 * Note, that availability of the memory map entry does not imply that
1994 * there is actual usable memory at that @pfn. The struct page may
1995 * represent a hole or an unusable page frame.
1996 *
1997 * Return: 1 for PFNs that have memory map entries and 0 otherwise
1998 */
d41dee36
AW
1999static inline int pfn_valid(unsigned long pfn)
2000{
f46edbd1 2001 struct mem_section *ms;
5ec8e8ea 2002 int ret;
f46edbd1 2003
16c9afc7
AK
2004 /*
2005 * Ensure the upper PAGE_SHIFT bits are clear in the
2006 * pfn. Else it might lead to false positives when
2007 * some of the upper bits are set, but the lower bits
2008 * match a valid pfn.
2009 */
2010 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2011 return 0;
2012
d41dee36
AW
2013 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2014 return 0;
f1dc0db2 2015 ms = __pfn_to_section(pfn);
f6564fce 2016 rcu_read_lock_sched();
5ec8e8ea 2017 if (!valid_section(ms)) {
f6564fce 2018 rcu_read_unlock_sched();
f46edbd1 2019 return 0;
5ec8e8ea 2020 }
f46edbd1
DW
2021 /*
2022 * Traditionally early sections always returned pfn_valid() for
2023 * the entire section-sized span.
2024 */
5ec8e8ea 2025 ret = early_section(ms) || pfn_section_valid(ms, pfn);
f6564fce 2026 rcu_read_unlock_sched();
5ec8e8ea
CTK
2027
2028 return ret;
d41dee36 2029}
7b7bf499 2030#endif
d41dee36 2031
e03d1f78 2032static inline int pfn_in_present_section(unsigned long pfn)
540557b9
AW
2033{
2034 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2035 return 0;
f1dc0db2 2036 return present_section(__pfn_to_section(pfn));
540557b9
AW
2037}
2038
4c605881
DH
2039static inline unsigned long next_present_section_nr(unsigned long section_nr)
2040{
2041 while (++section_nr <= __highest_present_section_nr) {
2042 if (present_section_nr(section_nr))
2043 return section_nr;
2044 }
2045
2046 return -1;
2047}
2048
d41dee36
AW
2049/*
2050 * These are _only_ used during initialisation, therefore they
2051 * can use __initdata ... They could have names to indicate
2052 * this restriction.
2053 */
2054#ifdef CONFIG_NUMA
161599ff
AW
2055#define pfn_to_nid(pfn) \
2056({ \
2057 unsigned long __pfn_to_nid_pfn = (pfn); \
2058 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
2059})
2bdaf115
AW
2060#else
2061#define pfn_to_nid(pfn) (0)
d41dee36
AW
2062#endif
2063
d41dee36
AW
2064void sparse_init(void);
2065#else
2066#define sparse_init() do {} while (0)
28ae55c9 2067#define sparse_index_init(_sec, _nid) do {} while (0)
e03d1f78 2068#define pfn_in_present_section pfn_valid
f46edbd1 2069#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
d41dee36
AW
2070#endif /* CONFIG_SPARSEMEM */
2071
97965478 2072#endif /* !__GENERATING_BOUNDS.H */
1da177e4 2073#endif /* !__ASSEMBLY__ */
1da177e4 2074#endif /* _LINUX_MMZONE_H */