mm: use unsigned types for fragmentation score
[linux-2.6-block.git] / include / linux / mmzone.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
1da177e4 5#ifndef __ASSEMBLY__
97965478 6#ifndef __GENERATING_BOUNDS_H
1da177e4 7
1da177e4
LT
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/wait.h>
e815af95 11#include <linux/bitops.h>
1da177e4
LT
12#include <linux/cache.h>
13#include <linux/threads.h>
14#include <linux/numa.h>
15#include <linux/init.h>
bdc8cb98 16#include <linux/seqlock.h>
8357f869 17#include <linux/nodemask.h>
835c134e 18#include <linux/pageblock-flags.h>
bbeae5b0 19#include <linux/page-flags-layout.h>
60063497 20#include <linux/atomic.h>
b03641af
DW
21#include <linux/mm_types.h>
22#include <linux/page-flags.h>
93ff66bf 23#include <asm/page.h>
1da177e4
LT
24
25/* Free memory management - zoned buddy allocator. */
26#ifndef CONFIG_FORCE_MAX_ZONEORDER
27#define MAX_ORDER 11
28#else
29#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30#endif
e984bb43 31#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 32
5ad333eb
AW
33/*
34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35 * costly to service. That is between allocation orders which should
35fca53e 36 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
37 * will not.
38 */
39#define PAGE_ALLOC_COSTLY_ORDER 3
40
a6ffdc07 41enum migratetype {
47118af0 42 MIGRATE_UNMOVABLE,
47118af0 43 MIGRATE_MOVABLE,
016c13da 44 MIGRATE_RECLAIMABLE,
0aaa29a5
MG
45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47118af0
MN
47#ifdef CONFIG_CMA
48 /*
49 * MIGRATE_CMA migration type is designed to mimic the way
50 * ZONE_MOVABLE works. Only movable pages can be allocated
51 * from MIGRATE_CMA pageblocks and page allocator never
52 * implicitly change migration type of MIGRATE_CMA pageblock.
53 *
54 * The way to use it is to change migratetype of a range of
55 * pageblocks to MIGRATE_CMA which can be done by
56 * __free_pageblock_cma() function. What is important though
57 * is that a range of pageblocks must be aligned to
58 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 * a single pageblock.
60 */
61 MIGRATE_CMA,
62#endif
194159fb 63#ifdef CONFIG_MEMORY_ISOLATION
47118af0 64 MIGRATE_ISOLATE, /* can't allocate from here */
194159fb 65#endif
47118af0
MN
66 MIGRATE_TYPES
67};
68
60f30350 69/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
c999fbd3 70extern const char * const migratetype_names[MIGRATE_TYPES];
60f30350 71
47118af0
MN
72#ifdef CONFIG_CMA
73# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
7c15d9bb 74# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
47118af0
MN
75#else
76# define is_migrate_cma(migratetype) false
7c15d9bb 77# define is_migrate_cma_page(_page) false
47118af0 78#endif
b2a0ac88 79
b682debd
VB
80static inline bool is_migrate_movable(int mt)
81{
82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83}
84
b2a0ac88
MG
85#define for_each_migratetype_order(order, type) \
86 for (order = 0; order < MAX_ORDER; order++) \
87 for (type = 0; type < MIGRATE_TYPES; type++)
88
467c996c
MG
89extern int page_group_by_mobility_disabled;
90
d38ac97f 91#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
e58469ba 92
dc4b0caf 93#define get_pageblock_migratetype(page) \
535b81e2 94 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
dc4b0caf 95
1da177e4 96struct free_area {
b2a0ac88 97 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
98 unsigned long nr_free;
99};
100
b03641af
DW
101static inline struct page *get_page_from_free_area(struct free_area *area,
102 int migratetype)
103{
104 return list_first_entry_or_null(&area->free_list[migratetype],
105 struct page, lru);
106}
107
b03641af
DW
108static inline bool free_area_empty(struct free_area *area, int migratetype)
109{
110 return list_empty(&area->free_list[migratetype]);
111}
112
1da177e4
LT
113struct pglist_data;
114
115/*
a52633d8 116 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
1da177e4
LT
117 * So add a wild amount of padding here to ensure that they fall into separate
118 * cachelines. There are very few zone structures in the machine, so space
119 * consumption is not a concern here.
120 */
121#if defined(CONFIG_SMP)
122struct zone_padding {
123 char x[0];
22fc6ecc 124} ____cacheline_internodealigned_in_smp;
1da177e4
LT
125#define ZONE_PADDING(name) struct zone_padding name;
126#else
127#define ZONE_PADDING(name)
128#endif
129
3a321d2a
KW
130#ifdef CONFIG_NUMA
131enum numa_stat_item {
132 NUMA_HIT, /* allocated in intended node */
133 NUMA_MISS, /* allocated in non intended node */
134 NUMA_FOREIGN, /* was intended here, hit elsewhere */
135 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
136 NUMA_LOCAL, /* allocation from local node */
137 NUMA_OTHER, /* allocation from other node */
138 NR_VM_NUMA_STAT_ITEMS
139};
140#else
141#define NR_VM_NUMA_STAT_ITEMS 0
142#endif
143
2244b95a 144enum zone_stat_item {
51ed4491 145 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 146 NR_FREE_PAGES,
71c799f4
MK
147 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
148 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
149 NR_ZONE_ACTIVE_ANON,
150 NR_ZONE_INACTIVE_FILE,
151 NR_ZONE_ACTIVE_FILE,
152 NR_ZONE_UNEVICTABLE,
5a1c84b4 153 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
5344b7e6 154 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
51ed4491 155 NR_PAGETABLE, /* used for pagetables */
c6a7f572 156 /* Second 128 byte cacheline */
d2c5e30c 157 NR_BOUNCE,
91537fee
MK
158#if IS_ENABLED(CONFIG_ZSMALLOC)
159 NR_ZSPAGES, /* allocated in zsmalloc */
ca889e6c 160#endif
d1ce749a 161 NR_FREE_CMA_PAGES,
2244b95a
CL
162 NR_VM_ZONE_STAT_ITEMS };
163
75ef7184 164enum node_stat_item {
599d0c95
MG
165 NR_LRU_BASE,
166 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
167 NR_ACTIVE_ANON, /* " " " " " */
168 NR_INACTIVE_FILE, /* " " " " " */
169 NR_ACTIVE_FILE, /* " " " " " */
170 NR_UNEVICTABLE, /* " " " " " */
d42f3245
RG
171 NR_SLAB_RECLAIMABLE_B,
172 NR_SLAB_UNRECLAIMABLE_B,
599d0c95
MG
173 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
174 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
68d48e6a 175 WORKINGSET_NODES,
170b04b7
JK
176 WORKINGSET_REFAULT_BASE,
177 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
178 WORKINGSET_REFAULT_FILE,
179 WORKINGSET_ACTIVATE_BASE,
180 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
181 WORKINGSET_ACTIVATE_FILE,
182 WORKINGSET_RESTORE_BASE,
183 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
184 WORKINGSET_RESTORE_FILE,
1e6b1085 185 WORKINGSET_NODERECLAIM,
4b9d0fab 186 NR_ANON_MAPPED, /* Mapped anonymous pages */
50658e2e
MG
187 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
188 only modified from process context */
11fb9989
MG
189 NR_FILE_PAGES,
190 NR_FILE_DIRTY,
191 NR_WRITEBACK,
192 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
193 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
194 NR_SHMEM_THPS,
195 NR_SHMEM_PMDMAPPED,
60fbf0ab
SL
196 NR_FILE_THPS,
197 NR_FILE_PMDMAPPED,
11fb9989 198 NR_ANON_THPS,
c4a25635
MG
199 NR_VMSCAN_WRITE,
200 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
201 NR_DIRTIED, /* page dirtyings since bootup */
202 NR_WRITTEN, /* page writings since bootup */
b29940c1 203 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
1970dc6f
JH
204 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
205 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
991e7673
SB
206 NR_KERNEL_STACK_KB, /* measured in KiB */
207#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
208 NR_KERNEL_SCS_KB, /* measured in KiB */
209#endif
75ef7184
MG
210 NR_VM_NODE_STAT_ITEMS
211};
212
ea426c2a
RG
213/*
214 * Returns true if the value is measured in bytes (most vmstat values are
215 * measured in pages). This defines the API part, the internal representation
216 * might be different.
217 */
218static __always_inline bool vmstat_item_in_bytes(int idx)
219{
d42f3245
RG
220 /*
221 * Global and per-node slab counters track slab pages.
222 * It's expected that changes are multiples of PAGE_SIZE.
223 * Internally values are stored in pages.
224 *
225 * Per-memcg and per-lruvec counters track memory, consumed
226 * by individual slab objects. These counters are actually
227 * byte-precise.
228 */
229 return (idx == NR_SLAB_RECLAIMABLE_B ||
230 idx == NR_SLAB_UNRECLAIMABLE_B);
ea426c2a
RG
231}
232
4f98a2fe
RR
233/*
234 * We do arithmetic on the LRU lists in various places in the code,
235 * so it is important to keep the active lists LRU_ACTIVE higher in
236 * the array than the corresponding inactive lists, and to keep
237 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
238 *
239 * This has to be kept in sync with the statistics in zone_stat_item
240 * above and the descriptions in vmstat_text in mm/vmstat.c
241 */
242#define LRU_BASE 0
243#define LRU_ACTIVE 1
244#define LRU_FILE 2
245
b69408e8 246enum lru_list {
4f98a2fe
RR
247 LRU_INACTIVE_ANON = LRU_BASE,
248 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
249 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
250 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 251 LRU_UNEVICTABLE,
894bc310
LS
252 NR_LRU_LISTS
253};
b69408e8 254
4111304d 255#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 256
4111304d 257#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 258
b91ac374 259static inline bool is_file_lru(enum lru_list lru)
4f98a2fe 260{
4111304d 261 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
262}
263
b91ac374 264static inline bool is_active_lru(enum lru_list lru)
b69408e8 265{
4111304d 266 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
267}
268
1b05117d
JW
269enum lruvec_flags {
270 LRUVEC_CONGESTED, /* lruvec has many dirty pages
271 * backed by a congested BDI
272 */
273};
274
6290df54 275struct lruvec {
23047a96 276 struct list_head lists[NR_LRU_LISTS];
1431d4d1
JW
277 /*
278 * These track the cost of reclaiming one LRU - file or anon -
279 * over the other. As the observed cost of reclaiming one LRU
280 * increases, the reclaim scan balance tips toward the other.
281 */
282 unsigned long anon_cost;
283 unsigned long file_cost;
31d8fcac
JW
284 /* Non-resident age, driven by LRU movement */
285 atomic_long_t nonresident_age;
170b04b7
JK
286 /* Refaults at the time of last reclaim cycle, anon=0, file=1 */
287 unsigned long refaults[2];
1b05117d
JW
288 /* Various lruvec state flags (enum lruvec_flags) */
289 unsigned long flags;
c255a458 290#ifdef CONFIG_MEMCG
599d0c95 291 struct pglist_data *pgdat;
7f5e86c2 292#endif
6290df54
JW
293};
294
653e003d 295/* Isolate unmapped pages */
f3fd4a61 296#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
c8244935 297/* Isolate for asynchronous migration */
f3fd4a61 298#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
e46a2879
MK
299/* Isolate unevictable pages */
300#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
4356f21d
MK
301
302/* LRU Isolation modes. */
9efeccac 303typedef unsigned __bitwise isolate_mode_t;
4356f21d 304
41858966
MG
305enum zone_watermarks {
306 WMARK_MIN,
307 WMARK_LOW,
308 WMARK_HIGH,
309 NR_WMARK
310};
311
1c30844d
MG
312#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
313#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
314#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
315#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
41858966 316
1da177e4
LT
317struct per_cpu_pages {
318 int count; /* number of pages in the list */
1da177e4
LT
319 int high; /* high watermark, emptying needed */
320 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
321
322 /* Lists of pages, one per migrate type stored on the pcp-lists */
323 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
324};
325
326struct per_cpu_pageset {
3dfa5721 327 struct per_cpu_pages pcp;
4037d452
CL
328#ifdef CONFIG_NUMA
329 s8 expire;
1d90ca89 330 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
4037d452 331#endif
2244b95a 332#ifdef CONFIG_SMP
df9ecaba 333 s8 stat_threshold;
2244b95a
CL
334 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
335#endif
99dcc3e5 336};
e7c8d5c9 337
75ef7184
MG
338struct per_cpu_nodestat {
339 s8 stat_threshold;
340 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
341};
342
97965478
CL
343#endif /* !__GENERATING_BOUNDS.H */
344
2f1b6248
CL
345enum zone_type {
346 /*
734f9246
NSJ
347 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
348 * to DMA to all of the addressable memory (ZONE_NORMAL).
349 * On architectures where this area covers the whole 32 bit address
350 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
351 * DMA addressing constraints. This distinction is important as a 32bit
352 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
353 * platforms may need both zones as they support peripherals with
354 * different DMA addressing limitations.
355 *
356 * Some examples:
357 *
358 * - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the
359 * rest of the lower 4G.
360 *
361 * - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on
362 * the specific device.
363 *
364 * - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the
365 * lower 4G.
2f1b6248 366 *
734f9246
NSJ
367 * - powerpc only uses ZONE_DMA, the size, up to 2G, may vary
368 * depending on the specific device.
2f1b6248 369 *
734f9246 370 * - s390 uses ZONE_DMA fixed to the lower 2G.
2f1b6248 371 *
734f9246
NSJ
372 * - ia64 and riscv only use ZONE_DMA32.
373 *
374 * - parisc uses neither.
2f1b6248 375 */
734f9246 376#ifdef CONFIG_ZONE_DMA
2f1b6248 377 ZONE_DMA,
4b51d669 378#endif
fb0e7942 379#ifdef CONFIG_ZONE_DMA32
2f1b6248 380 ZONE_DMA32,
fb0e7942 381#endif
2f1b6248
CL
382 /*
383 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
384 * performed on pages in ZONE_NORMAL if the DMA devices support
385 * transfers to all addressable memory.
386 */
387 ZONE_NORMAL,
e53ef38d 388#ifdef CONFIG_HIGHMEM
2f1b6248
CL
389 /*
390 * A memory area that is only addressable by the kernel through
391 * mapping portions into its own address space. This is for example
392 * used by i386 to allow the kernel to address the memory beyond
393 * 900MB. The kernel will set up special mappings (page
394 * table entries on i386) for each page that the kernel needs to
395 * access.
396 */
397 ZONE_HIGHMEM,
e53ef38d 398#endif
2a1e274a 399 ZONE_MOVABLE,
033fbae9
DW
400#ifdef CONFIG_ZONE_DEVICE
401 ZONE_DEVICE,
402#endif
97965478 403 __MAX_NR_ZONES
033fbae9 404
2f1b6248 405};
1da177e4 406
97965478
CL
407#ifndef __GENERATING_BOUNDS_H
408
1da177e4 409struct zone {
3484b2de 410 /* Read-mostly fields */
41858966
MG
411
412 /* zone watermarks, access with *_wmark_pages(zone) macros */
a9214443 413 unsigned long _watermark[NR_WMARK];
1c30844d 414 unsigned long watermark_boost;
41858966 415
0aaa29a5
MG
416 unsigned long nr_reserved_highatomic;
417
1da177e4 418 /*
89903327
AM
419 * We don't know if the memory that we're going to allocate will be
420 * freeable or/and it will be released eventually, so to avoid totally
421 * wasting several GB of ram we must reserve some of the lower zone
422 * memory (otherwise we risk to run OOM on the lower zones despite
423 * there being tons of freeable ram on the higher zones). This array is
424 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
425 * changes.
1da177e4 426 */
3484b2de 427 long lowmem_reserve[MAX_NR_ZONES];
ab8fabd4 428
e7c8d5c9 429#ifdef CONFIG_NUMA
d5f541ed 430 int node;
3484b2de 431#endif
3484b2de 432 struct pglist_data *zone_pgdat;
43cf38eb 433 struct per_cpu_pageset __percpu *pageset;
3484b2de 434
835c134e
MG
435#ifndef CONFIG_SPARSEMEM
436 /*
d9c23400 437 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
438 * In SPARSEMEM, this map is stored in struct mem_section
439 */
440 unsigned long *pageblock_flags;
441#endif /* CONFIG_SPARSEMEM */
442
1da177e4
LT
443 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
444 unsigned long zone_start_pfn;
445
bdc8cb98 446 /*
9feedc9d
JL
447 * spanned_pages is the total pages spanned by the zone, including
448 * holes, which is calculated as:
449 * spanned_pages = zone_end_pfn - zone_start_pfn;
bdc8cb98 450 *
9feedc9d
JL
451 * present_pages is physical pages existing within the zone, which
452 * is calculated as:
8761e31c 453 * present_pages = spanned_pages - absent_pages(pages in holes);
9feedc9d
JL
454 *
455 * managed_pages is present pages managed by the buddy system, which
456 * is calculated as (reserved_pages includes pages allocated by the
457 * bootmem allocator):
458 * managed_pages = present_pages - reserved_pages;
459 *
460 * So present_pages may be used by memory hotplug or memory power
461 * management logic to figure out unmanaged pages by checking
462 * (present_pages - managed_pages). And managed_pages should be used
463 * by page allocator and vm scanner to calculate all kinds of watermarks
464 * and thresholds.
465 *
466 * Locking rules:
467 *
468 * zone_start_pfn and spanned_pages are protected by span_seqlock.
469 * It is a seqlock because it has to be read outside of zone->lock,
470 * and it is done in the main allocator path. But, it is written
471 * quite infrequently.
472 *
473 * The span_seq lock is declared along with zone->lock because it is
bdc8cb98
DH
474 * frequently read in proximity to zone->lock. It's good to
475 * give them a chance of being in the same cacheline.
9feedc9d 476 *
c3d5f5f0 477 * Write access to present_pages at runtime should be protected by
bfc8c901
VD
478 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
479 * present_pages should get_online_mems() to get a stable value.
bdc8cb98 480 */
9705bea5 481 atomic_long_t managed_pages;
9feedc9d
JL
482 unsigned long spanned_pages;
483 unsigned long present_pages;
3484b2de
MG
484
485 const char *name;
1da177e4 486
ad53f92e
JK
487#ifdef CONFIG_MEMORY_ISOLATION
488 /*
489 * Number of isolated pageblock. It is used to solve incorrect
490 * freepage counting problem due to racy retrieving migratetype
491 * of pageblock. Protected by zone->lock.
492 */
493 unsigned long nr_isolate_pageblock;
494#endif
495
3484b2de
MG
496#ifdef CONFIG_MEMORY_HOTPLUG
497 /* see spanned/present_pages for more description */
498 seqlock_t span_seqlock;
499#endif
500
9dcb8b68 501 int initialized;
3484b2de 502
0f661148 503 /* Write-intensive fields used from the page allocator */
3484b2de 504 ZONE_PADDING(_pad1_)
0f661148 505
3484b2de
MG
506 /* free areas of different sizes */
507 struct free_area free_area[MAX_ORDER];
508
509 /* zone flags, see below */
510 unsigned long flags;
511
0f661148 512 /* Primarily protects free_area */
a368ab67
MG
513 spinlock_t lock;
514
0f661148 515 /* Write-intensive fields used by compaction and vmstats. */
3484b2de
MG
516 ZONE_PADDING(_pad2_)
517
3484b2de
MG
518 /*
519 * When free pages are below this point, additional steps are taken
520 * when reading the number of free pages to avoid per-cpu counter
521 * drift allowing watermarks to be breached
522 */
523 unsigned long percpu_drift_mark;
524
525#if defined CONFIG_COMPACTION || defined CONFIG_CMA
526 /* pfn where compaction free scanner should start */
527 unsigned long compact_cached_free_pfn;
528 /* pfn where async and sync compaction migration scanner should start */
529 unsigned long compact_cached_migrate_pfn[2];
e332f741
MG
530 unsigned long compact_init_migrate_pfn;
531 unsigned long compact_init_free_pfn;
3484b2de
MG
532#endif
533
534#ifdef CONFIG_COMPACTION
535 /*
536 * On compaction failure, 1<<compact_defer_shift compactions
537 * are skipped before trying again. The number attempted since
538 * last failure is tracked with compact_considered.
539 */
540 unsigned int compact_considered;
541 unsigned int compact_defer_shift;
542 int compact_order_failed;
543#endif
544
545#if defined CONFIG_COMPACTION || defined CONFIG_CMA
546 /* Set to true when the PG_migrate_skip bits should be cleared */
547 bool compact_blockskip_flush;
548#endif
549
7cf91a98
JK
550 bool contiguous;
551
3484b2de
MG
552 ZONE_PADDING(_pad3_)
553 /* Zone statistics */
554 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
3a321d2a 555 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
22fc6ecc 556} ____cacheline_internodealigned_in_smp;
1da177e4 557
599d0c95 558enum pgdat_flags {
599d0c95 559 PGDAT_DIRTY, /* reclaim scanning has recently found
d43006d5
MG
560 * many dirty file pages at the tail
561 * of the LRU.
562 */
599d0c95 563 PGDAT_WRITEBACK, /* reclaim scanning has recently found
283aba9f
MG
564 * many pages under writeback
565 */
a5f5f91d 566 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
57054651 567};
e815af95 568
73444bc4
MG
569enum zone_flags {
570 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
571 * Cleared when kswapd is woken.
572 */
573};
574
9705bea5
AK
575static inline unsigned long zone_managed_pages(struct zone *zone)
576{
577 return (unsigned long)atomic_long_read(&zone->managed_pages);
578}
579
f9228b20 580static inline unsigned long zone_end_pfn(const struct zone *zone)
108bcc96
CS
581{
582 return zone->zone_start_pfn + zone->spanned_pages;
583}
584
585static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
586{
587 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
588}
589
2a6e3ebe
CS
590static inline bool zone_is_initialized(struct zone *zone)
591{
9dcb8b68 592 return zone->initialized;
2a6e3ebe
CS
593}
594
595static inline bool zone_is_empty(struct zone *zone)
596{
597 return zone->spanned_pages == 0;
598}
599
f1dd2cd1
MH
600/*
601 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
602 * intersection with the given zone
603 */
604static inline bool zone_intersects(struct zone *zone,
605 unsigned long start_pfn, unsigned long nr_pages)
606{
607 if (zone_is_empty(zone))
608 return false;
609 if (start_pfn >= zone_end_pfn(zone) ||
610 start_pfn + nr_pages <= zone->zone_start_pfn)
611 return false;
612
613 return true;
614}
615
1da177e4
LT
616/*
617 * The "priority" of VM scanning is how much of the queues we will scan in one
618 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
619 * queues ("queue_length >> 12") during an aging round.
620 */
621#define DEF_PRIORITY 12
622
9276b1bc
PJ
623/* Maximum number of zones on a zonelist */
624#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
625
c00eb15a
YB
626enum {
627 ZONELIST_FALLBACK, /* zonelist with fallback */
9276b1bc 628#ifdef CONFIG_NUMA
c00eb15a
YB
629 /*
630 * The NUMA zonelists are doubled because we need zonelists that
631 * restrict the allocations to a single node for __GFP_THISNODE.
632 */
633 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
9276b1bc 634#endif
c00eb15a
YB
635 MAX_ZONELISTS
636};
9276b1bc 637
dd1a239f
MG
638/*
639 * This struct contains information about a zone in a zonelist. It is stored
640 * here to avoid dereferences into large structures and lookups of tables
641 */
642struct zoneref {
643 struct zone *zone; /* Pointer to actual zone */
644 int zone_idx; /* zone_idx(zoneref->zone) */
645};
646
1da177e4
LT
647/*
648 * One allocation request operates on a zonelist. A zonelist
649 * is a list of zones, the first one is the 'goal' of the
650 * allocation, the other zones are fallback zones, in decreasing
651 * priority.
652 *
dd1a239f
MG
653 * To speed the reading of the zonelist, the zonerefs contain the zone index
654 * of the entry being read. Helper functions to access information given
655 * a struct zoneref are
656 *
657 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
658 * zonelist_zone_idx() - Return the index of the zone for an entry
659 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
660 */
661struct zonelist {
dd1a239f 662 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1da177e4
LT
663};
664
5b99cd0e
HC
665#ifndef CONFIG_DISCONTIGMEM
666/* The array of struct pages - for discontigmem use pgdat->lmem_map */
667extern struct page *mem_map;
668#endif
669
364c1eeb
YS
670#ifdef CONFIG_TRANSPARENT_HUGEPAGE
671struct deferred_split {
672 spinlock_t split_queue_lock;
673 struct list_head split_queue;
674 unsigned long split_queue_len;
675};
676#endif
677
1da177e4 678/*
1da177e4 679 * On NUMA machines, each NUMA node would have a pg_data_t to describe
618b8c20
NB
680 * it's memory layout. On UMA machines there is a single pglist_data which
681 * describes the whole memory.
1da177e4
LT
682 *
683 * Memory statistics and page replacement data structures are maintained on a
684 * per-zone basis.
685 */
1da177e4 686typedef struct pglist_data {
496df3d3
BW
687 /*
688 * node_zones contains just the zones for THIS node. Not all of the
689 * zones may be populated, but it is the full list. It is referenced by
690 * this node's node_zonelists as well as other node's node_zonelists.
691 */
1da177e4 692 struct zone node_zones[MAX_NR_ZONES];
496df3d3
BW
693
694 /*
695 * node_zonelists contains references to all zones in all nodes.
696 * Generally the first zones will be references to this node's
697 * node_zones.
698 */
523b9458 699 struct zonelist node_zonelists[MAX_ZONELISTS];
496df3d3
BW
700
701 int nr_zones; /* number of populated zones in this node */
52d4b9ac 702#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 703 struct page *node_mem_map;
eefa864b
JK
704#ifdef CONFIG_PAGE_EXTENSION
705 struct page_ext *node_page_ext;
706#endif
d41dee36 707#endif
3a2d7fa8 708#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
208d54e5 709 /*
fa004ab7
WY
710 * Must be held any time you expect node_start_pfn,
711 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
3d060856
PT
712 * Also synchronizes pgdat->first_deferred_pfn during deferred page
713 * init.
208d54e5 714 *
114d4b79 715 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
3a2d7fa8
PT
716 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
717 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
114d4b79 718 *
72c3b51b 719 * Nests above zone->lock and zone->span_seqlock
208d54e5
DH
720 */
721 spinlock_t node_size_lock;
722#endif
1da177e4
LT
723 unsigned long node_start_pfn;
724 unsigned long node_present_pages; /* total number of physical pages */
725 unsigned long node_spanned_pages; /* total size of physical page
726 range, including holes */
727 int node_id;
1da177e4 728 wait_queue_head_t kswapd_wait;
5515061d 729 wait_queue_head_t pfmemalloc_wait;
bfc8c901
VD
730 struct task_struct *kswapd; /* Protected by
731 mem_hotplug_begin/end() */
38087d9b 732 int kswapd_order;
97a225e6 733 enum zone_type kswapd_highest_zoneidx;
38087d9b 734
c73322d0
JW
735 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
736
698b1b30
VB
737#ifdef CONFIG_COMPACTION
738 int kcompactd_max_order;
97a225e6 739 enum zone_type kcompactd_highest_zoneidx;
698b1b30
VB
740 wait_queue_head_t kcompactd_wait;
741 struct task_struct *kcompactd;
8177a420 742#endif
281e3726
MG
743 /*
744 * This is a per-node reserve of pages that are not available
745 * to userspace allocations.
746 */
747 unsigned long totalreserve_pages;
748
a5f5f91d
MG
749#ifdef CONFIG_NUMA
750 /*
0a3c5772 751 * node reclaim becomes active if more unmapped pages exist.
a5f5f91d
MG
752 */
753 unsigned long min_unmapped_pages;
754 unsigned long min_slab_pages;
755#endif /* CONFIG_NUMA */
756
a52633d8
MG
757 /* Write-intensive fields used by page reclaim */
758 ZONE_PADDING(_pad1_)
759 spinlock_t lru_lock;
3a80a7fa
MG
760
761#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
762 /*
763 * If memory initialisation on large machines is deferred then this
764 * is the first PFN that needs to be initialised.
765 */
766 unsigned long first_deferred_pfn;
767#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
a3d0a918
KS
768
769#ifdef CONFIG_TRANSPARENT_HUGEPAGE
364c1eeb 770 struct deferred_split deferred_split_queue;
a3d0a918 771#endif
75ef7184 772
599d0c95 773 /* Fields commonly accessed by the page reclaim scanner */
867e5e1d
JW
774
775 /*
776 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
777 *
778 * Use mem_cgroup_lruvec() to look up lruvecs.
779 */
780 struct lruvec __lruvec;
599d0c95 781
599d0c95
MG
782 unsigned long flags;
783
784 ZONE_PADDING(_pad2_)
785
75ef7184
MG
786 /* Per-node vmstats */
787 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
788 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
1da177e4
LT
789} pg_data_t;
790
791#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
792#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 793#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 794#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
795#else
796#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
797#endif
408fde81 798#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 799
c6830c22 800#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
da3649e1 801#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
c6830c22 802
da3649e1
CS
803static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
804{
805 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
806}
807
808static inline bool pgdat_is_empty(pg_data_t *pgdat)
809{
810 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
811}
c6830c22 812
208d54e5
DH
813#include <linux/memory_hotplug.h>
814
72675e13 815void build_all_zonelists(pg_data_t *pgdat);
5ecd9d40 816void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
97a225e6 817 enum zone_type highest_zoneidx);
86a294a8 818bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 819 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 820 long free_pages);
7aeb09f9 821bool zone_watermark_ok(struct zone *z, unsigned int order,
97a225e6 822 unsigned long mark, int highest_zoneidx,
c603844b 823 unsigned int alloc_flags);
7aeb09f9 824bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 825 unsigned long mark, int highest_zoneidx);
a2f3aa02
DH
826enum memmap_context {
827 MEMMAP_EARLY,
828 MEMMAP_HOTPLUG,
829};
dc0bbf3b 830extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
b171e409 831 unsigned long size);
718127cc 832
bea8c150 833extern void lruvec_init(struct lruvec *lruvec);
7f5e86c2 834
599d0c95 835static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
7f5e86c2 836{
c255a458 837#ifdef CONFIG_MEMCG
599d0c95 838 return lruvec->pgdat;
7f5e86c2 839#else
867e5e1d 840 return container_of(lruvec, struct pglist_data, __lruvec);
7f5e86c2
KK
841#endif
842}
843
fd538803 844extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
23047a96 845
7aac7898
LS
846#ifdef CONFIG_HAVE_MEMORYLESS_NODES
847int local_memory_node(int node_id);
848#else
849static inline int local_memory_node(int node_id) { return node_id; };
850#endif
851
1da177e4
LT
852/*
853 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
854 */
855#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
856
6aa303de
MG
857/*
858 * Returns true if a zone has pages managed by the buddy allocator.
859 * All the reclaim decisions have to use this function rather than
860 * populated_zone(). If the whole zone is reserved then we can easily
861 * end up with populated_zone() && !managed_zone().
862 */
863static inline bool managed_zone(struct zone *zone)
864{
9705bea5 865 return zone_managed_pages(zone);
6aa303de
MG
866}
867
868/* Returns true if a zone has memory */
869static inline bool populated_zone(struct zone *zone)
f3fe6512 870{
6aa303de 871 return zone->present_pages;
f3fe6512
CK
872}
873
c1093b74
PT
874#ifdef CONFIG_NUMA
875static inline int zone_to_nid(struct zone *zone)
876{
877 return zone->node;
878}
879
880static inline void zone_set_nid(struct zone *zone, int nid)
881{
882 zone->node = nid;
883}
884#else
885static inline int zone_to_nid(struct zone *zone)
886{
887 return 0;
888}
889
890static inline void zone_set_nid(struct zone *zone, int nid) {}
891#endif
892
2a1e274a
MG
893extern int movable_zone;
894
d7e4a2ea 895#ifdef CONFIG_HIGHMEM
2a1e274a
MG
896static inline int zone_movable_is_highmem(void)
897{
3f08a302 898#ifdef CONFIG_NEED_MULTIPLE_NODES
2a1e274a
MG
899 return movable_zone == ZONE_HIGHMEM;
900#else
d7e4a2ea 901 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
2a1e274a
MG
902#endif
903}
d7e4a2ea 904#endif
2a1e274a 905
2f1b6248 906static inline int is_highmem_idx(enum zone_type idx)
1da177e4 907{
e53ef38d 908#ifdef CONFIG_HIGHMEM
2a1e274a
MG
909 return (idx == ZONE_HIGHMEM ||
910 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
911#else
912 return 0;
913#endif
1da177e4
LT
914}
915
1da177e4 916/**
b4a991ec 917 * is_highmem - helper function to quickly check if a struct zone is a
1da177e4
LT
918 * highmem zone or not. This is an attempt to keep references
919 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
920 * @zone - pointer to struct zone variable
921 */
922static inline int is_highmem(struct zone *zone)
923{
e53ef38d 924#ifdef CONFIG_HIGHMEM
29f9cb53 925 return is_highmem_idx(zone_idx(zone));
e53ef38d
CL
926#else
927 return 0;
928#endif
1da177e4
LT
929}
930
1da177e4
LT
931/* These two functions are used to setup the per zone pages min values */
932struct ctl_table;
2374c09b 933
32927393
CH
934int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
935 loff_t *);
936int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
937 size_t *, loff_t *);
d3cda233 938extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
32927393
CH
939int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
940 size_t *, loff_t *);
8d65af78 941int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
32927393 942 void *, size_t *, loff_t *);
9614634f 943int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
32927393 944 void *, size_t *, loff_t *);
0ff38490 945int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
32927393
CH
946 void *, size_t *, loff_t *);
947int numa_zonelist_order_handler(struct ctl_table *, int,
948 void *, size_t *, loff_t *);
2374c09b 949extern int percpu_pagelist_fraction;
f0c0b2b8 950extern char numa_zonelist_order[];
c9bff3ee 951#define NUMA_ZONELIST_ORDER_LEN 16
f0c0b2b8 952
93b7504e 953#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
954
955extern struct pglist_data contig_page_data;
956#define NODE_DATA(nid) (&contig_page_data)
957#define NODE_MEM_MAP(nid) mem_map
1da177e4 958
93b7504e 959#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
960
961#include <asm/mmzone.h>
962
93b7504e 963#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 964
95144c78
KH
965extern struct pglist_data *first_online_pgdat(void);
966extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
967extern struct zone *next_zone(struct zone *zone);
8357f869
KH
968
969/**
12d15f0d 970 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
971 * @pgdat - pointer to a pg_data_t variable
972 */
973#define for_each_online_pgdat(pgdat) \
974 for (pgdat = first_online_pgdat(); \
975 pgdat; \
976 pgdat = next_online_pgdat(pgdat))
8357f869
KH
977/**
978 * for_each_zone - helper macro to iterate over all memory zones
979 * @zone - pointer to struct zone variable
980 *
981 * The user only needs to declare the zone variable, for_each_zone
982 * fills it in.
983 */
984#define for_each_zone(zone) \
985 for (zone = (first_online_pgdat())->node_zones; \
986 zone; \
987 zone = next_zone(zone))
988
ee99c71c
KM
989#define for_each_populated_zone(zone) \
990 for (zone = (first_online_pgdat())->node_zones; \
991 zone; \
992 zone = next_zone(zone)) \
993 if (!populated_zone(zone)) \
994 ; /* do nothing */ \
995 else
996
dd1a239f
MG
997static inline struct zone *zonelist_zone(struct zoneref *zoneref)
998{
999 return zoneref->zone;
1000}
1001
1002static inline int zonelist_zone_idx(struct zoneref *zoneref)
1003{
1004 return zoneref->zone_idx;
1005}
1006
1007static inline int zonelist_node_idx(struct zoneref *zoneref)
1008{
c1093b74 1009 return zone_to_nid(zoneref->zone);
dd1a239f
MG
1010}
1011
682a3385
MG
1012struct zoneref *__next_zones_zonelist(struct zoneref *z,
1013 enum zone_type highest_zoneidx,
1014 nodemask_t *nodes);
1015
19770b32
MG
1016/**
1017 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1018 * @z - The cursor used as a starting point for the search
1019 * @highest_zoneidx - The zone index of the highest zone to return
1020 * @nodes - An optional nodemask to filter the zonelist with
19770b32
MG
1021 *
1022 * This function returns the next zone at or below a given zone index that is
1023 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
1024 * search. The zoneref returned is a cursor that represents the current zone
1025 * being examined. It should be advanced by one before calling
1026 * next_zones_zonelist again.
19770b32 1027 */
682a3385 1028static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
19770b32 1029 enum zone_type highest_zoneidx,
682a3385
MG
1030 nodemask_t *nodes)
1031{
1032 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1033 return z;
1034 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1035}
dd1a239f 1036
19770b32
MG
1037/**
1038 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1039 * @zonelist - The zonelist to search for a suitable zone
1040 * @highest_zoneidx - The zone index of the highest zone to return
1041 * @nodes - An optional nodemask to filter the zonelist with
ea57485a 1042 * @return - Zoneref pointer for the first suitable zone found (see below)
19770b32
MG
1043 *
1044 * This function returns the first zone at or below a given zone index that is
1045 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
1046 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1047 * one before calling.
ea57485a
VB
1048 *
1049 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1050 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1051 * update due to cpuset modification.
19770b32 1052 */
dd1a239f 1053static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32 1054 enum zone_type highest_zoneidx,
c33d6c06 1055 nodemask_t *nodes)
54a6eb5c 1056{
c33d6c06 1057 return next_zones_zonelist(zonelist->_zonerefs,
05891fb0 1058 highest_zoneidx, nodes);
54a6eb5c
MG
1059}
1060
19770b32
MG
1061/**
1062 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1063 * @zone - The current zone in the iterator
84218b55 1064 * @z - The current pointer within zonelist->_zonerefs being iterated
19770b32
MG
1065 * @zlist - The zonelist being iterated
1066 * @highidx - The zone index of the highest zone to return
1067 * @nodemask - Nodemask allowed by the allocator
1068 *
1069 * This iterator iterates though all zones at or below a given zone index and
1070 * within a given nodemask
1071 */
1072#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
c33d6c06 1073 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
19770b32 1074 zone; \
05891fb0 1075 z = next_zones_zonelist(++z, highidx, nodemask), \
c33d6c06
MG
1076 zone = zonelist_zone(z))
1077
1078#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1079 for (zone = z->zone; \
1080 zone; \
1081 z = next_zones_zonelist(++z, highidx, nodemask), \
1082 zone = zonelist_zone(z))
1083
54a6eb5c
MG
1084
1085/**
1086 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1087 * @zone - The current zone in the iterator
1088 * @z - The current pointer within zonelist->zones being iterated
1089 * @zlist - The zonelist being iterated
1090 * @highidx - The zone index of the highest zone to return
1091 *
1092 * This iterator iterates though all zones at or below a given zone index.
1093 */
1094#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 1095 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 1096
d41dee36
AW
1097#ifdef CONFIG_SPARSEMEM
1098#include <asm/sparsemem.h>
1099#endif
1100
2bdaf115
AW
1101#ifdef CONFIG_FLATMEM
1102#define pfn_to_nid(pfn) (0)
1103#endif
1104
d41dee36
AW
1105#ifdef CONFIG_SPARSEMEM
1106
1107/*
1108 * SECTION_SHIFT #bits space required to store a section #
1109 *
1110 * PA_SECTION_SHIFT physical address to/from section number
1111 * PFN_SECTION_SHIFT pfn to/from section number
1112 */
d41dee36
AW
1113#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1114#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1115
1116#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1117
1118#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1119#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1120
835c134e 1121#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1122 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1123
d41dee36
AW
1124#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1125#error Allocator MAX_ORDER exceeds SECTION_SIZE
1126#endif
1127
1dd2bfc8
YI
1128static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1129{
1130 return pfn >> PFN_SECTION_SHIFT;
1131}
1132static inline unsigned long section_nr_to_pfn(unsigned long sec)
1133{
1134 return sec << PFN_SECTION_SHIFT;
1135}
e3c40f37 1136
a539f353
DK
1137#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1138#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1139
f1eca35a 1140#define SUBSECTION_SHIFT 21
9ffc1d19 1141#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
f1eca35a
DW
1142
1143#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1144#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1145#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1146
1147#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1148#error Subsection size exceeds section size
1149#else
1150#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1151#endif
1152
a3619190
DW
1153#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1154#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1155
f1eca35a 1156struct mem_section_usage {
0a9f9f62 1157#ifdef CONFIG_SPARSEMEM_VMEMMAP
f1eca35a 1158 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
0a9f9f62 1159#endif
f1eca35a
DW
1160 /* See declaration of similar field in struct zone */
1161 unsigned long pageblock_flags[0];
1162};
1163
f46edbd1
DW
1164void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1165
d41dee36 1166struct page;
eefa864b 1167struct page_ext;
d41dee36 1168struct mem_section {
29751f69
AW
1169 /*
1170 * This is, logically, a pointer to an array of struct
1171 * pages. However, it is stored with some other magic.
1172 * (see sparse.c::sparse_init_one_section())
1173 *
30c253e6
AW
1174 * Additionally during early boot we encode node id of
1175 * the location of the section here to guide allocation.
1176 * (see sparse.c::memory_present())
1177 *
29751f69
AW
1178 * Making it a UL at least makes someone do a cast
1179 * before using it wrong.
1180 */
1181 unsigned long section_mem_map;
5c0e3066 1182
f1eca35a 1183 struct mem_section_usage *usage;
eefa864b
JK
1184#ifdef CONFIG_PAGE_EXTENSION
1185 /*
0c9ad804 1186 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
eefa864b
JK
1187 * section. (see page_ext.h about this.)
1188 */
1189 struct page_ext *page_ext;
1190 unsigned long pad;
1191#endif
55878e88
CS
1192 /*
1193 * WARNING: mem_section must be a power-of-2 in size for the
1194 * calculation and use of SECTION_ROOT_MASK to make sense.
1195 */
d41dee36
AW
1196};
1197
3e347261
BP
1198#ifdef CONFIG_SPARSEMEM_EXTREME
1199#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1200#else
1201#define SECTIONS_PER_ROOT 1
1202#endif
802f192e 1203
3e347261 1204#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1205#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1206#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1207
3e347261 1208#ifdef CONFIG_SPARSEMEM_EXTREME
83e3c487 1209extern struct mem_section **mem_section;
802f192e 1210#else
3e347261
BP
1211extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1212#endif
d41dee36 1213
f1eca35a
DW
1214static inline unsigned long *section_to_usemap(struct mem_section *ms)
1215{
1216 return ms->usage->pageblock_flags;
1217}
1218
29751f69
AW
1219static inline struct mem_section *__nr_to_section(unsigned long nr)
1220{
83e3c487
KS
1221#ifdef CONFIG_SPARSEMEM_EXTREME
1222 if (!mem_section)
1223 return NULL;
1224#endif
3e347261
BP
1225 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1226 return NULL;
1227 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 1228}
2491f0a2 1229extern unsigned long __section_nr(struct mem_section *ms);
f1eca35a 1230extern size_t mem_section_usage_size(void);
29751f69
AW
1231
1232/*
1233 * We use the lower bits of the mem_map pointer to store
def9b71e
PT
1234 * a little bit of information. The pointer is calculated
1235 * as mem_map - section_nr_to_pfn(pnum). The result is
1236 * aligned to the minimum alignment of the two values:
1237 * 1. All mem_map arrays are page-aligned.
1238 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1239 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1240 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1241 * worst combination is powerpc with 256k pages,
1242 * which results in PFN_SECTION_SHIFT equal 6.
1243 * To sum it up, at least 6 bits are available.
29751f69
AW
1244 */
1245#define SECTION_MARKED_PRESENT (1UL<<0)
1246#define SECTION_HAS_MEM_MAP (1UL<<1)
2d070eab 1247#define SECTION_IS_ONLINE (1UL<<2)
326e1b8f
DW
1248#define SECTION_IS_EARLY (1UL<<3)
1249#define SECTION_MAP_LAST_BIT (1UL<<4)
29751f69 1250#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
2d070eab 1251#define SECTION_NID_SHIFT 3
29751f69
AW
1252
1253static inline struct page *__section_mem_map_addr(struct mem_section *section)
1254{
1255 unsigned long map = section->section_mem_map;
1256 map &= SECTION_MAP_MASK;
1257 return (struct page *)map;
1258}
1259
540557b9 1260static inline int present_section(struct mem_section *section)
29751f69 1261{
802f192e 1262 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1263}
1264
540557b9
AW
1265static inline int present_section_nr(unsigned long nr)
1266{
1267 return present_section(__nr_to_section(nr));
1268}
1269
1270static inline int valid_section(struct mem_section *section)
29751f69 1271{
802f192e 1272 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1273}
1274
326e1b8f
DW
1275static inline int early_section(struct mem_section *section)
1276{
1277 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1278}
1279
29751f69
AW
1280static inline int valid_section_nr(unsigned long nr)
1281{
1282 return valid_section(__nr_to_section(nr));
1283}
1284
2d070eab
MH
1285static inline int online_section(struct mem_section *section)
1286{
1287 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1288}
1289
1290static inline int online_section_nr(unsigned long nr)
1291{
1292 return online_section(__nr_to_section(nr));
1293}
1294
1295#ifdef CONFIG_MEMORY_HOTPLUG
1296void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1297#ifdef CONFIG_MEMORY_HOTREMOVE
1298void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1299#endif
1300#endif
1301
d41dee36
AW
1302static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1303{
29751f69 1304 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1305}
1306
2491f0a2 1307extern unsigned long __highest_present_section_nr;
c4e1be9e 1308
f46edbd1
DW
1309static inline int subsection_map_index(unsigned long pfn)
1310{
1311 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1312}
1313
1314#ifdef CONFIG_SPARSEMEM_VMEMMAP
1315static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1316{
1317 int idx = subsection_map_index(pfn);
1318
1319 return test_bit(idx, ms->usage->subsection_map);
1320}
1321#else
1322static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1323{
1324 return 1;
1325}
1326#endif
1327
7b7bf499 1328#ifndef CONFIG_HAVE_ARCH_PFN_VALID
d41dee36
AW
1329static inline int pfn_valid(unsigned long pfn)
1330{
f46edbd1
DW
1331 struct mem_section *ms;
1332
d41dee36
AW
1333 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1334 return 0;
f46edbd1
DW
1335 ms = __nr_to_section(pfn_to_section_nr(pfn));
1336 if (!valid_section(ms))
1337 return 0;
1338 /*
1339 * Traditionally early sections always returned pfn_valid() for
1340 * the entire section-sized span.
1341 */
1342 return early_section(ms) || pfn_section_valid(ms, pfn);
d41dee36 1343}
7b7bf499 1344#endif
d41dee36 1345
e03d1f78 1346static inline int pfn_in_present_section(unsigned long pfn)
540557b9
AW
1347{
1348 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1349 return 0;
1350 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1351}
1352
4c605881
DH
1353static inline unsigned long next_present_section_nr(unsigned long section_nr)
1354{
1355 while (++section_nr <= __highest_present_section_nr) {
1356 if (present_section_nr(section_nr))
1357 return section_nr;
1358 }
1359
1360 return -1;
1361}
1362
d41dee36
AW
1363/*
1364 * These are _only_ used during initialisation, therefore they
1365 * can use __initdata ... They could have names to indicate
1366 * this restriction.
1367 */
1368#ifdef CONFIG_NUMA
161599ff
AW
1369#define pfn_to_nid(pfn) \
1370({ \
1371 unsigned long __pfn_to_nid_pfn = (pfn); \
1372 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1373})
2bdaf115
AW
1374#else
1375#define pfn_to_nid(pfn) (0)
d41dee36
AW
1376#endif
1377
d41dee36
AW
1378#define early_pfn_valid(pfn) pfn_valid(pfn)
1379void sparse_init(void);
1380#else
1381#define sparse_init() do {} while (0)
28ae55c9 1382#define sparse_index_init(_sec, _nid) do {} while (0)
e03d1f78 1383#define pfn_in_present_section pfn_valid
f46edbd1 1384#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
d41dee36
AW
1385#endif /* CONFIG_SPARSEMEM */
1386
8a942fde
MG
1387/*
1388 * During memory init memblocks map pfns to nids. The search is expensive and
1389 * this caches recent lookups. The implementation of __early_pfn_to_nid
1390 * may treat start/end as pfns or sections.
1391 */
1392struct mminit_pfnnid_cache {
1393 unsigned long last_start;
1394 unsigned long last_end;
1395 int last_nid;
1396};
1397
d41dee36
AW
1398#ifndef early_pfn_valid
1399#define early_pfn_valid(pfn) (1)
1400#endif
1401
14e07298
AW
1402/*
1403 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
8bb4e7a2 1404 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
14e07298
AW
1405 * pfn_valid_within() should be used in this case; we optimise this away
1406 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1407 */
1408#ifdef CONFIG_HOLES_IN_ZONE
1409#define pfn_valid_within(pfn) pfn_valid(pfn)
1410#else
1411#define pfn_valid_within(pfn) (1)
1412#endif
1413
eb33575c
MG
1414#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1415/*
1416 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
2d070eab
MH
1417 * associated with it or not. This means that a struct page exists for this
1418 * pfn. The caller cannot assume the page is fully initialized in general.
1419 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1420 * will ensure the struct page is fully online and initialized. Special pages
1421 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1422 *
1423 * In FLATMEM, it is expected that holes always have valid memmap as long as
1424 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1425 * that a valid section has a memmap for the entire section.
eb33575c
MG
1426 *
1427 * However, an ARM, and maybe other embedded architectures in the future
1428 * free memmap backing holes to save memory on the assumption the memmap is
1429 * never used. The page_zone linkages are then broken even though pfn_valid()
1430 * returns true. A walker of the full memmap must then do this additional
1431 * check to ensure the memmap they are looking at is sane by making sure
1432 * the zone and PFN linkages are still valid. This is expensive, but walkers
1433 * of the full memmap are extremely rare.
1434 */
5b80287a 1435bool memmap_valid_within(unsigned long pfn,
eb33575c
MG
1436 struct page *page, struct zone *zone);
1437#else
5b80287a 1438static inline bool memmap_valid_within(unsigned long pfn,
eb33575c
MG
1439 struct page *page, struct zone *zone)
1440{
5b80287a 1441 return true;
eb33575c
MG
1442}
1443#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1444
97965478 1445#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1446#endif /* !__ASSEMBLY__ */
1da177e4 1447#endif /* _LINUX_MMZONE_H */