vmstat: mlocked pages statistics
[linux-2.6-block.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
97965478 18#include <linux/bounds.h>
1da177e4 19#include <asm/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
b2a0ac88 38#define MIGRATE_UNMOVABLE 0
e12ba74d
MG
39#define MIGRATE_RECLAIMABLE 1
40#define MIGRATE_MOVABLE 2
64c5e135 41#define MIGRATE_RESERVE 3
a5d76b54
KH
42#define MIGRATE_ISOLATE 4 /* can't allocate from here */
43#define MIGRATE_TYPES 5
b2a0ac88
MG
44
45#define for_each_migratetype_order(order, type) \
46 for (order = 0; order < MAX_ORDER; order++) \
47 for (type = 0; type < MIGRATE_TYPES; type++)
48
467c996c
MG
49extern int page_group_by_mobility_disabled;
50
51static inline int get_pageblock_migratetype(struct page *page)
52{
53 if (unlikely(page_group_by_mobility_disabled))
54 return MIGRATE_UNMOVABLE;
55
56 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
57}
58
1da177e4 59struct free_area {
b2a0ac88 60 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
61 unsigned long nr_free;
62};
63
64struct pglist_data;
65
66/*
67 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
68 * So add a wild amount of padding here to ensure that they fall into separate
69 * cachelines. There are very few zone structures in the machine, so space
70 * consumption is not a concern here.
71 */
72#if defined(CONFIG_SMP)
73struct zone_padding {
74 char x[0];
22fc6ecc 75} ____cacheline_internodealigned_in_smp;
1da177e4
LT
76#define ZONE_PADDING(name) struct zone_padding name;
77#else
78#define ZONE_PADDING(name)
79#endif
80
2244b95a 81enum zone_stat_item {
51ed4491 82 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 83 NR_FREE_PAGES,
b69408e8 84 NR_LRU_BASE,
4f98a2fe
RR
85 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
86 NR_ACTIVE_ANON, /* " " " " " */
87 NR_INACTIVE_FILE, /* " " " " " */
88 NR_ACTIVE_FILE, /* " " " " " */
894bc310
LS
89#ifdef CONFIG_UNEVICTABLE_LRU
90 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 91 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
894bc310
LS
92#else
93 NR_UNEVICTABLE = NR_ACTIVE_FILE, /* avoid compiler errors in dead code */
5344b7e6 94 NR_MLOCK = NR_ACTIVE_FILE,
894bc310 95#endif
f3dbd344
CL
96 NR_ANON_PAGES, /* Mapped anonymous pages */
97 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 98 only modified from process context */
347ce434 99 NR_FILE_PAGES,
b1e7a8fd 100 NR_FILE_DIRTY,
ce866b34 101 NR_WRITEBACK,
51ed4491
CL
102 NR_SLAB_RECLAIMABLE,
103 NR_SLAB_UNRECLAIMABLE,
104 NR_PAGETABLE, /* used for pagetables */
fd39fc85 105 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 106 NR_BOUNCE,
e129b5c2 107 NR_VMSCAN_WRITE,
4f98a2fe 108 /* Second 128 byte cacheline */
fc3ba692 109 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
ca889e6c
CL
110#ifdef CONFIG_NUMA
111 NUMA_HIT, /* allocated in intended node */
112 NUMA_MISS, /* allocated in non intended node */
113 NUMA_FOREIGN, /* was intended here, hit elsewhere */
114 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
115 NUMA_LOCAL, /* allocation from local node */
116 NUMA_OTHER, /* allocation from other node */
117#endif
2244b95a
CL
118 NR_VM_ZONE_STAT_ITEMS };
119
4f98a2fe
RR
120/*
121 * We do arithmetic on the LRU lists in various places in the code,
122 * so it is important to keep the active lists LRU_ACTIVE higher in
123 * the array than the corresponding inactive lists, and to keep
124 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
125 *
126 * This has to be kept in sync with the statistics in zone_stat_item
127 * above and the descriptions in vmstat_text in mm/vmstat.c
128 */
129#define LRU_BASE 0
130#define LRU_ACTIVE 1
131#define LRU_FILE 2
132
b69408e8 133enum lru_list {
4f98a2fe
RR
134 LRU_INACTIVE_ANON = LRU_BASE,
135 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
136 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
137 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310
LS
138#ifdef CONFIG_UNEVICTABLE_LRU
139 LRU_UNEVICTABLE,
140#else
141 LRU_UNEVICTABLE = LRU_ACTIVE_FILE, /* avoid compiler errors in dead code */
142#endif
143 NR_LRU_LISTS
144};
b69408e8
CL
145
146#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
147
894bc310
LS
148#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
149
4f98a2fe
RR
150static inline int is_file_lru(enum lru_list l)
151{
152 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
153}
154
b69408e8
CL
155static inline int is_active_lru(enum lru_list l)
156{
4f98a2fe 157 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
b69408e8
CL
158}
159
894bc310
LS
160static inline int is_unevictable_lru(enum lru_list l)
161{
162#ifdef CONFIG_UNEVICTABLE_LRU
163 return (l == LRU_UNEVICTABLE);
164#else
165 return 0;
166#endif
167}
168
1da177e4
LT
169struct per_cpu_pages {
170 int count; /* number of pages in the list */
1da177e4
LT
171 int high; /* high watermark, emptying needed */
172 int batch; /* chunk size for buddy add/remove */
173 struct list_head list; /* the list of pages */
174};
175
176struct per_cpu_pageset {
3dfa5721 177 struct per_cpu_pages pcp;
4037d452
CL
178#ifdef CONFIG_NUMA
179 s8 expire;
180#endif
2244b95a 181#ifdef CONFIG_SMP
df9ecaba 182 s8 stat_threshold;
2244b95a
CL
183 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
184#endif
1da177e4
LT
185} ____cacheline_aligned_in_smp;
186
e7c8d5c9
CL
187#ifdef CONFIG_NUMA
188#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
189#else
190#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
191#endif
192
97965478
CL
193#endif /* !__GENERATING_BOUNDS.H */
194
2f1b6248 195enum zone_type {
4b51d669 196#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
197 /*
198 * ZONE_DMA is used when there are devices that are not able
199 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
200 * carve out the portion of memory that is needed for these devices.
201 * The range is arch specific.
202 *
203 * Some examples
204 *
205 * Architecture Limit
206 * ---------------------------
207 * parisc, ia64, sparc <4G
208 * s390 <2G
2f1b6248
CL
209 * arm Various
210 * alpha Unlimited or 0-16MB.
211 *
212 * i386, x86_64 and multiple other arches
213 * <16M.
214 */
215 ZONE_DMA,
4b51d669 216#endif
fb0e7942 217#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
218 /*
219 * x86_64 needs two ZONE_DMAs because it supports devices that are
220 * only able to do DMA to the lower 16M but also 32 bit devices that
221 * can only do DMA areas below 4G.
222 */
223 ZONE_DMA32,
fb0e7942 224#endif
2f1b6248
CL
225 /*
226 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
227 * performed on pages in ZONE_NORMAL if the DMA devices support
228 * transfers to all addressable memory.
229 */
230 ZONE_NORMAL,
e53ef38d 231#ifdef CONFIG_HIGHMEM
2f1b6248
CL
232 /*
233 * A memory area that is only addressable by the kernel through
234 * mapping portions into its own address space. This is for example
235 * used by i386 to allow the kernel to address the memory beyond
236 * 900MB. The kernel will set up special mappings (page
237 * table entries on i386) for each page that the kernel needs to
238 * access.
239 */
240 ZONE_HIGHMEM,
e53ef38d 241#endif
2a1e274a 242 ZONE_MOVABLE,
97965478 243 __MAX_NR_ZONES
2f1b6248 244};
1da177e4 245
97965478
CL
246#ifndef __GENERATING_BOUNDS_H
247
1da177e4
LT
248/*
249 * When a memory allocation must conform to specific limitations (such
250 * as being suitable for DMA) the caller will pass in hints to the
251 * allocator in the gfp_mask, in the zone modifier bits. These bits
252 * are used to select a priority ordered list of memory zones which
19655d34 253 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 254 */
fb0e7942 255
97965478 256#if MAX_NR_ZONES < 2
4b51d669 257#define ZONES_SHIFT 0
97965478 258#elif MAX_NR_ZONES <= 2
19655d34 259#define ZONES_SHIFT 1
97965478 260#elif MAX_NR_ZONES <= 4
19655d34 261#define ZONES_SHIFT 2
4b51d669
CL
262#else
263#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 264#endif
1da177e4 265
1da177e4
LT
266struct zone {
267 /* Fields commonly accessed by the page allocator */
1da177e4
LT
268 unsigned long pages_min, pages_low, pages_high;
269 /*
270 * We don't know if the memory that we're going to allocate will be freeable
271 * or/and it will be released eventually, so to avoid totally wasting several
272 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
273 * to run OOM on the lower zones despite there's tons of freeable ram
274 * on the higher zones). This array is recalculated at runtime if the
275 * sysctl_lowmem_reserve_ratio sysctl changes.
276 */
277 unsigned long lowmem_reserve[MAX_NR_ZONES];
278
e7c8d5c9 279#ifdef CONFIG_NUMA
d5f541ed 280 int node;
9614634f
CL
281 /*
282 * zone reclaim becomes active if more unmapped pages exist.
283 */
8417bba4 284 unsigned long min_unmapped_pages;
0ff38490 285 unsigned long min_slab_pages;
e7c8d5c9
CL
286 struct per_cpu_pageset *pageset[NR_CPUS];
287#else
1da177e4 288 struct per_cpu_pageset pageset[NR_CPUS];
e7c8d5c9 289#endif
1da177e4
LT
290 /*
291 * free areas of different sizes
292 */
293 spinlock_t lock;
bdc8cb98
DH
294#ifdef CONFIG_MEMORY_HOTPLUG
295 /* see spanned/present_pages for more description */
296 seqlock_t span_seqlock;
297#endif
1da177e4
LT
298 struct free_area free_area[MAX_ORDER];
299
835c134e
MG
300#ifndef CONFIG_SPARSEMEM
301 /*
d9c23400 302 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
303 * In SPARSEMEM, this map is stored in struct mem_section
304 */
305 unsigned long *pageblock_flags;
306#endif /* CONFIG_SPARSEMEM */
307
1da177e4
LT
308
309 ZONE_PADDING(_pad1_)
310
311 /* Fields commonly accessed by the page reclaim scanner */
312 spinlock_t lru_lock;
b69408e8
CL
313 struct {
314 struct list_head list;
315 unsigned long nr_scan;
316 } lru[NR_LRU_LISTS];
4f98a2fe
RR
317
318 /*
319 * The pageout code in vmscan.c keeps track of how many of the
320 * mem/swap backed and file backed pages are refeferenced.
321 * The higher the rotated/scanned ratio, the more valuable
322 * that cache is.
323 *
324 * The anon LRU stats live in [0], file LRU stats in [1]
325 */
326 unsigned long recent_rotated[2];
327 unsigned long recent_scanned[2];
328
1da177e4 329 unsigned long pages_scanned; /* since last reclaim */
e815af95 330 unsigned long flags; /* zone flags, see below */
753ee728 331
2244b95a
CL
332 /* Zone statistics */
333 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 334
1da177e4
LT
335 /*
336 * prev_priority holds the scanning priority for this zone. It is
337 * defined as the scanning priority at which we achieved our reclaim
338 * target at the previous try_to_free_pages() or balance_pgdat()
339 * invokation.
340 *
341 * We use prev_priority as a measure of how much stress page reclaim is
342 * under - it drives the swappiness decision: whether to unmap mapped
343 * pages.
344 *
3bb1a852 345 * Access to both this field is quite racy even on uniprocessor. But
1da177e4
LT
346 * it is expected to average out OK.
347 */
1da177e4
LT
348 int prev_priority;
349
556adecb
RR
350 /*
351 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
352 * this zone's LRU. Maintained by the pageout code.
353 */
354 unsigned int inactive_ratio;
355
1da177e4
LT
356
357 ZONE_PADDING(_pad2_)
358 /* Rarely used or read-mostly fields */
359
360 /*
361 * wait_table -- the array holding the hash table
02b694de 362 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
363 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
364 *
365 * The purpose of all these is to keep track of the people
366 * waiting for a page to become available and make them
367 * runnable again when possible. The trouble is that this
368 * consumes a lot of space, especially when so few things
369 * wait on pages at a given time. So instead of using
370 * per-page waitqueues, we use a waitqueue hash table.
371 *
372 * The bucket discipline is to sleep on the same queue when
373 * colliding and wake all in that wait queue when removing.
374 * When something wakes, it must check to be sure its page is
375 * truly available, a la thundering herd. The cost of a
376 * collision is great, but given the expected load of the
377 * table, they should be so rare as to be outweighed by the
378 * benefits from the saved space.
379 *
380 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
381 * primary users of these fields, and in mm/page_alloc.c
382 * free_area_init_core() performs the initialization of them.
383 */
384 wait_queue_head_t * wait_table;
02b694de 385 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
386 unsigned long wait_table_bits;
387
388 /*
389 * Discontig memory support fields.
390 */
391 struct pglist_data *zone_pgdat;
1da177e4
LT
392 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
393 unsigned long zone_start_pfn;
394
bdc8cb98
DH
395 /*
396 * zone_start_pfn, spanned_pages and present_pages are all
397 * protected by span_seqlock. It is a seqlock because it has
398 * to be read outside of zone->lock, and it is done in the main
399 * allocator path. But, it is written quite infrequently.
400 *
401 * The lock is declared along with zone->lock because it is
402 * frequently read in proximity to zone->lock. It's good to
403 * give them a chance of being in the same cacheline.
404 */
1da177e4
LT
405 unsigned long spanned_pages; /* total size, including holes */
406 unsigned long present_pages; /* amount of memory (excluding holes) */
407
408 /*
409 * rarely used fields:
410 */
15ad7cdc 411 const char *name;
22fc6ecc 412} ____cacheline_internodealigned_in_smp;
1da177e4 413
e815af95
DR
414typedef enum {
415 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
416 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 417 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
e815af95
DR
418} zone_flags_t;
419
420static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
421{
422 set_bit(flag, &zone->flags);
423}
d773ed6b
DR
424
425static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
426{
427 return test_and_set_bit(flag, &zone->flags);
428}
429
e815af95
DR
430static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
431{
432 clear_bit(flag, &zone->flags);
433}
434
435static inline int zone_is_all_unreclaimable(const struct zone *zone)
436{
437 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
438}
d773ed6b 439
e815af95
DR
440static inline int zone_is_reclaim_locked(const struct zone *zone)
441{
442 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
443}
d773ed6b 444
098d7f12
DR
445static inline int zone_is_oom_locked(const struct zone *zone)
446{
447 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
448}
e815af95 449
1da177e4
LT
450/*
451 * The "priority" of VM scanning is how much of the queues we will scan in one
452 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
453 * queues ("queue_length >> 12") during an aging round.
454 */
455#define DEF_PRIORITY 12
456
9276b1bc
PJ
457/* Maximum number of zones on a zonelist */
458#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
459
460#ifdef CONFIG_NUMA
523b9458
CL
461
462/*
463 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
464 * allocations to a single node for GFP_THISNODE.
465 *
54a6eb5c
MG
466 * [0] : Zonelist with fallback
467 * [1] : No fallback (GFP_THISNODE)
523b9458 468 */
54a6eb5c 469#define MAX_ZONELISTS 2
523b9458
CL
470
471
9276b1bc
PJ
472/*
473 * We cache key information from each zonelist for smaller cache
474 * footprint when scanning for free pages in get_page_from_freelist().
475 *
476 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
477 * up short of free memory since the last time (last_fullzone_zap)
478 * we zero'd fullzones.
479 * 2) The array z_to_n[] maps each zone in the zonelist to its node
480 * id, so that we can efficiently evaluate whether that node is
481 * set in the current tasks mems_allowed.
482 *
483 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
484 * indexed by a zones offset in the zonelist zones[] array.
485 *
486 * The get_page_from_freelist() routine does two scans. During the
487 * first scan, we skip zones whose corresponding bit in 'fullzones'
488 * is set or whose corresponding node in current->mems_allowed (which
489 * comes from cpusets) is not set. During the second scan, we bypass
490 * this zonelist_cache, to ensure we look methodically at each zone.
491 *
492 * Once per second, we zero out (zap) fullzones, forcing us to
493 * reconsider nodes that might have regained more free memory.
494 * The field last_full_zap is the time we last zapped fullzones.
495 *
496 * This mechanism reduces the amount of time we waste repeatedly
497 * reexaming zones for free memory when they just came up low on
498 * memory momentarilly ago.
499 *
500 * The zonelist_cache struct members logically belong in struct
501 * zonelist. However, the mempolicy zonelists constructed for
502 * MPOL_BIND are intentionally variable length (and usually much
503 * shorter). A general purpose mechanism for handling structs with
504 * multiple variable length members is more mechanism than we want
505 * here. We resort to some special case hackery instead.
506 *
507 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
508 * part because they are shorter), so we put the fixed length stuff
509 * at the front of the zonelist struct, ending in a variable length
510 * zones[], as is needed by MPOL_BIND.
511 *
512 * Then we put the optional zonelist cache on the end of the zonelist
513 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
514 * the fixed length portion at the front of the struct. This pointer
515 * both enables us to find the zonelist cache, and in the case of
516 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
517 * to know that the zonelist cache is not there.
518 *
519 * The end result is that struct zonelists come in two flavors:
520 * 1) The full, fixed length version, shown below, and
521 * 2) The custom zonelists for MPOL_BIND.
522 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
523 *
524 * Even though there may be multiple CPU cores on a node modifying
525 * fullzones or last_full_zap in the same zonelist_cache at the same
526 * time, we don't lock it. This is just hint data - if it is wrong now
527 * and then, the allocator will still function, perhaps a bit slower.
528 */
529
530
531struct zonelist_cache {
9276b1bc 532 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 533 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
534 unsigned long last_full_zap; /* when last zap'd (jiffies) */
535};
536#else
54a6eb5c 537#define MAX_ZONELISTS 1
9276b1bc
PJ
538struct zonelist_cache;
539#endif
540
dd1a239f
MG
541/*
542 * This struct contains information about a zone in a zonelist. It is stored
543 * here to avoid dereferences into large structures and lookups of tables
544 */
545struct zoneref {
546 struct zone *zone; /* Pointer to actual zone */
547 int zone_idx; /* zone_idx(zoneref->zone) */
548};
549
1da177e4
LT
550/*
551 * One allocation request operates on a zonelist. A zonelist
552 * is a list of zones, the first one is the 'goal' of the
553 * allocation, the other zones are fallback zones, in decreasing
554 * priority.
555 *
9276b1bc
PJ
556 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
557 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
dd1a239f
MG
558 * *
559 * To speed the reading of the zonelist, the zonerefs contain the zone index
560 * of the entry being read. Helper functions to access information given
561 * a struct zoneref are
562 *
563 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
564 * zonelist_zone_idx() - Return the index of the zone for an entry
565 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
566 */
567struct zonelist {
9276b1bc 568 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
dd1a239f 569 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
9276b1bc
PJ
570#ifdef CONFIG_NUMA
571 struct zonelist_cache zlcache; // optional ...
572#endif
1da177e4
LT
573};
574
c713216d
MG
575#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
576struct node_active_region {
577 unsigned long start_pfn;
578 unsigned long end_pfn;
579 int nid;
580};
581#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 582
5b99cd0e
HC
583#ifndef CONFIG_DISCONTIGMEM
584/* The array of struct pages - for discontigmem use pgdat->lmem_map */
585extern struct page *mem_map;
586#endif
587
1da177e4
LT
588/*
589 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
590 * (mostly NUMA machines?) to denote a higher-level memory zone than the
591 * zone denotes.
592 *
593 * On NUMA machines, each NUMA node would have a pg_data_t to describe
594 * it's memory layout.
595 *
596 * Memory statistics and page replacement data structures are maintained on a
597 * per-zone basis.
598 */
599struct bootmem_data;
600typedef struct pglist_data {
601 struct zone node_zones[MAX_NR_ZONES];
523b9458 602 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 603 int nr_zones;
d41dee36 604#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4 605 struct page *node_mem_map;
d41dee36 606#endif
1da177e4 607 struct bootmem_data *bdata;
208d54e5
DH
608#ifdef CONFIG_MEMORY_HOTPLUG
609 /*
610 * Must be held any time you expect node_start_pfn, node_present_pages
611 * or node_spanned_pages stay constant. Holding this will also
612 * guarantee that any pfn_valid() stays that way.
613 *
614 * Nests above zone->lock and zone->size_seqlock.
615 */
616 spinlock_t node_size_lock;
617#endif
1da177e4
LT
618 unsigned long node_start_pfn;
619 unsigned long node_present_pages; /* total number of physical pages */
620 unsigned long node_spanned_pages; /* total size of physical page
621 range, including holes */
622 int node_id;
1da177e4
LT
623 wait_queue_head_t kswapd_wait;
624 struct task_struct *kswapd;
625 int kswapd_max_order;
626} pg_data_t;
627
628#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
629#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 630#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 631#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
632#else
633#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
634#endif
408fde81 635#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 636
208d54e5
DH
637#include <linux/memory_hotplug.h>
638
1da177e4
LT
639void get_zone_counts(unsigned long *active, unsigned long *inactive,
640 unsigned long *free);
641void build_all_zonelists(void);
642void wakeup_kswapd(struct zone *zone, int order);
643int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 644 int classzone_idx, int alloc_flags);
a2f3aa02
DH
645enum memmap_context {
646 MEMMAP_EARLY,
647 MEMMAP_HOTPLUG,
648};
718127cc 649extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
650 unsigned long size,
651 enum memmap_context context);
718127cc 652
1da177e4
LT
653#ifdef CONFIG_HAVE_MEMORY_PRESENT
654void memory_present(int nid, unsigned long start, unsigned long end);
655#else
656static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
657#endif
658
659#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
660unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
661#endif
662
663/*
664 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
665 */
666#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
667
f3fe6512
CK
668static inline int populated_zone(struct zone *zone)
669{
670 return (!!zone->present_pages);
671}
672
2a1e274a
MG
673extern int movable_zone;
674
675static inline int zone_movable_is_highmem(void)
676{
677#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
678 return movable_zone == ZONE_HIGHMEM;
679#else
680 return 0;
681#endif
682}
683
2f1b6248 684static inline int is_highmem_idx(enum zone_type idx)
1da177e4 685{
e53ef38d 686#ifdef CONFIG_HIGHMEM
2a1e274a
MG
687 return (idx == ZONE_HIGHMEM ||
688 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
689#else
690 return 0;
691#endif
1da177e4
LT
692}
693
2f1b6248 694static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
695{
696 return (idx == ZONE_NORMAL);
697}
9328b8fa 698
1da177e4
LT
699/**
700 * is_highmem - helper function to quickly check if a struct zone is a
701 * highmem zone or not. This is an attempt to keep references
702 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
703 * @zone - pointer to struct zone variable
704 */
705static inline int is_highmem(struct zone *zone)
706{
e53ef38d 707#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
708 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
709 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
710 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
711 zone_movable_is_highmem());
e53ef38d
CL
712#else
713 return 0;
714#endif
1da177e4
LT
715}
716
717static inline int is_normal(struct zone *zone)
718{
719 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
720}
721
9328b8fa
NP
722static inline int is_dma32(struct zone *zone)
723{
fb0e7942 724#ifdef CONFIG_ZONE_DMA32
9328b8fa 725 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
726#else
727 return 0;
728#endif
9328b8fa
NP
729}
730
731static inline int is_dma(struct zone *zone)
732{
4b51d669 733#ifdef CONFIG_ZONE_DMA
9328b8fa 734 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
735#else
736 return 0;
737#endif
9328b8fa
NP
738}
739
1da177e4
LT
740/* These two functions are used to setup the per zone pages min values */
741struct ctl_table;
742struct file;
743int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
744 void __user *, size_t *, loff_t *);
745extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
746int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
747 void __user *, size_t *, loff_t *);
8ad4b1fb
RS
748int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
749 void __user *, size_t *, loff_t *);
9614634f
CL
750int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
751 struct file *, void __user *, size_t *, loff_t *);
0ff38490
CL
752int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
753 struct file *, void __user *, size_t *, loff_t *);
1da177e4 754
f0c0b2b8
KH
755extern int numa_zonelist_order_handler(struct ctl_table *, int,
756 struct file *, void __user *, size_t *, loff_t *);
757extern char numa_zonelist_order[];
758#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
759
1da177e4
LT
760#include <linux/topology.h>
761/* Returns the number of the current Node. */
69d81fcd 762#ifndef numa_node_id
39c715b7 763#define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
69d81fcd 764#endif
1da177e4 765
93b7504e 766#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
767
768extern struct pglist_data contig_page_data;
769#define NODE_DATA(nid) (&contig_page_data)
770#define NODE_MEM_MAP(nid) mem_map
1da177e4 771
93b7504e 772#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
773
774#include <asm/mmzone.h>
775
93b7504e 776#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 777
95144c78
KH
778extern struct pglist_data *first_online_pgdat(void);
779extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
780extern struct zone *next_zone(struct zone *zone);
8357f869
KH
781
782/**
12d15f0d 783 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
784 * @pgdat - pointer to a pg_data_t variable
785 */
786#define for_each_online_pgdat(pgdat) \
787 for (pgdat = first_online_pgdat(); \
788 pgdat; \
789 pgdat = next_online_pgdat(pgdat))
8357f869
KH
790/**
791 * for_each_zone - helper macro to iterate over all memory zones
792 * @zone - pointer to struct zone variable
793 *
794 * The user only needs to declare the zone variable, for_each_zone
795 * fills it in.
796 */
797#define for_each_zone(zone) \
798 for (zone = (first_online_pgdat())->node_zones; \
799 zone; \
800 zone = next_zone(zone))
801
dd1a239f
MG
802static inline struct zone *zonelist_zone(struct zoneref *zoneref)
803{
804 return zoneref->zone;
805}
806
807static inline int zonelist_zone_idx(struct zoneref *zoneref)
808{
809 return zoneref->zone_idx;
810}
811
812static inline int zonelist_node_idx(struct zoneref *zoneref)
813{
814#ifdef CONFIG_NUMA
815 /* zone_to_nid not available in this context */
816 return zoneref->zone->node;
817#else
818 return 0;
819#endif /* CONFIG_NUMA */
820}
821
19770b32
MG
822/**
823 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
824 * @z - The cursor used as a starting point for the search
825 * @highest_zoneidx - The zone index of the highest zone to return
826 * @nodes - An optional nodemask to filter the zonelist with
827 * @zone - The first suitable zone found is returned via this parameter
828 *
829 * This function returns the next zone at or below a given zone index that is
830 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
831 * search. The zoneref returned is a cursor that represents the current zone
832 * being examined. It should be advanced by one before calling
833 * next_zones_zonelist again.
19770b32
MG
834 */
835struct zoneref *next_zones_zonelist(struct zoneref *z,
836 enum zone_type highest_zoneidx,
837 nodemask_t *nodes,
838 struct zone **zone);
dd1a239f 839
19770b32
MG
840/**
841 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
842 * @zonelist - The zonelist to search for a suitable zone
843 * @highest_zoneidx - The zone index of the highest zone to return
844 * @nodes - An optional nodemask to filter the zonelist with
845 * @zone - The first suitable zone found is returned via this parameter
846 *
847 * This function returns the first zone at or below a given zone index that is
848 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
849 * used to iterate the zonelist with next_zones_zonelist by advancing it by
850 * one before calling.
19770b32 851 */
dd1a239f 852static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32
MG
853 enum zone_type highest_zoneidx,
854 nodemask_t *nodes,
855 struct zone **zone)
54a6eb5c 856{
19770b32
MG
857 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
858 zone);
54a6eb5c
MG
859}
860
19770b32
MG
861/**
862 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
863 * @zone - The current zone in the iterator
864 * @z - The current pointer within zonelist->zones being iterated
865 * @zlist - The zonelist being iterated
866 * @highidx - The zone index of the highest zone to return
867 * @nodemask - Nodemask allowed by the allocator
868 *
869 * This iterator iterates though all zones at or below a given zone index and
870 * within a given nodemask
871 */
872#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
873 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
874 zone; \
5bead2a0 875 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
54a6eb5c
MG
876
877/**
878 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
879 * @zone - The current zone in the iterator
880 * @z - The current pointer within zonelist->zones being iterated
881 * @zlist - The zonelist being iterated
882 * @highidx - The zone index of the highest zone to return
883 *
884 * This iterator iterates though all zones at or below a given zone index.
885 */
886#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 887 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 888
d41dee36
AW
889#ifdef CONFIG_SPARSEMEM
890#include <asm/sparsemem.h>
891#endif
892
c713216d
MG
893#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
894 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b4544568
AM
895static inline unsigned long early_pfn_to_nid(unsigned long pfn)
896{
897 return 0;
898}
b159d43f
AW
899#endif
900
2bdaf115
AW
901#ifdef CONFIG_FLATMEM
902#define pfn_to_nid(pfn) (0)
903#endif
904
d41dee36
AW
905#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
906#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
907
908#ifdef CONFIG_SPARSEMEM
909
910/*
911 * SECTION_SHIFT #bits space required to store a section #
912 *
913 * PA_SECTION_SHIFT physical address to/from section number
914 * PFN_SECTION_SHIFT pfn to/from section number
915 */
916#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
917
918#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
919#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
920
921#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
922
923#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
924#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
925
835c134e 926#define SECTION_BLOCKFLAGS_BITS \
d9c23400 927 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 928
d41dee36
AW
929#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
930#error Allocator MAX_ORDER exceeds SECTION_SIZE
931#endif
932
933struct page;
934struct mem_section {
29751f69
AW
935 /*
936 * This is, logically, a pointer to an array of struct
937 * pages. However, it is stored with some other magic.
938 * (see sparse.c::sparse_init_one_section())
939 *
30c253e6
AW
940 * Additionally during early boot we encode node id of
941 * the location of the section here to guide allocation.
942 * (see sparse.c::memory_present())
943 *
29751f69
AW
944 * Making it a UL at least makes someone do a cast
945 * before using it wrong.
946 */
947 unsigned long section_mem_map;
5c0e3066
MG
948
949 /* See declaration of similar field in struct zone */
950 unsigned long *pageblock_flags;
d41dee36
AW
951};
952
3e347261
BP
953#ifdef CONFIG_SPARSEMEM_EXTREME
954#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
955#else
956#define SECTIONS_PER_ROOT 1
957#endif
802f192e 958
3e347261
BP
959#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
960#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
961#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 962
3e347261
BP
963#ifdef CONFIG_SPARSEMEM_EXTREME
964extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 965#else
3e347261
BP
966extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
967#endif
d41dee36 968
29751f69
AW
969static inline struct mem_section *__nr_to_section(unsigned long nr)
970{
3e347261
BP
971 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
972 return NULL;
973 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 974}
4ca644d9 975extern int __section_nr(struct mem_section* ms);
04753278 976extern unsigned long usemap_size(void);
29751f69
AW
977
978/*
979 * We use the lower bits of the mem_map pointer to store
980 * a little bit of information. There should be at least
981 * 3 bits here due to 32-bit alignment.
982 */
983#define SECTION_MARKED_PRESENT (1UL<<0)
984#define SECTION_HAS_MEM_MAP (1UL<<1)
985#define SECTION_MAP_LAST_BIT (1UL<<2)
986#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 987#define SECTION_NID_SHIFT 2
29751f69
AW
988
989static inline struct page *__section_mem_map_addr(struct mem_section *section)
990{
991 unsigned long map = section->section_mem_map;
992 map &= SECTION_MAP_MASK;
993 return (struct page *)map;
994}
995
540557b9 996static inline int present_section(struct mem_section *section)
29751f69 997{
802f192e 998 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
999}
1000
540557b9
AW
1001static inline int present_section_nr(unsigned long nr)
1002{
1003 return present_section(__nr_to_section(nr));
1004}
1005
1006static inline int valid_section(struct mem_section *section)
29751f69 1007{
802f192e 1008 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1009}
1010
1011static inline int valid_section_nr(unsigned long nr)
1012{
1013 return valid_section(__nr_to_section(nr));
1014}
1015
d41dee36
AW
1016static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1017{
29751f69 1018 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1019}
1020
d41dee36
AW
1021static inline int pfn_valid(unsigned long pfn)
1022{
1023 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1024 return 0;
29751f69 1025 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
1026}
1027
540557b9
AW
1028static inline int pfn_present(unsigned long pfn)
1029{
1030 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1031 return 0;
1032 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1033}
1034
d41dee36
AW
1035/*
1036 * These are _only_ used during initialisation, therefore they
1037 * can use __initdata ... They could have names to indicate
1038 * this restriction.
1039 */
1040#ifdef CONFIG_NUMA
161599ff
AW
1041#define pfn_to_nid(pfn) \
1042({ \
1043 unsigned long __pfn_to_nid_pfn = (pfn); \
1044 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1045})
2bdaf115
AW
1046#else
1047#define pfn_to_nid(pfn) (0)
d41dee36
AW
1048#endif
1049
d41dee36
AW
1050#define early_pfn_valid(pfn) pfn_valid(pfn)
1051void sparse_init(void);
1052#else
1053#define sparse_init() do {} while (0)
28ae55c9 1054#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1055#endif /* CONFIG_SPARSEMEM */
1056
75167957
AW
1057#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1058#define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
1059#else
1060#define early_pfn_in_nid(pfn, nid) (1)
1061#endif
1062
d41dee36
AW
1063#ifndef early_pfn_valid
1064#define early_pfn_valid(pfn) (1)
1065#endif
1066
1067void memory_present(int nid, unsigned long start, unsigned long end);
1068unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1069
14e07298
AW
1070/*
1071 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1072 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1073 * pfn_valid_within() should be used in this case; we optimise this away
1074 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1075 */
1076#ifdef CONFIG_HOLES_IN_ZONE
1077#define pfn_valid_within(pfn) pfn_valid(pfn)
1078#else
1079#define pfn_valid_within(pfn) (1)
1080#endif
1081
97965478 1082#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1083#endif /* !__ASSEMBLY__ */
1da177e4 1084#endif /* _LINUX_MMZONE_H */