memory tiering: hot page selection with hint page fault latency
[linux-block.git] / include / linux / mmzone.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
1da177e4 5#ifndef __ASSEMBLY__
97965478 6#ifndef __GENERATING_BOUNDS_H
1da177e4 7
1da177e4
LT
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/wait.h>
e815af95 11#include <linux/bitops.h>
1da177e4
LT
12#include <linux/cache.h>
13#include <linux/threads.h>
14#include <linux/numa.h>
15#include <linux/init.h>
bdc8cb98 16#include <linux/seqlock.h>
8357f869 17#include <linux/nodemask.h>
835c134e 18#include <linux/pageblock-flags.h>
bbeae5b0 19#include <linux/page-flags-layout.h>
60063497 20#include <linux/atomic.h>
b03641af
DW
21#include <linux/mm_types.h>
22#include <linux/page-flags.h>
dbbee9d5 23#include <linux/local_lock.h>
93ff66bf 24#include <asm/page.h>
1da177e4
LT
25
26/* Free memory management - zoned buddy allocator. */
27#ifndef CONFIG_FORCE_MAX_ZONEORDER
28#define MAX_ORDER 11
29#else
30#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
31#endif
e984bb43 32#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 33
5ad333eb
AW
34/*
35 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
36 * costly to service. That is between allocation orders which should
35fca53e 37 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
38 * will not.
39 */
40#define PAGE_ALLOC_COSTLY_ORDER 3
41
a6ffdc07 42enum migratetype {
47118af0 43 MIGRATE_UNMOVABLE,
47118af0 44 MIGRATE_MOVABLE,
016c13da 45 MIGRATE_RECLAIMABLE,
0aaa29a5
MG
46 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
47 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47118af0
MN
48#ifdef CONFIG_CMA
49 /*
50 * MIGRATE_CMA migration type is designed to mimic the way
51 * ZONE_MOVABLE works. Only movable pages can be allocated
52 * from MIGRATE_CMA pageblocks and page allocator never
53 * implicitly change migration type of MIGRATE_CMA pageblock.
54 *
55 * The way to use it is to change migratetype of a range of
56 * pageblocks to MIGRATE_CMA which can be done by
11ac3e87 57 * __free_pageblock_cma() function.
47118af0
MN
58 */
59 MIGRATE_CMA,
60#endif
194159fb 61#ifdef CONFIG_MEMORY_ISOLATION
47118af0 62 MIGRATE_ISOLATE, /* can't allocate from here */
194159fb 63#endif
47118af0
MN
64 MIGRATE_TYPES
65};
66
60f30350 67/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
c999fbd3 68extern const char * const migratetype_names[MIGRATE_TYPES];
60f30350 69
47118af0
MN
70#ifdef CONFIG_CMA
71# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
7c15d9bb 72# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
47118af0
MN
73#else
74# define is_migrate_cma(migratetype) false
7c15d9bb 75# define is_migrate_cma_page(_page) false
47118af0 76#endif
b2a0ac88 77
b682debd
VB
78static inline bool is_migrate_movable(int mt)
79{
80 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
81}
82
1dd214b8
ZY
83/*
84 * Check whether a migratetype can be merged with another migratetype.
85 *
86 * It is only mergeable when it can fall back to other migratetypes for
87 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
88 */
89static inline bool migratetype_is_mergeable(int mt)
90{
91 return mt < MIGRATE_PCPTYPES;
92}
93
b2a0ac88
MG
94#define for_each_migratetype_order(order, type) \
95 for (order = 0; order < MAX_ORDER; order++) \
96 for (type = 0; type < MIGRATE_TYPES; type++)
97
467c996c
MG
98extern int page_group_by_mobility_disabled;
99
d38ac97f 100#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
e58469ba 101
dc4b0caf 102#define get_pageblock_migratetype(page) \
535b81e2 103 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
dc4b0caf 104
1da177e4 105struct free_area {
b2a0ac88 106 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
107 unsigned long nr_free;
108};
109
b03641af
DW
110static inline struct page *get_page_from_free_area(struct free_area *area,
111 int migratetype)
112{
113 return list_first_entry_or_null(&area->free_list[migratetype],
114 struct page, lru);
115}
116
b03641af
DW
117static inline bool free_area_empty(struct free_area *area, int migratetype)
118{
119 return list_empty(&area->free_list[migratetype]);
120}
121
1da177e4
LT
122struct pglist_data;
123
124/*
041711ce 125 * Add a wild amount of padding here to ensure data fall into separate
1da177e4
LT
126 * cachelines. There are very few zone structures in the machine, so space
127 * consumption is not a concern here.
128 */
129#if defined(CONFIG_SMP)
130struct zone_padding {
131 char x[0];
22fc6ecc 132} ____cacheline_internodealigned_in_smp;
1da177e4
LT
133#define ZONE_PADDING(name) struct zone_padding name;
134#else
135#define ZONE_PADDING(name)
136#endif
137
3a321d2a
KW
138#ifdef CONFIG_NUMA
139enum numa_stat_item {
140 NUMA_HIT, /* allocated in intended node */
141 NUMA_MISS, /* allocated in non intended node */
142 NUMA_FOREIGN, /* was intended here, hit elsewhere */
143 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
144 NUMA_LOCAL, /* allocation from local node */
145 NUMA_OTHER, /* allocation from other node */
f19298b9 146 NR_VM_NUMA_EVENT_ITEMS
3a321d2a
KW
147};
148#else
f19298b9 149#define NR_VM_NUMA_EVENT_ITEMS 0
3a321d2a
KW
150#endif
151
2244b95a 152enum zone_stat_item {
51ed4491 153 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 154 NR_FREE_PAGES,
71c799f4
MK
155 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
156 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
157 NR_ZONE_ACTIVE_ANON,
158 NR_ZONE_INACTIVE_FILE,
159 NR_ZONE_ACTIVE_FILE,
160 NR_ZONE_UNEVICTABLE,
5a1c84b4 161 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
5344b7e6 162 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
c6a7f572 163 /* Second 128 byte cacheline */
d2c5e30c 164 NR_BOUNCE,
91537fee
MK
165#if IS_ENABLED(CONFIG_ZSMALLOC)
166 NR_ZSPAGES, /* allocated in zsmalloc */
ca889e6c 167#endif
d1ce749a 168 NR_FREE_CMA_PAGES,
2244b95a
CL
169 NR_VM_ZONE_STAT_ITEMS };
170
75ef7184 171enum node_stat_item {
599d0c95
MG
172 NR_LRU_BASE,
173 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
174 NR_ACTIVE_ANON, /* " " " " " */
175 NR_INACTIVE_FILE, /* " " " " " */
176 NR_ACTIVE_FILE, /* " " " " " */
177 NR_UNEVICTABLE, /* " " " " " */
d42f3245
RG
178 NR_SLAB_RECLAIMABLE_B,
179 NR_SLAB_UNRECLAIMABLE_B,
599d0c95
MG
180 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
181 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
68d48e6a 182 WORKINGSET_NODES,
170b04b7
JK
183 WORKINGSET_REFAULT_BASE,
184 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
185 WORKINGSET_REFAULT_FILE,
186 WORKINGSET_ACTIVATE_BASE,
187 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
188 WORKINGSET_ACTIVATE_FILE,
189 WORKINGSET_RESTORE_BASE,
190 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
191 WORKINGSET_RESTORE_FILE,
1e6b1085 192 WORKINGSET_NODERECLAIM,
4b9d0fab 193 NR_ANON_MAPPED, /* Mapped anonymous pages */
50658e2e
MG
194 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
195 only modified from process context */
11fb9989
MG
196 NR_FILE_PAGES,
197 NR_FILE_DIRTY,
198 NR_WRITEBACK,
199 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
200 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
201 NR_SHMEM_THPS,
202 NR_SHMEM_PMDMAPPED,
60fbf0ab
SL
203 NR_FILE_THPS,
204 NR_FILE_PMDMAPPED,
11fb9989 205 NR_ANON_THPS,
c4a25635
MG
206 NR_VMSCAN_WRITE,
207 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
208 NR_DIRTIED, /* page dirtyings since bootup */
209 NR_WRITTEN, /* page writings since bootup */
8cd7c588 210 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */
b29940c1 211 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
1970dc6f
JH
212 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
213 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
991e7673
SB
214 NR_KERNEL_STACK_KB, /* measured in KiB */
215#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
216 NR_KERNEL_SCS_KB, /* measured in KiB */
217#endif
f0c0c115 218 NR_PAGETABLE, /* used for pagetables */
b6038942
SB
219#ifdef CONFIG_SWAP
220 NR_SWAPCACHE,
e39bb6be
HY
221#endif
222#ifdef CONFIG_NUMA_BALANCING
223 PGPROMOTE_SUCCESS, /* promote successfully */
b6038942 224#endif
75ef7184
MG
225 NR_VM_NODE_STAT_ITEMS
226};
227
69473e5d
MS
228/*
229 * Returns true if the item should be printed in THPs (/proc/vmstat
230 * currently prints number of anon, file and shmem THPs. But the item
231 * is charged in pages).
232 */
233static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
234{
235 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
236 return false;
237
bf9ecead 238 return item == NR_ANON_THPS ||
57b2847d 239 item == NR_FILE_THPS ||
a1528e21 240 item == NR_SHMEM_THPS ||
380780e7
MS
241 item == NR_SHMEM_PMDMAPPED ||
242 item == NR_FILE_PMDMAPPED;
69473e5d
MS
243}
244
ea426c2a
RG
245/*
246 * Returns true if the value is measured in bytes (most vmstat values are
247 * measured in pages). This defines the API part, the internal representation
248 * might be different.
249 */
250static __always_inline bool vmstat_item_in_bytes(int idx)
251{
d42f3245
RG
252 /*
253 * Global and per-node slab counters track slab pages.
254 * It's expected that changes are multiples of PAGE_SIZE.
255 * Internally values are stored in pages.
256 *
257 * Per-memcg and per-lruvec counters track memory, consumed
258 * by individual slab objects. These counters are actually
259 * byte-precise.
260 */
261 return (idx == NR_SLAB_RECLAIMABLE_B ||
262 idx == NR_SLAB_UNRECLAIMABLE_B);
ea426c2a
RG
263}
264
4f98a2fe
RR
265/*
266 * We do arithmetic on the LRU lists in various places in the code,
267 * so it is important to keep the active lists LRU_ACTIVE higher in
268 * the array than the corresponding inactive lists, and to keep
269 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
270 *
271 * This has to be kept in sync with the statistics in zone_stat_item
272 * above and the descriptions in vmstat_text in mm/vmstat.c
273 */
274#define LRU_BASE 0
275#define LRU_ACTIVE 1
276#define LRU_FILE 2
277
b69408e8 278enum lru_list {
4f98a2fe
RR
279 LRU_INACTIVE_ANON = LRU_BASE,
280 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
281 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
282 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 283 LRU_UNEVICTABLE,
894bc310
LS
284 NR_LRU_LISTS
285};
b69408e8 286
8cd7c588
MG
287enum vmscan_throttle_state {
288 VMSCAN_THROTTLE_WRITEBACK,
d818fca1 289 VMSCAN_THROTTLE_ISOLATED,
69392a40 290 VMSCAN_THROTTLE_NOPROGRESS,
1b4e3f26 291 VMSCAN_THROTTLE_CONGESTED,
8cd7c588
MG
292 NR_VMSCAN_THROTTLE,
293};
294
4111304d 295#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 296
4111304d 297#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 298
b91ac374 299static inline bool is_file_lru(enum lru_list lru)
4f98a2fe 300{
4111304d 301 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
302}
303
b91ac374 304static inline bool is_active_lru(enum lru_list lru)
b69408e8 305{
4111304d 306 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
307}
308
e9c2dbc8
YY
309#define WORKINGSET_ANON 0
310#define WORKINGSET_FILE 1
ed017373
YZ
311#define ANON_AND_FILE 2
312
1b05117d
JW
313enum lruvec_flags {
314 LRUVEC_CONGESTED, /* lruvec has many dirty pages
315 * backed by a congested BDI
316 */
317};
318
6290df54 319struct lruvec {
23047a96 320 struct list_head lists[NR_LRU_LISTS];
6168d0da
AS
321 /* per lruvec lru_lock for memcg */
322 spinlock_t lru_lock;
1431d4d1
JW
323 /*
324 * These track the cost of reclaiming one LRU - file or anon -
325 * over the other. As the observed cost of reclaiming one LRU
326 * increases, the reclaim scan balance tips toward the other.
327 */
328 unsigned long anon_cost;
329 unsigned long file_cost;
31d8fcac
JW
330 /* Non-resident age, driven by LRU movement */
331 atomic_long_t nonresident_age;
ed017373
YZ
332 /* Refaults at the time of last reclaim cycle */
333 unsigned long refaults[ANON_AND_FILE];
1b05117d
JW
334 /* Various lruvec state flags (enum lruvec_flags) */
335 unsigned long flags;
c255a458 336#ifdef CONFIG_MEMCG
599d0c95 337 struct pglist_data *pgdat;
7f5e86c2 338#endif
6290df54
JW
339};
340
653e003d 341/* Isolate unmapped pages */
f3fd4a61 342#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
c8244935 343/* Isolate for asynchronous migration */
f3fd4a61 344#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
e46a2879
MK
345/* Isolate unevictable pages */
346#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
4356f21d
MK
347
348/* LRU Isolation modes. */
9efeccac 349typedef unsigned __bitwise isolate_mode_t;
4356f21d 350
41858966
MG
351enum zone_watermarks {
352 WMARK_MIN,
353 WMARK_LOW,
354 WMARK_HIGH,
c574bbe9 355 WMARK_PROMO,
41858966
MG
356 NR_WMARK
357};
358
44042b44 359/*
5d0a661d
MG
360 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
361 * for THP which will usually be GFP_MOVABLE. Even if it is another type,
362 * it should not contribute to serious fragmentation causing THP allocation
363 * failures.
44042b44
MG
364 */
365#ifdef CONFIG_TRANSPARENT_HUGEPAGE
366#define NR_PCP_THP 1
367#else
368#define NR_PCP_THP 0
369#endif
5d0a661d
MG
370#define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
371#define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
44042b44
MG
372
373/*
374 * Shift to encode migratetype and order in the same integer, with order
375 * in the least significant bits.
376 */
377#define NR_PCP_ORDER_WIDTH 8
378#define NR_PCP_ORDER_MASK ((1<<NR_PCP_ORDER_WIDTH) - 1)
379
1c30844d
MG
380#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
381#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
382#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
383#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
41858966 384
dbbee9d5 385/* Fields and list protected by pagesets local_lock in page_alloc.c */
1da177e4 386struct per_cpu_pages {
4b23a68f 387 spinlock_t lock; /* Protects lists field */
1da177e4 388 int count; /* number of pages in the list */
1da177e4
LT
389 int high; /* high watermark, emptying needed */
390 int batch; /* chunk size for buddy add/remove */
3b12e7e9 391 short free_factor; /* batch scaling factor during free */
28f836b6 392#ifdef CONFIG_NUMA
3b12e7e9 393 short expire; /* When 0, remote pagesets are drained */
28f836b6 394#endif
5f8dcc21
MG
395
396 /* Lists of pages, one per migrate type stored on the pcp-lists */
44042b44 397 struct list_head lists[NR_PCP_LISTS];
5d0a661d 398} ____cacheline_aligned_in_smp;
1da177e4 399
28f836b6 400struct per_cpu_zonestat {
2244b95a
CL
401#ifdef CONFIG_SMP
402 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
28f836b6
MG
403 s8 stat_threshold;
404#endif
405#ifdef CONFIG_NUMA
f19298b9
MG
406 /*
407 * Low priority inaccurate counters that are only folded
408 * on demand. Use a large type to avoid the overhead of
409 * folding during refresh_cpu_vm_stats.
410 */
411 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
2244b95a 412#endif
99dcc3e5 413};
e7c8d5c9 414
75ef7184
MG
415struct per_cpu_nodestat {
416 s8 stat_threshold;
417 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
418};
419
97965478
CL
420#endif /* !__GENERATING_BOUNDS.H */
421
2f1b6248
CL
422enum zone_type {
423 /*
734f9246
NSJ
424 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
425 * to DMA to all of the addressable memory (ZONE_NORMAL).
426 * On architectures where this area covers the whole 32 bit address
427 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
428 * DMA addressing constraints. This distinction is important as a 32bit
429 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
430 * platforms may need both zones as they support peripherals with
431 * different DMA addressing limitations.
2f1b6248 432 */
734f9246 433#ifdef CONFIG_ZONE_DMA
2f1b6248 434 ZONE_DMA,
4b51d669 435#endif
fb0e7942 436#ifdef CONFIG_ZONE_DMA32
2f1b6248 437 ZONE_DMA32,
fb0e7942 438#endif
2f1b6248
CL
439 /*
440 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
441 * performed on pages in ZONE_NORMAL if the DMA devices support
442 * transfers to all addressable memory.
443 */
444 ZONE_NORMAL,
e53ef38d 445#ifdef CONFIG_HIGHMEM
2f1b6248
CL
446 /*
447 * A memory area that is only addressable by the kernel through
448 * mapping portions into its own address space. This is for example
449 * used by i386 to allow the kernel to address the memory beyond
450 * 900MB. The kernel will set up special mappings (page
451 * table entries on i386) for each page that the kernel needs to
452 * access.
453 */
454 ZONE_HIGHMEM,
e53ef38d 455#endif
9181a980
DH
456 /*
457 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
458 * movable pages with few exceptional cases described below. Main use
459 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
460 * likely to succeed, and to locally limit unmovable allocations - e.g.,
461 * to increase the number of THP/huge pages. Notable special cases are:
462 *
463 * 1. Pinned pages: (long-term) pinning of movable pages might
d1e153fe
PT
464 * essentially turn such pages unmovable. Therefore, we do not allow
465 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
466 * faulted, they come from the right zone right away. However, it is
467 * still possible that address space already has pages in
468 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has
469 * touches that memory before pinning). In such case we migrate them
470 * to a different zone. When migration fails - pinning fails.
9181a980
DH
471 * 2. memblock allocations: kernelcore/movablecore setups might create
472 * situations where ZONE_MOVABLE contains unmovable allocations
473 * after boot. Memory offlining and allocations fail early.
474 * 3. Memory holes: kernelcore/movablecore setups might create very rare
475 * situations where ZONE_MOVABLE contains memory holes after boot,
476 * for example, if we have sections that are only partially
477 * populated. Memory offlining and allocations fail early.
478 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
479 * memory offlining, such pages cannot be allocated.
480 * 5. Unmovable PG_offline pages: in paravirtualized environments,
481 * hotplugged memory blocks might only partially be managed by the
482 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
483 * parts not manged by the buddy are unmovable PG_offline pages. In
484 * some cases (virtio-mem), such pages can be skipped during
485 * memory offlining, however, cannot be moved/allocated. These
486 * techniques might use alloc_contig_range() to hide previously
487 * exposed pages from the buddy again (e.g., to implement some sort
488 * of memory unplug in virtio-mem).
9afaf30f
PT
489 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
490 * situations where ZERO_PAGE(0) which is allocated differently
491 * on different platforms may end up in a movable zone. ZERO_PAGE(0)
492 * cannot be migrated.
a08a2ae3
OS
493 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
494 * memory to the MOVABLE zone, the vmemmap pages are also placed in
495 * such zone. Such pages cannot be really moved around as they are
496 * self-stored in the range, but they are treated as movable when
497 * the range they describe is about to be offlined.
9181a980
DH
498 *
499 * In general, no unmovable allocations that degrade memory offlining
500 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
501 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
502 * if has_unmovable_pages() states that there are no unmovable pages,
503 * there can be false negatives).
504 */
2a1e274a 505 ZONE_MOVABLE,
033fbae9
DW
506#ifdef CONFIG_ZONE_DEVICE
507 ZONE_DEVICE,
508#endif
97965478 509 __MAX_NR_ZONES
033fbae9 510
2f1b6248 511};
1da177e4 512
97965478
CL
513#ifndef __GENERATING_BOUNDS_H
514
ed017373
YZ
515#define ASYNC_AND_SYNC 2
516
1da177e4 517struct zone {
3484b2de 518 /* Read-mostly fields */
41858966
MG
519
520 /* zone watermarks, access with *_wmark_pages(zone) macros */
a9214443 521 unsigned long _watermark[NR_WMARK];
1c30844d 522 unsigned long watermark_boost;
41858966 523
0aaa29a5
MG
524 unsigned long nr_reserved_highatomic;
525
1da177e4 526 /*
89903327
AM
527 * We don't know if the memory that we're going to allocate will be
528 * freeable or/and it will be released eventually, so to avoid totally
529 * wasting several GB of ram we must reserve some of the lower zone
530 * memory (otherwise we risk to run OOM on the lower zones despite
531 * there being tons of freeable ram on the higher zones). This array is
532 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
533 * changes.
1da177e4 534 */
3484b2de 535 long lowmem_reserve[MAX_NR_ZONES];
ab8fabd4 536
e7c8d5c9 537#ifdef CONFIG_NUMA
d5f541ed 538 int node;
3484b2de 539#endif
3484b2de 540 struct pglist_data *zone_pgdat;
28f836b6
MG
541 struct per_cpu_pages __percpu *per_cpu_pageset;
542 struct per_cpu_zonestat __percpu *per_cpu_zonestats;
952eaf81
VB
543 /*
544 * the high and batch values are copied to individual pagesets for
545 * faster access
546 */
547 int pageset_high;
548 int pageset_batch;
3484b2de 549
835c134e
MG
550#ifndef CONFIG_SPARSEMEM
551 /*
d9c23400 552 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
553 * In SPARSEMEM, this map is stored in struct mem_section
554 */
555 unsigned long *pageblock_flags;
556#endif /* CONFIG_SPARSEMEM */
557
1da177e4
LT
558 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
559 unsigned long zone_start_pfn;
560
bdc8cb98 561 /*
9feedc9d
JL
562 * spanned_pages is the total pages spanned by the zone, including
563 * holes, which is calculated as:
564 * spanned_pages = zone_end_pfn - zone_start_pfn;
bdc8cb98 565 *
9feedc9d
JL
566 * present_pages is physical pages existing within the zone, which
567 * is calculated as:
8761e31c 568 * present_pages = spanned_pages - absent_pages(pages in holes);
9feedc9d 569 *
4b097002
DH
570 * present_early_pages is present pages existing within the zone
571 * located on memory available since early boot, excluding hotplugged
572 * memory.
573 *
9feedc9d
JL
574 * managed_pages is present pages managed by the buddy system, which
575 * is calculated as (reserved_pages includes pages allocated by the
576 * bootmem allocator):
577 * managed_pages = present_pages - reserved_pages;
578 *
3c381db1
DH
579 * cma pages is present pages that are assigned for CMA use
580 * (MIGRATE_CMA).
581 *
9feedc9d
JL
582 * So present_pages may be used by memory hotplug or memory power
583 * management logic to figure out unmanaged pages by checking
584 * (present_pages - managed_pages). And managed_pages should be used
585 * by page allocator and vm scanner to calculate all kinds of watermarks
586 * and thresholds.
587 *
588 * Locking rules:
589 *
590 * zone_start_pfn and spanned_pages are protected by span_seqlock.
591 * It is a seqlock because it has to be read outside of zone->lock,
592 * and it is done in the main allocator path. But, it is written
593 * quite infrequently.
594 *
595 * The span_seq lock is declared along with zone->lock because it is
bdc8cb98
DH
596 * frequently read in proximity to zone->lock. It's good to
597 * give them a chance of being in the same cacheline.
9feedc9d 598 *
c3d5f5f0 599 * Write access to present_pages at runtime should be protected by
e8da368a
YZL
600 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
601 * present_pages should use get_online_mems() to get a stable value.
bdc8cb98 602 */
9705bea5 603 atomic_long_t managed_pages;
9feedc9d
JL
604 unsigned long spanned_pages;
605 unsigned long present_pages;
4b097002
DH
606#if defined(CONFIG_MEMORY_HOTPLUG)
607 unsigned long present_early_pages;
608#endif
3c381db1
DH
609#ifdef CONFIG_CMA
610 unsigned long cma_pages;
611#endif
3484b2de
MG
612
613 const char *name;
1da177e4 614
ad53f92e
JK
615#ifdef CONFIG_MEMORY_ISOLATION
616 /*
617 * Number of isolated pageblock. It is used to solve incorrect
618 * freepage counting problem due to racy retrieving migratetype
619 * of pageblock. Protected by zone->lock.
620 */
621 unsigned long nr_isolate_pageblock;
622#endif
623
3484b2de
MG
624#ifdef CONFIG_MEMORY_HOTPLUG
625 /* see spanned/present_pages for more description */
626 seqlock_t span_seqlock;
627#endif
628
9dcb8b68 629 int initialized;
3484b2de 630
0f661148 631 /* Write-intensive fields used from the page allocator */
3484b2de 632 ZONE_PADDING(_pad1_)
0f661148 633
3484b2de
MG
634 /* free areas of different sizes */
635 struct free_area free_area[MAX_ORDER];
636
637 /* zone flags, see below */
638 unsigned long flags;
639
0f661148 640 /* Primarily protects free_area */
a368ab67
MG
641 spinlock_t lock;
642
0f661148 643 /* Write-intensive fields used by compaction and vmstats. */
3484b2de
MG
644 ZONE_PADDING(_pad2_)
645
3484b2de
MG
646 /*
647 * When free pages are below this point, additional steps are taken
648 * when reading the number of free pages to avoid per-cpu counter
649 * drift allowing watermarks to be breached
650 */
651 unsigned long percpu_drift_mark;
652
653#if defined CONFIG_COMPACTION || defined CONFIG_CMA
654 /* pfn where compaction free scanner should start */
655 unsigned long compact_cached_free_pfn;
ed017373
YZ
656 /* pfn where compaction migration scanner should start */
657 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
e332f741
MG
658 unsigned long compact_init_migrate_pfn;
659 unsigned long compact_init_free_pfn;
3484b2de
MG
660#endif
661
662#ifdef CONFIG_COMPACTION
663 /*
664 * On compaction failure, 1<<compact_defer_shift compactions
665 * are skipped before trying again. The number attempted since
666 * last failure is tracked with compact_considered.
860b3272 667 * compact_order_failed is the minimum compaction failed order.
3484b2de
MG
668 */
669 unsigned int compact_considered;
670 unsigned int compact_defer_shift;
671 int compact_order_failed;
672#endif
673
674#if defined CONFIG_COMPACTION || defined CONFIG_CMA
675 /* Set to true when the PG_migrate_skip bits should be cleared */
676 bool compact_blockskip_flush;
677#endif
678
7cf91a98
JK
679 bool contiguous;
680
3484b2de
MG
681 ZONE_PADDING(_pad3_)
682 /* Zone statistics */
683 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
f19298b9 684 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
22fc6ecc 685} ____cacheline_internodealigned_in_smp;
1da177e4 686
599d0c95 687enum pgdat_flags {
599d0c95 688 PGDAT_DIRTY, /* reclaim scanning has recently found
d43006d5
MG
689 * many dirty file pages at the tail
690 * of the LRU.
691 */
599d0c95 692 PGDAT_WRITEBACK, /* reclaim scanning has recently found
283aba9f
MG
693 * many pages under writeback
694 */
a5f5f91d 695 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
57054651 696};
e815af95 697
73444bc4
MG
698enum zone_flags {
699 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
700 * Cleared when kswapd is woken.
701 */
c49c2c47 702 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */
73444bc4
MG
703};
704
9705bea5
AK
705static inline unsigned long zone_managed_pages(struct zone *zone)
706{
707 return (unsigned long)atomic_long_read(&zone->managed_pages);
708}
709
3c381db1
DH
710static inline unsigned long zone_cma_pages(struct zone *zone)
711{
712#ifdef CONFIG_CMA
713 return zone->cma_pages;
714#else
715 return 0;
716#endif
717}
718
f9228b20 719static inline unsigned long zone_end_pfn(const struct zone *zone)
108bcc96
CS
720{
721 return zone->zone_start_pfn + zone->spanned_pages;
722}
723
724static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
725{
726 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
727}
728
2a6e3ebe
CS
729static inline bool zone_is_initialized(struct zone *zone)
730{
9dcb8b68 731 return zone->initialized;
2a6e3ebe
CS
732}
733
734static inline bool zone_is_empty(struct zone *zone)
735{
736 return zone->spanned_pages == 0;
737}
738
5bb88dc5
AS
739#ifndef BUILD_VDSO32_64
740/*
741 * The zone field is never updated after free_area_init_core()
742 * sets it, so none of the operations on it need to be atomic.
743 */
744
745/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
746#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
747#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
748#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
749#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
750#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
751
752/*
753 * Define the bit shifts to access each section. For non-existent
754 * sections we define the shift as 0; that plus a 0 mask ensures
755 * the compiler will optimise away reference to them.
756 */
757#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
758#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
759#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
760#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
761#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
762
763/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
764#ifdef NODE_NOT_IN_PAGE_FLAGS
765#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
766#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \
767 SECTIONS_PGOFF : ZONES_PGOFF)
768#else
769#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
770#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \
771 NODES_PGOFF : ZONES_PGOFF)
772#endif
773
774#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
775
776#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
777#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
778#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
779#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
780#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
781#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
782
783static inline enum zone_type page_zonenum(const struct page *page)
784{
785 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
786 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
787}
788
789static inline enum zone_type folio_zonenum(const struct folio *folio)
790{
791 return page_zonenum(&folio->page);
792}
793
794#ifdef CONFIG_ZONE_DEVICE
795static inline bool is_zone_device_page(const struct page *page)
796{
797 return page_zonenum(page) == ZONE_DEVICE;
798}
799extern void memmap_init_zone_device(struct zone *, unsigned long,
800 unsigned long, struct dev_pagemap *);
801#else
802static inline bool is_zone_device_page(const struct page *page)
803{
804 return false;
805}
806#endif
807
808static inline bool folio_is_zone_device(const struct folio *folio)
809{
810 return is_zone_device_page(&folio->page);
811}
812
813static inline bool is_zone_movable_page(const struct page *page)
814{
815 return page_zonenum(page) == ZONE_MOVABLE;
816}
817#endif
818
f1dd2cd1
MH
819/*
820 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
821 * intersection with the given zone
822 */
823static inline bool zone_intersects(struct zone *zone,
824 unsigned long start_pfn, unsigned long nr_pages)
825{
826 if (zone_is_empty(zone))
827 return false;
828 if (start_pfn >= zone_end_pfn(zone) ||
829 start_pfn + nr_pages <= zone->zone_start_pfn)
830 return false;
831
832 return true;
833}
834
1da177e4
LT
835/*
836 * The "priority" of VM scanning is how much of the queues we will scan in one
837 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
838 * queues ("queue_length >> 12") during an aging round.
839 */
840#define DEF_PRIORITY 12
841
9276b1bc
PJ
842/* Maximum number of zones on a zonelist */
843#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
844
c00eb15a
YB
845enum {
846 ZONELIST_FALLBACK, /* zonelist with fallback */
9276b1bc 847#ifdef CONFIG_NUMA
c00eb15a
YB
848 /*
849 * The NUMA zonelists are doubled because we need zonelists that
850 * restrict the allocations to a single node for __GFP_THISNODE.
851 */
852 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
9276b1bc 853#endif
c00eb15a
YB
854 MAX_ZONELISTS
855};
9276b1bc 856
dd1a239f
MG
857/*
858 * This struct contains information about a zone in a zonelist. It is stored
859 * here to avoid dereferences into large structures and lookups of tables
860 */
861struct zoneref {
862 struct zone *zone; /* Pointer to actual zone */
863 int zone_idx; /* zone_idx(zoneref->zone) */
864};
865
1da177e4
LT
866/*
867 * One allocation request operates on a zonelist. A zonelist
868 * is a list of zones, the first one is the 'goal' of the
869 * allocation, the other zones are fallback zones, in decreasing
870 * priority.
871 *
dd1a239f
MG
872 * To speed the reading of the zonelist, the zonerefs contain the zone index
873 * of the entry being read. Helper functions to access information given
874 * a struct zoneref are
875 *
876 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
877 * zonelist_zone_idx() - Return the index of the zone for an entry
878 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
879 */
880struct zonelist {
dd1a239f 881 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1da177e4
LT
882};
883
bb1c50d3
MR
884/*
885 * The array of struct pages for flatmem.
886 * It must be declared for SPARSEMEM as well because there are configurations
887 * that rely on that.
888 */
5b99cd0e 889extern struct page *mem_map;
5b99cd0e 890
364c1eeb
YS
891#ifdef CONFIG_TRANSPARENT_HUGEPAGE
892struct deferred_split {
893 spinlock_t split_queue_lock;
894 struct list_head split_queue;
895 unsigned long split_queue_len;
896};
897#endif
898
1da177e4 899/*
1da177e4 900 * On NUMA machines, each NUMA node would have a pg_data_t to describe
618b8c20
NB
901 * it's memory layout. On UMA machines there is a single pglist_data which
902 * describes the whole memory.
1da177e4
LT
903 *
904 * Memory statistics and page replacement data structures are maintained on a
905 * per-zone basis.
906 */
1da177e4 907typedef struct pglist_data {
496df3d3
BW
908 /*
909 * node_zones contains just the zones for THIS node. Not all of the
910 * zones may be populated, but it is the full list. It is referenced by
911 * this node's node_zonelists as well as other node's node_zonelists.
912 */
1da177e4 913 struct zone node_zones[MAX_NR_ZONES];
496df3d3
BW
914
915 /*
916 * node_zonelists contains references to all zones in all nodes.
917 * Generally the first zones will be references to this node's
918 * node_zones.
919 */
523b9458 920 struct zonelist node_zonelists[MAX_ZONELISTS];
496df3d3
BW
921
922 int nr_zones; /* number of populated zones in this node */
43b02ba9 923#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */
1da177e4 924 struct page *node_mem_map;
eefa864b
JK
925#ifdef CONFIG_PAGE_EXTENSION
926 struct page_ext *node_page_ext;
927#endif
d41dee36 928#endif
3a2d7fa8 929#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
208d54e5 930 /*
fa004ab7
WY
931 * Must be held any time you expect node_start_pfn,
932 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
3d060856
PT
933 * Also synchronizes pgdat->first_deferred_pfn during deferred page
934 * init.
208d54e5 935 *
114d4b79 936 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
3a2d7fa8
PT
937 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
938 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
114d4b79 939 *
72c3b51b 940 * Nests above zone->lock and zone->span_seqlock
208d54e5
DH
941 */
942 spinlock_t node_size_lock;
943#endif
1da177e4
LT
944 unsigned long node_start_pfn;
945 unsigned long node_present_pages; /* total number of physical pages */
946 unsigned long node_spanned_pages; /* total size of physical page
947 range, including holes */
948 int node_id;
1da177e4 949 wait_queue_head_t kswapd_wait;
5515061d 950 wait_queue_head_t pfmemalloc_wait;
8cd7c588
MG
951
952 /* workqueues for throttling reclaim for different reasons. */
953 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
954
955 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
956 unsigned long nr_reclaim_start; /* nr pages written while throttled
957 * when throttling started. */
bfc8c901 958 struct task_struct *kswapd; /* Protected by
e8da368a 959 mem_hotplug_begin/done() */
38087d9b 960 int kswapd_order;
97a225e6 961 enum zone_type kswapd_highest_zoneidx;
38087d9b 962
c73322d0
JW
963 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
964
698b1b30
VB
965#ifdef CONFIG_COMPACTION
966 int kcompactd_max_order;
97a225e6 967 enum zone_type kcompactd_highest_zoneidx;
698b1b30
VB
968 wait_queue_head_t kcompactd_wait;
969 struct task_struct *kcompactd;
65d759c8 970 bool proactive_compact_trigger;
8177a420 971#endif
281e3726
MG
972 /*
973 * This is a per-node reserve of pages that are not available
974 * to userspace allocations.
975 */
976 unsigned long totalreserve_pages;
977
a5f5f91d
MG
978#ifdef CONFIG_NUMA
979 /*
0a3c5772 980 * node reclaim becomes active if more unmapped pages exist.
a5f5f91d
MG
981 */
982 unsigned long min_unmapped_pages;
983 unsigned long min_slab_pages;
984#endif /* CONFIG_NUMA */
985
a52633d8
MG
986 /* Write-intensive fields used by page reclaim */
987 ZONE_PADDING(_pad1_)
3a80a7fa
MG
988
989#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
990 /*
991 * If memory initialisation on large machines is deferred then this
992 * is the first PFN that needs to be initialised.
993 */
994 unsigned long first_deferred_pfn;
995#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
a3d0a918
KS
996
997#ifdef CONFIG_TRANSPARENT_HUGEPAGE
364c1eeb 998 struct deferred_split deferred_split_queue;
a3d0a918 999#endif
75ef7184 1000
599d0c95 1001 /* Fields commonly accessed by the page reclaim scanner */
867e5e1d
JW
1002
1003 /*
1004 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1005 *
1006 * Use mem_cgroup_lruvec() to look up lruvecs.
1007 */
1008 struct lruvec __lruvec;
599d0c95 1009
599d0c95
MG
1010 unsigned long flags;
1011
1012 ZONE_PADDING(_pad2_)
1013
75ef7184
MG
1014 /* Per-node vmstats */
1015 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1016 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
1da177e4
LT
1017} pg_data_t;
1018
1019#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
1020#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
1021
c6830c22 1022#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
da3649e1 1023#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
c6830c22 1024
da3649e1
CS
1025static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1026{
1027 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1028}
1029
1030static inline bool pgdat_is_empty(pg_data_t *pgdat)
1031{
1032 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
1033}
c6830c22 1034
208d54e5
DH
1035#include <linux/memory_hotplug.h>
1036
72675e13 1037void build_all_zonelists(pg_data_t *pgdat);
5ecd9d40 1038void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
97a225e6 1039 enum zone_type highest_zoneidx);
86a294a8 1040bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 1041 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 1042 long free_pages);
7aeb09f9 1043bool zone_watermark_ok(struct zone *z, unsigned int order,
97a225e6 1044 unsigned long mark, int highest_zoneidx,
c603844b 1045 unsigned int alloc_flags);
7aeb09f9 1046bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 1047 unsigned long mark, int highest_zoneidx);
c1d0da83
LD
1048/*
1049 * Memory initialization context, use to differentiate memory added by
1050 * the platform statically or via memory hotplug interface.
1051 */
1052enum meminit_context {
1053 MEMINIT_EARLY,
1054 MEMINIT_HOTPLUG,
a2f3aa02 1055};
c1d0da83 1056
dc0bbf3b 1057extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
b171e409 1058 unsigned long size);
718127cc 1059
bea8c150 1060extern void lruvec_init(struct lruvec *lruvec);
7f5e86c2 1061
599d0c95 1062static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
7f5e86c2 1063{
c255a458 1064#ifdef CONFIG_MEMCG
599d0c95 1065 return lruvec->pgdat;
7f5e86c2 1066#else
867e5e1d 1067 return container_of(lruvec, struct pglist_data, __lruvec);
7f5e86c2
KK
1068#endif
1069}
1070
7aac7898
LS
1071#ifdef CONFIG_HAVE_MEMORYLESS_NODES
1072int local_memory_node(int node_id);
1073#else
1074static inline int local_memory_node(int node_id) { return node_id; };
1075#endif
1076
1da177e4
LT
1077/*
1078 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1079 */
1080#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
1081
1f90a347
DW
1082#ifdef CONFIG_ZONE_DEVICE
1083static inline bool zone_is_zone_device(struct zone *zone)
1084{
1085 return zone_idx(zone) == ZONE_DEVICE;
1086}
1087#else
1088static inline bool zone_is_zone_device(struct zone *zone)
1089{
1090 return false;
1091}
1092#endif
1093
6aa303de
MG
1094/*
1095 * Returns true if a zone has pages managed by the buddy allocator.
1096 * All the reclaim decisions have to use this function rather than
1097 * populated_zone(). If the whole zone is reserved then we can easily
1098 * end up with populated_zone() && !managed_zone().
1099 */
1100static inline bool managed_zone(struct zone *zone)
1101{
9705bea5 1102 return zone_managed_pages(zone);
6aa303de
MG
1103}
1104
1105/* Returns true if a zone has memory */
1106static inline bool populated_zone(struct zone *zone)
f3fe6512 1107{
6aa303de 1108 return zone->present_pages;
f3fe6512
CK
1109}
1110
c1093b74
PT
1111#ifdef CONFIG_NUMA
1112static inline int zone_to_nid(struct zone *zone)
1113{
1114 return zone->node;
1115}
1116
1117static inline void zone_set_nid(struct zone *zone, int nid)
1118{
1119 zone->node = nid;
1120}
1121#else
1122static inline int zone_to_nid(struct zone *zone)
1123{
1124 return 0;
1125}
1126
1127static inline void zone_set_nid(struct zone *zone, int nid) {}
1128#endif
1129
2a1e274a
MG
1130extern int movable_zone;
1131
2f1b6248 1132static inline int is_highmem_idx(enum zone_type idx)
1da177e4 1133{
e53ef38d 1134#ifdef CONFIG_HIGHMEM
2a1e274a 1135 return (idx == ZONE_HIGHMEM ||
b19bd1c9 1136 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
e53ef38d
CL
1137#else
1138 return 0;
1139#endif
1da177e4
LT
1140}
1141
1da177e4 1142/**
b4a991ec 1143 * is_highmem - helper function to quickly check if a struct zone is a
1da177e4
LT
1144 * highmem zone or not. This is an attempt to keep references
1145 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
198fba41
MR
1146 * @zone: pointer to struct zone variable
1147 * Return: 1 for a highmem zone, 0 otherwise
1da177e4
LT
1148 */
1149static inline int is_highmem(struct zone *zone)
1150{
29f9cb53 1151 return is_highmem_idx(zone_idx(zone));
bb077c3f
KW
1152}
1153
1154#ifdef CONFIG_ZONE_DMA
1155bool has_managed_dma(void);
e53ef38d 1156#else
bb077c3f
KW
1157static inline bool has_managed_dma(void)
1158{
1159 return false;
1da177e4 1160}
bb077c3f 1161#endif
1da177e4 1162
1da177e4
LT
1163/* These two functions are used to setup the per zone pages min values */
1164struct ctl_table;
2374c09b 1165
32927393
CH
1166int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1167 loff_t *);
1168int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1169 size_t *, loff_t *);
d3cda233 1170extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
32927393
CH
1171int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1172 size_t *, loff_t *);
74f44822
MG
1173int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
1174 void *, size_t *, loff_t *);
9614634f 1175int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
32927393 1176 void *, size_t *, loff_t *);
0ff38490 1177int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
32927393
CH
1178 void *, size_t *, loff_t *);
1179int numa_zonelist_order_handler(struct ctl_table *, int,
1180 void *, size_t *, loff_t *);
74f44822 1181extern int percpu_pagelist_high_fraction;
f0c0b2b8 1182extern char numa_zonelist_order[];
c9bff3ee 1183#define NUMA_ZONELIST_ORDER_LEN 16
f0c0b2b8 1184
a9ee6cf5 1185#ifndef CONFIG_NUMA
1da177e4
LT
1186
1187extern struct pglist_data contig_page_data;
351de44f
MG
1188static inline struct pglist_data *NODE_DATA(int nid)
1189{
1190 return &contig_page_data;
1191}
1da177e4 1192
a9ee6cf5 1193#else /* CONFIG_NUMA */
1da177e4
LT
1194
1195#include <asm/mmzone.h>
1196
a9ee6cf5 1197#endif /* !CONFIG_NUMA */
348f8b6c 1198
95144c78
KH
1199extern struct pglist_data *first_online_pgdat(void);
1200extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1201extern struct zone *next_zone(struct zone *zone);
8357f869
KH
1202
1203/**
12d15f0d 1204 * for_each_online_pgdat - helper macro to iterate over all online nodes
198fba41 1205 * @pgdat: pointer to a pg_data_t variable
8357f869
KH
1206 */
1207#define for_each_online_pgdat(pgdat) \
1208 for (pgdat = first_online_pgdat(); \
1209 pgdat; \
1210 pgdat = next_online_pgdat(pgdat))
8357f869
KH
1211/**
1212 * for_each_zone - helper macro to iterate over all memory zones
198fba41 1213 * @zone: pointer to struct zone variable
8357f869
KH
1214 *
1215 * The user only needs to declare the zone variable, for_each_zone
1216 * fills it in.
1217 */
1218#define for_each_zone(zone) \
1219 for (zone = (first_online_pgdat())->node_zones; \
1220 zone; \
1221 zone = next_zone(zone))
1222
ee99c71c
KM
1223#define for_each_populated_zone(zone) \
1224 for (zone = (first_online_pgdat())->node_zones; \
1225 zone; \
1226 zone = next_zone(zone)) \
1227 if (!populated_zone(zone)) \
1228 ; /* do nothing */ \
1229 else
1230
dd1a239f
MG
1231static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1232{
1233 return zoneref->zone;
1234}
1235
1236static inline int zonelist_zone_idx(struct zoneref *zoneref)
1237{
1238 return zoneref->zone_idx;
1239}
1240
1241static inline int zonelist_node_idx(struct zoneref *zoneref)
1242{
c1093b74 1243 return zone_to_nid(zoneref->zone);
dd1a239f
MG
1244}
1245
682a3385
MG
1246struct zoneref *__next_zones_zonelist(struct zoneref *z,
1247 enum zone_type highest_zoneidx,
1248 nodemask_t *nodes);
1249
19770b32
MG
1250/**
1251 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
198fba41
MR
1252 * @z: The cursor used as a starting point for the search
1253 * @highest_zoneidx: The zone index of the highest zone to return
1254 * @nodes: An optional nodemask to filter the zonelist with
19770b32
MG
1255 *
1256 * This function returns the next zone at or below a given zone index that is
1257 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
1258 * search. The zoneref returned is a cursor that represents the current zone
1259 * being examined. It should be advanced by one before calling
1260 * next_zones_zonelist again.
198fba41
MR
1261 *
1262 * Return: the next zone at or below highest_zoneidx within the allowed
1263 * nodemask using a cursor within a zonelist as a starting point
19770b32 1264 */
682a3385 1265static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
19770b32 1266 enum zone_type highest_zoneidx,
682a3385
MG
1267 nodemask_t *nodes)
1268{
1269 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1270 return z;
1271 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1272}
dd1a239f 1273
19770b32
MG
1274/**
1275 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
198fba41
MR
1276 * @zonelist: The zonelist to search for a suitable zone
1277 * @highest_zoneidx: The zone index of the highest zone to return
1278 * @nodes: An optional nodemask to filter the zonelist with
19770b32
MG
1279 *
1280 * This function returns the first zone at or below a given zone index that is
1281 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
1282 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1283 * one before calling.
ea57485a
VB
1284 *
1285 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1286 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1287 * update due to cpuset modification.
198fba41
MR
1288 *
1289 * Return: Zoneref pointer for the first suitable zone found
19770b32 1290 */
dd1a239f 1291static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32 1292 enum zone_type highest_zoneidx,
c33d6c06 1293 nodemask_t *nodes)
54a6eb5c 1294{
c33d6c06 1295 return next_zones_zonelist(zonelist->_zonerefs,
05891fb0 1296 highest_zoneidx, nodes);
54a6eb5c
MG
1297}
1298
19770b32
MG
1299/**
1300 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
198fba41
MR
1301 * @zone: The current zone in the iterator
1302 * @z: The current pointer within zonelist->_zonerefs being iterated
1303 * @zlist: The zonelist being iterated
1304 * @highidx: The zone index of the highest zone to return
1305 * @nodemask: Nodemask allowed by the allocator
19770b32
MG
1306 *
1307 * This iterator iterates though all zones at or below a given zone index and
1308 * within a given nodemask
1309 */
1310#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
c33d6c06 1311 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
19770b32 1312 zone; \
05891fb0 1313 z = next_zones_zonelist(++z, highidx, nodemask), \
c33d6c06
MG
1314 zone = zonelist_zone(z))
1315
30d8ec73 1316#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
c33d6c06
MG
1317 for (zone = z->zone; \
1318 zone; \
1319 z = next_zones_zonelist(++z, highidx, nodemask), \
1320 zone = zonelist_zone(z))
1321
54a6eb5c
MG
1322
1323/**
1324 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
198fba41
MR
1325 * @zone: The current zone in the iterator
1326 * @z: The current pointer within zonelist->zones being iterated
1327 * @zlist: The zonelist being iterated
1328 * @highidx: The zone index of the highest zone to return
54a6eb5c
MG
1329 *
1330 * This iterator iterates though all zones at or below a given zone index.
1331 */
1332#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 1333 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 1334
8ca1b5a4
FT
1335/* Whether the 'nodes' are all movable nodes */
1336static inline bool movable_only_nodes(nodemask_t *nodes)
1337{
1338 struct zonelist *zonelist;
1339 struct zoneref *z;
1340 int nid;
1341
1342 if (nodes_empty(*nodes))
1343 return false;
1344
1345 /*
1346 * We can chose arbitrary node from the nodemask to get a
1347 * zonelist as they are interlinked. We just need to find
1348 * at least one zone that can satisfy kernel allocations.
1349 */
1350 nid = first_node(*nodes);
1351 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1352 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
1353 return (!z->zone) ? true : false;
1354}
1355
1356
d41dee36
AW
1357#ifdef CONFIG_SPARSEMEM
1358#include <asm/sparsemem.h>
1359#endif
1360
2bdaf115
AW
1361#ifdef CONFIG_FLATMEM
1362#define pfn_to_nid(pfn) (0)
1363#endif
1364
d41dee36
AW
1365#ifdef CONFIG_SPARSEMEM
1366
1367/*
d41dee36
AW
1368 * PA_SECTION_SHIFT physical address to/from section number
1369 * PFN_SECTION_SHIFT pfn to/from section number
1370 */
d41dee36
AW
1371#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1372#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1373
1374#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1375
1376#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1377#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1378
835c134e 1379#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1380 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1381
d41dee36
AW
1382#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1383#error Allocator MAX_ORDER exceeds SECTION_SIZE
1384#endif
1385
1dd2bfc8
YI
1386static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1387{
1388 return pfn >> PFN_SECTION_SHIFT;
1389}
1390static inline unsigned long section_nr_to_pfn(unsigned long sec)
1391{
1392 return sec << PFN_SECTION_SHIFT;
1393}
e3c40f37 1394
a539f353
DK
1395#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1396#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1397
f1eca35a 1398#define SUBSECTION_SHIFT 21
9ffc1d19 1399#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
f1eca35a
DW
1400
1401#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1402#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1403#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1404
1405#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1406#error Subsection size exceeds section size
1407#else
1408#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1409#endif
1410
a3619190
DW
1411#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1412#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1413
f1eca35a 1414struct mem_section_usage {
0a9f9f62 1415#ifdef CONFIG_SPARSEMEM_VMEMMAP
f1eca35a 1416 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
0a9f9f62 1417#endif
f1eca35a
DW
1418 /* See declaration of similar field in struct zone */
1419 unsigned long pageblock_flags[0];
1420};
1421
f46edbd1
DW
1422void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1423
d41dee36 1424struct page;
eefa864b 1425struct page_ext;
d41dee36 1426struct mem_section {
29751f69
AW
1427 /*
1428 * This is, logically, a pointer to an array of struct
1429 * pages. However, it is stored with some other magic.
1430 * (see sparse.c::sparse_init_one_section())
1431 *
30c253e6
AW
1432 * Additionally during early boot we encode node id of
1433 * the location of the section here to guide allocation.
1434 * (see sparse.c::memory_present())
1435 *
29751f69
AW
1436 * Making it a UL at least makes someone do a cast
1437 * before using it wrong.
1438 */
1439 unsigned long section_mem_map;
5c0e3066 1440
f1eca35a 1441 struct mem_section_usage *usage;
eefa864b
JK
1442#ifdef CONFIG_PAGE_EXTENSION
1443 /*
0c9ad804 1444 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
eefa864b
JK
1445 * section. (see page_ext.h about this.)
1446 */
1447 struct page_ext *page_ext;
1448 unsigned long pad;
1449#endif
55878e88
CS
1450 /*
1451 * WARNING: mem_section must be a power-of-2 in size for the
1452 * calculation and use of SECTION_ROOT_MASK to make sense.
1453 */
d41dee36
AW
1454};
1455
3e347261
BP
1456#ifdef CONFIG_SPARSEMEM_EXTREME
1457#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1458#else
1459#define SECTIONS_PER_ROOT 1
1460#endif
802f192e 1461
3e347261 1462#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1463#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1464#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1465
3e347261 1466#ifdef CONFIG_SPARSEMEM_EXTREME
83e3c487 1467extern struct mem_section **mem_section;
802f192e 1468#else
3e347261
BP
1469extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1470#endif
d41dee36 1471
f1eca35a
DW
1472static inline unsigned long *section_to_usemap(struct mem_section *ms)
1473{
1474 return ms->usage->pageblock_flags;
1475}
1476
29751f69
AW
1477static inline struct mem_section *__nr_to_section(unsigned long nr)
1478{
a431dbbc
WL
1479 unsigned long root = SECTION_NR_TO_ROOT(nr);
1480
1481 if (unlikely(root >= NR_SECTION_ROOTS))
1482 return NULL;
1483
83e3c487 1484#ifdef CONFIG_SPARSEMEM_EXTREME
a431dbbc 1485 if (!mem_section || !mem_section[root])
83e3c487
KS
1486 return NULL;
1487#endif
a431dbbc 1488 return &mem_section[root][nr & SECTION_ROOT_MASK];
29751f69 1489}
f1eca35a 1490extern size_t mem_section_usage_size(void);
29751f69
AW
1491
1492/*
1493 * We use the lower bits of the mem_map pointer to store
def9b71e
PT
1494 * a little bit of information. The pointer is calculated
1495 * as mem_map - section_nr_to_pfn(pnum). The result is
1496 * aligned to the minimum alignment of the two values:
1497 * 1. All mem_map arrays are page-aligned.
1498 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1499 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1500 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1501 * worst combination is powerpc with 256k pages,
1502 * which results in PFN_SECTION_SHIFT equal 6.
ed7802dd
MS
1503 * To sum it up, at least 6 bits are available on all architectures.
1504 * However, we can exceed 6 bits on some other architectures except
1505 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1506 * with the worst case of 64K pages on arm64) if we make sure the
1507 * exceeded bit is not applicable to powerpc.
29751f69 1508 */
ed7802dd
MS
1509enum {
1510 SECTION_MARKED_PRESENT_BIT,
1511 SECTION_HAS_MEM_MAP_BIT,
1512 SECTION_IS_ONLINE_BIT,
1513 SECTION_IS_EARLY_BIT,
1514#ifdef CONFIG_ZONE_DEVICE
1515 SECTION_TAINT_ZONE_DEVICE_BIT,
1516#endif
1517 SECTION_MAP_LAST_BIT,
1518};
1519
1520#define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT)
1521#define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT)
1522#define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT)
1523#define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT)
1524#ifdef CONFIG_ZONE_DEVICE
1525#define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1526#endif
1527#define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1))
1528#define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT
29751f69
AW
1529
1530static inline struct page *__section_mem_map_addr(struct mem_section *section)
1531{
1532 unsigned long map = section->section_mem_map;
1533 map &= SECTION_MAP_MASK;
1534 return (struct page *)map;
1535}
1536
540557b9 1537static inline int present_section(struct mem_section *section)
29751f69 1538{
802f192e 1539 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1540}
1541
540557b9
AW
1542static inline int present_section_nr(unsigned long nr)
1543{
1544 return present_section(__nr_to_section(nr));
1545}
1546
1547static inline int valid_section(struct mem_section *section)
29751f69 1548{
802f192e 1549 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1550}
1551
326e1b8f
DW
1552static inline int early_section(struct mem_section *section)
1553{
1554 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1555}
1556
29751f69
AW
1557static inline int valid_section_nr(unsigned long nr)
1558{
1559 return valid_section(__nr_to_section(nr));
1560}
1561
2d070eab
MH
1562static inline int online_section(struct mem_section *section)
1563{
1564 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1565}
1566
ed7802dd 1567#ifdef CONFIG_ZONE_DEVICE
1f90a347
DW
1568static inline int online_device_section(struct mem_section *section)
1569{
1570 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1571
1572 return section && ((section->section_mem_map & flags) == flags);
1573}
ed7802dd
MS
1574#else
1575static inline int online_device_section(struct mem_section *section)
1576{
1577 return 0;
1578}
1579#endif
1f90a347 1580
2d070eab
MH
1581static inline int online_section_nr(unsigned long nr)
1582{
1583 return online_section(__nr_to_section(nr));
1584}
1585
1586#ifdef CONFIG_MEMORY_HOTPLUG
1587void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2d070eab
MH
1588void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1589#endif
2d070eab 1590
d41dee36
AW
1591static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1592{
29751f69 1593 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1594}
1595
2491f0a2 1596extern unsigned long __highest_present_section_nr;
c4e1be9e 1597
f46edbd1
DW
1598static inline int subsection_map_index(unsigned long pfn)
1599{
1600 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1601}
1602
1603#ifdef CONFIG_SPARSEMEM_VMEMMAP
1604static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1605{
1606 int idx = subsection_map_index(pfn);
1607
1608 return test_bit(idx, ms->usage->subsection_map);
1609}
1610#else
1611static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1612{
1613 return 1;
1614}
1615#endif
1616
7b7bf499 1617#ifndef CONFIG_HAVE_ARCH_PFN_VALID
51c656ae
MR
1618/**
1619 * pfn_valid - check if there is a valid memory map entry for a PFN
1620 * @pfn: the page frame number to check
1621 *
1622 * Check if there is a valid memory map entry aka struct page for the @pfn.
1623 * Note, that availability of the memory map entry does not imply that
1624 * there is actual usable memory at that @pfn. The struct page may
1625 * represent a hole or an unusable page frame.
1626 *
1627 * Return: 1 for PFNs that have memory map entries and 0 otherwise
1628 */
d41dee36
AW
1629static inline int pfn_valid(unsigned long pfn)
1630{
f46edbd1
DW
1631 struct mem_section *ms;
1632
16c9afc7
AK
1633 /*
1634 * Ensure the upper PAGE_SHIFT bits are clear in the
1635 * pfn. Else it might lead to false positives when
1636 * some of the upper bits are set, but the lower bits
1637 * match a valid pfn.
1638 */
1639 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
1640 return 0;
1641
d41dee36
AW
1642 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1643 return 0;
f1dc0db2 1644 ms = __pfn_to_section(pfn);
f46edbd1
DW
1645 if (!valid_section(ms))
1646 return 0;
1647 /*
1648 * Traditionally early sections always returned pfn_valid() for
1649 * the entire section-sized span.
1650 */
1651 return early_section(ms) || pfn_section_valid(ms, pfn);
d41dee36 1652}
7b7bf499 1653#endif
d41dee36 1654
e03d1f78 1655static inline int pfn_in_present_section(unsigned long pfn)
540557b9
AW
1656{
1657 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1658 return 0;
f1dc0db2 1659 return present_section(__pfn_to_section(pfn));
540557b9
AW
1660}
1661
4c605881
DH
1662static inline unsigned long next_present_section_nr(unsigned long section_nr)
1663{
1664 while (++section_nr <= __highest_present_section_nr) {
1665 if (present_section_nr(section_nr))
1666 return section_nr;
1667 }
1668
1669 return -1;
1670}
1671
d41dee36
AW
1672/*
1673 * These are _only_ used during initialisation, therefore they
1674 * can use __initdata ... They could have names to indicate
1675 * this restriction.
1676 */
1677#ifdef CONFIG_NUMA
161599ff
AW
1678#define pfn_to_nid(pfn) \
1679({ \
1680 unsigned long __pfn_to_nid_pfn = (pfn); \
1681 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1682})
2bdaf115
AW
1683#else
1684#define pfn_to_nid(pfn) (0)
d41dee36
AW
1685#endif
1686
d41dee36
AW
1687void sparse_init(void);
1688#else
1689#define sparse_init() do {} while (0)
28ae55c9 1690#define sparse_index_init(_sec, _nid) do {} while (0)
e03d1f78 1691#define pfn_in_present_section pfn_valid
f46edbd1 1692#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
d41dee36
AW
1693#endif /* CONFIG_SPARSEMEM */
1694
97965478 1695#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1696#endif /* !__ASSEMBLY__ */
1da177e4 1697#endif /* _LINUX_MMZONE_H */