mm/page_alloc.c: __perform_reclaim should return 'unsigned long'
[linux-block.git] / include / linux / mmzone.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
1da177e4 5#ifndef __ASSEMBLY__
97965478 6#ifndef __GENERATING_BOUNDS_H
1da177e4 7
1da177e4
LT
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/wait.h>
e815af95 11#include <linux/bitops.h>
1da177e4
LT
12#include <linux/cache.h>
13#include <linux/threads.h>
14#include <linux/numa.h>
15#include <linux/init.h>
bdc8cb98 16#include <linux/seqlock.h>
8357f869 17#include <linux/nodemask.h>
835c134e 18#include <linux/pageblock-flags.h>
bbeae5b0 19#include <linux/page-flags-layout.h>
60063497 20#include <linux/atomic.h>
b03641af
DW
21#include <linux/mm_types.h>
22#include <linux/page-flags.h>
93ff66bf 23#include <asm/page.h>
1da177e4
LT
24
25/* Free memory management - zoned buddy allocator. */
26#ifndef CONFIG_FORCE_MAX_ZONEORDER
27#define MAX_ORDER 11
28#else
29#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30#endif
e984bb43 31#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 32
5ad333eb
AW
33/*
34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35 * costly to service. That is between allocation orders which should
35fca53e 36 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
37 * will not.
38 */
39#define PAGE_ALLOC_COSTLY_ORDER 3
40
a6ffdc07 41enum migratetype {
47118af0 42 MIGRATE_UNMOVABLE,
47118af0 43 MIGRATE_MOVABLE,
016c13da 44 MIGRATE_RECLAIMABLE,
0aaa29a5
MG
45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47118af0
MN
47#ifdef CONFIG_CMA
48 /*
49 * MIGRATE_CMA migration type is designed to mimic the way
50 * ZONE_MOVABLE works. Only movable pages can be allocated
51 * from MIGRATE_CMA pageblocks and page allocator never
52 * implicitly change migration type of MIGRATE_CMA pageblock.
53 *
54 * The way to use it is to change migratetype of a range of
55 * pageblocks to MIGRATE_CMA which can be done by
56 * __free_pageblock_cma() function. What is important though
57 * is that a range of pageblocks must be aligned to
58 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 * a single pageblock.
60 */
61 MIGRATE_CMA,
62#endif
194159fb 63#ifdef CONFIG_MEMORY_ISOLATION
47118af0 64 MIGRATE_ISOLATE, /* can't allocate from here */
194159fb 65#endif
47118af0
MN
66 MIGRATE_TYPES
67};
68
60f30350 69/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
c999fbd3 70extern const char * const migratetype_names[MIGRATE_TYPES];
60f30350 71
47118af0
MN
72#ifdef CONFIG_CMA
73# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
7c15d9bb 74# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
47118af0
MN
75#else
76# define is_migrate_cma(migratetype) false
7c15d9bb 77# define is_migrate_cma_page(_page) false
47118af0 78#endif
b2a0ac88 79
b682debd
VB
80static inline bool is_migrate_movable(int mt)
81{
82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83}
84
b2a0ac88
MG
85#define for_each_migratetype_order(order, type) \
86 for (order = 0; order < MAX_ORDER; order++) \
87 for (type = 0; type < MIGRATE_TYPES; type++)
88
467c996c
MG
89extern int page_group_by_mobility_disabled;
90
d38ac97f 91#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
e58469ba 92
dc4b0caf 93#define get_pageblock_migratetype(page) \
535b81e2 94 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
dc4b0caf 95
1da177e4 96struct free_area {
b2a0ac88 97 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
98 unsigned long nr_free;
99};
100
b03641af
DW
101static inline struct page *get_page_from_free_area(struct free_area *area,
102 int migratetype)
103{
104 return list_first_entry_or_null(&area->free_list[migratetype],
105 struct page, lru);
106}
107
b03641af
DW
108static inline bool free_area_empty(struct free_area *area, int migratetype)
109{
110 return list_empty(&area->free_list[migratetype]);
111}
112
1da177e4
LT
113struct pglist_data;
114
115/*
a52633d8 116 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
1da177e4
LT
117 * So add a wild amount of padding here to ensure that they fall into separate
118 * cachelines. There are very few zone structures in the machine, so space
119 * consumption is not a concern here.
120 */
121#if defined(CONFIG_SMP)
122struct zone_padding {
123 char x[0];
22fc6ecc 124} ____cacheline_internodealigned_in_smp;
1da177e4
LT
125#define ZONE_PADDING(name) struct zone_padding name;
126#else
127#define ZONE_PADDING(name)
128#endif
129
3a321d2a
KW
130#ifdef CONFIG_NUMA
131enum numa_stat_item {
132 NUMA_HIT, /* allocated in intended node */
133 NUMA_MISS, /* allocated in non intended node */
134 NUMA_FOREIGN, /* was intended here, hit elsewhere */
135 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
136 NUMA_LOCAL, /* allocation from local node */
137 NUMA_OTHER, /* allocation from other node */
138 NR_VM_NUMA_STAT_ITEMS
139};
140#else
141#define NR_VM_NUMA_STAT_ITEMS 0
142#endif
143
2244b95a 144enum zone_stat_item {
51ed4491 145 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 146 NR_FREE_PAGES,
71c799f4
MK
147 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
148 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
149 NR_ZONE_ACTIVE_ANON,
150 NR_ZONE_INACTIVE_FILE,
151 NR_ZONE_ACTIVE_FILE,
152 NR_ZONE_UNEVICTABLE,
5a1c84b4 153 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
5344b7e6 154 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
51ed4491 155 NR_PAGETABLE, /* used for pagetables */
c6a7f572 156 /* Second 128 byte cacheline */
d2c5e30c 157 NR_BOUNCE,
91537fee
MK
158#if IS_ENABLED(CONFIG_ZSMALLOC)
159 NR_ZSPAGES, /* allocated in zsmalloc */
ca889e6c 160#endif
d1ce749a 161 NR_FREE_CMA_PAGES,
2244b95a
CL
162 NR_VM_ZONE_STAT_ITEMS };
163
75ef7184 164enum node_stat_item {
599d0c95
MG
165 NR_LRU_BASE,
166 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
167 NR_ACTIVE_ANON, /* " " " " " */
168 NR_INACTIVE_FILE, /* " " " " " */
169 NR_ACTIVE_FILE, /* " " " " " */
170 NR_UNEVICTABLE, /* " " " " " */
d42f3245
RG
171 NR_SLAB_RECLAIMABLE_B,
172 NR_SLAB_UNRECLAIMABLE_B,
599d0c95
MG
173 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
174 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
68d48e6a 175 WORKINGSET_NODES,
170b04b7
JK
176 WORKINGSET_REFAULT_BASE,
177 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
178 WORKINGSET_REFAULT_FILE,
179 WORKINGSET_ACTIVATE_BASE,
180 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
181 WORKINGSET_ACTIVATE_FILE,
182 WORKINGSET_RESTORE_BASE,
183 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
184 WORKINGSET_RESTORE_FILE,
1e6b1085 185 WORKINGSET_NODERECLAIM,
4b9d0fab 186 NR_ANON_MAPPED, /* Mapped anonymous pages */
50658e2e
MG
187 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
188 only modified from process context */
11fb9989
MG
189 NR_FILE_PAGES,
190 NR_FILE_DIRTY,
191 NR_WRITEBACK,
192 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
193 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
194 NR_SHMEM_THPS,
195 NR_SHMEM_PMDMAPPED,
60fbf0ab
SL
196 NR_FILE_THPS,
197 NR_FILE_PMDMAPPED,
11fb9989 198 NR_ANON_THPS,
c4a25635
MG
199 NR_VMSCAN_WRITE,
200 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
201 NR_DIRTIED, /* page dirtyings since bootup */
202 NR_WRITTEN, /* page writings since bootup */
b29940c1 203 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
1970dc6f
JH
204 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
205 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
991e7673
SB
206 NR_KERNEL_STACK_KB, /* measured in KiB */
207#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
208 NR_KERNEL_SCS_KB, /* measured in KiB */
209#endif
75ef7184
MG
210 NR_VM_NODE_STAT_ITEMS
211};
212
ea426c2a
RG
213/*
214 * Returns true if the value is measured in bytes (most vmstat values are
215 * measured in pages). This defines the API part, the internal representation
216 * might be different.
217 */
218static __always_inline bool vmstat_item_in_bytes(int idx)
219{
d42f3245
RG
220 /*
221 * Global and per-node slab counters track slab pages.
222 * It's expected that changes are multiples of PAGE_SIZE.
223 * Internally values are stored in pages.
224 *
225 * Per-memcg and per-lruvec counters track memory, consumed
226 * by individual slab objects. These counters are actually
227 * byte-precise.
228 */
229 return (idx == NR_SLAB_RECLAIMABLE_B ||
230 idx == NR_SLAB_UNRECLAIMABLE_B);
ea426c2a
RG
231}
232
4f98a2fe
RR
233/*
234 * We do arithmetic on the LRU lists in various places in the code,
235 * so it is important to keep the active lists LRU_ACTIVE higher in
236 * the array than the corresponding inactive lists, and to keep
237 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
238 *
239 * This has to be kept in sync with the statistics in zone_stat_item
240 * above and the descriptions in vmstat_text in mm/vmstat.c
241 */
242#define LRU_BASE 0
243#define LRU_ACTIVE 1
244#define LRU_FILE 2
245
b69408e8 246enum lru_list {
4f98a2fe
RR
247 LRU_INACTIVE_ANON = LRU_BASE,
248 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
249 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
250 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 251 LRU_UNEVICTABLE,
894bc310
LS
252 NR_LRU_LISTS
253};
b69408e8 254
4111304d 255#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 256
4111304d 257#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 258
b91ac374 259static inline bool is_file_lru(enum lru_list lru)
4f98a2fe 260{
4111304d 261 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
262}
263
b91ac374 264static inline bool is_active_lru(enum lru_list lru)
b69408e8 265{
4111304d 266 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
267}
268
1b05117d
JW
269enum lruvec_flags {
270 LRUVEC_CONGESTED, /* lruvec has many dirty pages
271 * backed by a congested BDI
272 */
273};
274
6290df54 275struct lruvec {
23047a96 276 struct list_head lists[NR_LRU_LISTS];
1431d4d1
JW
277 /*
278 * These track the cost of reclaiming one LRU - file or anon -
279 * over the other. As the observed cost of reclaiming one LRU
280 * increases, the reclaim scan balance tips toward the other.
281 */
282 unsigned long anon_cost;
283 unsigned long file_cost;
31d8fcac
JW
284 /* Non-resident age, driven by LRU movement */
285 atomic_long_t nonresident_age;
170b04b7
JK
286 /* Refaults at the time of last reclaim cycle, anon=0, file=1 */
287 unsigned long refaults[2];
1b05117d
JW
288 /* Various lruvec state flags (enum lruvec_flags) */
289 unsigned long flags;
c255a458 290#ifdef CONFIG_MEMCG
599d0c95 291 struct pglist_data *pgdat;
7f5e86c2 292#endif
6290df54
JW
293};
294
653e003d 295/* Isolate unmapped pages */
f3fd4a61 296#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
c8244935 297/* Isolate for asynchronous migration */
f3fd4a61 298#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
e46a2879
MK
299/* Isolate unevictable pages */
300#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
4356f21d
MK
301
302/* LRU Isolation modes. */
9efeccac 303typedef unsigned __bitwise isolate_mode_t;
4356f21d 304
41858966
MG
305enum zone_watermarks {
306 WMARK_MIN,
307 WMARK_LOW,
308 WMARK_HIGH,
309 NR_WMARK
310};
311
1c30844d
MG
312#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
313#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
314#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
315#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
41858966 316
1da177e4
LT
317struct per_cpu_pages {
318 int count; /* number of pages in the list */
1da177e4
LT
319 int high; /* high watermark, emptying needed */
320 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
321
322 /* Lists of pages, one per migrate type stored on the pcp-lists */
323 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
324};
325
326struct per_cpu_pageset {
3dfa5721 327 struct per_cpu_pages pcp;
4037d452
CL
328#ifdef CONFIG_NUMA
329 s8 expire;
1d90ca89 330 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
4037d452 331#endif
2244b95a 332#ifdef CONFIG_SMP
df9ecaba 333 s8 stat_threshold;
2244b95a
CL
334 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
335#endif
99dcc3e5 336};
e7c8d5c9 337
75ef7184
MG
338struct per_cpu_nodestat {
339 s8 stat_threshold;
340 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
341};
342
97965478
CL
343#endif /* !__GENERATING_BOUNDS.H */
344
2f1b6248
CL
345enum zone_type {
346 /*
734f9246
NSJ
347 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
348 * to DMA to all of the addressable memory (ZONE_NORMAL).
349 * On architectures where this area covers the whole 32 bit address
350 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
351 * DMA addressing constraints. This distinction is important as a 32bit
352 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
353 * platforms may need both zones as they support peripherals with
354 * different DMA addressing limitations.
355 *
356 * Some examples:
357 *
358 * - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the
359 * rest of the lower 4G.
360 *
361 * - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on
362 * the specific device.
363 *
364 * - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the
365 * lower 4G.
2f1b6248 366 *
734f9246
NSJ
367 * - powerpc only uses ZONE_DMA, the size, up to 2G, may vary
368 * depending on the specific device.
2f1b6248 369 *
734f9246 370 * - s390 uses ZONE_DMA fixed to the lower 2G.
2f1b6248 371 *
734f9246
NSJ
372 * - ia64 and riscv only use ZONE_DMA32.
373 *
374 * - parisc uses neither.
2f1b6248 375 */
734f9246 376#ifdef CONFIG_ZONE_DMA
2f1b6248 377 ZONE_DMA,
4b51d669 378#endif
fb0e7942 379#ifdef CONFIG_ZONE_DMA32
2f1b6248 380 ZONE_DMA32,
fb0e7942 381#endif
2f1b6248
CL
382 /*
383 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
384 * performed on pages in ZONE_NORMAL if the DMA devices support
385 * transfers to all addressable memory.
386 */
387 ZONE_NORMAL,
e53ef38d 388#ifdef CONFIG_HIGHMEM
2f1b6248
CL
389 /*
390 * A memory area that is only addressable by the kernel through
391 * mapping portions into its own address space. This is for example
392 * used by i386 to allow the kernel to address the memory beyond
393 * 900MB. The kernel will set up special mappings (page
394 * table entries on i386) for each page that the kernel needs to
395 * access.
396 */
397 ZONE_HIGHMEM,
e53ef38d 398#endif
9181a980
DH
399 /*
400 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
401 * movable pages with few exceptional cases described below. Main use
402 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
403 * likely to succeed, and to locally limit unmovable allocations - e.g.,
404 * to increase the number of THP/huge pages. Notable special cases are:
405 *
406 * 1. Pinned pages: (long-term) pinning of movable pages might
407 * essentially turn such pages unmovable. Memory offlining might
408 * retry a long time.
409 * 2. memblock allocations: kernelcore/movablecore setups might create
410 * situations where ZONE_MOVABLE contains unmovable allocations
411 * after boot. Memory offlining and allocations fail early.
412 * 3. Memory holes: kernelcore/movablecore setups might create very rare
413 * situations where ZONE_MOVABLE contains memory holes after boot,
414 * for example, if we have sections that are only partially
415 * populated. Memory offlining and allocations fail early.
416 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
417 * memory offlining, such pages cannot be allocated.
418 * 5. Unmovable PG_offline pages: in paravirtualized environments,
419 * hotplugged memory blocks might only partially be managed by the
420 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
421 * parts not manged by the buddy are unmovable PG_offline pages. In
422 * some cases (virtio-mem), such pages can be skipped during
423 * memory offlining, however, cannot be moved/allocated. These
424 * techniques might use alloc_contig_range() to hide previously
425 * exposed pages from the buddy again (e.g., to implement some sort
426 * of memory unplug in virtio-mem).
427 *
428 * In general, no unmovable allocations that degrade memory offlining
429 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
430 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
431 * if has_unmovable_pages() states that there are no unmovable pages,
432 * there can be false negatives).
433 */
2a1e274a 434 ZONE_MOVABLE,
033fbae9
DW
435#ifdef CONFIG_ZONE_DEVICE
436 ZONE_DEVICE,
437#endif
97965478 438 __MAX_NR_ZONES
033fbae9 439
2f1b6248 440};
1da177e4 441
97965478
CL
442#ifndef __GENERATING_BOUNDS_H
443
1da177e4 444struct zone {
3484b2de 445 /* Read-mostly fields */
41858966
MG
446
447 /* zone watermarks, access with *_wmark_pages(zone) macros */
a9214443 448 unsigned long _watermark[NR_WMARK];
1c30844d 449 unsigned long watermark_boost;
41858966 450
0aaa29a5
MG
451 unsigned long nr_reserved_highatomic;
452
1da177e4 453 /*
89903327
AM
454 * We don't know if the memory that we're going to allocate will be
455 * freeable or/and it will be released eventually, so to avoid totally
456 * wasting several GB of ram we must reserve some of the lower zone
457 * memory (otherwise we risk to run OOM on the lower zones despite
458 * there being tons of freeable ram on the higher zones). This array is
459 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
460 * changes.
1da177e4 461 */
3484b2de 462 long lowmem_reserve[MAX_NR_ZONES];
ab8fabd4 463
e7c8d5c9 464#ifdef CONFIG_NUMA
d5f541ed 465 int node;
3484b2de 466#endif
3484b2de 467 struct pglist_data *zone_pgdat;
43cf38eb 468 struct per_cpu_pageset __percpu *pageset;
3484b2de 469
835c134e
MG
470#ifndef CONFIG_SPARSEMEM
471 /*
d9c23400 472 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
473 * In SPARSEMEM, this map is stored in struct mem_section
474 */
475 unsigned long *pageblock_flags;
476#endif /* CONFIG_SPARSEMEM */
477
1da177e4
LT
478 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
479 unsigned long zone_start_pfn;
480
bdc8cb98 481 /*
9feedc9d
JL
482 * spanned_pages is the total pages spanned by the zone, including
483 * holes, which is calculated as:
484 * spanned_pages = zone_end_pfn - zone_start_pfn;
bdc8cb98 485 *
9feedc9d
JL
486 * present_pages is physical pages existing within the zone, which
487 * is calculated as:
8761e31c 488 * present_pages = spanned_pages - absent_pages(pages in holes);
9feedc9d
JL
489 *
490 * managed_pages is present pages managed by the buddy system, which
491 * is calculated as (reserved_pages includes pages allocated by the
492 * bootmem allocator):
493 * managed_pages = present_pages - reserved_pages;
494 *
495 * So present_pages may be used by memory hotplug or memory power
496 * management logic to figure out unmanaged pages by checking
497 * (present_pages - managed_pages). And managed_pages should be used
498 * by page allocator and vm scanner to calculate all kinds of watermarks
499 * and thresholds.
500 *
501 * Locking rules:
502 *
503 * zone_start_pfn and spanned_pages are protected by span_seqlock.
504 * It is a seqlock because it has to be read outside of zone->lock,
505 * and it is done in the main allocator path. But, it is written
506 * quite infrequently.
507 *
508 * The span_seq lock is declared along with zone->lock because it is
bdc8cb98
DH
509 * frequently read in proximity to zone->lock. It's good to
510 * give them a chance of being in the same cacheline.
9feedc9d 511 *
c3d5f5f0 512 * Write access to present_pages at runtime should be protected by
bfc8c901
VD
513 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
514 * present_pages should get_online_mems() to get a stable value.
bdc8cb98 515 */
9705bea5 516 atomic_long_t managed_pages;
9feedc9d
JL
517 unsigned long spanned_pages;
518 unsigned long present_pages;
3484b2de
MG
519
520 const char *name;
1da177e4 521
ad53f92e
JK
522#ifdef CONFIG_MEMORY_ISOLATION
523 /*
524 * Number of isolated pageblock. It is used to solve incorrect
525 * freepage counting problem due to racy retrieving migratetype
526 * of pageblock. Protected by zone->lock.
527 */
528 unsigned long nr_isolate_pageblock;
529#endif
530
3484b2de
MG
531#ifdef CONFIG_MEMORY_HOTPLUG
532 /* see spanned/present_pages for more description */
533 seqlock_t span_seqlock;
534#endif
535
9dcb8b68 536 int initialized;
3484b2de 537
0f661148 538 /* Write-intensive fields used from the page allocator */
3484b2de 539 ZONE_PADDING(_pad1_)
0f661148 540
3484b2de
MG
541 /* free areas of different sizes */
542 struct free_area free_area[MAX_ORDER];
543
544 /* zone flags, see below */
545 unsigned long flags;
546
0f661148 547 /* Primarily protects free_area */
a368ab67
MG
548 spinlock_t lock;
549
0f661148 550 /* Write-intensive fields used by compaction and vmstats. */
3484b2de
MG
551 ZONE_PADDING(_pad2_)
552
3484b2de
MG
553 /*
554 * When free pages are below this point, additional steps are taken
555 * when reading the number of free pages to avoid per-cpu counter
556 * drift allowing watermarks to be breached
557 */
558 unsigned long percpu_drift_mark;
559
560#if defined CONFIG_COMPACTION || defined CONFIG_CMA
561 /* pfn where compaction free scanner should start */
562 unsigned long compact_cached_free_pfn;
563 /* pfn where async and sync compaction migration scanner should start */
564 unsigned long compact_cached_migrate_pfn[2];
e332f741
MG
565 unsigned long compact_init_migrate_pfn;
566 unsigned long compact_init_free_pfn;
3484b2de
MG
567#endif
568
569#ifdef CONFIG_COMPACTION
570 /*
571 * On compaction failure, 1<<compact_defer_shift compactions
572 * are skipped before trying again. The number attempted since
573 * last failure is tracked with compact_considered.
860b3272 574 * compact_order_failed is the minimum compaction failed order.
3484b2de
MG
575 */
576 unsigned int compact_considered;
577 unsigned int compact_defer_shift;
578 int compact_order_failed;
579#endif
580
581#if defined CONFIG_COMPACTION || defined CONFIG_CMA
582 /* Set to true when the PG_migrate_skip bits should be cleared */
583 bool compact_blockskip_flush;
584#endif
585
7cf91a98
JK
586 bool contiguous;
587
3484b2de
MG
588 ZONE_PADDING(_pad3_)
589 /* Zone statistics */
590 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
3a321d2a 591 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
22fc6ecc 592} ____cacheline_internodealigned_in_smp;
1da177e4 593
599d0c95 594enum pgdat_flags {
599d0c95 595 PGDAT_DIRTY, /* reclaim scanning has recently found
d43006d5
MG
596 * many dirty file pages at the tail
597 * of the LRU.
598 */
599d0c95 599 PGDAT_WRITEBACK, /* reclaim scanning has recently found
283aba9f
MG
600 * many pages under writeback
601 */
a5f5f91d 602 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
57054651 603};
e815af95 604
73444bc4
MG
605enum zone_flags {
606 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
607 * Cleared when kswapd is woken.
608 */
609};
610
9705bea5
AK
611static inline unsigned long zone_managed_pages(struct zone *zone)
612{
613 return (unsigned long)atomic_long_read(&zone->managed_pages);
614}
615
f9228b20 616static inline unsigned long zone_end_pfn(const struct zone *zone)
108bcc96
CS
617{
618 return zone->zone_start_pfn + zone->spanned_pages;
619}
620
621static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
622{
623 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
624}
625
2a6e3ebe
CS
626static inline bool zone_is_initialized(struct zone *zone)
627{
9dcb8b68 628 return zone->initialized;
2a6e3ebe
CS
629}
630
631static inline bool zone_is_empty(struct zone *zone)
632{
633 return zone->spanned_pages == 0;
634}
635
f1dd2cd1
MH
636/*
637 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
638 * intersection with the given zone
639 */
640static inline bool zone_intersects(struct zone *zone,
641 unsigned long start_pfn, unsigned long nr_pages)
642{
643 if (zone_is_empty(zone))
644 return false;
645 if (start_pfn >= zone_end_pfn(zone) ||
646 start_pfn + nr_pages <= zone->zone_start_pfn)
647 return false;
648
649 return true;
650}
651
1da177e4
LT
652/*
653 * The "priority" of VM scanning is how much of the queues we will scan in one
654 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
655 * queues ("queue_length >> 12") during an aging round.
656 */
657#define DEF_PRIORITY 12
658
9276b1bc
PJ
659/* Maximum number of zones on a zonelist */
660#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
661
c00eb15a
YB
662enum {
663 ZONELIST_FALLBACK, /* zonelist with fallback */
9276b1bc 664#ifdef CONFIG_NUMA
c00eb15a
YB
665 /*
666 * The NUMA zonelists are doubled because we need zonelists that
667 * restrict the allocations to a single node for __GFP_THISNODE.
668 */
669 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
9276b1bc 670#endif
c00eb15a
YB
671 MAX_ZONELISTS
672};
9276b1bc 673
dd1a239f
MG
674/*
675 * This struct contains information about a zone in a zonelist. It is stored
676 * here to avoid dereferences into large structures and lookups of tables
677 */
678struct zoneref {
679 struct zone *zone; /* Pointer to actual zone */
680 int zone_idx; /* zone_idx(zoneref->zone) */
681};
682
1da177e4
LT
683/*
684 * One allocation request operates on a zonelist. A zonelist
685 * is a list of zones, the first one is the 'goal' of the
686 * allocation, the other zones are fallback zones, in decreasing
687 * priority.
688 *
dd1a239f
MG
689 * To speed the reading of the zonelist, the zonerefs contain the zone index
690 * of the entry being read. Helper functions to access information given
691 * a struct zoneref are
692 *
693 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
694 * zonelist_zone_idx() - Return the index of the zone for an entry
695 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
696 */
697struct zonelist {
dd1a239f 698 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1da177e4
LT
699};
700
5b99cd0e
HC
701#ifndef CONFIG_DISCONTIGMEM
702/* The array of struct pages - for discontigmem use pgdat->lmem_map */
703extern struct page *mem_map;
704#endif
705
364c1eeb
YS
706#ifdef CONFIG_TRANSPARENT_HUGEPAGE
707struct deferred_split {
708 spinlock_t split_queue_lock;
709 struct list_head split_queue;
710 unsigned long split_queue_len;
711};
712#endif
713
1da177e4 714/*
1da177e4 715 * On NUMA machines, each NUMA node would have a pg_data_t to describe
618b8c20
NB
716 * it's memory layout. On UMA machines there is a single pglist_data which
717 * describes the whole memory.
1da177e4
LT
718 *
719 * Memory statistics and page replacement data structures are maintained on a
720 * per-zone basis.
721 */
1da177e4 722typedef struct pglist_data {
496df3d3
BW
723 /*
724 * node_zones contains just the zones for THIS node. Not all of the
725 * zones may be populated, but it is the full list. It is referenced by
726 * this node's node_zonelists as well as other node's node_zonelists.
727 */
1da177e4 728 struct zone node_zones[MAX_NR_ZONES];
496df3d3
BW
729
730 /*
731 * node_zonelists contains references to all zones in all nodes.
732 * Generally the first zones will be references to this node's
733 * node_zones.
734 */
523b9458 735 struct zonelist node_zonelists[MAX_ZONELISTS];
496df3d3
BW
736
737 int nr_zones; /* number of populated zones in this node */
52d4b9ac 738#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 739 struct page *node_mem_map;
eefa864b
JK
740#ifdef CONFIG_PAGE_EXTENSION
741 struct page_ext *node_page_ext;
742#endif
d41dee36 743#endif
3a2d7fa8 744#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
208d54e5 745 /*
fa004ab7
WY
746 * Must be held any time you expect node_start_pfn,
747 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
3d060856
PT
748 * Also synchronizes pgdat->first_deferred_pfn during deferred page
749 * init.
208d54e5 750 *
114d4b79 751 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
3a2d7fa8
PT
752 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
753 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
114d4b79 754 *
72c3b51b 755 * Nests above zone->lock and zone->span_seqlock
208d54e5
DH
756 */
757 spinlock_t node_size_lock;
758#endif
1da177e4
LT
759 unsigned long node_start_pfn;
760 unsigned long node_present_pages; /* total number of physical pages */
761 unsigned long node_spanned_pages; /* total size of physical page
762 range, including holes */
763 int node_id;
1da177e4 764 wait_queue_head_t kswapd_wait;
5515061d 765 wait_queue_head_t pfmemalloc_wait;
bfc8c901
VD
766 struct task_struct *kswapd; /* Protected by
767 mem_hotplug_begin/end() */
38087d9b 768 int kswapd_order;
97a225e6 769 enum zone_type kswapd_highest_zoneidx;
38087d9b 770
c73322d0
JW
771 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
772
698b1b30
VB
773#ifdef CONFIG_COMPACTION
774 int kcompactd_max_order;
97a225e6 775 enum zone_type kcompactd_highest_zoneidx;
698b1b30
VB
776 wait_queue_head_t kcompactd_wait;
777 struct task_struct *kcompactd;
8177a420 778#endif
281e3726
MG
779 /*
780 * This is a per-node reserve of pages that are not available
781 * to userspace allocations.
782 */
783 unsigned long totalreserve_pages;
784
a5f5f91d
MG
785#ifdef CONFIG_NUMA
786 /*
0a3c5772 787 * node reclaim becomes active if more unmapped pages exist.
a5f5f91d
MG
788 */
789 unsigned long min_unmapped_pages;
790 unsigned long min_slab_pages;
791#endif /* CONFIG_NUMA */
792
a52633d8
MG
793 /* Write-intensive fields used by page reclaim */
794 ZONE_PADDING(_pad1_)
795 spinlock_t lru_lock;
3a80a7fa
MG
796
797#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
798 /*
799 * If memory initialisation on large machines is deferred then this
800 * is the first PFN that needs to be initialised.
801 */
802 unsigned long first_deferred_pfn;
803#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
a3d0a918
KS
804
805#ifdef CONFIG_TRANSPARENT_HUGEPAGE
364c1eeb 806 struct deferred_split deferred_split_queue;
a3d0a918 807#endif
75ef7184 808
599d0c95 809 /* Fields commonly accessed by the page reclaim scanner */
867e5e1d
JW
810
811 /*
812 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
813 *
814 * Use mem_cgroup_lruvec() to look up lruvecs.
815 */
816 struct lruvec __lruvec;
599d0c95 817
599d0c95
MG
818 unsigned long flags;
819
820 ZONE_PADDING(_pad2_)
821
75ef7184
MG
822 /* Per-node vmstats */
823 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
824 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
1da177e4
LT
825} pg_data_t;
826
827#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
828#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 829#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 830#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
831#else
832#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
833#endif
408fde81 834#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 835
c6830c22 836#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
da3649e1 837#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
c6830c22 838
da3649e1
CS
839static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
840{
841 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
842}
843
844static inline bool pgdat_is_empty(pg_data_t *pgdat)
845{
846 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
847}
c6830c22 848
208d54e5
DH
849#include <linux/memory_hotplug.h>
850
72675e13 851void build_all_zonelists(pg_data_t *pgdat);
5ecd9d40 852void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
97a225e6 853 enum zone_type highest_zoneidx);
86a294a8 854bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 855 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 856 long free_pages);
7aeb09f9 857bool zone_watermark_ok(struct zone *z, unsigned int order,
97a225e6 858 unsigned long mark, int highest_zoneidx,
c603844b 859 unsigned int alloc_flags);
7aeb09f9 860bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 861 unsigned long mark, int highest_zoneidx);
c1d0da83
LD
862/*
863 * Memory initialization context, use to differentiate memory added by
864 * the platform statically or via memory hotplug interface.
865 */
866enum meminit_context {
867 MEMINIT_EARLY,
868 MEMINIT_HOTPLUG,
a2f3aa02 869};
c1d0da83 870
dc0bbf3b 871extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
b171e409 872 unsigned long size);
718127cc 873
bea8c150 874extern void lruvec_init(struct lruvec *lruvec);
7f5e86c2 875
599d0c95 876static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
7f5e86c2 877{
c255a458 878#ifdef CONFIG_MEMCG
599d0c95 879 return lruvec->pgdat;
7f5e86c2 880#else
867e5e1d 881 return container_of(lruvec, struct pglist_data, __lruvec);
7f5e86c2
KK
882#endif
883}
884
fd538803 885extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
23047a96 886
7aac7898
LS
887#ifdef CONFIG_HAVE_MEMORYLESS_NODES
888int local_memory_node(int node_id);
889#else
890static inline int local_memory_node(int node_id) { return node_id; };
891#endif
892
1da177e4
LT
893/*
894 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
895 */
896#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
897
6aa303de
MG
898/*
899 * Returns true if a zone has pages managed by the buddy allocator.
900 * All the reclaim decisions have to use this function rather than
901 * populated_zone(). If the whole zone is reserved then we can easily
902 * end up with populated_zone() && !managed_zone().
903 */
904static inline bool managed_zone(struct zone *zone)
905{
9705bea5 906 return zone_managed_pages(zone);
6aa303de
MG
907}
908
909/* Returns true if a zone has memory */
910static inline bool populated_zone(struct zone *zone)
f3fe6512 911{
6aa303de 912 return zone->present_pages;
f3fe6512
CK
913}
914
c1093b74
PT
915#ifdef CONFIG_NUMA
916static inline int zone_to_nid(struct zone *zone)
917{
918 return zone->node;
919}
920
921static inline void zone_set_nid(struct zone *zone, int nid)
922{
923 zone->node = nid;
924}
925#else
926static inline int zone_to_nid(struct zone *zone)
927{
928 return 0;
929}
930
931static inline void zone_set_nid(struct zone *zone, int nid) {}
932#endif
933
2a1e274a
MG
934extern int movable_zone;
935
d7e4a2ea 936#ifdef CONFIG_HIGHMEM
2a1e274a
MG
937static inline int zone_movable_is_highmem(void)
938{
3f08a302 939#ifdef CONFIG_NEED_MULTIPLE_NODES
2a1e274a
MG
940 return movable_zone == ZONE_HIGHMEM;
941#else
d7e4a2ea 942 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
2a1e274a
MG
943#endif
944}
d7e4a2ea 945#endif
2a1e274a 946
2f1b6248 947static inline int is_highmem_idx(enum zone_type idx)
1da177e4 948{
e53ef38d 949#ifdef CONFIG_HIGHMEM
2a1e274a
MG
950 return (idx == ZONE_HIGHMEM ||
951 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
952#else
953 return 0;
954#endif
1da177e4
LT
955}
956
1da177e4 957/**
b4a991ec 958 * is_highmem - helper function to quickly check if a struct zone is a
1da177e4
LT
959 * highmem zone or not. This is an attempt to keep references
960 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
961 * @zone - pointer to struct zone variable
962 */
963static inline int is_highmem(struct zone *zone)
964{
e53ef38d 965#ifdef CONFIG_HIGHMEM
29f9cb53 966 return is_highmem_idx(zone_idx(zone));
e53ef38d
CL
967#else
968 return 0;
969#endif
1da177e4
LT
970}
971
1da177e4
LT
972/* These two functions are used to setup the per zone pages min values */
973struct ctl_table;
2374c09b 974
32927393
CH
975int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
976 loff_t *);
977int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
978 size_t *, loff_t *);
d3cda233 979extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
32927393
CH
980int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
981 size_t *, loff_t *);
8d65af78 982int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
32927393 983 void *, size_t *, loff_t *);
9614634f 984int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
32927393 985 void *, size_t *, loff_t *);
0ff38490 986int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
32927393
CH
987 void *, size_t *, loff_t *);
988int numa_zonelist_order_handler(struct ctl_table *, int,
989 void *, size_t *, loff_t *);
2374c09b 990extern int percpu_pagelist_fraction;
f0c0b2b8 991extern char numa_zonelist_order[];
c9bff3ee 992#define NUMA_ZONELIST_ORDER_LEN 16
f0c0b2b8 993
93b7504e 994#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
995
996extern struct pglist_data contig_page_data;
997#define NODE_DATA(nid) (&contig_page_data)
998#define NODE_MEM_MAP(nid) mem_map
1da177e4 999
93b7504e 1000#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
1001
1002#include <asm/mmzone.h>
1003
93b7504e 1004#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 1005
95144c78
KH
1006extern struct pglist_data *first_online_pgdat(void);
1007extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1008extern struct zone *next_zone(struct zone *zone);
8357f869
KH
1009
1010/**
12d15f0d 1011 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
1012 * @pgdat - pointer to a pg_data_t variable
1013 */
1014#define for_each_online_pgdat(pgdat) \
1015 for (pgdat = first_online_pgdat(); \
1016 pgdat; \
1017 pgdat = next_online_pgdat(pgdat))
8357f869
KH
1018/**
1019 * for_each_zone - helper macro to iterate over all memory zones
1020 * @zone - pointer to struct zone variable
1021 *
1022 * The user only needs to declare the zone variable, for_each_zone
1023 * fills it in.
1024 */
1025#define for_each_zone(zone) \
1026 for (zone = (first_online_pgdat())->node_zones; \
1027 zone; \
1028 zone = next_zone(zone))
1029
ee99c71c
KM
1030#define for_each_populated_zone(zone) \
1031 for (zone = (first_online_pgdat())->node_zones; \
1032 zone; \
1033 zone = next_zone(zone)) \
1034 if (!populated_zone(zone)) \
1035 ; /* do nothing */ \
1036 else
1037
dd1a239f
MG
1038static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1039{
1040 return zoneref->zone;
1041}
1042
1043static inline int zonelist_zone_idx(struct zoneref *zoneref)
1044{
1045 return zoneref->zone_idx;
1046}
1047
1048static inline int zonelist_node_idx(struct zoneref *zoneref)
1049{
c1093b74 1050 return zone_to_nid(zoneref->zone);
dd1a239f
MG
1051}
1052
682a3385
MG
1053struct zoneref *__next_zones_zonelist(struct zoneref *z,
1054 enum zone_type highest_zoneidx,
1055 nodemask_t *nodes);
1056
19770b32
MG
1057/**
1058 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1059 * @z - The cursor used as a starting point for the search
1060 * @highest_zoneidx - The zone index of the highest zone to return
1061 * @nodes - An optional nodemask to filter the zonelist with
19770b32
MG
1062 *
1063 * This function returns the next zone at or below a given zone index that is
1064 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
1065 * search. The zoneref returned is a cursor that represents the current zone
1066 * being examined. It should be advanced by one before calling
1067 * next_zones_zonelist again.
19770b32 1068 */
682a3385 1069static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
19770b32 1070 enum zone_type highest_zoneidx,
682a3385
MG
1071 nodemask_t *nodes)
1072{
1073 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1074 return z;
1075 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1076}
dd1a239f 1077
19770b32
MG
1078/**
1079 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1080 * @zonelist - The zonelist to search for a suitable zone
1081 * @highest_zoneidx - The zone index of the highest zone to return
1082 * @nodes - An optional nodemask to filter the zonelist with
ea57485a 1083 * @return - Zoneref pointer for the first suitable zone found (see below)
19770b32
MG
1084 *
1085 * This function returns the first zone at or below a given zone index that is
1086 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
1087 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1088 * one before calling.
ea57485a
VB
1089 *
1090 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1091 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1092 * update due to cpuset modification.
19770b32 1093 */
dd1a239f 1094static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32 1095 enum zone_type highest_zoneidx,
c33d6c06 1096 nodemask_t *nodes)
54a6eb5c 1097{
c33d6c06 1098 return next_zones_zonelist(zonelist->_zonerefs,
05891fb0 1099 highest_zoneidx, nodes);
54a6eb5c
MG
1100}
1101
19770b32
MG
1102/**
1103 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1104 * @zone - The current zone in the iterator
84218b55 1105 * @z - The current pointer within zonelist->_zonerefs being iterated
19770b32
MG
1106 * @zlist - The zonelist being iterated
1107 * @highidx - The zone index of the highest zone to return
1108 * @nodemask - Nodemask allowed by the allocator
1109 *
1110 * This iterator iterates though all zones at or below a given zone index and
1111 * within a given nodemask
1112 */
1113#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
c33d6c06 1114 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
19770b32 1115 zone; \
05891fb0 1116 z = next_zones_zonelist(++z, highidx, nodemask), \
c33d6c06
MG
1117 zone = zonelist_zone(z))
1118
1119#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1120 for (zone = z->zone; \
1121 zone; \
1122 z = next_zones_zonelist(++z, highidx, nodemask), \
1123 zone = zonelist_zone(z))
1124
54a6eb5c
MG
1125
1126/**
1127 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1128 * @zone - The current zone in the iterator
1129 * @z - The current pointer within zonelist->zones being iterated
1130 * @zlist - The zonelist being iterated
1131 * @highidx - The zone index of the highest zone to return
1132 *
1133 * This iterator iterates though all zones at or below a given zone index.
1134 */
1135#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 1136 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 1137
d41dee36
AW
1138#ifdef CONFIG_SPARSEMEM
1139#include <asm/sparsemem.h>
1140#endif
1141
2bdaf115
AW
1142#ifdef CONFIG_FLATMEM
1143#define pfn_to_nid(pfn) (0)
1144#endif
1145
d41dee36
AW
1146#ifdef CONFIG_SPARSEMEM
1147
1148/*
1149 * SECTION_SHIFT #bits space required to store a section #
1150 *
1151 * PA_SECTION_SHIFT physical address to/from section number
1152 * PFN_SECTION_SHIFT pfn to/from section number
1153 */
d41dee36
AW
1154#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1155#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1156
1157#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1158
1159#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1160#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1161
835c134e 1162#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1163 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1164
d41dee36
AW
1165#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1166#error Allocator MAX_ORDER exceeds SECTION_SIZE
1167#endif
1168
1dd2bfc8
YI
1169static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1170{
1171 return pfn >> PFN_SECTION_SHIFT;
1172}
1173static inline unsigned long section_nr_to_pfn(unsigned long sec)
1174{
1175 return sec << PFN_SECTION_SHIFT;
1176}
e3c40f37 1177
a539f353
DK
1178#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1179#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1180
f1eca35a 1181#define SUBSECTION_SHIFT 21
9ffc1d19 1182#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
f1eca35a
DW
1183
1184#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1185#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1186#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1187
1188#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1189#error Subsection size exceeds section size
1190#else
1191#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1192#endif
1193
a3619190
DW
1194#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1195#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1196
f1eca35a 1197struct mem_section_usage {
0a9f9f62 1198#ifdef CONFIG_SPARSEMEM_VMEMMAP
f1eca35a 1199 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
0a9f9f62 1200#endif
f1eca35a
DW
1201 /* See declaration of similar field in struct zone */
1202 unsigned long pageblock_flags[0];
1203};
1204
f46edbd1
DW
1205void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1206
d41dee36 1207struct page;
eefa864b 1208struct page_ext;
d41dee36 1209struct mem_section {
29751f69
AW
1210 /*
1211 * This is, logically, a pointer to an array of struct
1212 * pages. However, it is stored with some other magic.
1213 * (see sparse.c::sparse_init_one_section())
1214 *
30c253e6
AW
1215 * Additionally during early boot we encode node id of
1216 * the location of the section here to guide allocation.
1217 * (see sparse.c::memory_present())
1218 *
29751f69
AW
1219 * Making it a UL at least makes someone do a cast
1220 * before using it wrong.
1221 */
1222 unsigned long section_mem_map;
5c0e3066 1223
f1eca35a 1224 struct mem_section_usage *usage;
eefa864b
JK
1225#ifdef CONFIG_PAGE_EXTENSION
1226 /*
0c9ad804 1227 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
eefa864b
JK
1228 * section. (see page_ext.h about this.)
1229 */
1230 struct page_ext *page_ext;
1231 unsigned long pad;
1232#endif
55878e88
CS
1233 /*
1234 * WARNING: mem_section must be a power-of-2 in size for the
1235 * calculation and use of SECTION_ROOT_MASK to make sense.
1236 */
d41dee36
AW
1237};
1238
3e347261
BP
1239#ifdef CONFIG_SPARSEMEM_EXTREME
1240#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1241#else
1242#define SECTIONS_PER_ROOT 1
1243#endif
802f192e 1244
3e347261 1245#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1246#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1247#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1248
3e347261 1249#ifdef CONFIG_SPARSEMEM_EXTREME
83e3c487 1250extern struct mem_section **mem_section;
802f192e 1251#else
3e347261
BP
1252extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1253#endif
d41dee36 1254
f1eca35a
DW
1255static inline unsigned long *section_to_usemap(struct mem_section *ms)
1256{
1257 return ms->usage->pageblock_flags;
1258}
1259
29751f69
AW
1260static inline struct mem_section *__nr_to_section(unsigned long nr)
1261{
83e3c487
KS
1262#ifdef CONFIG_SPARSEMEM_EXTREME
1263 if (!mem_section)
1264 return NULL;
1265#endif
3e347261
BP
1266 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1267 return NULL;
1268 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 1269}
2491f0a2 1270extern unsigned long __section_nr(struct mem_section *ms);
f1eca35a 1271extern size_t mem_section_usage_size(void);
29751f69
AW
1272
1273/*
1274 * We use the lower bits of the mem_map pointer to store
def9b71e
PT
1275 * a little bit of information. The pointer is calculated
1276 * as mem_map - section_nr_to_pfn(pnum). The result is
1277 * aligned to the minimum alignment of the two values:
1278 * 1. All mem_map arrays are page-aligned.
1279 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1280 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1281 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1282 * worst combination is powerpc with 256k pages,
1283 * which results in PFN_SECTION_SHIFT equal 6.
1284 * To sum it up, at least 6 bits are available.
29751f69
AW
1285 */
1286#define SECTION_MARKED_PRESENT (1UL<<0)
1287#define SECTION_HAS_MEM_MAP (1UL<<1)
2d070eab 1288#define SECTION_IS_ONLINE (1UL<<2)
326e1b8f
DW
1289#define SECTION_IS_EARLY (1UL<<3)
1290#define SECTION_MAP_LAST_BIT (1UL<<4)
29751f69 1291#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
2d070eab 1292#define SECTION_NID_SHIFT 3
29751f69
AW
1293
1294static inline struct page *__section_mem_map_addr(struct mem_section *section)
1295{
1296 unsigned long map = section->section_mem_map;
1297 map &= SECTION_MAP_MASK;
1298 return (struct page *)map;
1299}
1300
540557b9 1301static inline int present_section(struct mem_section *section)
29751f69 1302{
802f192e 1303 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1304}
1305
540557b9
AW
1306static inline int present_section_nr(unsigned long nr)
1307{
1308 return present_section(__nr_to_section(nr));
1309}
1310
1311static inline int valid_section(struct mem_section *section)
29751f69 1312{
802f192e 1313 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1314}
1315
326e1b8f
DW
1316static inline int early_section(struct mem_section *section)
1317{
1318 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1319}
1320
29751f69
AW
1321static inline int valid_section_nr(unsigned long nr)
1322{
1323 return valid_section(__nr_to_section(nr));
1324}
1325
2d070eab
MH
1326static inline int online_section(struct mem_section *section)
1327{
1328 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1329}
1330
1331static inline int online_section_nr(unsigned long nr)
1332{
1333 return online_section(__nr_to_section(nr));
1334}
1335
1336#ifdef CONFIG_MEMORY_HOTPLUG
1337void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1338#ifdef CONFIG_MEMORY_HOTREMOVE
1339void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1340#endif
1341#endif
1342
d41dee36
AW
1343static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1344{
29751f69 1345 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1346}
1347
2491f0a2 1348extern unsigned long __highest_present_section_nr;
c4e1be9e 1349
f46edbd1
DW
1350static inline int subsection_map_index(unsigned long pfn)
1351{
1352 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1353}
1354
1355#ifdef CONFIG_SPARSEMEM_VMEMMAP
1356static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1357{
1358 int idx = subsection_map_index(pfn);
1359
1360 return test_bit(idx, ms->usage->subsection_map);
1361}
1362#else
1363static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1364{
1365 return 1;
1366}
1367#endif
1368
7b7bf499 1369#ifndef CONFIG_HAVE_ARCH_PFN_VALID
d41dee36
AW
1370static inline int pfn_valid(unsigned long pfn)
1371{
f46edbd1
DW
1372 struct mem_section *ms;
1373
d41dee36
AW
1374 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1375 return 0;
f46edbd1
DW
1376 ms = __nr_to_section(pfn_to_section_nr(pfn));
1377 if (!valid_section(ms))
1378 return 0;
1379 /*
1380 * Traditionally early sections always returned pfn_valid() for
1381 * the entire section-sized span.
1382 */
1383 return early_section(ms) || pfn_section_valid(ms, pfn);
d41dee36 1384}
7b7bf499 1385#endif
d41dee36 1386
e03d1f78 1387static inline int pfn_in_present_section(unsigned long pfn)
540557b9
AW
1388{
1389 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1390 return 0;
1391 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1392}
1393
4c605881
DH
1394static inline unsigned long next_present_section_nr(unsigned long section_nr)
1395{
1396 while (++section_nr <= __highest_present_section_nr) {
1397 if (present_section_nr(section_nr))
1398 return section_nr;
1399 }
1400
1401 return -1;
1402}
1403
d41dee36
AW
1404/*
1405 * These are _only_ used during initialisation, therefore they
1406 * can use __initdata ... They could have names to indicate
1407 * this restriction.
1408 */
1409#ifdef CONFIG_NUMA
161599ff
AW
1410#define pfn_to_nid(pfn) \
1411({ \
1412 unsigned long __pfn_to_nid_pfn = (pfn); \
1413 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1414})
2bdaf115
AW
1415#else
1416#define pfn_to_nid(pfn) (0)
d41dee36
AW
1417#endif
1418
d41dee36
AW
1419#define early_pfn_valid(pfn) pfn_valid(pfn)
1420void sparse_init(void);
1421#else
1422#define sparse_init() do {} while (0)
28ae55c9 1423#define sparse_index_init(_sec, _nid) do {} while (0)
e03d1f78 1424#define pfn_in_present_section pfn_valid
f46edbd1 1425#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
d41dee36
AW
1426#endif /* CONFIG_SPARSEMEM */
1427
8a942fde
MG
1428/*
1429 * During memory init memblocks map pfns to nids. The search is expensive and
1430 * this caches recent lookups. The implementation of __early_pfn_to_nid
1431 * may treat start/end as pfns or sections.
1432 */
1433struct mminit_pfnnid_cache {
1434 unsigned long last_start;
1435 unsigned long last_end;
1436 int last_nid;
1437};
1438
d41dee36
AW
1439#ifndef early_pfn_valid
1440#define early_pfn_valid(pfn) (1)
1441#endif
1442
14e07298
AW
1443/*
1444 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
8bb4e7a2 1445 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
14e07298
AW
1446 * pfn_valid_within() should be used in this case; we optimise this away
1447 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1448 */
1449#ifdef CONFIG_HOLES_IN_ZONE
1450#define pfn_valid_within(pfn) pfn_valid(pfn)
1451#else
1452#define pfn_valid_within(pfn) (1)
1453#endif
1454
eb33575c
MG
1455#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1456/*
1457 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
2d070eab
MH
1458 * associated with it or not. This means that a struct page exists for this
1459 * pfn. The caller cannot assume the page is fully initialized in general.
1460 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1461 * will ensure the struct page is fully online and initialized. Special pages
1462 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1463 *
1464 * In FLATMEM, it is expected that holes always have valid memmap as long as
1465 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1466 * that a valid section has a memmap for the entire section.
eb33575c
MG
1467 *
1468 * However, an ARM, and maybe other embedded architectures in the future
1469 * free memmap backing holes to save memory on the assumption the memmap is
1470 * never used. The page_zone linkages are then broken even though pfn_valid()
1471 * returns true. A walker of the full memmap must then do this additional
1472 * check to ensure the memmap they are looking at is sane by making sure
1473 * the zone and PFN linkages are still valid. This is expensive, but walkers
1474 * of the full memmap are extremely rare.
1475 */
5b80287a 1476bool memmap_valid_within(unsigned long pfn,
eb33575c
MG
1477 struct page *page, struct zone *zone);
1478#else
5b80287a 1479static inline bool memmap_valid_within(unsigned long pfn,
eb33575c
MG
1480 struct page *page, struct zone *zone)
1481{
5b80287a 1482 return true;
eb33575c
MG
1483}
1484#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1485
97965478 1486#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1487#endif /* !__ASSEMBLY__ */
1da177e4 1488#endif /* _LINUX_MMZONE_H */