mm: add & use zone_end_pfn() and zone_spans_pfn()
[linux-2.6-block.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
bbeae5b0 18#include <linux/page-flags-layout.h>
60063497 19#include <linux/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
35fca53e 33 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
47118af0
MN
38enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_RECLAIMABLE,
41 MIGRATE_MOVABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44#ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59#endif
194159fb 60#ifdef CONFIG_MEMORY_ISOLATION
47118af0 61 MIGRATE_ISOLATE, /* can't allocate from here */
194159fb 62#endif
47118af0
MN
63 MIGRATE_TYPES
64};
65
66#ifdef CONFIG_CMA
67# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
68#else
69# define is_migrate_cma(migratetype) false
70#endif
b2a0ac88
MG
71
72#define for_each_migratetype_order(order, type) \
73 for (order = 0; order < MAX_ORDER; order++) \
74 for (type = 0; type < MIGRATE_TYPES; type++)
75
467c996c
MG
76extern int page_group_by_mobility_disabled;
77
78static inline int get_pageblock_migratetype(struct page *page)
79{
467c996c
MG
80 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
81}
82
1da177e4 83struct free_area {
b2a0ac88 84 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
85 unsigned long nr_free;
86};
87
88struct pglist_data;
89
90/*
91 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
92 * So add a wild amount of padding here to ensure that they fall into separate
93 * cachelines. There are very few zone structures in the machine, so space
94 * consumption is not a concern here.
95 */
96#if defined(CONFIG_SMP)
97struct zone_padding {
98 char x[0];
22fc6ecc 99} ____cacheline_internodealigned_in_smp;
1da177e4
LT
100#define ZONE_PADDING(name) struct zone_padding name;
101#else
102#define ZONE_PADDING(name)
103#endif
104
2244b95a 105enum zone_stat_item {
51ed4491 106 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 107 NR_FREE_PAGES,
b69408e8 108 NR_LRU_BASE,
4f98a2fe
RR
109 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
110 NR_ACTIVE_ANON, /* " " " " " */
111 NR_INACTIVE_FILE, /* " " " " " */
112 NR_ACTIVE_FILE, /* " " " " " */
894bc310 113 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 114 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
f3dbd344
CL
115 NR_ANON_PAGES, /* Mapped anonymous pages */
116 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 117 only modified from process context */
347ce434 118 NR_FILE_PAGES,
b1e7a8fd 119 NR_FILE_DIRTY,
ce866b34 120 NR_WRITEBACK,
51ed4491
CL
121 NR_SLAB_RECLAIMABLE,
122 NR_SLAB_UNRECLAIMABLE,
123 NR_PAGETABLE, /* used for pagetables */
c6a7f572
KM
124 NR_KERNEL_STACK,
125 /* Second 128 byte cacheline */
fd39fc85 126 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 127 NR_BOUNCE,
e129b5c2 128 NR_VMSCAN_WRITE,
49ea7eb6 129 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
fc3ba692 130 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
a731286d
KM
131 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
132 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
4b02108a 133 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
ea941f0e
MR
134 NR_DIRTIED, /* page dirtyings since bootup */
135 NR_WRITTEN, /* page writings since bootup */
ca889e6c
CL
136#ifdef CONFIG_NUMA
137 NUMA_HIT, /* allocated in intended node */
138 NUMA_MISS, /* allocated in non intended node */
139 NUMA_FOREIGN, /* was intended here, hit elsewhere */
140 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
141 NUMA_LOCAL, /* allocation from local node */
142 NUMA_OTHER, /* allocation from other node */
143#endif
79134171 144 NR_ANON_TRANSPARENT_HUGEPAGES,
d1ce749a 145 NR_FREE_CMA_PAGES,
2244b95a
CL
146 NR_VM_ZONE_STAT_ITEMS };
147
4f98a2fe
RR
148/*
149 * We do arithmetic on the LRU lists in various places in the code,
150 * so it is important to keep the active lists LRU_ACTIVE higher in
151 * the array than the corresponding inactive lists, and to keep
152 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
153 *
154 * This has to be kept in sync with the statistics in zone_stat_item
155 * above and the descriptions in vmstat_text in mm/vmstat.c
156 */
157#define LRU_BASE 0
158#define LRU_ACTIVE 1
159#define LRU_FILE 2
160
b69408e8 161enum lru_list {
4f98a2fe
RR
162 LRU_INACTIVE_ANON = LRU_BASE,
163 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
164 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
165 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 166 LRU_UNEVICTABLE,
894bc310
LS
167 NR_LRU_LISTS
168};
b69408e8 169
4111304d 170#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 171
4111304d 172#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 173
4111304d 174static inline int is_file_lru(enum lru_list lru)
4f98a2fe 175{
4111304d 176 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
177}
178
4111304d 179static inline int is_active_lru(enum lru_list lru)
b69408e8 180{
4111304d 181 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
182}
183
4111304d 184static inline int is_unevictable_lru(enum lru_list lru)
894bc310 185{
4111304d 186 return (lru == LRU_UNEVICTABLE);
894bc310
LS
187}
188
89abfab1
HD
189struct zone_reclaim_stat {
190 /*
191 * The pageout code in vmscan.c keeps track of how many of the
59f91e5d 192 * mem/swap backed and file backed pages are referenced.
89abfab1
HD
193 * The higher the rotated/scanned ratio, the more valuable
194 * that cache is.
195 *
196 * The anon LRU stats live in [0], file LRU stats in [1]
197 */
198 unsigned long recent_rotated[2];
199 unsigned long recent_scanned[2];
200};
201
6290df54
JW
202struct lruvec {
203 struct list_head lists[NR_LRU_LISTS];
89abfab1 204 struct zone_reclaim_stat reclaim_stat;
c255a458 205#ifdef CONFIG_MEMCG
7f5e86c2
KK
206 struct zone *zone;
207#endif
6290df54
JW
208};
209
bb2a0de9
KH
210/* Mask used at gathering information at once (see memcontrol.c) */
211#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
212#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
bb2a0de9
KH
213#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
214
39deaf85 215/* Isolate clean file */
f3fd4a61 216#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
f80c0673 217/* Isolate unmapped file */
f3fd4a61 218#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
c8244935 219/* Isolate for asynchronous migration */
f3fd4a61 220#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
e46a2879
MK
221/* Isolate unevictable pages */
222#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
4356f21d
MK
223
224/* LRU Isolation modes. */
225typedef unsigned __bitwise__ isolate_mode_t;
226
41858966
MG
227enum zone_watermarks {
228 WMARK_MIN,
229 WMARK_LOW,
230 WMARK_HIGH,
231 NR_WMARK
232};
233
234#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
235#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
236#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
237
1da177e4
LT
238struct per_cpu_pages {
239 int count; /* number of pages in the list */
1da177e4
LT
240 int high; /* high watermark, emptying needed */
241 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
242
243 /* Lists of pages, one per migrate type stored on the pcp-lists */
244 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
245};
246
247struct per_cpu_pageset {
3dfa5721 248 struct per_cpu_pages pcp;
4037d452
CL
249#ifdef CONFIG_NUMA
250 s8 expire;
251#endif
2244b95a 252#ifdef CONFIG_SMP
df9ecaba 253 s8 stat_threshold;
2244b95a
CL
254 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
255#endif
99dcc3e5 256};
e7c8d5c9 257
97965478
CL
258#endif /* !__GENERATING_BOUNDS.H */
259
2f1b6248 260enum zone_type {
4b51d669 261#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
262 /*
263 * ZONE_DMA is used when there are devices that are not able
264 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
265 * carve out the portion of memory that is needed for these devices.
266 * The range is arch specific.
267 *
268 * Some examples
269 *
270 * Architecture Limit
271 * ---------------------------
272 * parisc, ia64, sparc <4G
273 * s390 <2G
2f1b6248
CL
274 * arm Various
275 * alpha Unlimited or 0-16MB.
276 *
277 * i386, x86_64 and multiple other arches
278 * <16M.
279 */
280 ZONE_DMA,
4b51d669 281#endif
fb0e7942 282#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
283 /*
284 * x86_64 needs two ZONE_DMAs because it supports devices that are
285 * only able to do DMA to the lower 16M but also 32 bit devices that
286 * can only do DMA areas below 4G.
287 */
288 ZONE_DMA32,
fb0e7942 289#endif
2f1b6248
CL
290 /*
291 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
292 * performed on pages in ZONE_NORMAL if the DMA devices support
293 * transfers to all addressable memory.
294 */
295 ZONE_NORMAL,
e53ef38d 296#ifdef CONFIG_HIGHMEM
2f1b6248
CL
297 /*
298 * A memory area that is only addressable by the kernel through
299 * mapping portions into its own address space. This is for example
300 * used by i386 to allow the kernel to address the memory beyond
301 * 900MB. The kernel will set up special mappings (page
302 * table entries on i386) for each page that the kernel needs to
303 * access.
304 */
305 ZONE_HIGHMEM,
e53ef38d 306#endif
2a1e274a 307 ZONE_MOVABLE,
97965478 308 __MAX_NR_ZONES
2f1b6248 309};
1da177e4 310
97965478
CL
311#ifndef __GENERATING_BOUNDS_H
312
1da177e4
LT
313struct zone {
314 /* Fields commonly accessed by the page allocator */
41858966
MG
315
316 /* zone watermarks, access with *_wmark_pages(zone) macros */
317 unsigned long watermark[NR_WMARK];
318
aa454840
CL
319 /*
320 * When free pages are below this point, additional steps are taken
321 * when reading the number of free pages to avoid per-cpu counter
322 * drift allowing watermarks to be breached
323 */
324 unsigned long percpu_drift_mark;
325
1da177e4
LT
326 /*
327 * We don't know if the memory that we're going to allocate will be freeable
328 * or/and it will be released eventually, so to avoid totally wasting several
329 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
330 * to run OOM on the lower zones despite there's tons of freeable ram
331 * on the higher zones). This array is recalculated at runtime if the
332 * sysctl_lowmem_reserve_ratio sysctl changes.
333 */
334 unsigned long lowmem_reserve[MAX_NR_ZONES];
335
ab8fabd4
JW
336 /*
337 * This is a per-zone reserve of pages that should not be
338 * considered dirtyable memory.
339 */
340 unsigned long dirty_balance_reserve;
341
e7c8d5c9 342#ifdef CONFIG_NUMA
d5f541ed 343 int node;
9614634f
CL
344 /*
345 * zone reclaim becomes active if more unmapped pages exist.
346 */
8417bba4 347 unsigned long min_unmapped_pages;
0ff38490 348 unsigned long min_slab_pages;
e7c8d5c9 349#endif
43cf38eb 350 struct per_cpu_pageset __percpu *pageset;
1da177e4
LT
351 /*
352 * free areas of different sizes
353 */
354 spinlock_t lock;
93e4a89a 355 int all_unreclaimable; /* All pages pinned */
bb13ffeb 356#if defined CONFIG_COMPACTION || defined CONFIG_CMA
62997027
MG
357 /* Set to true when the PG_migrate_skip bits should be cleared */
358 bool compact_blockskip_flush;
c89511ab
MG
359
360 /* pfns where compaction scanners should start */
361 unsigned long compact_cached_free_pfn;
362 unsigned long compact_cached_migrate_pfn;
bb13ffeb 363#endif
bdc8cb98
DH
364#ifdef CONFIG_MEMORY_HOTPLUG
365 /* see spanned/present_pages for more description */
366 seqlock_t span_seqlock;
367#endif
1da177e4
LT
368 struct free_area free_area[MAX_ORDER];
369
835c134e
MG
370#ifndef CONFIG_SPARSEMEM
371 /*
d9c23400 372 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
373 * In SPARSEMEM, this map is stored in struct mem_section
374 */
375 unsigned long *pageblock_flags;
376#endif /* CONFIG_SPARSEMEM */
377
4f92e258
MG
378#ifdef CONFIG_COMPACTION
379 /*
380 * On compaction failure, 1<<compact_defer_shift compactions
381 * are skipped before trying again. The number attempted since
382 * last failure is tracked with compact_considered.
383 */
384 unsigned int compact_considered;
385 unsigned int compact_defer_shift;
aff62249 386 int compact_order_failed;
4f92e258 387#endif
1da177e4
LT
388
389 ZONE_PADDING(_pad1_)
390
391 /* Fields commonly accessed by the page reclaim scanner */
6290df54
JW
392 spinlock_t lru_lock;
393 struct lruvec lruvec;
4f98a2fe 394
1da177e4 395 unsigned long pages_scanned; /* since last reclaim */
e815af95 396 unsigned long flags; /* zone flags, see below */
753ee728 397
2244b95a
CL
398 /* Zone statistics */
399 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 400
556adecb
RR
401 /*
402 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
403 * this zone's LRU. Maintained by the pageout code.
404 */
405 unsigned int inactive_ratio;
406
1da177e4
LT
407
408 ZONE_PADDING(_pad2_)
409 /* Rarely used or read-mostly fields */
410
411 /*
412 * wait_table -- the array holding the hash table
02b694de 413 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
414 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
415 *
416 * The purpose of all these is to keep track of the people
417 * waiting for a page to become available and make them
418 * runnable again when possible. The trouble is that this
419 * consumes a lot of space, especially when so few things
420 * wait on pages at a given time. So instead of using
421 * per-page waitqueues, we use a waitqueue hash table.
422 *
423 * The bucket discipline is to sleep on the same queue when
424 * colliding and wake all in that wait queue when removing.
425 * When something wakes, it must check to be sure its page is
426 * truly available, a la thundering herd. The cost of a
427 * collision is great, but given the expected load of the
428 * table, they should be so rare as to be outweighed by the
429 * benefits from the saved space.
430 *
431 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
432 * primary users of these fields, and in mm/page_alloc.c
433 * free_area_init_core() performs the initialization of them.
434 */
435 wait_queue_head_t * wait_table;
02b694de 436 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
437 unsigned long wait_table_bits;
438
439 /*
440 * Discontig memory support fields.
441 */
442 struct pglist_data *zone_pgdat;
1da177e4
LT
443 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
444 unsigned long zone_start_pfn;
445
bdc8cb98 446 /*
9feedc9d
JL
447 * spanned_pages is the total pages spanned by the zone, including
448 * holes, which is calculated as:
449 * spanned_pages = zone_end_pfn - zone_start_pfn;
bdc8cb98 450 *
9feedc9d
JL
451 * present_pages is physical pages existing within the zone, which
452 * is calculated as:
453 * present_pages = spanned_pages - absent_pages(pags in holes);
454 *
455 * managed_pages is present pages managed by the buddy system, which
456 * is calculated as (reserved_pages includes pages allocated by the
457 * bootmem allocator):
458 * managed_pages = present_pages - reserved_pages;
459 *
460 * So present_pages may be used by memory hotplug or memory power
461 * management logic to figure out unmanaged pages by checking
462 * (present_pages - managed_pages). And managed_pages should be used
463 * by page allocator and vm scanner to calculate all kinds of watermarks
464 * and thresholds.
465 *
466 * Locking rules:
467 *
468 * zone_start_pfn and spanned_pages are protected by span_seqlock.
469 * It is a seqlock because it has to be read outside of zone->lock,
470 * and it is done in the main allocator path. But, it is written
471 * quite infrequently.
472 *
473 * The span_seq lock is declared along with zone->lock because it is
bdc8cb98
DH
474 * frequently read in proximity to zone->lock. It's good to
475 * give them a chance of being in the same cacheline.
9feedc9d
JL
476 *
477 * Write access to present_pages and managed_pages at runtime should
478 * be protected by lock_memory_hotplug()/unlock_memory_hotplug().
479 * Any reader who can't tolerant drift of present_pages and
480 * managed_pages should hold memory hotplug lock to get a stable value.
bdc8cb98 481 */
9feedc9d
JL
482 unsigned long spanned_pages;
483 unsigned long present_pages;
484 unsigned long managed_pages;
1da177e4
LT
485
486 /*
487 * rarely used fields:
488 */
15ad7cdc 489 const char *name;
22fc6ecc 490} ____cacheline_internodealigned_in_smp;
1da177e4 491
e815af95 492typedef enum {
e815af95 493 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 494 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
0e093d99
MG
495 ZONE_CONGESTED, /* zone has many dirty pages backed by
496 * a congested BDI
497 */
e815af95
DR
498} zone_flags_t;
499
500static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
501{
502 set_bit(flag, &zone->flags);
503}
d773ed6b
DR
504
505static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
506{
507 return test_and_set_bit(flag, &zone->flags);
508}
509
e815af95
DR
510static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
511{
512 clear_bit(flag, &zone->flags);
513}
514
0e093d99
MG
515static inline int zone_is_reclaim_congested(const struct zone *zone)
516{
517 return test_bit(ZONE_CONGESTED, &zone->flags);
518}
519
e815af95
DR
520static inline int zone_is_reclaim_locked(const struct zone *zone)
521{
522 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
523}
d773ed6b 524
098d7f12
DR
525static inline int zone_is_oom_locked(const struct zone *zone)
526{
527 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
528}
e815af95 529
108bcc96
CS
530static inline unsigned zone_end_pfn(const struct zone *zone)
531{
532 return zone->zone_start_pfn + zone->spanned_pages;
533}
534
535static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
536{
537 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
538}
539
1da177e4
LT
540/*
541 * The "priority" of VM scanning is how much of the queues we will scan in one
542 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
543 * queues ("queue_length >> 12") during an aging round.
544 */
545#define DEF_PRIORITY 12
546
9276b1bc
PJ
547/* Maximum number of zones on a zonelist */
548#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
549
550#ifdef CONFIG_NUMA
523b9458
CL
551
552/*
25a64ec1 553 * The NUMA zonelists are doubled because we need zonelists that restrict the
523b9458
CL
554 * allocations to a single node for GFP_THISNODE.
555 *
54a6eb5c
MG
556 * [0] : Zonelist with fallback
557 * [1] : No fallback (GFP_THISNODE)
523b9458 558 */
54a6eb5c 559#define MAX_ZONELISTS 2
523b9458
CL
560
561
9276b1bc
PJ
562/*
563 * We cache key information from each zonelist for smaller cache
564 * footprint when scanning for free pages in get_page_from_freelist().
565 *
566 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
567 * up short of free memory since the last time (last_fullzone_zap)
568 * we zero'd fullzones.
569 * 2) The array z_to_n[] maps each zone in the zonelist to its node
570 * id, so that we can efficiently evaluate whether that node is
571 * set in the current tasks mems_allowed.
572 *
573 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
574 * indexed by a zones offset in the zonelist zones[] array.
575 *
576 * The get_page_from_freelist() routine does two scans. During the
577 * first scan, we skip zones whose corresponding bit in 'fullzones'
578 * is set or whose corresponding node in current->mems_allowed (which
579 * comes from cpusets) is not set. During the second scan, we bypass
580 * this zonelist_cache, to ensure we look methodically at each zone.
581 *
582 * Once per second, we zero out (zap) fullzones, forcing us to
583 * reconsider nodes that might have regained more free memory.
584 * The field last_full_zap is the time we last zapped fullzones.
585 *
586 * This mechanism reduces the amount of time we waste repeatedly
587 * reexaming zones for free memory when they just came up low on
588 * memory momentarilly ago.
589 *
590 * The zonelist_cache struct members logically belong in struct
591 * zonelist. However, the mempolicy zonelists constructed for
592 * MPOL_BIND are intentionally variable length (and usually much
593 * shorter). A general purpose mechanism for handling structs with
594 * multiple variable length members is more mechanism than we want
595 * here. We resort to some special case hackery instead.
596 *
597 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
598 * part because they are shorter), so we put the fixed length stuff
599 * at the front of the zonelist struct, ending in a variable length
600 * zones[], as is needed by MPOL_BIND.
601 *
602 * Then we put the optional zonelist cache on the end of the zonelist
603 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
604 * the fixed length portion at the front of the struct. This pointer
605 * both enables us to find the zonelist cache, and in the case of
606 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
607 * to know that the zonelist cache is not there.
608 *
609 * The end result is that struct zonelists come in two flavors:
610 * 1) The full, fixed length version, shown below, and
611 * 2) The custom zonelists for MPOL_BIND.
612 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
613 *
614 * Even though there may be multiple CPU cores on a node modifying
615 * fullzones or last_full_zap in the same zonelist_cache at the same
616 * time, we don't lock it. This is just hint data - if it is wrong now
617 * and then, the allocator will still function, perhaps a bit slower.
618 */
619
620
621struct zonelist_cache {
9276b1bc 622 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 623 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
624 unsigned long last_full_zap; /* when last zap'd (jiffies) */
625};
626#else
54a6eb5c 627#define MAX_ZONELISTS 1
9276b1bc
PJ
628struct zonelist_cache;
629#endif
630
dd1a239f
MG
631/*
632 * This struct contains information about a zone in a zonelist. It is stored
633 * here to avoid dereferences into large structures and lookups of tables
634 */
635struct zoneref {
636 struct zone *zone; /* Pointer to actual zone */
637 int zone_idx; /* zone_idx(zoneref->zone) */
638};
639
1da177e4
LT
640/*
641 * One allocation request operates on a zonelist. A zonelist
642 * is a list of zones, the first one is the 'goal' of the
643 * allocation, the other zones are fallback zones, in decreasing
644 * priority.
645 *
9276b1bc
PJ
646 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
647 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
dd1a239f
MG
648 * *
649 * To speed the reading of the zonelist, the zonerefs contain the zone index
650 * of the entry being read. Helper functions to access information given
651 * a struct zoneref are
652 *
653 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
654 * zonelist_zone_idx() - Return the index of the zone for an entry
655 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
656 */
657struct zonelist {
9276b1bc 658 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
dd1a239f 659 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
9276b1bc
PJ
660#ifdef CONFIG_NUMA
661 struct zonelist_cache zlcache; // optional ...
662#endif
1da177e4
LT
663};
664
0ee332c1 665#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
666struct node_active_region {
667 unsigned long start_pfn;
668 unsigned long end_pfn;
669 int nid;
670};
0ee332c1 671#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1da177e4 672
5b99cd0e
HC
673#ifndef CONFIG_DISCONTIGMEM
674/* The array of struct pages - for discontigmem use pgdat->lmem_map */
675extern struct page *mem_map;
676#endif
677
1da177e4
LT
678/*
679 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
680 * (mostly NUMA machines?) to denote a higher-level memory zone than the
681 * zone denotes.
682 *
683 * On NUMA machines, each NUMA node would have a pg_data_t to describe
684 * it's memory layout.
685 *
686 * Memory statistics and page replacement data structures are maintained on a
687 * per-zone basis.
688 */
689struct bootmem_data;
690typedef struct pglist_data {
691 struct zone node_zones[MAX_NR_ZONES];
523b9458 692 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 693 int nr_zones;
52d4b9ac 694#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 695 struct page *node_mem_map;
c255a458 696#ifdef CONFIG_MEMCG
52d4b9ac
KH
697 struct page_cgroup *node_page_cgroup;
698#endif
d41dee36 699#endif
08677214 700#ifndef CONFIG_NO_BOOTMEM
1da177e4 701 struct bootmem_data *bdata;
08677214 702#endif
208d54e5
DH
703#ifdef CONFIG_MEMORY_HOTPLUG
704 /*
705 * Must be held any time you expect node_start_pfn, node_present_pages
706 * or node_spanned_pages stay constant. Holding this will also
707 * guarantee that any pfn_valid() stays that way.
708 *
709 * Nests above zone->lock and zone->size_seqlock.
710 */
711 spinlock_t node_size_lock;
712#endif
1da177e4
LT
713 unsigned long node_start_pfn;
714 unsigned long node_present_pages; /* total number of physical pages */
715 unsigned long node_spanned_pages; /* total size of physical page
716 range, including holes */
717 int node_id;
957f822a 718 nodemask_t reclaim_nodes; /* Nodes allowed to reclaim from */
1da177e4 719 wait_queue_head_t kswapd_wait;
5515061d 720 wait_queue_head_t pfmemalloc_wait;
d8adde17 721 struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */
1da177e4 722 int kswapd_max_order;
99504748 723 enum zone_type classzone_idx;
8177a420
AA
724#ifdef CONFIG_NUMA_BALANCING
725 /*
726 * Lock serializing the per destination node AutoNUMA memory
727 * migration rate limiting data.
728 */
729 spinlock_t numabalancing_migrate_lock;
730
731 /* Rate limiting time interval */
732 unsigned long numabalancing_migrate_next_window;
733
734 /* Number of pages migrated during the rate limiting time interval */
735 unsigned long numabalancing_migrate_nr_pages;
736#endif
1da177e4
LT
737} pg_data_t;
738
739#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
740#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 741#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 742#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
743#else
744#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
745#endif
408fde81 746#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 747
c6830c22
KH
748#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
749
750#define node_end_pfn(nid) ({\
751 pg_data_t *__pgdat = NODE_DATA(nid);\
752 __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
753})
754
208d54e5
DH
755#include <linux/memory_hotplug.h>
756
4eaf3f64 757extern struct mutex zonelists_mutex;
9adb62a5 758void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
99504748 759void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
88f5acf8
MG
760bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
761 int classzone_idx, int alloc_flags);
762bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
7fb1d9fc 763 int classzone_idx, int alloc_flags);
a2f3aa02
DH
764enum memmap_context {
765 MEMMAP_EARLY,
766 MEMMAP_HOTPLUG,
767};
718127cc 768extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
769 unsigned long size,
770 enum memmap_context context);
718127cc 771
bea8c150 772extern void lruvec_init(struct lruvec *lruvec);
7f5e86c2
KK
773
774static inline struct zone *lruvec_zone(struct lruvec *lruvec)
775{
c255a458 776#ifdef CONFIG_MEMCG
7f5e86c2
KK
777 return lruvec->zone;
778#else
779 return container_of(lruvec, struct zone, lruvec);
780#endif
781}
782
1da177e4
LT
783#ifdef CONFIG_HAVE_MEMORY_PRESENT
784void memory_present(int nid, unsigned long start, unsigned long end);
785#else
786static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
787#endif
788
7aac7898
LS
789#ifdef CONFIG_HAVE_MEMORYLESS_NODES
790int local_memory_node(int node_id);
791#else
792static inline int local_memory_node(int node_id) { return node_id; };
793#endif
794
1da177e4
LT
795#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
796unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
797#endif
798
799/*
800 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
801 */
802#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
803
f3fe6512
CK
804static inline int populated_zone(struct zone *zone)
805{
806 return (!!zone->present_pages);
807}
808
2a1e274a
MG
809extern int movable_zone;
810
811static inline int zone_movable_is_highmem(void)
812{
fe03025d 813#if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
2a1e274a
MG
814 return movable_zone == ZONE_HIGHMEM;
815#else
816 return 0;
817#endif
818}
819
2f1b6248 820static inline int is_highmem_idx(enum zone_type idx)
1da177e4 821{
e53ef38d 822#ifdef CONFIG_HIGHMEM
2a1e274a
MG
823 return (idx == ZONE_HIGHMEM ||
824 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
825#else
826 return 0;
827#endif
1da177e4
LT
828}
829
2f1b6248 830static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
831{
832 return (idx == ZONE_NORMAL);
833}
9328b8fa 834
1da177e4
LT
835/**
836 * is_highmem - helper function to quickly check if a struct zone is a
837 * highmem zone or not. This is an attempt to keep references
838 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
839 * @zone - pointer to struct zone variable
840 */
841static inline int is_highmem(struct zone *zone)
842{
e53ef38d 843#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
844 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
845 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
846 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
847 zone_movable_is_highmem());
e53ef38d
CL
848#else
849 return 0;
850#endif
1da177e4
LT
851}
852
853static inline int is_normal(struct zone *zone)
854{
855 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
856}
857
9328b8fa
NP
858static inline int is_dma32(struct zone *zone)
859{
fb0e7942 860#ifdef CONFIG_ZONE_DMA32
9328b8fa 861 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
862#else
863 return 0;
864#endif
9328b8fa
NP
865}
866
867static inline int is_dma(struct zone *zone)
868{
4b51d669 869#ifdef CONFIG_ZONE_DMA
9328b8fa 870 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
871#else
872 return 0;
873#endif
9328b8fa
NP
874}
875
1da177e4
LT
876/* These two functions are used to setup the per zone pages min values */
877struct ctl_table;
8d65af78 878int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
1da177e4
LT
879 void __user *, size_t *, loff_t *);
880extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
8d65af78 881int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
1da177e4 882 void __user *, size_t *, loff_t *);
8d65af78 883int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
8ad4b1fb 884 void __user *, size_t *, loff_t *);
9614634f 885int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 886 void __user *, size_t *, loff_t *);
0ff38490 887int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 888 void __user *, size_t *, loff_t *);
1da177e4 889
f0c0b2b8 890extern int numa_zonelist_order_handler(struct ctl_table *, int,
8d65af78 891 void __user *, size_t *, loff_t *);
f0c0b2b8
KH
892extern char numa_zonelist_order[];
893#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
894
93b7504e 895#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
896
897extern struct pglist_data contig_page_data;
898#define NODE_DATA(nid) (&contig_page_data)
899#define NODE_MEM_MAP(nid) mem_map
1da177e4 900
93b7504e 901#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
902
903#include <asm/mmzone.h>
904
93b7504e 905#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 906
95144c78
KH
907extern struct pglist_data *first_online_pgdat(void);
908extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
909extern struct zone *next_zone(struct zone *zone);
8357f869
KH
910
911/**
12d15f0d 912 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
913 * @pgdat - pointer to a pg_data_t variable
914 */
915#define for_each_online_pgdat(pgdat) \
916 for (pgdat = first_online_pgdat(); \
917 pgdat; \
918 pgdat = next_online_pgdat(pgdat))
8357f869
KH
919/**
920 * for_each_zone - helper macro to iterate over all memory zones
921 * @zone - pointer to struct zone variable
922 *
923 * The user only needs to declare the zone variable, for_each_zone
924 * fills it in.
925 */
926#define for_each_zone(zone) \
927 for (zone = (first_online_pgdat())->node_zones; \
928 zone; \
929 zone = next_zone(zone))
930
ee99c71c
KM
931#define for_each_populated_zone(zone) \
932 for (zone = (first_online_pgdat())->node_zones; \
933 zone; \
934 zone = next_zone(zone)) \
935 if (!populated_zone(zone)) \
936 ; /* do nothing */ \
937 else
938
dd1a239f
MG
939static inline struct zone *zonelist_zone(struct zoneref *zoneref)
940{
941 return zoneref->zone;
942}
943
944static inline int zonelist_zone_idx(struct zoneref *zoneref)
945{
946 return zoneref->zone_idx;
947}
948
949static inline int zonelist_node_idx(struct zoneref *zoneref)
950{
951#ifdef CONFIG_NUMA
952 /* zone_to_nid not available in this context */
953 return zoneref->zone->node;
954#else
955 return 0;
956#endif /* CONFIG_NUMA */
957}
958
19770b32
MG
959/**
960 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
961 * @z - The cursor used as a starting point for the search
962 * @highest_zoneidx - The zone index of the highest zone to return
963 * @nodes - An optional nodemask to filter the zonelist with
964 * @zone - The first suitable zone found is returned via this parameter
965 *
966 * This function returns the next zone at or below a given zone index that is
967 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
968 * search. The zoneref returned is a cursor that represents the current zone
969 * being examined. It should be advanced by one before calling
970 * next_zones_zonelist again.
19770b32
MG
971 */
972struct zoneref *next_zones_zonelist(struct zoneref *z,
973 enum zone_type highest_zoneidx,
974 nodemask_t *nodes,
975 struct zone **zone);
dd1a239f 976
19770b32
MG
977/**
978 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
979 * @zonelist - The zonelist to search for a suitable zone
980 * @highest_zoneidx - The zone index of the highest zone to return
981 * @nodes - An optional nodemask to filter the zonelist with
982 * @zone - The first suitable zone found is returned via this parameter
983 *
984 * This function returns the first zone at or below a given zone index that is
985 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
986 * used to iterate the zonelist with next_zones_zonelist by advancing it by
987 * one before calling.
19770b32 988 */
dd1a239f 989static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32
MG
990 enum zone_type highest_zoneidx,
991 nodemask_t *nodes,
992 struct zone **zone)
54a6eb5c 993{
19770b32
MG
994 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
995 zone);
54a6eb5c
MG
996}
997
19770b32
MG
998/**
999 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1000 * @zone - The current zone in the iterator
1001 * @z - The current pointer within zonelist->zones being iterated
1002 * @zlist - The zonelist being iterated
1003 * @highidx - The zone index of the highest zone to return
1004 * @nodemask - Nodemask allowed by the allocator
1005 *
1006 * This iterator iterates though all zones at or below a given zone index and
1007 * within a given nodemask
1008 */
1009#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1010 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
1011 zone; \
5bead2a0 1012 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
54a6eb5c
MG
1013
1014/**
1015 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1016 * @zone - The current zone in the iterator
1017 * @z - The current pointer within zonelist->zones being iterated
1018 * @zlist - The zonelist being iterated
1019 * @highidx - The zone index of the highest zone to return
1020 *
1021 * This iterator iterates though all zones at or below a given zone index.
1022 */
1023#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 1024 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 1025
d41dee36
AW
1026#ifdef CONFIG_SPARSEMEM
1027#include <asm/sparsemem.h>
1028#endif
1029
c713216d 1030#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
0ee332c1 1031 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
b4544568
AM
1032static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1033{
1034 return 0;
1035}
b159d43f
AW
1036#endif
1037
2bdaf115
AW
1038#ifdef CONFIG_FLATMEM
1039#define pfn_to_nid(pfn) (0)
1040#endif
1041
d41dee36
AW
1042#ifdef CONFIG_SPARSEMEM
1043
1044/*
1045 * SECTION_SHIFT #bits space required to store a section #
1046 *
1047 * PA_SECTION_SHIFT physical address to/from section number
1048 * PFN_SECTION_SHIFT pfn to/from section number
1049 */
d41dee36
AW
1050#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1051#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1052
1053#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1054
1055#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1056#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1057
835c134e 1058#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1059 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1060
d41dee36
AW
1061#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1062#error Allocator MAX_ORDER exceeds SECTION_SIZE
1063#endif
1064
e3c40f37
DK
1065#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1066#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1067
a539f353
DK
1068#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1069#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1070
d41dee36 1071struct page;
52d4b9ac 1072struct page_cgroup;
d41dee36 1073struct mem_section {
29751f69
AW
1074 /*
1075 * This is, logically, a pointer to an array of struct
1076 * pages. However, it is stored with some other magic.
1077 * (see sparse.c::sparse_init_one_section())
1078 *
30c253e6
AW
1079 * Additionally during early boot we encode node id of
1080 * the location of the section here to guide allocation.
1081 * (see sparse.c::memory_present())
1082 *
29751f69
AW
1083 * Making it a UL at least makes someone do a cast
1084 * before using it wrong.
1085 */
1086 unsigned long section_mem_map;
5c0e3066
MG
1087
1088 /* See declaration of similar field in struct zone */
1089 unsigned long *pageblock_flags;
c255a458 1090#ifdef CONFIG_MEMCG
52d4b9ac
KH
1091 /*
1092 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1093 * section. (see memcontrol.h/page_cgroup.h about this.)
1094 */
1095 struct page_cgroup *page_cgroup;
1096 unsigned long pad;
1097#endif
d41dee36
AW
1098};
1099
3e347261
BP
1100#ifdef CONFIG_SPARSEMEM_EXTREME
1101#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1102#else
1103#define SECTIONS_PER_ROOT 1
1104#endif
802f192e 1105
3e347261 1106#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1107#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1108#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1109
3e347261
BP
1110#ifdef CONFIG_SPARSEMEM_EXTREME
1111extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 1112#else
3e347261
BP
1113extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1114#endif
d41dee36 1115
29751f69
AW
1116static inline struct mem_section *__nr_to_section(unsigned long nr)
1117{
3e347261
BP
1118 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1119 return NULL;
1120 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 1121}
4ca644d9 1122extern int __section_nr(struct mem_section* ms);
04753278 1123extern unsigned long usemap_size(void);
29751f69
AW
1124
1125/*
1126 * We use the lower bits of the mem_map pointer to store
1127 * a little bit of information. There should be at least
1128 * 3 bits here due to 32-bit alignment.
1129 */
1130#define SECTION_MARKED_PRESENT (1UL<<0)
1131#define SECTION_HAS_MEM_MAP (1UL<<1)
1132#define SECTION_MAP_LAST_BIT (1UL<<2)
1133#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1134#define SECTION_NID_SHIFT 2
29751f69
AW
1135
1136static inline struct page *__section_mem_map_addr(struct mem_section *section)
1137{
1138 unsigned long map = section->section_mem_map;
1139 map &= SECTION_MAP_MASK;
1140 return (struct page *)map;
1141}
1142
540557b9 1143static inline int present_section(struct mem_section *section)
29751f69 1144{
802f192e 1145 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1146}
1147
540557b9
AW
1148static inline int present_section_nr(unsigned long nr)
1149{
1150 return present_section(__nr_to_section(nr));
1151}
1152
1153static inline int valid_section(struct mem_section *section)
29751f69 1154{
802f192e 1155 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1156}
1157
1158static inline int valid_section_nr(unsigned long nr)
1159{
1160 return valid_section(__nr_to_section(nr));
1161}
1162
d41dee36
AW
1163static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1164{
29751f69 1165 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1166}
1167
7b7bf499 1168#ifndef CONFIG_HAVE_ARCH_PFN_VALID
d41dee36
AW
1169static inline int pfn_valid(unsigned long pfn)
1170{
1171 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1172 return 0;
29751f69 1173 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36 1174}
7b7bf499 1175#endif
d41dee36 1176
540557b9
AW
1177static inline int pfn_present(unsigned long pfn)
1178{
1179 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1180 return 0;
1181 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1182}
1183
d41dee36
AW
1184/*
1185 * These are _only_ used during initialisation, therefore they
1186 * can use __initdata ... They could have names to indicate
1187 * this restriction.
1188 */
1189#ifdef CONFIG_NUMA
161599ff
AW
1190#define pfn_to_nid(pfn) \
1191({ \
1192 unsigned long __pfn_to_nid_pfn = (pfn); \
1193 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1194})
2bdaf115
AW
1195#else
1196#define pfn_to_nid(pfn) (0)
d41dee36
AW
1197#endif
1198
d41dee36
AW
1199#define early_pfn_valid(pfn) pfn_valid(pfn)
1200void sparse_init(void);
1201#else
1202#define sparse_init() do {} while (0)
28ae55c9 1203#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1204#endif /* CONFIG_SPARSEMEM */
1205
75167957 1206#ifdef CONFIG_NODES_SPAN_OTHER_NODES
cc2559bc 1207bool early_pfn_in_nid(unsigned long pfn, int nid);
75167957
AW
1208#else
1209#define early_pfn_in_nid(pfn, nid) (1)
1210#endif
1211
d41dee36
AW
1212#ifndef early_pfn_valid
1213#define early_pfn_valid(pfn) (1)
1214#endif
1215
1216void memory_present(int nid, unsigned long start, unsigned long end);
1217unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1218
14e07298
AW
1219/*
1220 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1221 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1222 * pfn_valid_within() should be used in this case; we optimise this away
1223 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1224 */
1225#ifdef CONFIG_HOLES_IN_ZONE
1226#define pfn_valid_within(pfn) pfn_valid(pfn)
1227#else
1228#define pfn_valid_within(pfn) (1)
1229#endif
1230
eb33575c
MG
1231#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1232/*
1233 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1234 * associated with it or not. In FLATMEM, it is expected that holes always
1235 * have valid memmap as long as there is valid PFNs either side of the hole.
1236 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1237 * entire section.
1238 *
1239 * However, an ARM, and maybe other embedded architectures in the future
1240 * free memmap backing holes to save memory on the assumption the memmap is
1241 * never used. The page_zone linkages are then broken even though pfn_valid()
1242 * returns true. A walker of the full memmap must then do this additional
1243 * check to ensure the memmap they are looking at is sane by making sure
1244 * the zone and PFN linkages are still valid. This is expensive, but walkers
1245 * of the full memmap are extremely rare.
1246 */
1247int memmap_valid_within(unsigned long pfn,
1248 struct page *page, struct zone *zone);
1249#else
1250static inline int memmap_valid_within(unsigned long pfn,
1251 struct page *page, struct zone *zone)
1252{
1253 return 1;
1254}
1255#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1256
97965478 1257#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1258#endif /* !__ASSEMBLY__ */
1da177e4 1259#endif /* _LINUX_MMZONE_H */