Merge branch 'readdir' (readdir speedup and sanity checking)
[linux-block.git] / include / linux / mmzone.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
1da177e4 5#ifndef __ASSEMBLY__
97965478 6#ifndef __GENERATING_BOUNDS_H
1da177e4 7
1da177e4
LT
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/wait.h>
e815af95 11#include <linux/bitops.h>
1da177e4
LT
12#include <linux/cache.h>
13#include <linux/threads.h>
14#include <linux/numa.h>
15#include <linux/init.h>
bdc8cb98 16#include <linux/seqlock.h>
8357f869 17#include <linux/nodemask.h>
835c134e 18#include <linux/pageblock-flags.h>
bbeae5b0 19#include <linux/page-flags-layout.h>
60063497 20#include <linux/atomic.h>
b03641af
DW
21#include <linux/mm_types.h>
22#include <linux/page-flags.h>
93ff66bf 23#include <asm/page.h>
1da177e4
LT
24
25/* Free memory management - zoned buddy allocator. */
26#ifndef CONFIG_FORCE_MAX_ZONEORDER
27#define MAX_ORDER 11
28#else
29#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30#endif
e984bb43 31#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 32
5ad333eb
AW
33/*
34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35 * costly to service. That is between allocation orders which should
35fca53e 36 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
37 * will not.
38 */
39#define PAGE_ALLOC_COSTLY_ORDER 3
40
a6ffdc07 41enum migratetype {
47118af0 42 MIGRATE_UNMOVABLE,
47118af0 43 MIGRATE_MOVABLE,
016c13da 44 MIGRATE_RECLAIMABLE,
0aaa29a5
MG
45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47118af0
MN
47#ifdef CONFIG_CMA
48 /*
49 * MIGRATE_CMA migration type is designed to mimic the way
50 * ZONE_MOVABLE works. Only movable pages can be allocated
51 * from MIGRATE_CMA pageblocks and page allocator never
52 * implicitly change migration type of MIGRATE_CMA pageblock.
53 *
54 * The way to use it is to change migratetype of a range of
55 * pageblocks to MIGRATE_CMA which can be done by
56 * __free_pageblock_cma() function. What is important though
57 * is that a range of pageblocks must be aligned to
58 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 * a single pageblock.
60 */
61 MIGRATE_CMA,
62#endif
194159fb 63#ifdef CONFIG_MEMORY_ISOLATION
47118af0 64 MIGRATE_ISOLATE, /* can't allocate from here */
194159fb 65#endif
47118af0
MN
66 MIGRATE_TYPES
67};
68
60f30350 69/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
c999fbd3 70extern const char * const migratetype_names[MIGRATE_TYPES];
60f30350 71
47118af0
MN
72#ifdef CONFIG_CMA
73# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
7c15d9bb 74# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
47118af0
MN
75#else
76# define is_migrate_cma(migratetype) false
7c15d9bb 77# define is_migrate_cma_page(_page) false
47118af0 78#endif
b2a0ac88 79
b682debd
VB
80static inline bool is_migrate_movable(int mt)
81{
82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83}
84
b2a0ac88
MG
85#define for_each_migratetype_order(order, type) \
86 for (order = 0; order < MAX_ORDER; order++) \
87 for (type = 0; type < MIGRATE_TYPES; type++)
88
467c996c
MG
89extern int page_group_by_mobility_disabled;
90
e58469ba
MG
91#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
92#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
93
dc4b0caf
MG
94#define get_pageblock_migratetype(page) \
95 get_pfnblock_flags_mask(page, page_to_pfn(page), \
96 PB_migrate_end, MIGRATETYPE_MASK)
97
1da177e4 98struct free_area {
b2a0ac88 99 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
100 unsigned long nr_free;
101};
102
b03641af
DW
103/* Used for pages not on another list */
104static inline void add_to_free_area(struct page *page, struct free_area *area,
105 int migratetype)
106{
107 list_add(&page->lru, &area->free_list[migratetype]);
108 area->nr_free++;
109}
110
111/* Used for pages not on another list */
112static inline void add_to_free_area_tail(struct page *page, struct free_area *area,
113 int migratetype)
114{
115 list_add_tail(&page->lru, &area->free_list[migratetype]);
116 area->nr_free++;
117}
118
97500a4a
DW
119#ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR
120/* Used to preserve page allocation order entropy */
121void add_to_free_area_random(struct page *page, struct free_area *area,
122 int migratetype);
123#else
124static inline void add_to_free_area_random(struct page *page,
125 struct free_area *area, int migratetype)
126{
127 add_to_free_area(page, area, migratetype);
128}
129#endif
130
b03641af
DW
131/* Used for pages which are on another list */
132static inline void move_to_free_area(struct page *page, struct free_area *area,
133 int migratetype)
134{
135 list_move(&page->lru, &area->free_list[migratetype]);
136}
137
138static inline struct page *get_page_from_free_area(struct free_area *area,
139 int migratetype)
140{
141 return list_first_entry_or_null(&area->free_list[migratetype],
142 struct page, lru);
143}
144
145static inline void del_page_from_free_area(struct page *page,
146 struct free_area *area)
147{
148 list_del(&page->lru);
149 __ClearPageBuddy(page);
150 set_page_private(page, 0);
151 area->nr_free--;
152}
153
154static inline bool free_area_empty(struct free_area *area, int migratetype)
155{
156 return list_empty(&area->free_list[migratetype]);
157}
158
1da177e4
LT
159struct pglist_data;
160
161/*
a52633d8 162 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
1da177e4
LT
163 * So add a wild amount of padding here to ensure that they fall into separate
164 * cachelines. There are very few zone structures in the machine, so space
165 * consumption is not a concern here.
166 */
167#if defined(CONFIG_SMP)
168struct zone_padding {
169 char x[0];
22fc6ecc 170} ____cacheline_internodealigned_in_smp;
1da177e4
LT
171#define ZONE_PADDING(name) struct zone_padding name;
172#else
173#define ZONE_PADDING(name)
174#endif
175
3a321d2a
KW
176#ifdef CONFIG_NUMA
177enum numa_stat_item {
178 NUMA_HIT, /* allocated in intended node */
179 NUMA_MISS, /* allocated in non intended node */
180 NUMA_FOREIGN, /* was intended here, hit elsewhere */
181 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
182 NUMA_LOCAL, /* allocation from local node */
183 NUMA_OTHER, /* allocation from other node */
184 NR_VM_NUMA_STAT_ITEMS
185};
186#else
187#define NR_VM_NUMA_STAT_ITEMS 0
188#endif
189
2244b95a 190enum zone_stat_item {
51ed4491 191 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 192 NR_FREE_PAGES,
71c799f4
MK
193 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
194 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
195 NR_ZONE_ACTIVE_ANON,
196 NR_ZONE_INACTIVE_FILE,
197 NR_ZONE_ACTIVE_FILE,
198 NR_ZONE_UNEVICTABLE,
5a1c84b4 199 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
5344b7e6 200 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
51ed4491 201 NR_PAGETABLE, /* used for pagetables */
d30dd8be 202 NR_KERNEL_STACK_KB, /* measured in KiB */
c6a7f572 203 /* Second 128 byte cacheline */
d2c5e30c 204 NR_BOUNCE,
91537fee
MK
205#if IS_ENABLED(CONFIG_ZSMALLOC)
206 NR_ZSPAGES, /* allocated in zsmalloc */
ca889e6c 207#endif
d1ce749a 208 NR_FREE_CMA_PAGES,
2244b95a
CL
209 NR_VM_ZONE_STAT_ITEMS };
210
75ef7184 211enum node_stat_item {
599d0c95
MG
212 NR_LRU_BASE,
213 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
214 NR_ACTIVE_ANON, /* " " " " " */
215 NR_INACTIVE_FILE, /* " " " " " */
216 NR_ACTIVE_FILE, /* " " " " " */
217 NR_UNEVICTABLE, /* " " " " " */
bee07b33
RG
218 NR_SLAB_RECLAIMABLE, /* Please do not reorder this item */
219 NR_SLAB_UNRECLAIMABLE, /* and this one without looking at
220 * memcg_flush_percpu_vmstats() first. */
599d0c95
MG
221 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
222 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
68d48e6a 223 WORKINGSET_NODES,
1e6b1085
MG
224 WORKINGSET_REFAULT,
225 WORKINGSET_ACTIVATE,
1899ad18 226 WORKINGSET_RESTORE,
1e6b1085 227 WORKINGSET_NODERECLAIM,
4b9d0fab 228 NR_ANON_MAPPED, /* Mapped anonymous pages */
50658e2e
MG
229 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
230 only modified from process context */
11fb9989
MG
231 NR_FILE_PAGES,
232 NR_FILE_DIRTY,
233 NR_WRITEBACK,
234 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
235 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
236 NR_SHMEM_THPS,
237 NR_SHMEM_PMDMAPPED,
60fbf0ab
SL
238 NR_FILE_THPS,
239 NR_FILE_PMDMAPPED,
11fb9989
MG
240 NR_ANON_THPS,
241 NR_UNSTABLE_NFS, /* NFS unstable pages */
c4a25635
MG
242 NR_VMSCAN_WRITE,
243 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
244 NR_DIRTIED, /* page dirtyings since bootup */
245 NR_WRITTEN, /* page writings since bootup */
b29940c1 246 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
75ef7184
MG
247 NR_VM_NODE_STAT_ITEMS
248};
249
4f98a2fe
RR
250/*
251 * We do arithmetic on the LRU lists in various places in the code,
252 * so it is important to keep the active lists LRU_ACTIVE higher in
253 * the array than the corresponding inactive lists, and to keep
254 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
255 *
256 * This has to be kept in sync with the statistics in zone_stat_item
257 * above and the descriptions in vmstat_text in mm/vmstat.c
258 */
259#define LRU_BASE 0
260#define LRU_ACTIVE 1
261#define LRU_FILE 2
262
b69408e8 263enum lru_list {
4f98a2fe
RR
264 LRU_INACTIVE_ANON = LRU_BASE,
265 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
266 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
267 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 268 LRU_UNEVICTABLE,
894bc310
LS
269 NR_LRU_LISTS
270};
b69408e8 271
4111304d 272#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 273
4111304d 274#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 275
4111304d 276static inline int is_file_lru(enum lru_list lru)
4f98a2fe 277{
4111304d 278 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
279}
280
4111304d 281static inline int is_active_lru(enum lru_list lru)
b69408e8 282{
4111304d 283 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
284}
285
89abfab1
HD
286struct zone_reclaim_stat {
287 /*
288 * The pageout code in vmscan.c keeps track of how many of the
59f91e5d 289 * mem/swap backed and file backed pages are referenced.
89abfab1
HD
290 * The higher the rotated/scanned ratio, the more valuable
291 * that cache is.
292 *
293 * The anon LRU stats live in [0], file LRU stats in [1]
294 */
295 unsigned long recent_rotated[2];
296 unsigned long recent_scanned[2];
297};
298
6290df54 299struct lruvec {
23047a96
JW
300 struct list_head lists[NR_LRU_LISTS];
301 struct zone_reclaim_stat reclaim_stat;
302 /* Evictions & activations on the inactive file list */
303 atomic_long_t inactive_age;
2a2e4885
JW
304 /* Refaults at the time of last reclaim cycle */
305 unsigned long refaults;
c255a458 306#ifdef CONFIG_MEMCG
599d0c95 307 struct pglist_data *pgdat;
7f5e86c2 308#endif
6290df54
JW
309};
310
f80c0673 311/* Isolate unmapped file */
f3fd4a61 312#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
c8244935 313/* Isolate for asynchronous migration */
f3fd4a61 314#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
e46a2879
MK
315/* Isolate unevictable pages */
316#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
4356f21d
MK
317
318/* LRU Isolation modes. */
9efeccac 319typedef unsigned __bitwise isolate_mode_t;
4356f21d 320
41858966
MG
321enum zone_watermarks {
322 WMARK_MIN,
323 WMARK_LOW,
324 WMARK_HIGH,
325 NR_WMARK
326};
327
1c30844d
MG
328#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
329#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
330#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
331#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
41858966 332
1da177e4
LT
333struct per_cpu_pages {
334 int count; /* number of pages in the list */
1da177e4
LT
335 int high; /* high watermark, emptying needed */
336 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
337
338 /* Lists of pages, one per migrate type stored on the pcp-lists */
339 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
340};
341
342struct per_cpu_pageset {
3dfa5721 343 struct per_cpu_pages pcp;
4037d452
CL
344#ifdef CONFIG_NUMA
345 s8 expire;
1d90ca89 346 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
4037d452 347#endif
2244b95a 348#ifdef CONFIG_SMP
df9ecaba 349 s8 stat_threshold;
2244b95a
CL
350 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
351#endif
99dcc3e5 352};
e7c8d5c9 353
75ef7184
MG
354struct per_cpu_nodestat {
355 s8 stat_threshold;
356 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
357};
358
97965478
CL
359#endif /* !__GENERATING_BOUNDS.H */
360
2f1b6248 361enum zone_type {
4b51d669 362#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
363 /*
364 * ZONE_DMA is used when there are devices that are not able
365 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
366 * carve out the portion of memory that is needed for these devices.
367 * The range is arch specific.
368 *
369 * Some examples
370 *
371 * Architecture Limit
372 * ---------------------------
373 * parisc, ia64, sparc <4G
25078dc1 374 * s390, powerpc <2G
2f1b6248
CL
375 * arm Various
376 * alpha Unlimited or 0-16MB.
377 *
378 * i386, x86_64 and multiple other arches
379 * <16M.
380 */
381 ZONE_DMA,
4b51d669 382#endif
fb0e7942 383#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
384 /*
385 * x86_64 needs two ZONE_DMAs because it supports devices that are
386 * only able to do DMA to the lower 16M but also 32 bit devices that
387 * can only do DMA areas below 4G.
388 */
389 ZONE_DMA32,
fb0e7942 390#endif
2f1b6248
CL
391 /*
392 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
393 * performed on pages in ZONE_NORMAL if the DMA devices support
394 * transfers to all addressable memory.
395 */
396 ZONE_NORMAL,
e53ef38d 397#ifdef CONFIG_HIGHMEM
2f1b6248
CL
398 /*
399 * A memory area that is only addressable by the kernel through
400 * mapping portions into its own address space. This is for example
401 * used by i386 to allow the kernel to address the memory beyond
402 * 900MB. The kernel will set up special mappings (page
403 * table entries on i386) for each page that the kernel needs to
404 * access.
405 */
406 ZONE_HIGHMEM,
e53ef38d 407#endif
2a1e274a 408 ZONE_MOVABLE,
033fbae9
DW
409#ifdef CONFIG_ZONE_DEVICE
410 ZONE_DEVICE,
411#endif
97965478 412 __MAX_NR_ZONES
033fbae9 413
2f1b6248 414};
1da177e4 415
97965478
CL
416#ifndef __GENERATING_BOUNDS_H
417
1da177e4 418struct zone {
3484b2de 419 /* Read-mostly fields */
41858966
MG
420
421 /* zone watermarks, access with *_wmark_pages(zone) macros */
a9214443 422 unsigned long _watermark[NR_WMARK];
1c30844d 423 unsigned long watermark_boost;
41858966 424
0aaa29a5
MG
425 unsigned long nr_reserved_highatomic;
426
1da177e4 427 /*
89903327
AM
428 * We don't know if the memory that we're going to allocate will be
429 * freeable or/and it will be released eventually, so to avoid totally
430 * wasting several GB of ram we must reserve some of the lower zone
431 * memory (otherwise we risk to run OOM on the lower zones despite
432 * there being tons of freeable ram on the higher zones). This array is
433 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
434 * changes.
1da177e4 435 */
3484b2de 436 long lowmem_reserve[MAX_NR_ZONES];
ab8fabd4 437
e7c8d5c9 438#ifdef CONFIG_NUMA
d5f541ed 439 int node;
3484b2de 440#endif
3484b2de 441 struct pglist_data *zone_pgdat;
43cf38eb 442 struct per_cpu_pageset __percpu *pageset;
3484b2de 443
835c134e
MG
444#ifndef CONFIG_SPARSEMEM
445 /*
d9c23400 446 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
447 * In SPARSEMEM, this map is stored in struct mem_section
448 */
449 unsigned long *pageblock_flags;
450#endif /* CONFIG_SPARSEMEM */
451
1da177e4
LT
452 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
453 unsigned long zone_start_pfn;
454
bdc8cb98 455 /*
9feedc9d
JL
456 * spanned_pages is the total pages spanned by the zone, including
457 * holes, which is calculated as:
458 * spanned_pages = zone_end_pfn - zone_start_pfn;
bdc8cb98 459 *
9feedc9d
JL
460 * present_pages is physical pages existing within the zone, which
461 * is calculated as:
8761e31c 462 * present_pages = spanned_pages - absent_pages(pages in holes);
9feedc9d
JL
463 *
464 * managed_pages is present pages managed by the buddy system, which
465 * is calculated as (reserved_pages includes pages allocated by the
466 * bootmem allocator):
467 * managed_pages = present_pages - reserved_pages;
468 *
469 * So present_pages may be used by memory hotplug or memory power
470 * management logic to figure out unmanaged pages by checking
471 * (present_pages - managed_pages). And managed_pages should be used
472 * by page allocator and vm scanner to calculate all kinds of watermarks
473 * and thresholds.
474 *
475 * Locking rules:
476 *
477 * zone_start_pfn and spanned_pages are protected by span_seqlock.
478 * It is a seqlock because it has to be read outside of zone->lock,
479 * and it is done in the main allocator path. But, it is written
480 * quite infrequently.
481 *
482 * The span_seq lock is declared along with zone->lock because it is
bdc8cb98
DH
483 * frequently read in proximity to zone->lock. It's good to
484 * give them a chance of being in the same cacheline.
9feedc9d 485 *
c3d5f5f0 486 * Write access to present_pages at runtime should be protected by
bfc8c901
VD
487 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
488 * present_pages should get_online_mems() to get a stable value.
bdc8cb98 489 */
9705bea5 490 atomic_long_t managed_pages;
9feedc9d
JL
491 unsigned long spanned_pages;
492 unsigned long present_pages;
3484b2de
MG
493
494 const char *name;
1da177e4 495
ad53f92e
JK
496#ifdef CONFIG_MEMORY_ISOLATION
497 /*
498 * Number of isolated pageblock. It is used to solve incorrect
499 * freepage counting problem due to racy retrieving migratetype
500 * of pageblock. Protected by zone->lock.
501 */
502 unsigned long nr_isolate_pageblock;
503#endif
504
3484b2de
MG
505#ifdef CONFIG_MEMORY_HOTPLUG
506 /* see spanned/present_pages for more description */
507 seqlock_t span_seqlock;
508#endif
509
9dcb8b68 510 int initialized;
3484b2de 511
0f661148 512 /* Write-intensive fields used from the page allocator */
3484b2de 513 ZONE_PADDING(_pad1_)
0f661148 514
3484b2de
MG
515 /* free areas of different sizes */
516 struct free_area free_area[MAX_ORDER];
517
518 /* zone flags, see below */
519 unsigned long flags;
520
0f661148 521 /* Primarily protects free_area */
a368ab67
MG
522 spinlock_t lock;
523
0f661148 524 /* Write-intensive fields used by compaction and vmstats. */
3484b2de
MG
525 ZONE_PADDING(_pad2_)
526
3484b2de
MG
527 /*
528 * When free pages are below this point, additional steps are taken
529 * when reading the number of free pages to avoid per-cpu counter
530 * drift allowing watermarks to be breached
531 */
532 unsigned long percpu_drift_mark;
533
534#if defined CONFIG_COMPACTION || defined CONFIG_CMA
535 /* pfn where compaction free scanner should start */
536 unsigned long compact_cached_free_pfn;
537 /* pfn where async and sync compaction migration scanner should start */
538 unsigned long compact_cached_migrate_pfn[2];
e332f741
MG
539 unsigned long compact_init_migrate_pfn;
540 unsigned long compact_init_free_pfn;
3484b2de
MG
541#endif
542
543#ifdef CONFIG_COMPACTION
544 /*
545 * On compaction failure, 1<<compact_defer_shift compactions
546 * are skipped before trying again. The number attempted since
547 * last failure is tracked with compact_considered.
548 */
549 unsigned int compact_considered;
550 unsigned int compact_defer_shift;
551 int compact_order_failed;
552#endif
553
554#if defined CONFIG_COMPACTION || defined CONFIG_CMA
555 /* Set to true when the PG_migrate_skip bits should be cleared */
556 bool compact_blockskip_flush;
557#endif
558
7cf91a98
JK
559 bool contiguous;
560
3484b2de
MG
561 ZONE_PADDING(_pad3_)
562 /* Zone statistics */
563 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
3a321d2a 564 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
22fc6ecc 565} ____cacheline_internodealigned_in_smp;
1da177e4 566
599d0c95
MG
567enum pgdat_flags {
568 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
0e093d99
MG
569 * a congested BDI
570 */
599d0c95 571 PGDAT_DIRTY, /* reclaim scanning has recently found
d43006d5
MG
572 * many dirty file pages at the tail
573 * of the LRU.
574 */
599d0c95 575 PGDAT_WRITEBACK, /* reclaim scanning has recently found
283aba9f
MG
576 * many pages under writeback
577 */
a5f5f91d 578 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
57054651 579};
e815af95 580
73444bc4
MG
581enum zone_flags {
582 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
583 * Cleared when kswapd is woken.
584 */
585};
586
9705bea5
AK
587static inline unsigned long zone_managed_pages(struct zone *zone)
588{
589 return (unsigned long)atomic_long_read(&zone->managed_pages);
590}
591
f9228b20 592static inline unsigned long zone_end_pfn(const struct zone *zone)
108bcc96
CS
593{
594 return zone->zone_start_pfn + zone->spanned_pages;
595}
596
597static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
598{
599 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
600}
601
2a6e3ebe
CS
602static inline bool zone_is_initialized(struct zone *zone)
603{
9dcb8b68 604 return zone->initialized;
2a6e3ebe
CS
605}
606
607static inline bool zone_is_empty(struct zone *zone)
608{
609 return zone->spanned_pages == 0;
610}
611
f1dd2cd1
MH
612/*
613 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
614 * intersection with the given zone
615 */
616static inline bool zone_intersects(struct zone *zone,
617 unsigned long start_pfn, unsigned long nr_pages)
618{
619 if (zone_is_empty(zone))
620 return false;
621 if (start_pfn >= zone_end_pfn(zone) ||
622 start_pfn + nr_pages <= zone->zone_start_pfn)
623 return false;
624
625 return true;
626}
627
1da177e4
LT
628/*
629 * The "priority" of VM scanning is how much of the queues we will scan in one
630 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
631 * queues ("queue_length >> 12") during an aging round.
632 */
633#define DEF_PRIORITY 12
634
9276b1bc
PJ
635/* Maximum number of zones on a zonelist */
636#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
637
c00eb15a
YB
638enum {
639 ZONELIST_FALLBACK, /* zonelist with fallback */
9276b1bc 640#ifdef CONFIG_NUMA
c00eb15a
YB
641 /*
642 * The NUMA zonelists are doubled because we need zonelists that
643 * restrict the allocations to a single node for __GFP_THISNODE.
644 */
645 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
9276b1bc 646#endif
c00eb15a
YB
647 MAX_ZONELISTS
648};
9276b1bc 649
dd1a239f
MG
650/*
651 * This struct contains information about a zone in a zonelist. It is stored
652 * here to avoid dereferences into large structures and lookups of tables
653 */
654struct zoneref {
655 struct zone *zone; /* Pointer to actual zone */
656 int zone_idx; /* zone_idx(zoneref->zone) */
657};
658
1da177e4
LT
659/*
660 * One allocation request operates on a zonelist. A zonelist
661 * is a list of zones, the first one is the 'goal' of the
662 * allocation, the other zones are fallback zones, in decreasing
663 * priority.
664 *
dd1a239f
MG
665 * To speed the reading of the zonelist, the zonerefs contain the zone index
666 * of the entry being read. Helper functions to access information given
667 * a struct zoneref are
668 *
669 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
670 * zonelist_zone_idx() - Return the index of the zone for an entry
671 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
672 */
673struct zonelist {
dd1a239f 674 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1da177e4
LT
675};
676
5b99cd0e
HC
677#ifndef CONFIG_DISCONTIGMEM
678/* The array of struct pages - for discontigmem use pgdat->lmem_map */
679extern struct page *mem_map;
680#endif
681
364c1eeb
YS
682#ifdef CONFIG_TRANSPARENT_HUGEPAGE
683struct deferred_split {
684 spinlock_t split_queue_lock;
685 struct list_head split_queue;
686 unsigned long split_queue_len;
687};
688#endif
689
1da177e4 690/*
1da177e4 691 * On NUMA machines, each NUMA node would have a pg_data_t to describe
618b8c20
NB
692 * it's memory layout. On UMA machines there is a single pglist_data which
693 * describes the whole memory.
1da177e4
LT
694 *
695 * Memory statistics and page replacement data structures are maintained on a
696 * per-zone basis.
697 */
698struct bootmem_data;
699typedef struct pglist_data {
700 struct zone node_zones[MAX_NR_ZONES];
523b9458 701 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 702 int nr_zones;
52d4b9ac 703#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 704 struct page *node_mem_map;
eefa864b
JK
705#ifdef CONFIG_PAGE_EXTENSION
706 struct page_ext *node_page_ext;
707#endif
d41dee36 708#endif
3a2d7fa8 709#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
208d54e5 710 /*
fa004ab7
WY
711 * Must be held any time you expect node_start_pfn,
712 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
208d54e5 713 *
114d4b79 714 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
3a2d7fa8
PT
715 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
716 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
114d4b79 717 *
72c3b51b 718 * Nests above zone->lock and zone->span_seqlock
208d54e5
DH
719 */
720 spinlock_t node_size_lock;
721#endif
1da177e4
LT
722 unsigned long node_start_pfn;
723 unsigned long node_present_pages; /* total number of physical pages */
724 unsigned long node_spanned_pages; /* total size of physical page
725 range, including holes */
726 int node_id;
1da177e4 727 wait_queue_head_t kswapd_wait;
5515061d 728 wait_queue_head_t pfmemalloc_wait;
bfc8c901
VD
729 struct task_struct *kswapd; /* Protected by
730 mem_hotplug_begin/end() */
38087d9b
MG
731 int kswapd_order;
732 enum zone_type kswapd_classzone_idx;
733
c73322d0
JW
734 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
735
698b1b30
VB
736#ifdef CONFIG_COMPACTION
737 int kcompactd_max_order;
738 enum zone_type kcompactd_classzone_idx;
739 wait_queue_head_t kcompactd_wait;
740 struct task_struct *kcompactd;
8177a420 741#endif
281e3726
MG
742 /*
743 * This is a per-node reserve of pages that are not available
744 * to userspace allocations.
745 */
746 unsigned long totalreserve_pages;
747
a5f5f91d
MG
748#ifdef CONFIG_NUMA
749 /*
750 * zone reclaim becomes active if more unmapped pages exist.
751 */
752 unsigned long min_unmapped_pages;
753 unsigned long min_slab_pages;
754#endif /* CONFIG_NUMA */
755
a52633d8
MG
756 /* Write-intensive fields used by page reclaim */
757 ZONE_PADDING(_pad1_)
758 spinlock_t lru_lock;
3a80a7fa
MG
759
760#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
761 /*
762 * If memory initialisation on large machines is deferred then this
763 * is the first PFN that needs to be initialised.
764 */
765 unsigned long first_deferred_pfn;
766#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
a3d0a918
KS
767
768#ifdef CONFIG_TRANSPARENT_HUGEPAGE
364c1eeb 769 struct deferred_split deferred_split_queue;
a3d0a918 770#endif
75ef7184 771
599d0c95
MG
772 /* Fields commonly accessed by the page reclaim scanner */
773 struct lruvec lruvec;
774
599d0c95
MG
775 unsigned long flags;
776
777 ZONE_PADDING(_pad2_)
778
75ef7184
MG
779 /* Per-node vmstats */
780 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
781 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
1da177e4
LT
782} pg_data_t;
783
784#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
785#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 786#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 787#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
788#else
789#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
790#endif
408fde81 791#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 792
c6830c22 793#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
da3649e1 794#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
c6830c22 795
a9dd0a83 796static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
599d0c95 797{
a9dd0a83 798 return &pgdat->lruvec;
599d0c95
MG
799}
800
da3649e1
CS
801static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
802{
803 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
804}
805
806static inline bool pgdat_is_empty(pg_data_t *pgdat)
807{
808 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
809}
c6830c22 810
208d54e5
DH
811#include <linux/memory_hotplug.h>
812
72675e13 813void build_all_zonelists(pg_data_t *pgdat);
5ecd9d40
DR
814void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
815 enum zone_type classzone_idx);
86a294a8
MH
816bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
817 int classzone_idx, unsigned int alloc_flags,
818 long free_pages);
7aeb09f9 819bool zone_watermark_ok(struct zone *z, unsigned int order,
c603844b
MG
820 unsigned long mark, int classzone_idx,
821 unsigned int alloc_flags);
7aeb09f9 822bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 823 unsigned long mark, int classzone_idx);
a2f3aa02
DH
824enum memmap_context {
825 MEMMAP_EARLY,
826 MEMMAP_HOTPLUG,
827};
dc0bbf3b 828extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
b171e409 829 unsigned long size);
718127cc 830
bea8c150 831extern void lruvec_init(struct lruvec *lruvec);
7f5e86c2 832
599d0c95 833static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
7f5e86c2 834{
c255a458 835#ifdef CONFIG_MEMCG
599d0c95 836 return lruvec->pgdat;
7f5e86c2 837#else
599d0c95 838 return container_of(lruvec, struct pglist_data, lruvec);
7f5e86c2
KK
839#endif
840}
841
fd538803 842extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
23047a96 843
1da177e4
LT
844#ifdef CONFIG_HAVE_MEMORY_PRESENT
845void memory_present(int nid, unsigned long start, unsigned long end);
846#else
847static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
848#endif
849
9def36e0
LG
850#if defined(CONFIG_SPARSEMEM)
851void memblocks_present(void);
852#else
853static inline void memblocks_present(void) {}
854#endif
855
7aac7898
LS
856#ifdef CONFIG_HAVE_MEMORYLESS_NODES
857int local_memory_node(int node_id);
858#else
859static inline int local_memory_node(int node_id) { return node_id; };
860#endif
861
1da177e4
LT
862/*
863 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
864 */
865#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
866
6aa303de
MG
867/*
868 * Returns true if a zone has pages managed by the buddy allocator.
869 * All the reclaim decisions have to use this function rather than
870 * populated_zone(). If the whole zone is reserved then we can easily
871 * end up with populated_zone() && !managed_zone().
872 */
873static inline bool managed_zone(struct zone *zone)
874{
9705bea5 875 return zone_managed_pages(zone);
6aa303de
MG
876}
877
878/* Returns true if a zone has memory */
879static inline bool populated_zone(struct zone *zone)
f3fe6512 880{
6aa303de 881 return zone->present_pages;
f3fe6512
CK
882}
883
c1093b74
PT
884#ifdef CONFIG_NUMA
885static inline int zone_to_nid(struct zone *zone)
886{
887 return zone->node;
888}
889
890static inline void zone_set_nid(struct zone *zone, int nid)
891{
892 zone->node = nid;
893}
894#else
895static inline int zone_to_nid(struct zone *zone)
896{
897 return 0;
898}
899
900static inline void zone_set_nid(struct zone *zone, int nid) {}
901#endif
902
2a1e274a
MG
903extern int movable_zone;
904
d7e4a2ea 905#ifdef CONFIG_HIGHMEM
2a1e274a
MG
906static inline int zone_movable_is_highmem(void)
907{
d7e4a2ea 908#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2a1e274a
MG
909 return movable_zone == ZONE_HIGHMEM;
910#else
d7e4a2ea 911 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
2a1e274a
MG
912#endif
913}
d7e4a2ea 914#endif
2a1e274a 915
2f1b6248 916static inline int is_highmem_idx(enum zone_type idx)
1da177e4 917{
e53ef38d 918#ifdef CONFIG_HIGHMEM
2a1e274a
MG
919 return (idx == ZONE_HIGHMEM ||
920 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
921#else
922 return 0;
923#endif
1da177e4
LT
924}
925
1da177e4 926/**
b4a991ec 927 * is_highmem - helper function to quickly check if a struct zone is a
1da177e4
LT
928 * highmem zone or not. This is an attempt to keep references
929 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
930 * @zone - pointer to struct zone variable
931 */
932static inline int is_highmem(struct zone *zone)
933{
e53ef38d 934#ifdef CONFIG_HIGHMEM
29f9cb53 935 return is_highmem_idx(zone_idx(zone));
e53ef38d
CL
936#else
937 return 0;
938#endif
1da177e4
LT
939}
940
1da177e4
LT
941/* These two functions are used to setup the per zone pages min values */
942struct ctl_table;
8d65af78 943int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
1da177e4 944 void __user *, size_t *, loff_t *);
1c30844d
MG
945int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
946 void __user *, size_t *, loff_t *);
795ae7a0
JW
947int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
948 void __user *, size_t *, loff_t *);
d3cda233 949extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
8d65af78 950int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
1da177e4 951 void __user *, size_t *, loff_t *);
8d65af78 952int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
8ad4b1fb 953 void __user *, size_t *, loff_t *);
9614634f 954int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 955 void __user *, size_t *, loff_t *);
0ff38490 956int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 957 void __user *, size_t *, loff_t *);
1da177e4 958
f0c0b2b8 959extern int numa_zonelist_order_handler(struct ctl_table *, int,
8d65af78 960 void __user *, size_t *, loff_t *);
f0c0b2b8 961extern char numa_zonelist_order[];
c9bff3ee 962#define NUMA_ZONELIST_ORDER_LEN 16
f0c0b2b8 963
93b7504e 964#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
965
966extern struct pglist_data contig_page_data;
967#define NODE_DATA(nid) (&contig_page_data)
968#define NODE_MEM_MAP(nid) mem_map
1da177e4 969
93b7504e 970#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
971
972#include <asm/mmzone.h>
973
93b7504e 974#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 975
95144c78
KH
976extern struct pglist_data *first_online_pgdat(void);
977extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
978extern struct zone *next_zone(struct zone *zone);
8357f869
KH
979
980/**
12d15f0d 981 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
982 * @pgdat - pointer to a pg_data_t variable
983 */
984#define for_each_online_pgdat(pgdat) \
985 for (pgdat = first_online_pgdat(); \
986 pgdat; \
987 pgdat = next_online_pgdat(pgdat))
8357f869
KH
988/**
989 * for_each_zone - helper macro to iterate over all memory zones
990 * @zone - pointer to struct zone variable
991 *
992 * The user only needs to declare the zone variable, for_each_zone
993 * fills it in.
994 */
995#define for_each_zone(zone) \
996 for (zone = (first_online_pgdat())->node_zones; \
997 zone; \
998 zone = next_zone(zone))
999
ee99c71c
KM
1000#define for_each_populated_zone(zone) \
1001 for (zone = (first_online_pgdat())->node_zones; \
1002 zone; \
1003 zone = next_zone(zone)) \
1004 if (!populated_zone(zone)) \
1005 ; /* do nothing */ \
1006 else
1007
dd1a239f
MG
1008static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1009{
1010 return zoneref->zone;
1011}
1012
1013static inline int zonelist_zone_idx(struct zoneref *zoneref)
1014{
1015 return zoneref->zone_idx;
1016}
1017
1018static inline int zonelist_node_idx(struct zoneref *zoneref)
1019{
c1093b74 1020 return zone_to_nid(zoneref->zone);
dd1a239f
MG
1021}
1022
682a3385
MG
1023struct zoneref *__next_zones_zonelist(struct zoneref *z,
1024 enum zone_type highest_zoneidx,
1025 nodemask_t *nodes);
1026
19770b32
MG
1027/**
1028 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1029 * @z - The cursor used as a starting point for the search
1030 * @highest_zoneidx - The zone index of the highest zone to return
1031 * @nodes - An optional nodemask to filter the zonelist with
19770b32
MG
1032 *
1033 * This function returns the next zone at or below a given zone index that is
1034 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
1035 * search. The zoneref returned is a cursor that represents the current zone
1036 * being examined. It should be advanced by one before calling
1037 * next_zones_zonelist again.
19770b32 1038 */
682a3385 1039static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
19770b32 1040 enum zone_type highest_zoneidx,
682a3385
MG
1041 nodemask_t *nodes)
1042{
1043 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1044 return z;
1045 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1046}
dd1a239f 1047
19770b32
MG
1048/**
1049 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1050 * @zonelist - The zonelist to search for a suitable zone
1051 * @highest_zoneidx - The zone index of the highest zone to return
1052 * @nodes - An optional nodemask to filter the zonelist with
ea57485a 1053 * @return - Zoneref pointer for the first suitable zone found (see below)
19770b32
MG
1054 *
1055 * This function returns the first zone at or below a given zone index that is
1056 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
1057 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1058 * one before calling.
ea57485a
VB
1059 *
1060 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1061 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1062 * update due to cpuset modification.
19770b32 1063 */
dd1a239f 1064static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32 1065 enum zone_type highest_zoneidx,
c33d6c06 1066 nodemask_t *nodes)
54a6eb5c 1067{
c33d6c06 1068 return next_zones_zonelist(zonelist->_zonerefs,
05891fb0 1069 highest_zoneidx, nodes);
54a6eb5c
MG
1070}
1071
19770b32
MG
1072/**
1073 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1074 * @zone - The current zone in the iterator
1075 * @z - The current pointer within zonelist->zones being iterated
1076 * @zlist - The zonelist being iterated
1077 * @highidx - The zone index of the highest zone to return
1078 * @nodemask - Nodemask allowed by the allocator
1079 *
1080 * This iterator iterates though all zones at or below a given zone index and
1081 * within a given nodemask
1082 */
1083#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
c33d6c06 1084 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
19770b32 1085 zone; \
05891fb0 1086 z = next_zones_zonelist(++z, highidx, nodemask), \
c33d6c06
MG
1087 zone = zonelist_zone(z))
1088
1089#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1090 for (zone = z->zone; \
1091 zone; \
1092 z = next_zones_zonelist(++z, highidx, nodemask), \
1093 zone = zonelist_zone(z))
1094
54a6eb5c
MG
1095
1096/**
1097 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1098 * @zone - The current zone in the iterator
1099 * @z - The current pointer within zonelist->zones being iterated
1100 * @zlist - The zonelist being iterated
1101 * @highidx - The zone index of the highest zone to return
1102 *
1103 * This iterator iterates though all zones at or below a given zone index.
1104 */
1105#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 1106 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 1107
d41dee36
AW
1108#ifdef CONFIG_SPARSEMEM
1109#include <asm/sparsemem.h>
1110#endif
1111
c713216d 1112#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
0ee332c1 1113 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
b4544568
AM
1114static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1115{
9d1f4b3f 1116 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
b4544568
AM
1117 return 0;
1118}
b159d43f
AW
1119#endif
1120
2bdaf115
AW
1121#ifdef CONFIG_FLATMEM
1122#define pfn_to_nid(pfn) (0)
1123#endif
1124
d41dee36
AW
1125#ifdef CONFIG_SPARSEMEM
1126
1127/*
1128 * SECTION_SHIFT #bits space required to store a section #
1129 *
1130 * PA_SECTION_SHIFT physical address to/from section number
1131 * PFN_SECTION_SHIFT pfn to/from section number
1132 */
d41dee36
AW
1133#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1134#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1135
1136#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1137
1138#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1139#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1140
835c134e 1141#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1142 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1143
d41dee36
AW
1144#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1145#error Allocator MAX_ORDER exceeds SECTION_SIZE
1146#endif
1147
1dd2bfc8
YI
1148static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1149{
1150 return pfn >> PFN_SECTION_SHIFT;
1151}
1152static inline unsigned long section_nr_to_pfn(unsigned long sec)
1153{
1154 return sec << PFN_SECTION_SHIFT;
1155}
e3c40f37 1156
a539f353
DK
1157#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1158#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1159
f1eca35a
DW
1160#define SUBSECTION_SHIFT 21
1161
1162#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1163#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1164#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1165
1166#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1167#error Subsection size exceeds section size
1168#else
1169#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1170#endif
1171
a3619190
DW
1172#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1173#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1174
f1eca35a
DW
1175struct mem_section_usage {
1176 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1177 /* See declaration of similar field in struct zone */
1178 unsigned long pageblock_flags[0];
1179};
1180
f46edbd1
DW
1181void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1182
d41dee36 1183struct page;
eefa864b 1184struct page_ext;
d41dee36 1185struct mem_section {
29751f69
AW
1186 /*
1187 * This is, logically, a pointer to an array of struct
1188 * pages. However, it is stored with some other magic.
1189 * (see sparse.c::sparse_init_one_section())
1190 *
30c253e6
AW
1191 * Additionally during early boot we encode node id of
1192 * the location of the section here to guide allocation.
1193 * (see sparse.c::memory_present())
1194 *
29751f69
AW
1195 * Making it a UL at least makes someone do a cast
1196 * before using it wrong.
1197 */
1198 unsigned long section_mem_map;
5c0e3066 1199
f1eca35a 1200 struct mem_section_usage *usage;
eefa864b
JK
1201#ifdef CONFIG_PAGE_EXTENSION
1202 /*
0c9ad804 1203 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
eefa864b
JK
1204 * section. (see page_ext.h about this.)
1205 */
1206 struct page_ext *page_ext;
1207 unsigned long pad;
1208#endif
55878e88
CS
1209 /*
1210 * WARNING: mem_section must be a power-of-2 in size for the
1211 * calculation and use of SECTION_ROOT_MASK to make sense.
1212 */
d41dee36
AW
1213};
1214
3e347261
BP
1215#ifdef CONFIG_SPARSEMEM_EXTREME
1216#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1217#else
1218#define SECTIONS_PER_ROOT 1
1219#endif
802f192e 1220
3e347261 1221#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1222#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1223#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1224
3e347261 1225#ifdef CONFIG_SPARSEMEM_EXTREME
83e3c487 1226extern struct mem_section **mem_section;
802f192e 1227#else
3e347261
BP
1228extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1229#endif
d41dee36 1230
f1eca35a
DW
1231static inline unsigned long *section_to_usemap(struct mem_section *ms)
1232{
1233 return ms->usage->pageblock_flags;
1234}
1235
29751f69
AW
1236static inline struct mem_section *__nr_to_section(unsigned long nr)
1237{
83e3c487
KS
1238#ifdef CONFIG_SPARSEMEM_EXTREME
1239 if (!mem_section)
1240 return NULL;
1241#endif
3e347261
BP
1242 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1243 return NULL;
1244 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 1245}
2491f0a2 1246extern unsigned long __section_nr(struct mem_section *ms);
f1eca35a 1247extern size_t mem_section_usage_size(void);
29751f69
AW
1248
1249/*
1250 * We use the lower bits of the mem_map pointer to store
def9b71e
PT
1251 * a little bit of information. The pointer is calculated
1252 * as mem_map - section_nr_to_pfn(pnum). The result is
1253 * aligned to the minimum alignment of the two values:
1254 * 1. All mem_map arrays are page-aligned.
1255 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1256 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1257 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1258 * worst combination is powerpc with 256k pages,
1259 * which results in PFN_SECTION_SHIFT equal 6.
1260 * To sum it up, at least 6 bits are available.
29751f69
AW
1261 */
1262#define SECTION_MARKED_PRESENT (1UL<<0)
1263#define SECTION_HAS_MEM_MAP (1UL<<1)
2d070eab 1264#define SECTION_IS_ONLINE (1UL<<2)
326e1b8f
DW
1265#define SECTION_IS_EARLY (1UL<<3)
1266#define SECTION_MAP_LAST_BIT (1UL<<4)
29751f69 1267#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
2d070eab 1268#define SECTION_NID_SHIFT 3
29751f69
AW
1269
1270static inline struct page *__section_mem_map_addr(struct mem_section *section)
1271{
1272 unsigned long map = section->section_mem_map;
1273 map &= SECTION_MAP_MASK;
1274 return (struct page *)map;
1275}
1276
540557b9 1277static inline int present_section(struct mem_section *section)
29751f69 1278{
802f192e 1279 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1280}
1281
540557b9
AW
1282static inline int present_section_nr(unsigned long nr)
1283{
1284 return present_section(__nr_to_section(nr));
1285}
1286
1287static inline int valid_section(struct mem_section *section)
29751f69 1288{
802f192e 1289 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1290}
1291
326e1b8f
DW
1292static inline int early_section(struct mem_section *section)
1293{
1294 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1295}
1296
29751f69
AW
1297static inline int valid_section_nr(unsigned long nr)
1298{
1299 return valid_section(__nr_to_section(nr));
1300}
1301
2d070eab
MH
1302static inline int online_section(struct mem_section *section)
1303{
1304 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1305}
1306
1307static inline int online_section_nr(unsigned long nr)
1308{
1309 return online_section(__nr_to_section(nr));
1310}
1311
1312#ifdef CONFIG_MEMORY_HOTPLUG
1313void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1314#ifdef CONFIG_MEMORY_HOTREMOVE
1315void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1316#endif
1317#endif
1318
d41dee36
AW
1319static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1320{
29751f69 1321 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1322}
1323
2491f0a2 1324extern unsigned long __highest_present_section_nr;
c4e1be9e 1325
f46edbd1
DW
1326static inline int subsection_map_index(unsigned long pfn)
1327{
1328 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1329}
1330
1331#ifdef CONFIG_SPARSEMEM_VMEMMAP
1332static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1333{
1334 int idx = subsection_map_index(pfn);
1335
1336 return test_bit(idx, ms->usage->subsection_map);
1337}
1338#else
1339static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1340{
1341 return 1;
1342}
1343#endif
1344
7b7bf499 1345#ifndef CONFIG_HAVE_ARCH_PFN_VALID
d41dee36
AW
1346static inline int pfn_valid(unsigned long pfn)
1347{
f46edbd1
DW
1348 struct mem_section *ms;
1349
d41dee36
AW
1350 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1351 return 0;
f46edbd1
DW
1352 ms = __nr_to_section(pfn_to_section_nr(pfn));
1353 if (!valid_section(ms))
1354 return 0;
1355 /*
1356 * Traditionally early sections always returned pfn_valid() for
1357 * the entire section-sized span.
1358 */
1359 return early_section(ms) || pfn_section_valid(ms, pfn);
d41dee36 1360}
7b7bf499 1361#endif
d41dee36 1362
540557b9
AW
1363static inline int pfn_present(unsigned long pfn)
1364{
1365 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1366 return 0;
1367 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1368}
1369
d41dee36
AW
1370/*
1371 * These are _only_ used during initialisation, therefore they
1372 * can use __initdata ... They could have names to indicate
1373 * this restriction.
1374 */
1375#ifdef CONFIG_NUMA
161599ff
AW
1376#define pfn_to_nid(pfn) \
1377({ \
1378 unsigned long __pfn_to_nid_pfn = (pfn); \
1379 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1380})
2bdaf115
AW
1381#else
1382#define pfn_to_nid(pfn) (0)
d41dee36
AW
1383#endif
1384
d41dee36
AW
1385#define early_pfn_valid(pfn) pfn_valid(pfn)
1386void sparse_init(void);
1387#else
1388#define sparse_init() do {} while (0)
28ae55c9 1389#define sparse_index_init(_sec, _nid) do {} while (0)
e900a918 1390#define pfn_present pfn_valid
f46edbd1 1391#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
d41dee36
AW
1392#endif /* CONFIG_SPARSEMEM */
1393
8a942fde
MG
1394/*
1395 * During memory init memblocks map pfns to nids. The search is expensive and
1396 * this caches recent lookups. The implementation of __early_pfn_to_nid
1397 * may treat start/end as pfns or sections.
1398 */
1399struct mminit_pfnnid_cache {
1400 unsigned long last_start;
1401 unsigned long last_end;
1402 int last_nid;
1403};
1404
d41dee36
AW
1405#ifndef early_pfn_valid
1406#define early_pfn_valid(pfn) (1)
1407#endif
1408
1409void memory_present(int nid, unsigned long start, unsigned long end);
d41dee36 1410
14e07298
AW
1411/*
1412 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
8bb4e7a2 1413 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
14e07298
AW
1414 * pfn_valid_within() should be used in this case; we optimise this away
1415 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1416 */
1417#ifdef CONFIG_HOLES_IN_ZONE
1418#define pfn_valid_within(pfn) pfn_valid(pfn)
1419#else
1420#define pfn_valid_within(pfn) (1)
1421#endif
1422
eb33575c
MG
1423#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1424/*
1425 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
2d070eab
MH
1426 * associated with it or not. This means that a struct page exists for this
1427 * pfn. The caller cannot assume the page is fully initialized in general.
1428 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1429 * will ensure the struct page is fully online and initialized. Special pages
1430 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1431 *
1432 * In FLATMEM, it is expected that holes always have valid memmap as long as
1433 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1434 * that a valid section has a memmap for the entire section.
eb33575c
MG
1435 *
1436 * However, an ARM, and maybe other embedded architectures in the future
1437 * free memmap backing holes to save memory on the assumption the memmap is
1438 * never used. The page_zone linkages are then broken even though pfn_valid()
1439 * returns true. A walker of the full memmap must then do this additional
1440 * check to ensure the memmap they are looking at is sane by making sure
1441 * the zone and PFN linkages are still valid. This is expensive, but walkers
1442 * of the full memmap are extremely rare.
1443 */
5b80287a 1444bool memmap_valid_within(unsigned long pfn,
eb33575c
MG
1445 struct page *page, struct zone *zone);
1446#else
5b80287a 1447static inline bool memmap_valid_within(unsigned long pfn,
eb33575c
MG
1448 struct page *page, struct zone *zone)
1449{
5b80287a 1450 return true;
eb33575c
MG
1451}
1452#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1453
97965478 1454#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1455#endif /* !__ASSEMBLY__ */
1da177e4 1456#endif /* _LINUX_MMZONE_H */