Merge tag 'mm-hotfixes-stable-2023-05-03-16-27' of git://git.kernel.org/pub/scm/linux...
[linux-block.git] / include / linux / mmzone.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
1da177e4 5#ifndef __ASSEMBLY__
97965478 6#ifndef __GENERATING_BOUNDS_H
1da177e4 7
1da177e4
LT
8#include <linux/spinlock.h>
9#include <linux/list.h>
e4dde56c 10#include <linux/list_nulls.h>
1da177e4 11#include <linux/wait.h>
e815af95 12#include <linux/bitops.h>
1da177e4
LT
13#include <linux/cache.h>
14#include <linux/threads.h>
15#include <linux/numa.h>
16#include <linux/init.h>
bdc8cb98 17#include <linux/seqlock.h>
8357f869 18#include <linux/nodemask.h>
835c134e 19#include <linux/pageblock-flags.h>
bbeae5b0 20#include <linux/page-flags-layout.h>
60063497 21#include <linux/atomic.h>
b03641af
DW
22#include <linux/mm_types.h>
23#include <linux/page-flags.h>
dbbee9d5 24#include <linux/local_lock.h>
93ff66bf 25#include <asm/page.h>
1da177e4
LT
26
27/* Free memory management - zoned buddy allocator. */
0192445c 28#ifndef CONFIG_ARCH_FORCE_MAX_ORDER
23baf831 29#define MAX_ORDER 10
1da177e4 30#else
0192445c 31#define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
1da177e4 32#endif
23baf831 33#define MAX_ORDER_NR_PAGES (1 << MAX_ORDER)
1da177e4 34
3f6dac0f
KS
35#define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
36
5ad333eb
AW
37/*
38 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
39 * costly to service. That is between allocation orders which should
35fca53e 40 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
41 * will not.
42 */
43#define PAGE_ALLOC_COSTLY_ORDER 3
44
a6ffdc07 45enum migratetype {
47118af0 46 MIGRATE_UNMOVABLE,
47118af0 47 MIGRATE_MOVABLE,
016c13da 48 MIGRATE_RECLAIMABLE,
0aaa29a5
MG
49 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
50 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47118af0
MN
51#ifdef CONFIG_CMA
52 /*
53 * MIGRATE_CMA migration type is designed to mimic the way
54 * ZONE_MOVABLE works. Only movable pages can be allocated
55 * from MIGRATE_CMA pageblocks and page allocator never
56 * implicitly change migration type of MIGRATE_CMA pageblock.
57 *
58 * The way to use it is to change migratetype of a range of
59 * pageblocks to MIGRATE_CMA which can be done by
11ac3e87 60 * __free_pageblock_cma() function.
47118af0
MN
61 */
62 MIGRATE_CMA,
63#endif
194159fb 64#ifdef CONFIG_MEMORY_ISOLATION
47118af0 65 MIGRATE_ISOLATE, /* can't allocate from here */
194159fb 66#endif
47118af0
MN
67 MIGRATE_TYPES
68};
69
60f30350 70/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
c999fbd3 71extern const char * const migratetype_names[MIGRATE_TYPES];
60f30350 72
47118af0
MN
73#ifdef CONFIG_CMA
74# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
7c15d9bb 75# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
47118af0
MN
76#else
77# define is_migrate_cma(migratetype) false
7c15d9bb 78# define is_migrate_cma_page(_page) false
47118af0 79#endif
b2a0ac88 80
b682debd
VB
81static inline bool is_migrate_movable(int mt)
82{
83 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
84}
85
1dd214b8
ZY
86/*
87 * Check whether a migratetype can be merged with another migratetype.
88 *
89 * It is only mergeable when it can fall back to other migratetypes for
90 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
91 */
92static inline bool migratetype_is_mergeable(int mt)
93{
94 return mt < MIGRATE_PCPTYPES;
95}
96
b2a0ac88 97#define for_each_migratetype_order(order, type) \
23baf831 98 for (order = 0; order <= MAX_ORDER; order++) \
b2a0ac88
MG
99 for (type = 0; type < MIGRATE_TYPES; type++)
100
467c996c
MG
101extern int page_group_by_mobility_disabled;
102
d38ac97f 103#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
e58469ba 104
dc4b0caf 105#define get_pageblock_migratetype(page) \
535b81e2 106 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
dc4b0caf 107
1da177e4 108struct free_area {
b2a0ac88 109 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
110 unsigned long nr_free;
111};
112
113struct pglist_data;
114
3a321d2a
KW
115#ifdef CONFIG_NUMA
116enum numa_stat_item {
117 NUMA_HIT, /* allocated in intended node */
118 NUMA_MISS, /* allocated in non intended node */
119 NUMA_FOREIGN, /* was intended here, hit elsewhere */
120 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
121 NUMA_LOCAL, /* allocation from local node */
122 NUMA_OTHER, /* allocation from other node */
f19298b9 123 NR_VM_NUMA_EVENT_ITEMS
3a321d2a
KW
124};
125#else
f19298b9 126#define NR_VM_NUMA_EVENT_ITEMS 0
3a321d2a
KW
127#endif
128
2244b95a 129enum zone_stat_item {
51ed4491 130 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 131 NR_FREE_PAGES,
71c799f4
MK
132 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
133 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
134 NR_ZONE_ACTIVE_ANON,
135 NR_ZONE_INACTIVE_FILE,
136 NR_ZONE_ACTIVE_FILE,
137 NR_ZONE_UNEVICTABLE,
5a1c84b4 138 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
5344b7e6 139 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
c6a7f572 140 /* Second 128 byte cacheline */
d2c5e30c 141 NR_BOUNCE,
91537fee
MK
142#if IS_ENABLED(CONFIG_ZSMALLOC)
143 NR_ZSPAGES, /* allocated in zsmalloc */
ca889e6c 144#endif
d1ce749a 145 NR_FREE_CMA_PAGES,
2244b95a
CL
146 NR_VM_ZONE_STAT_ITEMS };
147
75ef7184 148enum node_stat_item {
599d0c95
MG
149 NR_LRU_BASE,
150 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
151 NR_ACTIVE_ANON, /* " " " " " */
152 NR_INACTIVE_FILE, /* " " " " " */
153 NR_ACTIVE_FILE, /* " " " " " */
154 NR_UNEVICTABLE, /* " " " " " */
d42f3245
RG
155 NR_SLAB_RECLAIMABLE_B,
156 NR_SLAB_UNRECLAIMABLE_B,
599d0c95
MG
157 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
158 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
68d48e6a 159 WORKINGSET_NODES,
170b04b7
JK
160 WORKINGSET_REFAULT_BASE,
161 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
162 WORKINGSET_REFAULT_FILE,
163 WORKINGSET_ACTIVATE_BASE,
164 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
165 WORKINGSET_ACTIVATE_FILE,
166 WORKINGSET_RESTORE_BASE,
167 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
168 WORKINGSET_RESTORE_FILE,
1e6b1085 169 WORKINGSET_NODERECLAIM,
4b9d0fab 170 NR_ANON_MAPPED, /* Mapped anonymous pages */
50658e2e
MG
171 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
172 only modified from process context */
11fb9989
MG
173 NR_FILE_PAGES,
174 NR_FILE_DIRTY,
175 NR_WRITEBACK,
176 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
177 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
178 NR_SHMEM_THPS,
179 NR_SHMEM_PMDMAPPED,
60fbf0ab
SL
180 NR_FILE_THPS,
181 NR_FILE_PMDMAPPED,
11fb9989 182 NR_ANON_THPS,
c4a25635
MG
183 NR_VMSCAN_WRITE,
184 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
185 NR_DIRTIED, /* page dirtyings since bootup */
186 NR_WRITTEN, /* page writings since bootup */
8cd7c588 187 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */
b29940c1 188 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
1970dc6f
JH
189 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
190 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
991e7673
SB
191 NR_KERNEL_STACK_KB, /* measured in KiB */
192#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
193 NR_KERNEL_SCS_KB, /* measured in KiB */
194#endif
f0c0c115 195 NR_PAGETABLE, /* used for pagetables */
ebc97a52 196 NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
b6038942
SB
197#ifdef CONFIG_SWAP
198 NR_SWAPCACHE,
e39bb6be
HY
199#endif
200#ifdef CONFIG_NUMA_BALANCING
201 PGPROMOTE_SUCCESS, /* promote successfully */
c6833e10 202 PGPROMOTE_CANDIDATE, /* candidate pages to promote */
b6038942 203#endif
75ef7184
MG
204 NR_VM_NODE_STAT_ITEMS
205};
206
69473e5d
MS
207/*
208 * Returns true if the item should be printed in THPs (/proc/vmstat
209 * currently prints number of anon, file and shmem THPs. But the item
210 * is charged in pages).
211 */
212static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
213{
214 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
215 return false;
216
bf9ecead 217 return item == NR_ANON_THPS ||
57b2847d 218 item == NR_FILE_THPS ||
a1528e21 219 item == NR_SHMEM_THPS ||
380780e7
MS
220 item == NR_SHMEM_PMDMAPPED ||
221 item == NR_FILE_PMDMAPPED;
69473e5d
MS
222}
223
ea426c2a
RG
224/*
225 * Returns true if the value is measured in bytes (most vmstat values are
226 * measured in pages). This defines the API part, the internal representation
227 * might be different.
228 */
229static __always_inline bool vmstat_item_in_bytes(int idx)
230{
d42f3245
RG
231 /*
232 * Global and per-node slab counters track slab pages.
233 * It's expected that changes are multiples of PAGE_SIZE.
234 * Internally values are stored in pages.
235 *
236 * Per-memcg and per-lruvec counters track memory, consumed
237 * by individual slab objects. These counters are actually
238 * byte-precise.
239 */
240 return (idx == NR_SLAB_RECLAIMABLE_B ||
241 idx == NR_SLAB_UNRECLAIMABLE_B);
ea426c2a
RG
242}
243
4f98a2fe
RR
244/*
245 * We do arithmetic on the LRU lists in various places in the code,
246 * so it is important to keep the active lists LRU_ACTIVE higher in
247 * the array than the corresponding inactive lists, and to keep
248 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
249 *
250 * This has to be kept in sync with the statistics in zone_stat_item
251 * above and the descriptions in vmstat_text in mm/vmstat.c
252 */
253#define LRU_BASE 0
254#define LRU_ACTIVE 1
255#define LRU_FILE 2
256
b69408e8 257enum lru_list {
4f98a2fe
RR
258 LRU_INACTIVE_ANON = LRU_BASE,
259 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
260 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
261 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 262 LRU_UNEVICTABLE,
894bc310
LS
263 NR_LRU_LISTS
264};
b69408e8 265
8cd7c588
MG
266enum vmscan_throttle_state {
267 VMSCAN_THROTTLE_WRITEBACK,
d818fca1 268 VMSCAN_THROTTLE_ISOLATED,
69392a40 269 VMSCAN_THROTTLE_NOPROGRESS,
1b4e3f26 270 VMSCAN_THROTTLE_CONGESTED,
8cd7c588
MG
271 NR_VMSCAN_THROTTLE,
272};
273
4111304d 274#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 275
4111304d 276#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 277
b91ac374 278static inline bool is_file_lru(enum lru_list lru)
4f98a2fe 279{
4111304d 280 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
281}
282
b91ac374 283static inline bool is_active_lru(enum lru_list lru)
b69408e8 284{
4111304d 285 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
286}
287
e9c2dbc8
YY
288#define WORKINGSET_ANON 0
289#define WORKINGSET_FILE 1
ed017373
YZ
290#define ANON_AND_FILE 2
291
1b05117d
JW
292enum lruvec_flags {
293 LRUVEC_CONGESTED, /* lruvec has many dirty pages
294 * backed by a congested BDI
295 */
296};
297
ec1c86b2
YZ
298#endif /* !__GENERATING_BOUNDS_H */
299
300/*
301 * Evictable pages are divided into multiple generations. The youngest and the
302 * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
303 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
304 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
305 * corresponding generation. The gen counter in folio->flags stores gen+1 while
6df1b221 306 * a page is on one of lrugen->folios[]. Otherwise it stores 0.
ec1c86b2
YZ
307 *
308 * A page is added to the youngest generation on faulting. The aging needs to
309 * check the accessed bit at least twice before handing this page over to the
310 * eviction. The first check takes care of the accessed bit set on the initial
311 * fault; the second check makes sure this page hasn't been used since then.
312 * This process, AKA second chance, requires a minimum of two generations,
313 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
314 * LRU, e.g., /proc/vmstat, these two generations are considered active; the
315 * rest of generations, if they exist, are considered inactive. See
316 * lru_gen_is_active().
317 *
6df1b221
YZ
318 * PG_active is always cleared while a page is on one of lrugen->folios[] so
319 * that the aging needs not to worry about it. And it's set again when a page
ec1c86b2
YZ
320 * considered active is isolated for non-reclaiming purposes, e.g., migration.
321 * See lru_gen_add_folio() and lru_gen_del_folio().
322 *
323 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
324 * number of categories of the active/inactive LRU when keeping track of
325 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
326 * in folio->flags.
327 */
328#define MIN_NR_GENS 2U
329#define MAX_NR_GENS 4U
330
ac35a490
YZ
331/*
332 * Each generation is divided into multiple tiers. A page accessed N times
333 * through file descriptors is in tier order_base_2(N). A page in the first tier
334 * (N=0,1) is marked by PG_referenced unless it was faulted in through page
335 * tables or read ahead. A page in any other tier (N>1) is marked by
336 * PG_referenced and PG_workingset. This implies a minimum of two tiers is
337 * supported without using additional bits in folio->flags.
338 *
339 * In contrast to moving across generations which requires the LRU lock, moving
340 * across tiers only involves atomic operations on folio->flags and therefore
341 * has a negligible cost in the buffered access path. In the eviction path,
342 * comparisons of refaulted/(evicted+protected) from the first tier and the
343 * rest infer whether pages accessed multiple times through file descriptors
344 * are statistically hot and thus worth protecting.
345 *
346 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
347 * number of categories of the active/inactive LRU when keeping track of
348 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
349 * folio->flags.
350 */
351#define MAX_NR_TIERS 4U
352
ec1c86b2
YZ
353#ifndef __GENERATING_BOUNDS_H
354
355struct lruvec;
018ee47f 356struct page_vma_mapped_walk;
ec1c86b2
YZ
357
358#define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
359#define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
360
361#ifdef CONFIG_LRU_GEN
362
363enum {
364 LRU_GEN_ANON,
365 LRU_GEN_FILE,
366};
367
354ed597
YZ
368enum {
369 LRU_GEN_CORE,
370 LRU_GEN_MM_WALK,
371 LRU_GEN_NONLEAF_YOUNG,
372 NR_LRU_GEN_CAPS
373};
374
ac35a490
YZ
375#define MIN_LRU_BATCH BITS_PER_LONG
376#define MAX_LRU_BATCH (MIN_LRU_BATCH * 64)
377
378/* whether to keep historical stats from evicted generations */
379#ifdef CONFIG_LRU_GEN_STATS
380#define NR_HIST_GENS MAX_NR_GENS
381#else
382#define NR_HIST_GENS 1U
383#endif
384
ec1c86b2
YZ
385/*
386 * The youngest generation number is stored in max_seq for both anon and file
387 * types as they are aged on an equal footing. The oldest generation numbers are
388 * stored in min_seq[] separately for anon and file types as clean file pages
389 * can be evicted regardless of swap constraints.
390 *
391 * Normally anon and file min_seq are in sync. But if swapping is constrained,
392 * e.g., out of swap space, file min_seq is allowed to advance and leave anon
393 * min_seq behind.
394 *
395 * The number of pages in each generation is eventually consistent and therefore
bd74fdae 396 * can be transiently negative when reset_batch_size() is pending.
ec1c86b2 397 */
391655fe 398struct lru_gen_folio {
ec1c86b2
YZ
399 /* the aging increments the youngest generation number */
400 unsigned long max_seq;
401 /* the eviction increments the oldest generation numbers */
402 unsigned long min_seq[ANON_AND_FILE];
1332a809
YZ
403 /* the birth time of each generation in jiffies */
404 unsigned long timestamps[MAX_NR_GENS];
ec1c86b2 405 /* the multi-gen LRU lists, lazily sorted on eviction */
6df1b221 406 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
ec1c86b2
YZ
407 /* the multi-gen LRU sizes, eventually consistent */
408 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
ac35a490
YZ
409 /* the exponential moving average of refaulted */
410 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
411 /* the exponential moving average of evicted+protected */
412 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
413 /* the first tier doesn't need protection, hence the minus one */
414 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
415 /* can be modified without holding the LRU lock */
416 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
417 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
354ed597
YZ
418 /* whether the multi-gen LRU is enabled */
419 bool enabled;
e4dde56c
YZ
420#ifdef CONFIG_MEMCG
421 /* the memcg generation this lru_gen_folio belongs to */
422 u8 gen;
423 /* the list segment this lru_gen_folio belongs to */
424 u8 seg;
425 /* per-node lru_gen_folio list for global reclaim */
426 struct hlist_nulls_node list;
427#endif
ec1c86b2
YZ
428};
429
bd74fdae
YZ
430enum {
431 MM_LEAF_TOTAL, /* total leaf entries */
432 MM_LEAF_OLD, /* old leaf entries */
433 MM_LEAF_YOUNG, /* young leaf entries */
434 MM_NONLEAF_TOTAL, /* total non-leaf entries */
435 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */
436 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */
437 NR_MM_STATS
438};
439
440/* double-buffering Bloom filters */
441#define NR_BLOOM_FILTERS 2
442
443struct lru_gen_mm_state {
444 /* set to max_seq after each iteration */
445 unsigned long seq;
7f63cf2d 446 /* where the current iteration continues after */
bd74fdae 447 struct list_head *head;
7f63cf2d 448 /* where the last iteration ended before */
bd74fdae 449 struct list_head *tail;
bd74fdae
YZ
450 /* Bloom filters flip after each iteration */
451 unsigned long *filters[NR_BLOOM_FILTERS];
452 /* the mm stats for debugging */
453 unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
bd74fdae
YZ
454};
455
456struct lru_gen_mm_walk {
457 /* the lruvec under reclaim */
458 struct lruvec *lruvec;
391655fe 459 /* unstable max_seq from lru_gen_folio */
bd74fdae
YZ
460 unsigned long max_seq;
461 /* the next address within an mm to scan */
462 unsigned long next_addr;
463 /* to batch promoted pages */
464 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
465 /* to batch the mm stats */
466 int mm_stats[NR_MM_STATS];
467 /* total batched items */
468 int batched;
469 bool can_swap;
470 bool force_scan;
471};
472
ec1c86b2 473void lru_gen_init_lruvec(struct lruvec *lruvec);
018ee47f 474void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
ec1c86b2
YZ
475
476#ifdef CONFIG_MEMCG
e4dde56c
YZ
477
478/*
479 * For each node, memcgs are divided into two generations: the old and the
480 * young. For each generation, memcgs are randomly sharded into multiple bins
481 * to improve scalability. For each bin, the hlist_nulls is virtually divided
482 * into three segments: the head, the tail and the default.
483 *
484 * An onlining memcg is added to the tail of a random bin in the old generation.
485 * The eviction starts at the head of a random bin in the old generation. The
486 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
487 * the old generation, is incremented when all its bins become empty.
488 *
489 * There are four operations:
490 * 1. MEMCG_LRU_HEAD, which moves an memcg to the head of a random bin in its
491 * current generation (old or young) and updates its "seg" to "head";
492 * 2. MEMCG_LRU_TAIL, which moves an memcg to the tail of a random bin in its
493 * current generation (old or young) and updates its "seg" to "tail";
494 * 3. MEMCG_LRU_OLD, which moves an memcg to the head of a random bin in the old
495 * generation, updates its "gen" to "old" and resets its "seg" to "default";
496 * 4. MEMCG_LRU_YOUNG, which moves an memcg to the tail of a random bin in the
497 * young generation, updates its "gen" to "young" and resets its "seg" to
498 * "default".
499 *
500 * The events that trigger the above operations are:
501 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
502 * 2. The first attempt to reclaim an memcg below low, which triggers
503 * MEMCG_LRU_TAIL;
504 * 3. The first attempt to reclaim an memcg below reclaimable size threshold,
505 * which triggers MEMCG_LRU_TAIL;
506 * 4. The second attempt to reclaim an memcg below reclaimable size threshold,
507 * which triggers MEMCG_LRU_YOUNG;
508 * 5. Attempting to reclaim an memcg below min, which triggers MEMCG_LRU_YOUNG;
509 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
510 * 7. Offlining an memcg, which triggers MEMCG_LRU_OLD.
511 *
512 * Note that memcg LRU only applies to global reclaim, and the round-robin
513 * incrementing of their max_seq counters ensures the eventual fairness to all
514 * eligible memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
515 */
516#define MEMCG_NR_GENS 2
517#define MEMCG_NR_BINS 8
518
519struct lru_gen_memcg {
520 /* the per-node memcg generation counter */
521 unsigned long seq;
522 /* each memcg has one lru_gen_folio per node */
523 unsigned long nr_memcgs[MEMCG_NR_GENS];
524 /* per-node lru_gen_folio list for global reclaim */
525 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
526 /* protects the above */
527 spinlock_t lock;
528};
529
530void lru_gen_init_pgdat(struct pglist_data *pgdat);
531
ec1c86b2
YZ
532void lru_gen_init_memcg(struct mem_cgroup *memcg);
533void lru_gen_exit_memcg(struct mem_cgroup *memcg);
e4dde56c
YZ
534void lru_gen_online_memcg(struct mem_cgroup *memcg);
535void lru_gen_offline_memcg(struct mem_cgroup *memcg);
536void lru_gen_release_memcg(struct mem_cgroup *memcg);
36c7b4db 537void lru_gen_soft_reclaim(struct lruvec *lruvec);
e4dde56c
YZ
538
539#else /* !CONFIG_MEMCG */
540
541#define MEMCG_NR_GENS 1
542
543struct lru_gen_memcg {
544};
545
546static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
547{
548}
549
550#endif /* CONFIG_MEMCG */
ec1c86b2
YZ
551
552#else /* !CONFIG_LRU_GEN */
553
e4dde56c
YZ
554static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
555{
556}
557
ec1c86b2
YZ
558static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
559{
560}
561
018ee47f
YZ
562static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
563{
564}
565
ec1c86b2 566#ifdef CONFIG_MEMCG
e4dde56c 567
ec1c86b2
YZ
568static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
569{
570}
571
572static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
573{
574}
e4dde56c
YZ
575
576static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
577{
578}
579
580static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
581{
582}
583
584static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
585{
586}
587
36c7b4db 588static inline void lru_gen_soft_reclaim(struct lruvec *lruvec)
e4dde56c
YZ
589{
590}
591
592#endif /* CONFIG_MEMCG */
ec1c86b2
YZ
593
594#endif /* CONFIG_LRU_GEN */
595
6290df54 596struct lruvec {
23047a96 597 struct list_head lists[NR_LRU_LISTS];
6168d0da
AS
598 /* per lruvec lru_lock for memcg */
599 spinlock_t lru_lock;
1431d4d1
JW
600 /*
601 * These track the cost of reclaiming one LRU - file or anon -
602 * over the other. As the observed cost of reclaiming one LRU
603 * increases, the reclaim scan balance tips toward the other.
604 */
605 unsigned long anon_cost;
606 unsigned long file_cost;
31d8fcac
JW
607 /* Non-resident age, driven by LRU movement */
608 atomic_long_t nonresident_age;
ed017373
YZ
609 /* Refaults at the time of last reclaim cycle */
610 unsigned long refaults[ANON_AND_FILE];
1b05117d
JW
611 /* Various lruvec state flags (enum lruvec_flags) */
612 unsigned long flags;
ec1c86b2
YZ
613#ifdef CONFIG_LRU_GEN
614 /* evictable pages divided into generations */
391655fe 615 struct lru_gen_folio lrugen;
bd74fdae
YZ
616 /* to concurrently iterate lru_gen_mm_list */
617 struct lru_gen_mm_state mm_state;
ec1c86b2 618#endif
c255a458 619#ifdef CONFIG_MEMCG
599d0c95 620 struct pglist_data *pgdat;
7f5e86c2 621#endif
6290df54
JW
622};
623
653e003d 624/* Isolate unmapped pages */
f3fd4a61 625#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
c8244935 626/* Isolate for asynchronous migration */
f3fd4a61 627#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
e46a2879
MK
628/* Isolate unevictable pages */
629#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
4356f21d
MK
630
631/* LRU Isolation modes. */
9efeccac 632typedef unsigned __bitwise isolate_mode_t;
4356f21d 633
41858966
MG
634enum zone_watermarks {
635 WMARK_MIN,
636 WMARK_LOW,
637 WMARK_HIGH,
c574bbe9 638 WMARK_PROMO,
41858966
MG
639 NR_WMARK
640};
641
44042b44 642/*
5d0a661d
MG
643 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
644 * for THP which will usually be GFP_MOVABLE. Even if it is another type,
645 * it should not contribute to serious fragmentation causing THP allocation
646 * failures.
44042b44
MG
647 */
648#ifdef CONFIG_TRANSPARENT_HUGEPAGE
649#define NR_PCP_THP 1
650#else
651#define NR_PCP_THP 0
652#endif
5d0a661d
MG
653#define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
654#define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
44042b44 655
1c30844d
MG
656#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
657#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
658#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
659#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
41858966 660
dbbee9d5 661/* Fields and list protected by pagesets local_lock in page_alloc.c */
1da177e4 662struct per_cpu_pages {
4b23a68f 663 spinlock_t lock; /* Protects lists field */
1da177e4 664 int count; /* number of pages in the list */
1da177e4
LT
665 int high; /* high watermark, emptying needed */
666 int batch; /* chunk size for buddy add/remove */
3b12e7e9 667 short free_factor; /* batch scaling factor during free */
28f836b6 668#ifdef CONFIG_NUMA
3b12e7e9 669 short expire; /* When 0, remote pagesets are drained */
28f836b6 670#endif
5f8dcc21
MG
671
672 /* Lists of pages, one per migrate type stored on the pcp-lists */
44042b44 673 struct list_head lists[NR_PCP_LISTS];
5d0a661d 674} ____cacheline_aligned_in_smp;
1da177e4 675
28f836b6 676struct per_cpu_zonestat {
2244b95a
CL
677#ifdef CONFIG_SMP
678 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
28f836b6
MG
679 s8 stat_threshold;
680#endif
681#ifdef CONFIG_NUMA
f19298b9
MG
682 /*
683 * Low priority inaccurate counters that are only folded
684 * on demand. Use a large type to avoid the overhead of
685 * folding during refresh_cpu_vm_stats.
686 */
687 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
2244b95a 688#endif
99dcc3e5 689};
e7c8d5c9 690
75ef7184
MG
691struct per_cpu_nodestat {
692 s8 stat_threshold;
693 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
694};
695
97965478
CL
696#endif /* !__GENERATING_BOUNDS.H */
697
2f1b6248
CL
698enum zone_type {
699 /*
734f9246
NSJ
700 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
701 * to DMA to all of the addressable memory (ZONE_NORMAL).
702 * On architectures where this area covers the whole 32 bit address
703 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
704 * DMA addressing constraints. This distinction is important as a 32bit
705 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
706 * platforms may need both zones as they support peripherals with
707 * different DMA addressing limitations.
2f1b6248 708 */
734f9246 709#ifdef CONFIG_ZONE_DMA
2f1b6248 710 ZONE_DMA,
4b51d669 711#endif
fb0e7942 712#ifdef CONFIG_ZONE_DMA32
2f1b6248 713 ZONE_DMA32,
fb0e7942 714#endif
2f1b6248
CL
715 /*
716 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
717 * performed on pages in ZONE_NORMAL if the DMA devices support
718 * transfers to all addressable memory.
719 */
720 ZONE_NORMAL,
e53ef38d 721#ifdef CONFIG_HIGHMEM
2f1b6248
CL
722 /*
723 * A memory area that is only addressable by the kernel through
724 * mapping portions into its own address space. This is for example
725 * used by i386 to allow the kernel to address the memory beyond
726 * 900MB. The kernel will set up special mappings (page
727 * table entries on i386) for each page that the kernel needs to
728 * access.
729 */
730 ZONE_HIGHMEM,
e53ef38d 731#endif
9181a980
DH
732 /*
733 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
734 * movable pages with few exceptional cases described below. Main use
735 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
736 * likely to succeed, and to locally limit unmovable allocations - e.g.,
737 * to increase the number of THP/huge pages. Notable special cases are:
738 *
739 * 1. Pinned pages: (long-term) pinning of movable pages might
d1e153fe
PT
740 * essentially turn such pages unmovable. Therefore, we do not allow
741 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
742 * faulted, they come from the right zone right away. However, it is
743 * still possible that address space already has pages in
744 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has
745 * touches that memory before pinning). In such case we migrate them
746 * to a different zone. When migration fails - pinning fails.
9181a980
DH
747 * 2. memblock allocations: kernelcore/movablecore setups might create
748 * situations where ZONE_MOVABLE contains unmovable allocations
749 * after boot. Memory offlining and allocations fail early.
750 * 3. Memory holes: kernelcore/movablecore setups might create very rare
751 * situations where ZONE_MOVABLE contains memory holes after boot,
752 * for example, if we have sections that are only partially
753 * populated. Memory offlining and allocations fail early.
754 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
755 * memory offlining, such pages cannot be allocated.
756 * 5. Unmovable PG_offline pages: in paravirtualized environments,
757 * hotplugged memory blocks might only partially be managed by the
758 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
759 * parts not manged by the buddy are unmovable PG_offline pages. In
760 * some cases (virtio-mem), such pages can be skipped during
761 * memory offlining, however, cannot be moved/allocated. These
762 * techniques might use alloc_contig_range() to hide previously
763 * exposed pages from the buddy again (e.g., to implement some sort
764 * of memory unplug in virtio-mem).
9afaf30f
PT
765 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
766 * situations where ZERO_PAGE(0) which is allocated differently
767 * on different platforms may end up in a movable zone. ZERO_PAGE(0)
768 * cannot be migrated.
a08a2ae3
OS
769 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
770 * memory to the MOVABLE zone, the vmemmap pages are also placed in
771 * such zone. Such pages cannot be really moved around as they are
772 * self-stored in the range, but they are treated as movable when
773 * the range they describe is about to be offlined.
9181a980
DH
774 *
775 * In general, no unmovable allocations that degrade memory offlining
776 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
777 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
778 * if has_unmovable_pages() states that there are no unmovable pages,
779 * there can be false negatives).
780 */
2a1e274a 781 ZONE_MOVABLE,
033fbae9
DW
782#ifdef CONFIG_ZONE_DEVICE
783 ZONE_DEVICE,
784#endif
97965478 785 __MAX_NR_ZONES
033fbae9 786
2f1b6248 787};
1da177e4 788
97965478
CL
789#ifndef __GENERATING_BOUNDS_H
790
ed017373
YZ
791#define ASYNC_AND_SYNC 2
792
1da177e4 793struct zone {
3484b2de 794 /* Read-mostly fields */
41858966
MG
795
796 /* zone watermarks, access with *_wmark_pages(zone) macros */
a9214443 797 unsigned long _watermark[NR_WMARK];
1c30844d 798 unsigned long watermark_boost;
41858966 799
0aaa29a5
MG
800 unsigned long nr_reserved_highatomic;
801
1da177e4 802 /*
89903327
AM
803 * We don't know if the memory that we're going to allocate will be
804 * freeable or/and it will be released eventually, so to avoid totally
805 * wasting several GB of ram we must reserve some of the lower zone
806 * memory (otherwise we risk to run OOM on the lower zones despite
807 * there being tons of freeable ram on the higher zones). This array is
808 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
809 * changes.
1da177e4 810 */
3484b2de 811 long lowmem_reserve[MAX_NR_ZONES];
ab8fabd4 812
e7c8d5c9 813#ifdef CONFIG_NUMA
d5f541ed 814 int node;
3484b2de 815#endif
3484b2de 816 struct pglist_data *zone_pgdat;
28f836b6
MG
817 struct per_cpu_pages __percpu *per_cpu_pageset;
818 struct per_cpu_zonestat __percpu *per_cpu_zonestats;
952eaf81
VB
819 /*
820 * the high and batch values are copied to individual pagesets for
821 * faster access
822 */
823 int pageset_high;
824 int pageset_batch;
3484b2de 825
835c134e
MG
826#ifndef CONFIG_SPARSEMEM
827 /*
d9c23400 828 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
829 * In SPARSEMEM, this map is stored in struct mem_section
830 */
831 unsigned long *pageblock_flags;
832#endif /* CONFIG_SPARSEMEM */
833
1da177e4
LT
834 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
835 unsigned long zone_start_pfn;
836
bdc8cb98 837 /*
9feedc9d
JL
838 * spanned_pages is the total pages spanned by the zone, including
839 * holes, which is calculated as:
840 * spanned_pages = zone_end_pfn - zone_start_pfn;
bdc8cb98 841 *
9feedc9d
JL
842 * present_pages is physical pages existing within the zone, which
843 * is calculated as:
8761e31c 844 * present_pages = spanned_pages - absent_pages(pages in holes);
9feedc9d 845 *
4b097002
DH
846 * present_early_pages is present pages existing within the zone
847 * located on memory available since early boot, excluding hotplugged
848 * memory.
849 *
9feedc9d
JL
850 * managed_pages is present pages managed by the buddy system, which
851 * is calculated as (reserved_pages includes pages allocated by the
852 * bootmem allocator):
853 * managed_pages = present_pages - reserved_pages;
854 *
3c381db1
DH
855 * cma pages is present pages that are assigned for CMA use
856 * (MIGRATE_CMA).
857 *
9feedc9d
JL
858 * So present_pages may be used by memory hotplug or memory power
859 * management logic to figure out unmanaged pages by checking
860 * (present_pages - managed_pages). And managed_pages should be used
861 * by page allocator and vm scanner to calculate all kinds of watermarks
862 * and thresholds.
863 *
864 * Locking rules:
865 *
866 * zone_start_pfn and spanned_pages are protected by span_seqlock.
867 * It is a seqlock because it has to be read outside of zone->lock,
868 * and it is done in the main allocator path. But, it is written
869 * quite infrequently.
870 *
871 * The span_seq lock is declared along with zone->lock because it is
bdc8cb98
DH
872 * frequently read in proximity to zone->lock. It's good to
873 * give them a chance of being in the same cacheline.
9feedc9d 874 *
c3d5f5f0 875 * Write access to present_pages at runtime should be protected by
e8da368a
YZL
876 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
877 * present_pages should use get_online_mems() to get a stable value.
bdc8cb98 878 */
9705bea5 879 atomic_long_t managed_pages;
9feedc9d
JL
880 unsigned long spanned_pages;
881 unsigned long present_pages;
4b097002
DH
882#if defined(CONFIG_MEMORY_HOTPLUG)
883 unsigned long present_early_pages;
884#endif
3c381db1
DH
885#ifdef CONFIG_CMA
886 unsigned long cma_pages;
887#endif
3484b2de
MG
888
889 const char *name;
1da177e4 890
ad53f92e
JK
891#ifdef CONFIG_MEMORY_ISOLATION
892 /*
893 * Number of isolated pageblock. It is used to solve incorrect
894 * freepage counting problem due to racy retrieving migratetype
895 * of pageblock. Protected by zone->lock.
896 */
897 unsigned long nr_isolate_pageblock;
898#endif
899
3484b2de
MG
900#ifdef CONFIG_MEMORY_HOTPLUG
901 /* see spanned/present_pages for more description */
902 seqlock_t span_seqlock;
903#endif
904
9dcb8b68 905 int initialized;
3484b2de 906
0f661148 907 /* Write-intensive fields used from the page allocator */
e6ad640b 908 CACHELINE_PADDING(_pad1_);
0f661148 909
3484b2de 910 /* free areas of different sizes */
23baf831 911 struct free_area free_area[MAX_ORDER + 1];
3484b2de
MG
912
913 /* zone flags, see below */
914 unsigned long flags;
915
0f661148 916 /* Primarily protects free_area */
a368ab67
MG
917 spinlock_t lock;
918
0f661148 919 /* Write-intensive fields used by compaction and vmstats. */
e6ad640b 920 CACHELINE_PADDING(_pad2_);
3484b2de 921
3484b2de
MG
922 /*
923 * When free pages are below this point, additional steps are taken
924 * when reading the number of free pages to avoid per-cpu counter
925 * drift allowing watermarks to be breached
926 */
927 unsigned long percpu_drift_mark;
928
929#if defined CONFIG_COMPACTION || defined CONFIG_CMA
930 /* pfn where compaction free scanner should start */
931 unsigned long compact_cached_free_pfn;
ed017373
YZ
932 /* pfn where compaction migration scanner should start */
933 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
e332f741
MG
934 unsigned long compact_init_migrate_pfn;
935 unsigned long compact_init_free_pfn;
3484b2de
MG
936#endif
937
938#ifdef CONFIG_COMPACTION
939 /*
940 * On compaction failure, 1<<compact_defer_shift compactions
941 * are skipped before trying again. The number attempted since
942 * last failure is tracked with compact_considered.
860b3272 943 * compact_order_failed is the minimum compaction failed order.
3484b2de
MG
944 */
945 unsigned int compact_considered;
946 unsigned int compact_defer_shift;
947 int compact_order_failed;
948#endif
949
950#if defined CONFIG_COMPACTION || defined CONFIG_CMA
951 /* Set to true when the PG_migrate_skip bits should be cleared */
952 bool compact_blockskip_flush;
953#endif
954
7cf91a98
JK
955 bool contiguous;
956
e6ad640b 957 CACHELINE_PADDING(_pad3_);
3484b2de
MG
958 /* Zone statistics */
959 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
f19298b9 960 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
22fc6ecc 961} ____cacheline_internodealigned_in_smp;
1da177e4 962
599d0c95 963enum pgdat_flags {
599d0c95 964 PGDAT_DIRTY, /* reclaim scanning has recently found
d43006d5
MG
965 * many dirty file pages at the tail
966 * of the LRU.
967 */
599d0c95 968 PGDAT_WRITEBACK, /* reclaim scanning has recently found
283aba9f
MG
969 * many pages under writeback
970 */
a5f5f91d 971 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
57054651 972};
e815af95 973
73444bc4
MG
974enum zone_flags {
975 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
976 * Cleared when kswapd is woken.
977 */
c49c2c47 978 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */
73444bc4
MG
979};
980
9705bea5
AK
981static inline unsigned long zone_managed_pages(struct zone *zone)
982{
983 return (unsigned long)atomic_long_read(&zone->managed_pages);
984}
985
3c381db1
DH
986static inline unsigned long zone_cma_pages(struct zone *zone)
987{
988#ifdef CONFIG_CMA
989 return zone->cma_pages;
990#else
991 return 0;
992#endif
993}
994
f9228b20 995static inline unsigned long zone_end_pfn(const struct zone *zone)
108bcc96
CS
996{
997 return zone->zone_start_pfn + zone->spanned_pages;
998}
999
1000static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1001{
1002 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1003}
1004
2a6e3ebe
CS
1005static inline bool zone_is_initialized(struct zone *zone)
1006{
9dcb8b68 1007 return zone->initialized;
2a6e3ebe
CS
1008}
1009
1010static inline bool zone_is_empty(struct zone *zone)
1011{
1012 return zone->spanned_pages == 0;
1013}
1014
5bb88dc5
AS
1015#ifndef BUILD_VDSO32_64
1016/*
1017 * The zone field is never updated after free_area_init_core()
1018 * sets it, so none of the operations on it need to be atomic.
1019 */
1020
1021/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1022#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1023#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1024#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1025#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1026#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
ec1c86b2
YZ
1027#define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1028#define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH)
5bb88dc5
AS
1029
1030/*
1031 * Define the bit shifts to access each section. For non-existent
1032 * sections we define the shift as 0; that plus a 0 mask ensures
1033 * the compiler will optimise away reference to them.
1034 */
1035#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1036#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1037#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1038#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1039#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1040
1041/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1042#ifdef NODE_NOT_IN_PAGE_FLAGS
1043#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1044#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1045 SECTIONS_PGOFF : ZONES_PGOFF)
1046#else
1047#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1048#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \
1049 NODES_PGOFF : ZONES_PGOFF)
1050#endif
1051
1052#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1053
1054#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1055#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1056#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1057#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1058#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1059#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1060
1061static inline enum zone_type page_zonenum(const struct page *page)
1062{
1063 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1064 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1065}
1066
1067static inline enum zone_type folio_zonenum(const struct folio *folio)
1068{
1069 return page_zonenum(&folio->page);
1070}
1071
1072#ifdef CONFIG_ZONE_DEVICE
1073static inline bool is_zone_device_page(const struct page *page)
1074{
1075 return page_zonenum(page) == ZONE_DEVICE;
1076}
49580e69
LG
1077
1078/*
1079 * Consecutive zone device pages should not be merged into the same sgl
1080 * or bvec segment with other types of pages or if they belong to different
1081 * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1082 * without scanning the entire segment. This helper returns true either if
1083 * both pages are not zone device pages or both pages are zone device pages
1084 * with the same pgmap.
1085 */
1086static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1087 const struct page *b)
1088{
1089 if (is_zone_device_page(a) != is_zone_device_page(b))
1090 return false;
1091 if (!is_zone_device_page(a))
1092 return true;
1093 return a->pgmap == b->pgmap;
1094}
1095
5bb88dc5
AS
1096extern void memmap_init_zone_device(struct zone *, unsigned long,
1097 unsigned long, struct dev_pagemap *);
1098#else
1099static inline bool is_zone_device_page(const struct page *page)
1100{
1101 return false;
1102}
49580e69
LG
1103static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1104 const struct page *b)
1105{
1106 return true;
1107}
5bb88dc5
AS
1108#endif
1109
1110static inline bool folio_is_zone_device(const struct folio *folio)
1111{
1112 return is_zone_device_page(&folio->page);
1113}
1114
1115static inline bool is_zone_movable_page(const struct page *page)
1116{
1117 return page_zonenum(page) == ZONE_MOVABLE;
1118}
1119#endif
1120
f1dd2cd1
MH
1121/*
1122 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1123 * intersection with the given zone
1124 */
1125static inline bool zone_intersects(struct zone *zone,
1126 unsigned long start_pfn, unsigned long nr_pages)
1127{
1128 if (zone_is_empty(zone))
1129 return false;
1130 if (start_pfn >= zone_end_pfn(zone) ||
1131 start_pfn + nr_pages <= zone->zone_start_pfn)
1132 return false;
1133
1134 return true;
1135}
1136
1da177e4
LT
1137/*
1138 * The "priority" of VM scanning is how much of the queues we will scan in one
1139 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1140 * queues ("queue_length >> 12") during an aging round.
1141 */
1142#define DEF_PRIORITY 12
1143
9276b1bc
PJ
1144/* Maximum number of zones on a zonelist */
1145#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1146
c00eb15a
YB
1147enum {
1148 ZONELIST_FALLBACK, /* zonelist with fallback */
9276b1bc 1149#ifdef CONFIG_NUMA
c00eb15a
YB
1150 /*
1151 * The NUMA zonelists are doubled because we need zonelists that
1152 * restrict the allocations to a single node for __GFP_THISNODE.
1153 */
1154 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
9276b1bc 1155#endif
c00eb15a
YB
1156 MAX_ZONELISTS
1157};
9276b1bc 1158
dd1a239f
MG
1159/*
1160 * This struct contains information about a zone in a zonelist. It is stored
1161 * here to avoid dereferences into large structures and lookups of tables
1162 */
1163struct zoneref {
1164 struct zone *zone; /* Pointer to actual zone */
1165 int zone_idx; /* zone_idx(zoneref->zone) */
1166};
1167
1da177e4
LT
1168/*
1169 * One allocation request operates on a zonelist. A zonelist
1170 * is a list of zones, the first one is the 'goal' of the
1171 * allocation, the other zones are fallback zones, in decreasing
1172 * priority.
1173 *
dd1a239f
MG
1174 * To speed the reading of the zonelist, the zonerefs contain the zone index
1175 * of the entry being read. Helper functions to access information given
1176 * a struct zoneref are
1177 *
1178 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
1179 * zonelist_zone_idx() - Return the index of the zone for an entry
1180 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
1181 */
1182struct zonelist {
dd1a239f 1183 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1da177e4
LT
1184};
1185
bb1c50d3
MR
1186/*
1187 * The array of struct pages for flatmem.
1188 * It must be declared for SPARSEMEM as well because there are configurations
1189 * that rely on that.
1190 */
5b99cd0e 1191extern struct page *mem_map;
5b99cd0e 1192
364c1eeb
YS
1193#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1194struct deferred_split {
1195 spinlock_t split_queue_lock;
1196 struct list_head split_queue;
1197 unsigned long split_queue_len;
1198};
1199#endif
1200
44b8f8bf
JY
1201#ifdef CONFIG_MEMORY_FAILURE
1202/*
1203 * Per NUMA node memory failure handling statistics.
1204 */
1205struct memory_failure_stats {
1206 /*
1207 * Number of raw pages poisoned.
1208 * Cases not accounted: memory outside kernel control, offline page,
1209 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1210 * error events, and unpoison actions from hwpoison_unpoison.
1211 */
1212 unsigned long total;
1213 /*
1214 * Recovery results of poisoned raw pages handled by memory_failure,
1215 * in sync with mf_result.
1216 * total = ignored + failed + delayed + recovered.
1217 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1218 */
1219 unsigned long ignored;
1220 unsigned long failed;
1221 unsigned long delayed;
1222 unsigned long recovered;
1223};
1224#endif
1225
1da177e4 1226/*
1da177e4 1227 * On NUMA machines, each NUMA node would have a pg_data_t to describe
618b8c20
NB
1228 * it's memory layout. On UMA machines there is a single pglist_data which
1229 * describes the whole memory.
1da177e4
LT
1230 *
1231 * Memory statistics and page replacement data structures are maintained on a
1232 * per-zone basis.
1233 */
1da177e4 1234typedef struct pglist_data {
496df3d3
BW
1235 /*
1236 * node_zones contains just the zones for THIS node. Not all of the
1237 * zones may be populated, but it is the full list. It is referenced by
1238 * this node's node_zonelists as well as other node's node_zonelists.
1239 */
1da177e4 1240 struct zone node_zones[MAX_NR_ZONES];
496df3d3
BW
1241
1242 /*
1243 * node_zonelists contains references to all zones in all nodes.
1244 * Generally the first zones will be references to this node's
1245 * node_zones.
1246 */
523b9458 1247 struct zonelist node_zonelists[MAX_ZONELISTS];
496df3d3
BW
1248
1249 int nr_zones; /* number of populated zones in this node */
43b02ba9 1250#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */
1da177e4 1251 struct page *node_mem_map;
eefa864b
JK
1252#ifdef CONFIG_PAGE_EXTENSION
1253 struct page_ext *node_page_ext;
1254#endif
d41dee36 1255#endif
3a2d7fa8 1256#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
208d54e5 1257 /*
fa004ab7
WY
1258 * Must be held any time you expect node_start_pfn,
1259 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
3d060856
PT
1260 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1261 * init.
208d54e5 1262 *
114d4b79 1263 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
3a2d7fa8
PT
1264 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1265 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
114d4b79 1266 *
72c3b51b 1267 * Nests above zone->lock and zone->span_seqlock
208d54e5
DH
1268 */
1269 spinlock_t node_size_lock;
1270#endif
1da177e4
LT
1271 unsigned long node_start_pfn;
1272 unsigned long node_present_pages; /* total number of physical pages */
1273 unsigned long node_spanned_pages; /* total size of physical page
1274 range, including holes */
1275 int node_id;
1da177e4 1276 wait_queue_head_t kswapd_wait;
5515061d 1277 wait_queue_head_t pfmemalloc_wait;
8cd7c588
MG
1278
1279 /* workqueues for throttling reclaim for different reasons. */
1280 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1281
1282 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1283 unsigned long nr_reclaim_start; /* nr pages written while throttled
1284 * when throttling started. */
b4a0215e
KW
1285#ifdef CONFIG_MEMORY_HOTPLUG
1286 struct mutex kswapd_lock;
1287#endif
1288 struct task_struct *kswapd; /* Protected by kswapd_lock */
38087d9b 1289 int kswapd_order;
97a225e6 1290 enum zone_type kswapd_highest_zoneidx;
38087d9b 1291
c73322d0
JW
1292 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
1293
698b1b30
VB
1294#ifdef CONFIG_COMPACTION
1295 int kcompactd_max_order;
97a225e6 1296 enum zone_type kcompactd_highest_zoneidx;
698b1b30
VB
1297 wait_queue_head_t kcompactd_wait;
1298 struct task_struct *kcompactd;
65d759c8 1299 bool proactive_compact_trigger;
8177a420 1300#endif
281e3726
MG
1301 /*
1302 * This is a per-node reserve of pages that are not available
1303 * to userspace allocations.
1304 */
1305 unsigned long totalreserve_pages;
1306
a5f5f91d
MG
1307#ifdef CONFIG_NUMA
1308 /*
0a3c5772 1309 * node reclaim becomes active if more unmapped pages exist.
a5f5f91d
MG
1310 */
1311 unsigned long min_unmapped_pages;
1312 unsigned long min_slab_pages;
1313#endif /* CONFIG_NUMA */
1314
a52633d8 1315 /* Write-intensive fields used by page reclaim */
e6ad640b 1316 CACHELINE_PADDING(_pad1_);
3a80a7fa
MG
1317
1318#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1319 /*
1320 * If memory initialisation on large machines is deferred then this
1321 * is the first PFN that needs to be initialised.
1322 */
1323 unsigned long first_deferred_pfn;
1324#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
a3d0a918
KS
1325
1326#ifdef CONFIG_TRANSPARENT_HUGEPAGE
364c1eeb 1327 struct deferred_split deferred_split_queue;
a3d0a918 1328#endif
75ef7184 1329
c6833e10
HY
1330#ifdef CONFIG_NUMA_BALANCING
1331 /* start time in ms of current promote rate limit period */
1332 unsigned int nbp_rl_start;
1333 /* number of promote candidate pages at start time of current rate limit period */
1334 unsigned long nbp_rl_nr_cand;
c959924b
HY
1335 /* promote threshold in ms */
1336 unsigned int nbp_threshold;
1337 /* start time in ms of current promote threshold adjustment period */
1338 unsigned int nbp_th_start;
1339 /*
c7cdf94e 1340 * number of promote candidate pages at start time of current promote
c959924b
HY
1341 * threshold adjustment period
1342 */
1343 unsigned long nbp_th_nr_cand;
c6833e10 1344#endif
599d0c95 1345 /* Fields commonly accessed by the page reclaim scanner */
867e5e1d
JW
1346
1347 /*
1348 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1349 *
1350 * Use mem_cgroup_lruvec() to look up lruvecs.
1351 */
1352 struct lruvec __lruvec;
599d0c95 1353
599d0c95
MG
1354 unsigned long flags;
1355
bd74fdae
YZ
1356#ifdef CONFIG_LRU_GEN
1357 /* kswap mm walk data */
9a52b2f3 1358 struct lru_gen_mm_walk mm_walk;
e4dde56c
YZ
1359 /* lru_gen_folio list */
1360 struct lru_gen_memcg memcg_lru;
bd74fdae
YZ
1361#endif
1362
e6ad640b 1363 CACHELINE_PADDING(_pad2_);
599d0c95 1364
75ef7184
MG
1365 /* Per-node vmstats */
1366 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1367 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
7766cf7a
AK
1368#ifdef CONFIG_NUMA
1369 struct memory_tier __rcu *memtier;
1370#endif
44b8f8bf
JY
1371#ifdef CONFIG_MEMORY_FAILURE
1372 struct memory_failure_stats mf_stats;
1373#endif
1da177e4
LT
1374} pg_data_t;
1375
1376#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
1377#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
1378
c6830c22 1379#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
da3649e1 1380#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
c6830c22 1381
da3649e1
CS
1382static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1383{
1384 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1385}
1386
208d54e5
DH
1387#include <linux/memory_hotplug.h>
1388
72675e13 1389void build_all_zonelists(pg_data_t *pgdat);
5ecd9d40 1390void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
97a225e6 1391 enum zone_type highest_zoneidx);
86a294a8 1392bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 1393 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 1394 long free_pages);
7aeb09f9 1395bool zone_watermark_ok(struct zone *z, unsigned int order,
97a225e6 1396 unsigned long mark, int highest_zoneidx,
c603844b 1397 unsigned int alloc_flags);
7aeb09f9 1398bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 1399 unsigned long mark, int highest_zoneidx);
c1d0da83
LD
1400/*
1401 * Memory initialization context, use to differentiate memory added by
1402 * the platform statically or via memory hotplug interface.
1403 */
1404enum meminit_context {
1405 MEMINIT_EARLY,
1406 MEMINIT_HOTPLUG,
a2f3aa02 1407};
c1d0da83 1408
dc0bbf3b 1409extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
b171e409 1410 unsigned long size);
718127cc 1411
bea8c150 1412extern void lruvec_init(struct lruvec *lruvec);
7f5e86c2 1413
599d0c95 1414static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
7f5e86c2 1415{
c255a458 1416#ifdef CONFIG_MEMCG
599d0c95 1417 return lruvec->pgdat;
7f5e86c2 1418#else
867e5e1d 1419 return container_of(lruvec, struct pglist_data, __lruvec);
7f5e86c2
KK
1420#endif
1421}
1422
7aac7898
LS
1423#ifdef CONFIG_HAVE_MEMORYLESS_NODES
1424int local_memory_node(int node_id);
1425#else
1426static inline int local_memory_node(int node_id) { return node_id; };
1427#endif
1428
1da177e4
LT
1429/*
1430 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1431 */
1432#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
1433
1f90a347
DW
1434#ifdef CONFIG_ZONE_DEVICE
1435static inline bool zone_is_zone_device(struct zone *zone)
1436{
1437 return zone_idx(zone) == ZONE_DEVICE;
1438}
1439#else
1440static inline bool zone_is_zone_device(struct zone *zone)
1441{
1442 return false;
1443}
1444#endif
1445
6aa303de
MG
1446/*
1447 * Returns true if a zone has pages managed by the buddy allocator.
1448 * All the reclaim decisions have to use this function rather than
1449 * populated_zone(). If the whole zone is reserved then we can easily
1450 * end up with populated_zone() && !managed_zone().
1451 */
1452static inline bool managed_zone(struct zone *zone)
1453{
9705bea5 1454 return zone_managed_pages(zone);
6aa303de
MG
1455}
1456
1457/* Returns true if a zone has memory */
1458static inline bool populated_zone(struct zone *zone)
f3fe6512 1459{
6aa303de 1460 return zone->present_pages;
f3fe6512
CK
1461}
1462
c1093b74
PT
1463#ifdef CONFIG_NUMA
1464static inline int zone_to_nid(struct zone *zone)
1465{
1466 return zone->node;
1467}
1468
1469static inline void zone_set_nid(struct zone *zone, int nid)
1470{
1471 zone->node = nid;
1472}
1473#else
1474static inline int zone_to_nid(struct zone *zone)
1475{
1476 return 0;
1477}
1478
1479static inline void zone_set_nid(struct zone *zone, int nid) {}
1480#endif
1481
2a1e274a
MG
1482extern int movable_zone;
1483
2f1b6248 1484static inline int is_highmem_idx(enum zone_type idx)
1da177e4 1485{
e53ef38d 1486#ifdef CONFIG_HIGHMEM
2a1e274a 1487 return (idx == ZONE_HIGHMEM ||
b19bd1c9 1488 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
e53ef38d
CL
1489#else
1490 return 0;
1491#endif
1da177e4
LT
1492}
1493
1da177e4 1494/**
b4a991ec 1495 * is_highmem - helper function to quickly check if a struct zone is a
1da177e4
LT
1496 * highmem zone or not. This is an attempt to keep references
1497 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
198fba41
MR
1498 * @zone: pointer to struct zone variable
1499 * Return: 1 for a highmem zone, 0 otherwise
1da177e4
LT
1500 */
1501static inline int is_highmem(struct zone *zone)
1502{
29f9cb53 1503 return is_highmem_idx(zone_idx(zone));
bb077c3f
KW
1504}
1505
1506#ifdef CONFIG_ZONE_DMA
1507bool has_managed_dma(void);
e53ef38d 1508#else
bb077c3f
KW
1509static inline bool has_managed_dma(void)
1510{
1511 return false;
1da177e4 1512}
bb077c3f 1513#endif
1da177e4 1514
1da177e4
LT
1515/* These two functions are used to setup the per zone pages min values */
1516struct ctl_table;
2374c09b 1517
32927393
CH
1518int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1519 loff_t *);
1520int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1521 size_t *, loff_t *);
d3cda233 1522extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
32927393
CH
1523int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1524 size_t *, loff_t *);
74f44822
MG
1525int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
1526 void *, size_t *, loff_t *);
9614634f 1527int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
32927393 1528 void *, size_t *, loff_t *);
0ff38490 1529int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
32927393
CH
1530 void *, size_t *, loff_t *);
1531int numa_zonelist_order_handler(struct ctl_table *, int,
1532 void *, size_t *, loff_t *);
74f44822 1533extern int percpu_pagelist_high_fraction;
f0c0b2b8 1534extern char numa_zonelist_order[];
c9bff3ee 1535#define NUMA_ZONELIST_ORDER_LEN 16
f0c0b2b8 1536
a9ee6cf5 1537#ifndef CONFIG_NUMA
1da177e4
LT
1538
1539extern struct pglist_data contig_page_data;
351de44f
MG
1540static inline struct pglist_data *NODE_DATA(int nid)
1541{
1542 return &contig_page_data;
1543}
1da177e4 1544
a9ee6cf5 1545#else /* CONFIG_NUMA */
1da177e4
LT
1546
1547#include <asm/mmzone.h>
1548
a9ee6cf5 1549#endif /* !CONFIG_NUMA */
348f8b6c 1550
95144c78
KH
1551extern struct pglist_data *first_online_pgdat(void);
1552extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1553extern struct zone *next_zone(struct zone *zone);
8357f869
KH
1554
1555/**
12d15f0d 1556 * for_each_online_pgdat - helper macro to iterate over all online nodes
198fba41 1557 * @pgdat: pointer to a pg_data_t variable
8357f869
KH
1558 */
1559#define for_each_online_pgdat(pgdat) \
1560 for (pgdat = first_online_pgdat(); \
1561 pgdat; \
1562 pgdat = next_online_pgdat(pgdat))
8357f869
KH
1563/**
1564 * for_each_zone - helper macro to iterate over all memory zones
198fba41 1565 * @zone: pointer to struct zone variable
8357f869
KH
1566 *
1567 * The user only needs to declare the zone variable, for_each_zone
1568 * fills it in.
1569 */
1570#define for_each_zone(zone) \
1571 for (zone = (first_online_pgdat())->node_zones; \
1572 zone; \
1573 zone = next_zone(zone))
1574
ee99c71c
KM
1575#define for_each_populated_zone(zone) \
1576 for (zone = (first_online_pgdat())->node_zones; \
1577 zone; \
1578 zone = next_zone(zone)) \
1579 if (!populated_zone(zone)) \
1580 ; /* do nothing */ \
1581 else
1582
dd1a239f
MG
1583static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1584{
1585 return zoneref->zone;
1586}
1587
1588static inline int zonelist_zone_idx(struct zoneref *zoneref)
1589{
1590 return zoneref->zone_idx;
1591}
1592
1593static inline int zonelist_node_idx(struct zoneref *zoneref)
1594{
c1093b74 1595 return zone_to_nid(zoneref->zone);
dd1a239f
MG
1596}
1597
682a3385
MG
1598struct zoneref *__next_zones_zonelist(struct zoneref *z,
1599 enum zone_type highest_zoneidx,
1600 nodemask_t *nodes);
1601
19770b32
MG
1602/**
1603 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
198fba41
MR
1604 * @z: The cursor used as a starting point for the search
1605 * @highest_zoneidx: The zone index of the highest zone to return
1606 * @nodes: An optional nodemask to filter the zonelist with
19770b32
MG
1607 *
1608 * This function returns the next zone at or below a given zone index that is
1609 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
1610 * search. The zoneref returned is a cursor that represents the current zone
1611 * being examined. It should be advanced by one before calling
1612 * next_zones_zonelist again.
198fba41
MR
1613 *
1614 * Return: the next zone at or below highest_zoneidx within the allowed
1615 * nodemask using a cursor within a zonelist as a starting point
19770b32 1616 */
682a3385 1617static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
19770b32 1618 enum zone_type highest_zoneidx,
682a3385
MG
1619 nodemask_t *nodes)
1620{
1621 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1622 return z;
1623 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1624}
dd1a239f 1625
19770b32
MG
1626/**
1627 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
198fba41
MR
1628 * @zonelist: The zonelist to search for a suitable zone
1629 * @highest_zoneidx: The zone index of the highest zone to return
1630 * @nodes: An optional nodemask to filter the zonelist with
19770b32
MG
1631 *
1632 * This function returns the first zone at or below a given zone index that is
1633 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
1634 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1635 * one before calling.
ea57485a
VB
1636 *
1637 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1638 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1639 * update due to cpuset modification.
198fba41
MR
1640 *
1641 * Return: Zoneref pointer for the first suitable zone found
19770b32 1642 */
dd1a239f 1643static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32 1644 enum zone_type highest_zoneidx,
c33d6c06 1645 nodemask_t *nodes)
54a6eb5c 1646{
c33d6c06 1647 return next_zones_zonelist(zonelist->_zonerefs,
05891fb0 1648 highest_zoneidx, nodes);
54a6eb5c
MG
1649}
1650
19770b32
MG
1651/**
1652 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
198fba41
MR
1653 * @zone: The current zone in the iterator
1654 * @z: The current pointer within zonelist->_zonerefs being iterated
1655 * @zlist: The zonelist being iterated
1656 * @highidx: The zone index of the highest zone to return
1657 * @nodemask: Nodemask allowed by the allocator
19770b32
MG
1658 *
1659 * This iterator iterates though all zones at or below a given zone index and
1660 * within a given nodemask
1661 */
1662#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
c33d6c06 1663 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
19770b32 1664 zone; \
05891fb0 1665 z = next_zones_zonelist(++z, highidx, nodemask), \
c33d6c06
MG
1666 zone = zonelist_zone(z))
1667
30d8ec73 1668#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
c33d6c06
MG
1669 for (zone = z->zone; \
1670 zone; \
1671 z = next_zones_zonelist(++z, highidx, nodemask), \
1672 zone = zonelist_zone(z))
1673
54a6eb5c
MG
1674
1675/**
1676 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
198fba41
MR
1677 * @zone: The current zone in the iterator
1678 * @z: The current pointer within zonelist->zones being iterated
1679 * @zlist: The zonelist being iterated
1680 * @highidx: The zone index of the highest zone to return
54a6eb5c
MG
1681 *
1682 * This iterator iterates though all zones at or below a given zone index.
1683 */
1684#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 1685 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 1686
8ca1b5a4
FT
1687/* Whether the 'nodes' are all movable nodes */
1688static inline bool movable_only_nodes(nodemask_t *nodes)
1689{
1690 struct zonelist *zonelist;
1691 struct zoneref *z;
1692 int nid;
1693
1694 if (nodes_empty(*nodes))
1695 return false;
1696
1697 /*
1698 * We can chose arbitrary node from the nodemask to get a
1699 * zonelist as they are interlinked. We just need to find
1700 * at least one zone that can satisfy kernel allocations.
1701 */
1702 nid = first_node(*nodes);
1703 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1704 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
1705 return (!z->zone) ? true : false;
1706}
1707
1708
d41dee36
AW
1709#ifdef CONFIG_SPARSEMEM
1710#include <asm/sparsemem.h>
1711#endif
1712
2bdaf115
AW
1713#ifdef CONFIG_FLATMEM
1714#define pfn_to_nid(pfn) (0)
1715#endif
1716
d41dee36
AW
1717#ifdef CONFIG_SPARSEMEM
1718
1719/*
d41dee36
AW
1720 * PA_SECTION_SHIFT physical address to/from section number
1721 * PFN_SECTION_SHIFT pfn to/from section number
1722 */
d41dee36
AW
1723#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1724#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1725
1726#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1727
1728#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1729#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1730
835c134e 1731#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1732 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1733
23baf831 1734#if (MAX_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
d41dee36
AW
1735#error Allocator MAX_ORDER exceeds SECTION_SIZE
1736#endif
1737
1dd2bfc8
YI
1738static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1739{
1740 return pfn >> PFN_SECTION_SHIFT;
1741}
1742static inline unsigned long section_nr_to_pfn(unsigned long sec)
1743{
1744 return sec << PFN_SECTION_SHIFT;
1745}
e3c40f37 1746
a539f353
DK
1747#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1748#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1749
f1eca35a 1750#define SUBSECTION_SHIFT 21
9ffc1d19 1751#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
f1eca35a
DW
1752
1753#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1754#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1755#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1756
1757#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1758#error Subsection size exceeds section size
1759#else
1760#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1761#endif
1762
a3619190
DW
1763#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1764#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1765
f1eca35a 1766struct mem_section_usage {
0a9f9f62 1767#ifdef CONFIG_SPARSEMEM_VMEMMAP
f1eca35a 1768 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
0a9f9f62 1769#endif
f1eca35a
DW
1770 /* See declaration of similar field in struct zone */
1771 unsigned long pageblock_flags[0];
1772};
1773
f46edbd1
DW
1774void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1775
d41dee36 1776struct page;
eefa864b 1777struct page_ext;
d41dee36 1778struct mem_section {
29751f69
AW
1779 /*
1780 * This is, logically, a pointer to an array of struct
1781 * pages. However, it is stored with some other magic.
1782 * (see sparse.c::sparse_init_one_section())
1783 *
30c253e6
AW
1784 * Additionally during early boot we encode node id of
1785 * the location of the section here to guide allocation.
1786 * (see sparse.c::memory_present())
1787 *
29751f69
AW
1788 * Making it a UL at least makes someone do a cast
1789 * before using it wrong.
1790 */
1791 unsigned long section_mem_map;
5c0e3066 1792
f1eca35a 1793 struct mem_section_usage *usage;
eefa864b
JK
1794#ifdef CONFIG_PAGE_EXTENSION
1795 /*
0c9ad804 1796 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
eefa864b
JK
1797 * section. (see page_ext.h about this.)
1798 */
1799 struct page_ext *page_ext;
1800 unsigned long pad;
1801#endif
55878e88
CS
1802 /*
1803 * WARNING: mem_section must be a power-of-2 in size for the
1804 * calculation and use of SECTION_ROOT_MASK to make sense.
1805 */
d41dee36
AW
1806};
1807
3e347261
BP
1808#ifdef CONFIG_SPARSEMEM_EXTREME
1809#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1810#else
1811#define SECTIONS_PER_ROOT 1
1812#endif
802f192e 1813
3e347261 1814#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1815#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1816#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1817
3e347261 1818#ifdef CONFIG_SPARSEMEM_EXTREME
83e3c487 1819extern struct mem_section **mem_section;
802f192e 1820#else
3e347261
BP
1821extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1822#endif
d41dee36 1823
f1eca35a
DW
1824static inline unsigned long *section_to_usemap(struct mem_section *ms)
1825{
1826 return ms->usage->pageblock_flags;
1827}
1828
29751f69
AW
1829static inline struct mem_section *__nr_to_section(unsigned long nr)
1830{
a431dbbc
WL
1831 unsigned long root = SECTION_NR_TO_ROOT(nr);
1832
1833 if (unlikely(root >= NR_SECTION_ROOTS))
1834 return NULL;
1835
83e3c487 1836#ifdef CONFIG_SPARSEMEM_EXTREME
a431dbbc 1837 if (!mem_section || !mem_section[root])
83e3c487
KS
1838 return NULL;
1839#endif
a431dbbc 1840 return &mem_section[root][nr & SECTION_ROOT_MASK];
29751f69 1841}
f1eca35a 1842extern size_t mem_section_usage_size(void);
29751f69
AW
1843
1844/*
1845 * We use the lower bits of the mem_map pointer to store
def9b71e
PT
1846 * a little bit of information. The pointer is calculated
1847 * as mem_map - section_nr_to_pfn(pnum). The result is
1848 * aligned to the minimum alignment of the two values:
1849 * 1. All mem_map arrays are page-aligned.
1850 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1851 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1852 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1853 * worst combination is powerpc with 256k pages,
1854 * which results in PFN_SECTION_SHIFT equal 6.
ed7802dd
MS
1855 * To sum it up, at least 6 bits are available on all architectures.
1856 * However, we can exceed 6 bits on some other architectures except
1857 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1858 * with the worst case of 64K pages on arm64) if we make sure the
1859 * exceeded bit is not applicable to powerpc.
29751f69 1860 */
ed7802dd
MS
1861enum {
1862 SECTION_MARKED_PRESENT_BIT,
1863 SECTION_HAS_MEM_MAP_BIT,
1864 SECTION_IS_ONLINE_BIT,
1865 SECTION_IS_EARLY_BIT,
1866#ifdef CONFIG_ZONE_DEVICE
1867 SECTION_TAINT_ZONE_DEVICE_BIT,
1868#endif
1869 SECTION_MAP_LAST_BIT,
1870};
1871
1872#define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT)
1873#define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT)
1874#define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT)
1875#define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT)
1876#ifdef CONFIG_ZONE_DEVICE
1877#define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1878#endif
1879#define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1))
1880#define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT
29751f69
AW
1881
1882static inline struct page *__section_mem_map_addr(struct mem_section *section)
1883{
1884 unsigned long map = section->section_mem_map;
1885 map &= SECTION_MAP_MASK;
1886 return (struct page *)map;
1887}
1888
540557b9 1889static inline int present_section(struct mem_section *section)
29751f69 1890{
802f192e 1891 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1892}
1893
540557b9
AW
1894static inline int present_section_nr(unsigned long nr)
1895{
1896 return present_section(__nr_to_section(nr));
1897}
1898
1899static inline int valid_section(struct mem_section *section)
29751f69 1900{
802f192e 1901 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1902}
1903
326e1b8f
DW
1904static inline int early_section(struct mem_section *section)
1905{
1906 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1907}
1908
29751f69
AW
1909static inline int valid_section_nr(unsigned long nr)
1910{
1911 return valid_section(__nr_to_section(nr));
1912}
1913
2d070eab
MH
1914static inline int online_section(struct mem_section *section)
1915{
1916 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1917}
1918
ed7802dd 1919#ifdef CONFIG_ZONE_DEVICE
1f90a347
DW
1920static inline int online_device_section(struct mem_section *section)
1921{
1922 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1923
1924 return section && ((section->section_mem_map & flags) == flags);
1925}
ed7802dd
MS
1926#else
1927static inline int online_device_section(struct mem_section *section)
1928{
1929 return 0;
1930}
1931#endif
1f90a347 1932
2d070eab
MH
1933static inline int online_section_nr(unsigned long nr)
1934{
1935 return online_section(__nr_to_section(nr));
1936}
1937
1938#ifdef CONFIG_MEMORY_HOTPLUG
1939void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2d070eab
MH
1940void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1941#endif
2d070eab 1942
d41dee36
AW
1943static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1944{
29751f69 1945 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1946}
1947
2491f0a2 1948extern unsigned long __highest_present_section_nr;
c4e1be9e 1949
f46edbd1
DW
1950static inline int subsection_map_index(unsigned long pfn)
1951{
1952 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1953}
1954
1955#ifdef CONFIG_SPARSEMEM_VMEMMAP
1956static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1957{
1958 int idx = subsection_map_index(pfn);
1959
1960 return test_bit(idx, ms->usage->subsection_map);
1961}
1962#else
1963static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1964{
1965 return 1;
1966}
1967#endif
1968
7b7bf499 1969#ifndef CONFIG_HAVE_ARCH_PFN_VALID
51c656ae
MR
1970/**
1971 * pfn_valid - check if there is a valid memory map entry for a PFN
1972 * @pfn: the page frame number to check
1973 *
1974 * Check if there is a valid memory map entry aka struct page for the @pfn.
1975 * Note, that availability of the memory map entry does not imply that
1976 * there is actual usable memory at that @pfn. The struct page may
1977 * represent a hole or an unusable page frame.
1978 *
1979 * Return: 1 for PFNs that have memory map entries and 0 otherwise
1980 */
d41dee36
AW
1981static inline int pfn_valid(unsigned long pfn)
1982{
f46edbd1
DW
1983 struct mem_section *ms;
1984
16c9afc7
AK
1985 /*
1986 * Ensure the upper PAGE_SHIFT bits are clear in the
1987 * pfn. Else it might lead to false positives when
1988 * some of the upper bits are set, but the lower bits
1989 * match a valid pfn.
1990 */
1991 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
1992 return 0;
1993
d41dee36
AW
1994 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1995 return 0;
f1dc0db2 1996 ms = __pfn_to_section(pfn);
f46edbd1
DW
1997 if (!valid_section(ms))
1998 return 0;
1999 /*
2000 * Traditionally early sections always returned pfn_valid() for
2001 * the entire section-sized span.
2002 */
2003 return early_section(ms) || pfn_section_valid(ms, pfn);
d41dee36 2004}
7b7bf499 2005#endif
d41dee36 2006
e03d1f78 2007static inline int pfn_in_present_section(unsigned long pfn)
540557b9
AW
2008{
2009 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2010 return 0;
f1dc0db2 2011 return present_section(__pfn_to_section(pfn));
540557b9
AW
2012}
2013
4c605881
DH
2014static inline unsigned long next_present_section_nr(unsigned long section_nr)
2015{
2016 while (++section_nr <= __highest_present_section_nr) {
2017 if (present_section_nr(section_nr))
2018 return section_nr;
2019 }
2020
2021 return -1;
2022}
2023
d41dee36
AW
2024/*
2025 * These are _only_ used during initialisation, therefore they
2026 * can use __initdata ... They could have names to indicate
2027 * this restriction.
2028 */
2029#ifdef CONFIG_NUMA
161599ff
AW
2030#define pfn_to_nid(pfn) \
2031({ \
2032 unsigned long __pfn_to_nid_pfn = (pfn); \
2033 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
2034})
2bdaf115
AW
2035#else
2036#define pfn_to_nid(pfn) (0)
d41dee36
AW
2037#endif
2038
d41dee36
AW
2039void sparse_init(void);
2040#else
2041#define sparse_init() do {} while (0)
28ae55c9 2042#define sparse_index_init(_sec, _nid) do {} while (0)
e03d1f78 2043#define pfn_in_present_section pfn_valid
f46edbd1 2044#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
d41dee36
AW
2045#endif /* CONFIG_SPARSEMEM */
2046
97965478 2047#endif /* !__GENERATING_BOUNDS.H */
1da177e4 2048#endif /* !__ASSEMBLY__ */
1da177e4 2049#endif /* _LINUX_MMZONE_H */