powerpc/hugetlb: Don't do runtime allocation of 16G pages in LPAR configuration
[linux-2.6-block.git] / include / linux / mmzone.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
1da177e4 5#ifndef __ASSEMBLY__
97965478 6#ifndef __GENERATING_BOUNDS_H
1da177e4 7
1da177e4
LT
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/wait.h>
e815af95 11#include <linux/bitops.h>
1da177e4
LT
12#include <linux/cache.h>
13#include <linux/threads.h>
14#include <linux/numa.h>
15#include <linux/init.h>
bdc8cb98 16#include <linux/seqlock.h>
8357f869 17#include <linux/nodemask.h>
835c134e 18#include <linux/pageblock-flags.h>
bbeae5b0 19#include <linux/page-flags-layout.h>
60063497 20#include <linux/atomic.h>
93ff66bf 21#include <asm/page.h>
1da177e4
LT
22
23/* Free memory management - zoned buddy allocator. */
24#ifndef CONFIG_FORCE_MAX_ZONEORDER
25#define MAX_ORDER 11
26#else
27#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
28#endif
e984bb43 29#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 30
5ad333eb
AW
31/*
32 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
33 * costly to service. That is between allocation orders which should
35fca53e 34 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
35 * will not.
36 */
37#define PAGE_ALLOC_COSTLY_ORDER 3
38
a6ffdc07 39enum migratetype {
47118af0 40 MIGRATE_UNMOVABLE,
47118af0 41 MIGRATE_MOVABLE,
016c13da 42 MIGRATE_RECLAIMABLE,
0aaa29a5
MG
43 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
44 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47118af0
MN
45#ifdef CONFIG_CMA
46 /*
47 * MIGRATE_CMA migration type is designed to mimic the way
48 * ZONE_MOVABLE works. Only movable pages can be allocated
49 * from MIGRATE_CMA pageblocks and page allocator never
50 * implicitly change migration type of MIGRATE_CMA pageblock.
51 *
52 * The way to use it is to change migratetype of a range of
53 * pageblocks to MIGRATE_CMA which can be done by
54 * __free_pageblock_cma() function. What is important though
55 * is that a range of pageblocks must be aligned to
56 * MAX_ORDER_NR_PAGES should biggest page be bigger then
57 * a single pageblock.
58 */
59 MIGRATE_CMA,
60#endif
194159fb 61#ifdef CONFIG_MEMORY_ISOLATION
47118af0 62 MIGRATE_ISOLATE, /* can't allocate from here */
194159fb 63#endif
47118af0
MN
64 MIGRATE_TYPES
65};
66
60f30350 67/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
c999fbd3 68extern const char * const migratetype_names[MIGRATE_TYPES];
60f30350 69
47118af0
MN
70#ifdef CONFIG_CMA
71# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
7c15d9bb 72# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
47118af0
MN
73#else
74# define is_migrate_cma(migratetype) false
7c15d9bb 75# define is_migrate_cma_page(_page) false
47118af0 76#endif
b2a0ac88 77
b682debd
VB
78static inline bool is_migrate_movable(int mt)
79{
80 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
81}
82
b2a0ac88
MG
83#define for_each_migratetype_order(order, type) \
84 for (order = 0; order < MAX_ORDER; order++) \
85 for (type = 0; type < MIGRATE_TYPES; type++)
86
467c996c
MG
87extern int page_group_by_mobility_disabled;
88
e58469ba
MG
89#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
90#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
91
dc4b0caf
MG
92#define get_pageblock_migratetype(page) \
93 get_pfnblock_flags_mask(page, page_to_pfn(page), \
94 PB_migrate_end, MIGRATETYPE_MASK)
95
1da177e4 96struct free_area {
b2a0ac88 97 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
98 unsigned long nr_free;
99};
100
101struct pglist_data;
102
103/*
a52633d8 104 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
1da177e4
LT
105 * So add a wild amount of padding here to ensure that they fall into separate
106 * cachelines. There are very few zone structures in the machine, so space
107 * consumption is not a concern here.
108 */
109#if defined(CONFIG_SMP)
110struct zone_padding {
111 char x[0];
22fc6ecc 112} ____cacheline_internodealigned_in_smp;
1da177e4
LT
113#define ZONE_PADDING(name) struct zone_padding name;
114#else
115#define ZONE_PADDING(name)
116#endif
117
3a321d2a
KW
118#ifdef CONFIG_NUMA
119enum numa_stat_item {
120 NUMA_HIT, /* allocated in intended node */
121 NUMA_MISS, /* allocated in non intended node */
122 NUMA_FOREIGN, /* was intended here, hit elsewhere */
123 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
124 NUMA_LOCAL, /* allocation from local node */
125 NUMA_OTHER, /* allocation from other node */
126 NR_VM_NUMA_STAT_ITEMS
127};
128#else
129#define NR_VM_NUMA_STAT_ITEMS 0
130#endif
131
2244b95a 132enum zone_stat_item {
51ed4491 133 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 134 NR_FREE_PAGES,
71c799f4
MK
135 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
136 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
137 NR_ZONE_ACTIVE_ANON,
138 NR_ZONE_INACTIVE_FILE,
139 NR_ZONE_ACTIVE_FILE,
140 NR_ZONE_UNEVICTABLE,
5a1c84b4 141 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
5344b7e6 142 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
51ed4491 143 NR_PAGETABLE, /* used for pagetables */
d30dd8be 144 NR_KERNEL_STACK_KB, /* measured in KiB */
c6a7f572 145 /* Second 128 byte cacheline */
d2c5e30c 146 NR_BOUNCE,
91537fee
MK
147#if IS_ENABLED(CONFIG_ZSMALLOC)
148 NR_ZSPAGES, /* allocated in zsmalloc */
ca889e6c 149#endif
d1ce749a 150 NR_FREE_CMA_PAGES,
2244b95a
CL
151 NR_VM_ZONE_STAT_ITEMS };
152
75ef7184 153enum node_stat_item {
599d0c95
MG
154 NR_LRU_BASE,
155 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
156 NR_ACTIVE_ANON, /* " " " " " */
157 NR_INACTIVE_FILE, /* " " " " " */
158 NR_ACTIVE_FILE, /* " " " " " */
159 NR_UNEVICTABLE, /* " " " " " */
385386cf
JW
160 NR_SLAB_RECLAIMABLE,
161 NR_SLAB_UNRECLAIMABLE,
599d0c95
MG
162 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
163 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
68d48e6a 164 WORKINGSET_NODES,
1e6b1085
MG
165 WORKINGSET_REFAULT,
166 WORKINGSET_ACTIVATE,
1899ad18 167 WORKINGSET_RESTORE,
1e6b1085 168 WORKINGSET_NODERECLAIM,
4b9d0fab 169 NR_ANON_MAPPED, /* Mapped anonymous pages */
50658e2e
MG
170 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
171 only modified from process context */
11fb9989
MG
172 NR_FILE_PAGES,
173 NR_FILE_DIRTY,
174 NR_WRITEBACK,
175 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
176 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
177 NR_SHMEM_THPS,
178 NR_SHMEM_PMDMAPPED,
179 NR_ANON_THPS,
180 NR_UNSTABLE_NFS, /* NFS unstable pages */
c4a25635
MG
181 NR_VMSCAN_WRITE,
182 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
183 NR_DIRTIED, /* page dirtyings since bootup */
184 NR_WRITTEN, /* page writings since bootup */
b29940c1 185 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
75ef7184
MG
186 NR_VM_NODE_STAT_ITEMS
187};
188
4f98a2fe
RR
189/*
190 * We do arithmetic on the LRU lists in various places in the code,
191 * so it is important to keep the active lists LRU_ACTIVE higher in
192 * the array than the corresponding inactive lists, and to keep
193 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
194 *
195 * This has to be kept in sync with the statistics in zone_stat_item
196 * above and the descriptions in vmstat_text in mm/vmstat.c
197 */
198#define LRU_BASE 0
199#define LRU_ACTIVE 1
200#define LRU_FILE 2
201
b69408e8 202enum lru_list {
4f98a2fe
RR
203 LRU_INACTIVE_ANON = LRU_BASE,
204 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
205 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
206 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 207 LRU_UNEVICTABLE,
894bc310
LS
208 NR_LRU_LISTS
209};
b69408e8 210
4111304d 211#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 212
4111304d 213#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 214
4111304d 215static inline int is_file_lru(enum lru_list lru)
4f98a2fe 216{
4111304d 217 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
218}
219
4111304d 220static inline int is_active_lru(enum lru_list lru)
b69408e8 221{
4111304d 222 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
223}
224
89abfab1
HD
225struct zone_reclaim_stat {
226 /*
227 * The pageout code in vmscan.c keeps track of how many of the
59f91e5d 228 * mem/swap backed and file backed pages are referenced.
89abfab1
HD
229 * The higher the rotated/scanned ratio, the more valuable
230 * that cache is.
231 *
232 * The anon LRU stats live in [0], file LRU stats in [1]
233 */
234 unsigned long recent_rotated[2];
235 unsigned long recent_scanned[2];
236};
237
6290df54 238struct lruvec {
23047a96
JW
239 struct list_head lists[NR_LRU_LISTS];
240 struct zone_reclaim_stat reclaim_stat;
241 /* Evictions & activations on the inactive file list */
242 atomic_long_t inactive_age;
2a2e4885
JW
243 /* Refaults at the time of last reclaim cycle */
244 unsigned long refaults;
c255a458 245#ifdef CONFIG_MEMCG
599d0c95 246 struct pglist_data *pgdat;
7f5e86c2 247#endif
6290df54
JW
248};
249
bb2a0de9
KH
250/* Mask used at gathering information at once (see memcontrol.c) */
251#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
252#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
bb2a0de9
KH
253#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
254
f80c0673 255/* Isolate unmapped file */
f3fd4a61 256#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
c8244935 257/* Isolate for asynchronous migration */
f3fd4a61 258#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
e46a2879
MK
259/* Isolate unevictable pages */
260#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
4356f21d
MK
261
262/* LRU Isolation modes. */
9efeccac 263typedef unsigned __bitwise isolate_mode_t;
4356f21d 264
41858966
MG
265enum zone_watermarks {
266 WMARK_MIN,
267 WMARK_LOW,
268 WMARK_HIGH,
269 NR_WMARK
270};
271
1c30844d
MG
272#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
273#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
274#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
275#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
41858966 276
1da177e4
LT
277struct per_cpu_pages {
278 int count; /* number of pages in the list */
1da177e4
LT
279 int high; /* high watermark, emptying needed */
280 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
281
282 /* Lists of pages, one per migrate type stored on the pcp-lists */
283 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
284};
285
286struct per_cpu_pageset {
3dfa5721 287 struct per_cpu_pages pcp;
4037d452
CL
288#ifdef CONFIG_NUMA
289 s8 expire;
1d90ca89 290 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
4037d452 291#endif
2244b95a 292#ifdef CONFIG_SMP
df9ecaba 293 s8 stat_threshold;
2244b95a
CL
294 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
295#endif
99dcc3e5 296};
e7c8d5c9 297
75ef7184
MG
298struct per_cpu_nodestat {
299 s8 stat_threshold;
300 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
301};
302
97965478
CL
303#endif /* !__GENERATING_BOUNDS.H */
304
2f1b6248 305enum zone_type {
4b51d669 306#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
307 /*
308 * ZONE_DMA is used when there are devices that are not able
309 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
310 * carve out the portion of memory that is needed for these devices.
311 * The range is arch specific.
312 *
313 * Some examples
314 *
315 * Architecture Limit
316 * ---------------------------
317 * parisc, ia64, sparc <4G
25078dc1 318 * s390, powerpc <2G
2f1b6248
CL
319 * arm Various
320 * alpha Unlimited or 0-16MB.
321 *
322 * i386, x86_64 and multiple other arches
323 * <16M.
324 */
325 ZONE_DMA,
4b51d669 326#endif
fb0e7942 327#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
328 /*
329 * x86_64 needs two ZONE_DMAs because it supports devices that are
330 * only able to do DMA to the lower 16M but also 32 bit devices that
331 * can only do DMA areas below 4G.
332 */
333 ZONE_DMA32,
fb0e7942 334#endif
2f1b6248
CL
335 /*
336 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
337 * performed on pages in ZONE_NORMAL if the DMA devices support
338 * transfers to all addressable memory.
339 */
340 ZONE_NORMAL,
e53ef38d 341#ifdef CONFIG_HIGHMEM
2f1b6248
CL
342 /*
343 * A memory area that is only addressable by the kernel through
344 * mapping portions into its own address space. This is for example
345 * used by i386 to allow the kernel to address the memory beyond
346 * 900MB. The kernel will set up special mappings (page
347 * table entries on i386) for each page that the kernel needs to
348 * access.
349 */
350 ZONE_HIGHMEM,
e53ef38d 351#endif
2a1e274a 352 ZONE_MOVABLE,
033fbae9
DW
353#ifdef CONFIG_ZONE_DEVICE
354 ZONE_DEVICE,
355#endif
97965478 356 __MAX_NR_ZONES
033fbae9 357
2f1b6248 358};
1da177e4 359
97965478
CL
360#ifndef __GENERATING_BOUNDS_H
361
1da177e4 362struct zone {
3484b2de 363 /* Read-mostly fields */
41858966
MG
364
365 /* zone watermarks, access with *_wmark_pages(zone) macros */
a9214443 366 unsigned long _watermark[NR_WMARK];
1c30844d 367 unsigned long watermark_boost;
41858966 368
0aaa29a5
MG
369 unsigned long nr_reserved_highatomic;
370
1da177e4 371 /*
89903327
AM
372 * We don't know if the memory that we're going to allocate will be
373 * freeable or/and it will be released eventually, so to avoid totally
374 * wasting several GB of ram we must reserve some of the lower zone
375 * memory (otherwise we risk to run OOM on the lower zones despite
376 * there being tons of freeable ram on the higher zones). This array is
377 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
378 * changes.
1da177e4 379 */
3484b2de 380 long lowmem_reserve[MAX_NR_ZONES];
ab8fabd4 381
e7c8d5c9 382#ifdef CONFIG_NUMA
d5f541ed 383 int node;
3484b2de 384#endif
3484b2de 385 struct pglist_data *zone_pgdat;
43cf38eb 386 struct per_cpu_pageset __percpu *pageset;
3484b2de 387
835c134e
MG
388#ifndef CONFIG_SPARSEMEM
389 /*
d9c23400 390 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
391 * In SPARSEMEM, this map is stored in struct mem_section
392 */
393 unsigned long *pageblock_flags;
394#endif /* CONFIG_SPARSEMEM */
395
1da177e4
LT
396 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
397 unsigned long zone_start_pfn;
398
bdc8cb98 399 /*
9feedc9d
JL
400 * spanned_pages is the total pages spanned by the zone, including
401 * holes, which is calculated as:
402 * spanned_pages = zone_end_pfn - zone_start_pfn;
bdc8cb98 403 *
9feedc9d
JL
404 * present_pages is physical pages existing within the zone, which
405 * is calculated as:
8761e31c 406 * present_pages = spanned_pages - absent_pages(pages in holes);
9feedc9d
JL
407 *
408 * managed_pages is present pages managed by the buddy system, which
409 * is calculated as (reserved_pages includes pages allocated by the
410 * bootmem allocator):
411 * managed_pages = present_pages - reserved_pages;
412 *
413 * So present_pages may be used by memory hotplug or memory power
414 * management logic to figure out unmanaged pages by checking
415 * (present_pages - managed_pages). And managed_pages should be used
416 * by page allocator and vm scanner to calculate all kinds of watermarks
417 * and thresholds.
418 *
419 * Locking rules:
420 *
421 * zone_start_pfn and spanned_pages are protected by span_seqlock.
422 * It is a seqlock because it has to be read outside of zone->lock,
423 * and it is done in the main allocator path. But, it is written
424 * quite infrequently.
425 *
426 * The span_seq lock is declared along with zone->lock because it is
bdc8cb98
DH
427 * frequently read in proximity to zone->lock. It's good to
428 * give them a chance of being in the same cacheline.
9feedc9d 429 *
c3d5f5f0 430 * Write access to present_pages at runtime should be protected by
bfc8c901
VD
431 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
432 * present_pages should get_online_mems() to get a stable value.
bdc8cb98 433 */
9705bea5 434 atomic_long_t managed_pages;
9feedc9d
JL
435 unsigned long spanned_pages;
436 unsigned long present_pages;
3484b2de
MG
437
438 const char *name;
1da177e4 439
ad53f92e
JK
440#ifdef CONFIG_MEMORY_ISOLATION
441 /*
442 * Number of isolated pageblock. It is used to solve incorrect
443 * freepage counting problem due to racy retrieving migratetype
444 * of pageblock. Protected by zone->lock.
445 */
446 unsigned long nr_isolate_pageblock;
447#endif
448
3484b2de
MG
449#ifdef CONFIG_MEMORY_HOTPLUG
450 /* see spanned/present_pages for more description */
451 seqlock_t span_seqlock;
452#endif
453
9dcb8b68 454 int initialized;
3484b2de 455
0f661148 456 /* Write-intensive fields used from the page allocator */
3484b2de 457 ZONE_PADDING(_pad1_)
0f661148 458
3484b2de
MG
459 /* free areas of different sizes */
460 struct free_area free_area[MAX_ORDER];
461
462 /* zone flags, see below */
463 unsigned long flags;
464
0f661148 465 /* Primarily protects free_area */
a368ab67
MG
466 spinlock_t lock;
467
0f661148 468 /* Write-intensive fields used by compaction and vmstats. */
3484b2de
MG
469 ZONE_PADDING(_pad2_)
470
3484b2de
MG
471 /*
472 * When free pages are below this point, additional steps are taken
473 * when reading the number of free pages to avoid per-cpu counter
474 * drift allowing watermarks to be breached
475 */
476 unsigned long percpu_drift_mark;
477
478#if defined CONFIG_COMPACTION || defined CONFIG_CMA
479 /* pfn where compaction free scanner should start */
480 unsigned long compact_cached_free_pfn;
481 /* pfn where async and sync compaction migration scanner should start */
482 unsigned long compact_cached_migrate_pfn[2];
483#endif
484
485#ifdef CONFIG_COMPACTION
486 /*
487 * On compaction failure, 1<<compact_defer_shift compactions
488 * are skipped before trying again. The number attempted since
489 * last failure is tracked with compact_considered.
490 */
491 unsigned int compact_considered;
492 unsigned int compact_defer_shift;
493 int compact_order_failed;
494#endif
495
496#if defined CONFIG_COMPACTION || defined CONFIG_CMA
497 /* Set to true when the PG_migrate_skip bits should be cleared */
498 bool compact_blockskip_flush;
499#endif
500
7cf91a98
JK
501 bool contiguous;
502
3484b2de
MG
503 ZONE_PADDING(_pad3_)
504 /* Zone statistics */
505 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
3a321d2a 506 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
22fc6ecc 507} ____cacheline_internodealigned_in_smp;
1da177e4 508
599d0c95
MG
509enum pgdat_flags {
510 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
0e093d99
MG
511 * a congested BDI
512 */
599d0c95 513 PGDAT_DIRTY, /* reclaim scanning has recently found
d43006d5
MG
514 * many dirty file pages at the tail
515 * of the LRU.
516 */
599d0c95 517 PGDAT_WRITEBACK, /* reclaim scanning has recently found
283aba9f
MG
518 * many pages under writeback
519 */
a5f5f91d 520 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
57054651 521};
e815af95 522
73444bc4
MG
523enum zone_flags {
524 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
525 * Cleared when kswapd is woken.
526 */
527};
528
9705bea5
AK
529static inline unsigned long zone_managed_pages(struct zone *zone)
530{
531 return (unsigned long)atomic_long_read(&zone->managed_pages);
532}
533
f9228b20 534static inline unsigned long zone_end_pfn(const struct zone *zone)
108bcc96
CS
535{
536 return zone->zone_start_pfn + zone->spanned_pages;
537}
538
539static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
540{
541 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
542}
543
2a6e3ebe
CS
544static inline bool zone_is_initialized(struct zone *zone)
545{
9dcb8b68 546 return zone->initialized;
2a6e3ebe
CS
547}
548
549static inline bool zone_is_empty(struct zone *zone)
550{
551 return zone->spanned_pages == 0;
552}
553
f1dd2cd1
MH
554/*
555 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
556 * intersection with the given zone
557 */
558static inline bool zone_intersects(struct zone *zone,
559 unsigned long start_pfn, unsigned long nr_pages)
560{
561 if (zone_is_empty(zone))
562 return false;
563 if (start_pfn >= zone_end_pfn(zone) ||
564 start_pfn + nr_pages <= zone->zone_start_pfn)
565 return false;
566
567 return true;
568}
569
1da177e4
LT
570/*
571 * The "priority" of VM scanning is how much of the queues we will scan in one
572 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
573 * queues ("queue_length >> 12") during an aging round.
574 */
575#define DEF_PRIORITY 12
576
9276b1bc
PJ
577/* Maximum number of zones on a zonelist */
578#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
579
c00eb15a
YB
580enum {
581 ZONELIST_FALLBACK, /* zonelist with fallback */
9276b1bc 582#ifdef CONFIG_NUMA
c00eb15a
YB
583 /*
584 * The NUMA zonelists are doubled because we need zonelists that
585 * restrict the allocations to a single node for __GFP_THISNODE.
586 */
587 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
9276b1bc 588#endif
c00eb15a
YB
589 MAX_ZONELISTS
590};
9276b1bc 591
dd1a239f
MG
592/*
593 * This struct contains information about a zone in a zonelist. It is stored
594 * here to avoid dereferences into large structures and lookups of tables
595 */
596struct zoneref {
597 struct zone *zone; /* Pointer to actual zone */
598 int zone_idx; /* zone_idx(zoneref->zone) */
599};
600
1da177e4
LT
601/*
602 * One allocation request operates on a zonelist. A zonelist
603 * is a list of zones, the first one is the 'goal' of the
604 * allocation, the other zones are fallback zones, in decreasing
605 * priority.
606 *
dd1a239f
MG
607 * To speed the reading of the zonelist, the zonerefs contain the zone index
608 * of the entry being read. Helper functions to access information given
609 * a struct zoneref are
610 *
611 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
612 * zonelist_zone_idx() - Return the index of the zone for an entry
613 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
614 */
615struct zonelist {
dd1a239f 616 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1da177e4
LT
617};
618
5b99cd0e
HC
619#ifndef CONFIG_DISCONTIGMEM
620/* The array of struct pages - for discontigmem use pgdat->lmem_map */
621extern struct page *mem_map;
622#endif
623
1da177e4 624/*
1da177e4 625 * On NUMA machines, each NUMA node would have a pg_data_t to describe
618b8c20
NB
626 * it's memory layout. On UMA machines there is a single pglist_data which
627 * describes the whole memory.
1da177e4
LT
628 *
629 * Memory statistics and page replacement data structures are maintained on a
630 * per-zone basis.
631 */
632struct bootmem_data;
633typedef struct pglist_data {
634 struct zone node_zones[MAX_NR_ZONES];
523b9458 635 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 636 int nr_zones;
52d4b9ac 637#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 638 struct page *node_mem_map;
eefa864b
JK
639#ifdef CONFIG_PAGE_EXTENSION
640 struct page_ext *node_page_ext;
641#endif
d41dee36 642#endif
3a2d7fa8 643#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
208d54e5 644 /*
fa004ab7
WY
645 * Must be held any time you expect node_start_pfn,
646 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
208d54e5 647 *
114d4b79 648 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
3a2d7fa8
PT
649 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
650 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
114d4b79 651 *
72c3b51b 652 * Nests above zone->lock and zone->span_seqlock
208d54e5
DH
653 */
654 spinlock_t node_size_lock;
655#endif
1da177e4
LT
656 unsigned long node_start_pfn;
657 unsigned long node_present_pages; /* total number of physical pages */
658 unsigned long node_spanned_pages; /* total size of physical page
659 range, including holes */
660 int node_id;
1da177e4 661 wait_queue_head_t kswapd_wait;
5515061d 662 wait_queue_head_t pfmemalloc_wait;
bfc8c901
VD
663 struct task_struct *kswapd; /* Protected by
664 mem_hotplug_begin/end() */
38087d9b
MG
665 int kswapd_order;
666 enum zone_type kswapd_classzone_idx;
667
c73322d0
JW
668 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
669
698b1b30
VB
670#ifdef CONFIG_COMPACTION
671 int kcompactd_max_order;
672 enum zone_type kcompactd_classzone_idx;
673 wait_queue_head_t kcompactd_wait;
674 struct task_struct *kcompactd;
8177a420 675#endif
281e3726
MG
676 /*
677 * This is a per-node reserve of pages that are not available
678 * to userspace allocations.
679 */
680 unsigned long totalreserve_pages;
681
a5f5f91d
MG
682#ifdef CONFIG_NUMA
683 /*
684 * zone reclaim becomes active if more unmapped pages exist.
685 */
686 unsigned long min_unmapped_pages;
687 unsigned long min_slab_pages;
688#endif /* CONFIG_NUMA */
689
a52633d8
MG
690 /* Write-intensive fields used by page reclaim */
691 ZONE_PADDING(_pad1_)
692 spinlock_t lru_lock;
3a80a7fa
MG
693
694#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
695 /*
696 * If memory initialisation on large machines is deferred then this
697 * is the first PFN that needs to be initialised.
698 */
699 unsigned long first_deferred_pfn;
700#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
a3d0a918
KS
701
702#ifdef CONFIG_TRANSPARENT_HUGEPAGE
703 spinlock_t split_queue_lock;
704 struct list_head split_queue;
705 unsigned long split_queue_len;
706#endif
75ef7184 707
599d0c95
MG
708 /* Fields commonly accessed by the page reclaim scanner */
709 struct lruvec lruvec;
710
599d0c95
MG
711 unsigned long flags;
712
713 ZONE_PADDING(_pad2_)
714
75ef7184
MG
715 /* Per-node vmstats */
716 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
717 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
1da177e4
LT
718} pg_data_t;
719
720#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
721#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 722#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 723#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
724#else
725#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
726#endif
408fde81 727#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 728
c6830c22 729#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
da3649e1 730#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
a52633d8
MG
731static inline spinlock_t *zone_lru_lock(struct zone *zone)
732{
733 return &zone->zone_pgdat->lru_lock;
734}
c6830c22 735
a9dd0a83 736static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
599d0c95 737{
a9dd0a83 738 return &pgdat->lruvec;
599d0c95
MG
739}
740
da3649e1
CS
741static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
742{
743 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
744}
745
746static inline bool pgdat_is_empty(pg_data_t *pgdat)
747{
748 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
749}
c6830c22 750
208d54e5
DH
751#include <linux/memory_hotplug.h>
752
72675e13 753void build_all_zonelists(pg_data_t *pgdat);
5ecd9d40
DR
754void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
755 enum zone_type classzone_idx);
86a294a8
MH
756bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
757 int classzone_idx, unsigned int alloc_flags,
758 long free_pages);
7aeb09f9 759bool zone_watermark_ok(struct zone *z, unsigned int order,
c603844b
MG
760 unsigned long mark, int classzone_idx,
761 unsigned int alloc_flags);
7aeb09f9 762bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 763 unsigned long mark, int classzone_idx);
a2f3aa02
DH
764enum memmap_context {
765 MEMMAP_EARLY,
766 MEMMAP_HOTPLUG,
767};
dc0bbf3b 768extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
b171e409 769 unsigned long size);
718127cc 770
bea8c150 771extern void lruvec_init(struct lruvec *lruvec);
7f5e86c2 772
599d0c95 773static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
7f5e86c2 774{
c255a458 775#ifdef CONFIG_MEMCG
599d0c95 776 return lruvec->pgdat;
7f5e86c2 777#else
599d0c95 778 return container_of(lruvec, struct pglist_data, lruvec);
7f5e86c2
KK
779#endif
780}
781
fd538803 782extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
23047a96 783
1da177e4
LT
784#ifdef CONFIG_HAVE_MEMORY_PRESENT
785void memory_present(int nid, unsigned long start, unsigned long end);
786#else
787static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
788#endif
789
9def36e0
LG
790#if defined(CONFIG_SPARSEMEM)
791void memblocks_present(void);
792#else
793static inline void memblocks_present(void) {}
794#endif
795
7aac7898
LS
796#ifdef CONFIG_HAVE_MEMORYLESS_NODES
797int local_memory_node(int node_id);
798#else
799static inline int local_memory_node(int node_id) { return node_id; };
800#endif
801
1da177e4
LT
802/*
803 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
804 */
805#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
806
89696701
OS
807#ifdef CONFIG_ZONE_DEVICE
808static inline bool is_dev_zone(const struct zone *zone)
809{
810 return zone_idx(zone) == ZONE_DEVICE;
811}
812#else
813static inline bool is_dev_zone(const struct zone *zone)
814{
815 return false;
816}
817#endif
818
6aa303de
MG
819/*
820 * Returns true if a zone has pages managed by the buddy allocator.
821 * All the reclaim decisions have to use this function rather than
822 * populated_zone(). If the whole zone is reserved then we can easily
823 * end up with populated_zone() && !managed_zone().
824 */
825static inline bool managed_zone(struct zone *zone)
826{
9705bea5 827 return zone_managed_pages(zone);
6aa303de
MG
828}
829
830/* Returns true if a zone has memory */
831static inline bool populated_zone(struct zone *zone)
f3fe6512 832{
6aa303de 833 return zone->present_pages;
f3fe6512
CK
834}
835
c1093b74
PT
836#ifdef CONFIG_NUMA
837static inline int zone_to_nid(struct zone *zone)
838{
839 return zone->node;
840}
841
842static inline void zone_set_nid(struct zone *zone, int nid)
843{
844 zone->node = nid;
845}
846#else
847static inline int zone_to_nid(struct zone *zone)
848{
849 return 0;
850}
851
852static inline void zone_set_nid(struct zone *zone, int nid) {}
853#endif
854
2a1e274a
MG
855extern int movable_zone;
856
d7e4a2ea 857#ifdef CONFIG_HIGHMEM
2a1e274a
MG
858static inline int zone_movable_is_highmem(void)
859{
d7e4a2ea 860#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2a1e274a
MG
861 return movable_zone == ZONE_HIGHMEM;
862#else
d7e4a2ea 863 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
2a1e274a
MG
864#endif
865}
d7e4a2ea 866#endif
2a1e274a 867
2f1b6248 868static inline int is_highmem_idx(enum zone_type idx)
1da177e4 869{
e53ef38d 870#ifdef CONFIG_HIGHMEM
2a1e274a
MG
871 return (idx == ZONE_HIGHMEM ||
872 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
873#else
874 return 0;
875#endif
1da177e4
LT
876}
877
1da177e4 878/**
b4a991ec 879 * is_highmem - helper function to quickly check if a struct zone is a
1da177e4
LT
880 * highmem zone or not. This is an attempt to keep references
881 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
882 * @zone - pointer to struct zone variable
883 */
884static inline int is_highmem(struct zone *zone)
885{
e53ef38d 886#ifdef CONFIG_HIGHMEM
29f9cb53 887 return is_highmem_idx(zone_idx(zone));
e53ef38d
CL
888#else
889 return 0;
890#endif
1da177e4
LT
891}
892
1da177e4
LT
893/* These two functions are used to setup the per zone pages min values */
894struct ctl_table;
8d65af78 895int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
1da177e4 896 void __user *, size_t *, loff_t *);
1c30844d
MG
897int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
898 void __user *, size_t *, loff_t *);
795ae7a0
JW
899int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
900 void __user *, size_t *, loff_t *);
d3cda233 901extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
8d65af78 902int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
1da177e4 903 void __user *, size_t *, loff_t *);
8d65af78 904int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
8ad4b1fb 905 void __user *, size_t *, loff_t *);
9614634f 906int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 907 void __user *, size_t *, loff_t *);
0ff38490 908int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 909 void __user *, size_t *, loff_t *);
1da177e4 910
f0c0b2b8 911extern int numa_zonelist_order_handler(struct ctl_table *, int,
8d65af78 912 void __user *, size_t *, loff_t *);
f0c0b2b8 913extern char numa_zonelist_order[];
c9bff3ee 914#define NUMA_ZONELIST_ORDER_LEN 16
f0c0b2b8 915
93b7504e 916#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
917
918extern struct pglist_data contig_page_data;
919#define NODE_DATA(nid) (&contig_page_data)
920#define NODE_MEM_MAP(nid) mem_map
1da177e4 921
93b7504e 922#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
923
924#include <asm/mmzone.h>
925
93b7504e 926#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 927
95144c78
KH
928extern struct pglist_data *first_online_pgdat(void);
929extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
930extern struct zone *next_zone(struct zone *zone);
8357f869
KH
931
932/**
12d15f0d 933 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
934 * @pgdat - pointer to a pg_data_t variable
935 */
936#define for_each_online_pgdat(pgdat) \
937 for (pgdat = first_online_pgdat(); \
938 pgdat; \
939 pgdat = next_online_pgdat(pgdat))
8357f869
KH
940/**
941 * for_each_zone - helper macro to iterate over all memory zones
942 * @zone - pointer to struct zone variable
943 *
944 * The user only needs to declare the zone variable, for_each_zone
945 * fills it in.
946 */
947#define for_each_zone(zone) \
948 for (zone = (first_online_pgdat())->node_zones; \
949 zone; \
950 zone = next_zone(zone))
951
ee99c71c
KM
952#define for_each_populated_zone(zone) \
953 for (zone = (first_online_pgdat())->node_zones; \
954 zone; \
955 zone = next_zone(zone)) \
956 if (!populated_zone(zone)) \
957 ; /* do nothing */ \
958 else
959
dd1a239f
MG
960static inline struct zone *zonelist_zone(struct zoneref *zoneref)
961{
962 return zoneref->zone;
963}
964
965static inline int zonelist_zone_idx(struct zoneref *zoneref)
966{
967 return zoneref->zone_idx;
968}
969
970static inline int zonelist_node_idx(struct zoneref *zoneref)
971{
c1093b74 972 return zone_to_nid(zoneref->zone);
dd1a239f
MG
973}
974
682a3385
MG
975struct zoneref *__next_zones_zonelist(struct zoneref *z,
976 enum zone_type highest_zoneidx,
977 nodemask_t *nodes);
978
19770b32
MG
979/**
980 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
981 * @z - The cursor used as a starting point for the search
982 * @highest_zoneidx - The zone index of the highest zone to return
983 * @nodes - An optional nodemask to filter the zonelist with
19770b32
MG
984 *
985 * This function returns the next zone at or below a given zone index that is
986 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
987 * search. The zoneref returned is a cursor that represents the current zone
988 * being examined. It should be advanced by one before calling
989 * next_zones_zonelist again.
19770b32 990 */
682a3385 991static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
19770b32 992 enum zone_type highest_zoneidx,
682a3385
MG
993 nodemask_t *nodes)
994{
995 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
996 return z;
997 return __next_zones_zonelist(z, highest_zoneidx, nodes);
998}
dd1a239f 999
19770b32
MG
1000/**
1001 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1002 * @zonelist - The zonelist to search for a suitable zone
1003 * @highest_zoneidx - The zone index of the highest zone to return
1004 * @nodes - An optional nodemask to filter the zonelist with
ea57485a 1005 * @return - Zoneref pointer for the first suitable zone found (see below)
19770b32
MG
1006 *
1007 * This function returns the first zone at or below a given zone index that is
1008 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
1009 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1010 * one before calling.
ea57485a
VB
1011 *
1012 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1013 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1014 * update due to cpuset modification.
19770b32 1015 */
dd1a239f 1016static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32 1017 enum zone_type highest_zoneidx,
c33d6c06 1018 nodemask_t *nodes)
54a6eb5c 1019{
c33d6c06 1020 return next_zones_zonelist(zonelist->_zonerefs,
05891fb0 1021 highest_zoneidx, nodes);
54a6eb5c
MG
1022}
1023
19770b32
MG
1024/**
1025 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1026 * @zone - The current zone in the iterator
1027 * @z - The current pointer within zonelist->zones being iterated
1028 * @zlist - The zonelist being iterated
1029 * @highidx - The zone index of the highest zone to return
1030 * @nodemask - Nodemask allowed by the allocator
1031 *
1032 * This iterator iterates though all zones at or below a given zone index and
1033 * within a given nodemask
1034 */
1035#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
c33d6c06 1036 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
19770b32 1037 zone; \
05891fb0 1038 z = next_zones_zonelist(++z, highidx, nodemask), \
c33d6c06
MG
1039 zone = zonelist_zone(z))
1040
1041#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1042 for (zone = z->zone; \
1043 zone; \
1044 z = next_zones_zonelist(++z, highidx, nodemask), \
1045 zone = zonelist_zone(z))
1046
54a6eb5c
MG
1047
1048/**
1049 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1050 * @zone - The current zone in the iterator
1051 * @z - The current pointer within zonelist->zones being iterated
1052 * @zlist - The zonelist being iterated
1053 * @highidx - The zone index of the highest zone to return
1054 *
1055 * This iterator iterates though all zones at or below a given zone index.
1056 */
1057#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 1058 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 1059
d41dee36
AW
1060#ifdef CONFIG_SPARSEMEM
1061#include <asm/sparsemem.h>
1062#endif
1063
c713216d 1064#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
0ee332c1 1065 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
b4544568
AM
1066static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1067{
9d1f4b3f 1068 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
b4544568
AM
1069 return 0;
1070}
b159d43f
AW
1071#endif
1072
2bdaf115
AW
1073#ifdef CONFIG_FLATMEM
1074#define pfn_to_nid(pfn) (0)
1075#endif
1076
d41dee36
AW
1077#ifdef CONFIG_SPARSEMEM
1078
1079/*
1080 * SECTION_SHIFT #bits space required to store a section #
1081 *
1082 * PA_SECTION_SHIFT physical address to/from section number
1083 * PFN_SECTION_SHIFT pfn to/from section number
1084 */
d41dee36
AW
1085#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1086#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1087
1088#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1089
1090#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1091#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1092
835c134e 1093#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1094 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1095
d41dee36
AW
1096#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1097#error Allocator MAX_ORDER exceeds SECTION_SIZE
1098#endif
1099
1dd2bfc8
YI
1100static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1101{
1102 return pfn >> PFN_SECTION_SHIFT;
1103}
1104static inline unsigned long section_nr_to_pfn(unsigned long sec)
1105{
1106 return sec << PFN_SECTION_SHIFT;
1107}
e3c40f37 1108
a539f353
DK
1109#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1110#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1111
d41dee36 1112struct page;
eefa864b 1113struct page_ext;
d41dee36 1114struct mem_section {
29751f69
AW
1115 /*
1116 * This is, logically, a pointer to an array of struct
1117 * pages. However, it is stored with some other magic.
1118 * (see sparse.c::sparse_init_one_section())
1119 *
30c253e6
AW
1120 * Additionally during early boot we encode node id of
1121 * the location of the section here to guide allocation.
1122 * (see sparse.c::memory_present())
1123 *
29751f69
AW
1124 * Making it a UL at least makes someone do a cast
1125 * before using it wrong.
1126 */
1127 unsigned long section_mem_map;
5c0e3066
MG
1128
1129 /* See declaration of similar field in struct zone */
1130 unsigned long *pageblock_flags;
eefa864b
JK
1131#ifdef CONFIG_PAGE_EXTENSION
1132 /*
0c9ad804 1133 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
eefa864b
JK
1134 * section. (see page_ext.h about this.)
1135 */
1136 struct page_ext *page_ext;
1137 unsigned long pad;
1138#endif
55878e88
CS
1139 /*
1140 * WARNING: mem_section must be a power-of-2 in size for the
1141 * calculation and use of SECTION_ROOT_MASK to make sense.
1142 */
d41dee36
AW
1143};
1144
3e347261
BP
1145#ifdef CONFIG_SPARSEMEM_EXTREME
1146#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1147#else
1148#define SECTIONS_PER_ROOT 1
1149#endif
802f192e 1150
3e347261 1151#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1152#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1153#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1154
3e347261 1155#ifdef CONFIG_SPARSEMEM_EXTREME
83e3c487 1156extern struct mem_section **mem_section;
802f192e 1157#else
3e347261
BP
1158extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1159#endif
d41dee36 1160
29751f69
AW
1161static inline struct mem_section *__nr_to_section(unsigned long nr)
1162{
83e3c487
KS
1163#ifdef CONFIG_SPARSEMEM_EXTREME
1164 if (!mem_section)
1165 return NULL;
1166#endif
3e347261
BP
1167 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1168 return NULL;
1169 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 1170}
4ca644d9 1171extern int __section_nr(struct mem_section* ms);
04753278 1172extern unsigned long usemap_size(void);
29751f69
AW
1173
1174/*
1175 * We use the lower bits of the mem_map pointer to store
def9b71e
PT
1176 * a little bit of information. The pointer is calculated
1177 * as mem_map - section_nr_to_pfn(pnum). The result is
1178 * aligned to the minimum alignment of the two values:
1179 * 1. All mem_map arrays are page-aligned.
1180 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1181 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1182 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1183 * worst combination is powerpc with 256k pages,
1184 * which results in PFN_SECTION_SHIFT equal 6.
1185 * To sum it up, at least 6 bits are available.
29751f69
AW
1186 */
1187#define SECTION_MARKED_PRESENT (1UL<<0)
1188#define SECTION_HAS_MEM_MAP (1UL<<1)
2d070eab
MH
1189#define SECTION_IS_ONLINE (1UL<<2)
1190#define SECTION_MAP_LAST_BIT (1UL<<3)
29751f69 1191#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
2d070eab 1192#define SECTION_NID_SHIFT 3
29751f69
AW
1193
1194static inline struct page *__section_mem_map_addr(struct mem_section *section)
1195{
1196 unsigned long map = section->section_mem_map;
1197 map &= SECTION_MAP_MASK;
1198 return (struct page *)map;
1199}
1200
540557b9 1201static inline int present_section(struct mem_section *section)
29751f69 1202{
802f192e 1203 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1204}
1205
540557b9
AW
1206static inline int present_section_nr(unsigned long nr)
1207{
1208 return present_section(__nr_to_section(nr));
1209}
1210
1211static inline int valid_section(struct mem_section *section)
29751f69 1212{
802f192e 1213 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1214}
1215
1216static inline int valid_section_nr(unsigned long nr)
1217{
1218 return valid_section(__nr_to_section(nr));
1219}
1220
2d070eab
MH
1221static inline int online_section(struct mem_section *section)
1222{
1223 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1224}
1225
1226static inline int online_section_nr(unsigned long nr)
1227{
1228 return online_section(__nr_to_section(nr));
1229}
1230
1231#ifdef CONFIG_MEMORY_HOTPLUG
1232void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1233#ifdef CONFIG_MEMORY_HOTREMOVE
1234void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1235#endif
1236#endif
1237
d41dee36
AW
1238static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1239{
29751f69 1240 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1241}
1242
c4e1be9e
DH
1243extern int __highest_present_section_nr;
1244
7b7bf499 1245#ifndef CONFIG_HAVE_ARCH_PFN_VALID
d41dee36
AW
1246static inline int pfn_valid(unsigned long pfn)
1247{
1248 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1249 return 0;
29751f69 1250 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36 1251}
7b7bf499 1252#endif
d41dee36 1253
540557b9
AW
1254static inline int pfn_present(unsigned long pfn)
1255{
1256 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1257 return 0;
1258 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1259}
1260
d41dee36
AW
1261/*
1262 * These are _only_ used during initialisation, therefore they
1263 * can use __initdata ... They could have names to indicate
1264 * this restriction.
1265 */
1266#ifdef CONFIG_NUMA
161599ff
AW
1267#define pfn_to_nid(pfn) \
1268({ \
1269 unsigned long __pfn_to_nid_pfn = (pfn); \
1270 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1271})
2bdaf115
AW
1272#else
1273#define pfn_to_nid(pfn) (0)
d41dee36
AW
1274#endif
1275
d41dee36
AW
1276#define early_pfn_valid(pfn) pfn_valid(pfn)
1277void sparse_init(void);
1278#else
1279#define sparse_init() do {} while (0)
28ae55c9 1280#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1281#endif /* CONFIG_SPARSEMEM */
1282
8a942fde
MG
1283/*
1284 * During memory init memblocks map pfns to nids. The search is expensive and
1285 * this caches recent lookups. The implementation of __early_pfn_to_nid
1286 * may treat start/end as pfns or sections.
1287 */
1288struct mminit_pfnnid_cache {
1289 unsigned long last_start;
1290 unsigned long last_end;
1291 int last_nid;
1292};
1293
d41dee36
AW
1294#ifndef early_pfn_valid
1295#define early_pfn_valid(pfn) (1)
1296#endif
1297
1298void memory_present(int nid, unsigned long start, unsigned long end);
d41dee36 1299
14e07298
AW
1300/*
1301 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1302 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1303 * pfn_valid_within() should be used in this case; we optimise this away
1304 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1305 */
1306#ifdef CONFIG_HOLES_IN_ZONE
1307#define pfn_valid_within(pfn) pfn_valid(pfn)
1308#else
1309#define pfn_valid_within(pfn) (1)
1310#endif
1311
eb33575c
MG
1312#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1313/*
1314 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
2d070eab
MH
1315 * associated with it or not. This means that a struct page exists for this
1316 * pfn. The caller cannot assume the page is fully initialized in general.
1317 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1318 * will ensure the struct page is fully online and initialized. Special pages
1319 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1320 *
1321 * In FLATMEM, it is expected that holes always have valid memmap as long as
1322 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1323 * that a valid section has a memmap for the entire section.
eb33575c
MG
1324 *
1325 * However, an ARM, and maybe other embedded architectures in the future
1326 * free memmap backing holes to save memory on the assumption the memmap is
1327 * never used. The page_zone linkages are then broken even though pfn_valid()
1328 * returns true. A walker of the full memmap must then do this additional
1329 * check to ensure the memmap they are looking at is sane by making sure
1330 * the zone and PFN linkages are still valid. This is expensive, but walkers
1331 * of the full memmap are extremely rare.
1332 */
5b80287a 1333bool memmap_valid_within(unsigned long pfn,
eb33575c
MG
1334 struct page *page, struct zone *zone);
1335#else
5b80287a 1336static inline bool memmap_valid_within(unsigned long pfn,
eb33575c
MG
1337 struct page *page, struct zone *zone)
1338{
5b80287a 1339 return true;
eb33575c
MG
1340}
1341#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1342
97965478 1343#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1344#endif /* !__ASSEMBLY__ */
1da177e4 1345#endif /* _LINUX_MMZONE_H */