Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
bbeae5b0 18#include <linux/page-flags-layout.h>
60063497 19#include <linux/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
35fca53e 33 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
47118af0
MN
38enum {
39 MIGRATE_UNMOVABLE,
47118af0 40 MIGRATE_MOVABLE,
016c13da 41 MIGRATE_RECLAIMABLE,
0aaa29a5
MG
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47118af0
MN
44#ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59#endif
194159fb 60#ifdef CONFIG_MEMORY_ISOLATION
47118af0 61 MIGRATE_ISOLATE, /* can't allocate from here */
194159fb 62#endif
47118af0
MN
63 MIGRATE_TYPES
64};
65
60f30350
VB
66/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67extern char * const migratetype_names[MIGRATE_TYPES];
68
47118af0
MN
69#ifdef CONFIG_CMA
70# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
7c15d9bb 71# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
47118af0
MN
72#else
73# define is_migrate_cma(migratetype) false
7c15d9bb 74# define is_migrate_cma_page(_page) false
47118af0 75#endif
b2a0ac88
MG
76
77#define for_each_migratetype_order(order, type) \
78 for (order = 0; order < MAX_ORDER; order++) \
79 for (type = 0; type < MIGRATE_TYPES; type++)
80
467c996c
MG
81extern int page_group_by_mobility_disabled;
82
e58469ba
MG
83#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
84#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
85
dc4b0caf
MG
86#define get_pageblock_migratetype(page) \
87 get_pfnblock_flags_mask(page, page_to_pfn(page), \
88 PB_migrate_end, MIGRATETYPE_MASK)
89
1da177e4 90struct free_area {
b2a0ac88 91 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
92 unsigned long nr_free;
93};
94
95struct pglist_data;
96
97/*
a52633d8 98 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
1da177e4
LT
99 * So add a wild amount of padding here to ensure that they fall into separate
100 * cachelines. There are very few zone structures in the machine, so space
101 * consumption is not a concern here.
102 */
103#if defined(CONFIG_SMP)
104struct zone_padding {
105 char x[0];
22fc6ecc 106} ____cacheline_internodealigned_in_smp;
1da177e4
LT
107#define ZONE_PADDING(name) struct zone_padding name;
108#else
109#define ZONE_PADDING(name)
110#endif
111
2244b95a 112enum zone_stat_item {
51ed4491 113 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 114 NR_FREE_PAGES,
71c799f4
MK
115 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
116 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
117 NR_ZONE_ACTIVE_ANON,
118 NR_ZONE_INACTIVE_FILE,
119 NR_ZONE_ACTIVE_FILE,
120 NR_ZONE_UNEVICTABLE,
5a1c84b4 121 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
5344b7e6 122 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
51ed4491
CL
123 NR_SLAB_RECLAIMABLE,
124 NR_SLAB_UNRECLAIMABLE,
125 NR_PAGETABLE, /* used for pagetables */
d30dd8be 126 NR_KERNEL_STACK_KB, /* measured in KiB */
c6a7f572 127 /* Second 128 byte cacheline */
d2c5e30c 128 NR_BOUNCE,
91537fee
MK
129#if IS_ENABLED(CONFIG_ZSMALLOC)
130 NR_ZSPAGES, /* allocated in zsmalloc */
131#endif
ca889e6c
CL
132#ifdef CONFIG_NUMA
133 NUMA_HIT, /* allocated in intended node */
134 NUMA_MISS, /* allocated in non intended node */
135 NUMA_FOREIGN, /* was intended here, hit elsewhere */
136 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
137 NUMA_LOCAL, /* allocation from local node */
138 NUMA_OTHER, /* allocation from other node */
139#endif
d1ce749a 140 NR_FREE_CMA_PAGES,
2244b95a
CL
141 NR_VM_ZONE_STAT_ITEMS };
142
75ef7184 143enum node_stat_item {
599d0c95
MG
144 NR_LRU_BASE,
145 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
146 NR_ACTIVE_ANON, /* " " " " " */
147 NR_INACTIVE_FILE, /* " " " " " */
148 NR_ACTIVE_FILE, /* " " " " " */
149 NR_UNEVICTABLE, /* " " " " " */
150 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
151 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
152 NR_PAGES_SCANNED, /* pages scanned since last reclaim */
1e6b1085
MG
153 WORKINGSET_REFAULT,
154 WORKINGSET_ACTIVATE,
155 WORKINGSET_NODERECLAIM,
4b9d0fab 156 NR_ANON_MAPPED, /* Mapped anonymous pages */
50658e2e
MG
157 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
158 only modified from process context */
11fb9989
MG
159 NR_FILE_PAGES,
160 NR_FILE_DIRTY,
161 NR_WRITEBACK,
162 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
163 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
164 NR_SHMEM_THPS,
165 NR_SHMEM_PMDMAPPED,
166 NR_ANON_THPS,
167 NR_UNSTABLE_NFS, /* NFS unstable pages */
c4a25635
MG
168 NR_VMSCAN_WRITE,
169 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
170 NR_DIRTIED, /* page dirtyings since bootup */
171 NR_WRITTEN, /* page writings since bootup */
75ef7184
MG
172 NR_VM_NODE_STAT_ITEMS
173};
174
4f98a2fe
RR
175/*
176 * We do arithmetic on the LRU lists in various places in the code,
177 * so it is important to keep the active lists LRU_ACTIVE higher in
178 * the array than the corresponding inactive lists, and to keep
179 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
180 *
181 * This has to be kept in sync with the statistics in zone_stat_item
182 * above and the descriptions in vmstat_text in mm/vmstat.c
183 */
184#define LRU_BASE 0
185#define LRU_ACTIVE 1
186#define LRU_FILE 2
187
b69408e8 188enum lru_list {
4f98a2fe
RR
189 LRU_INACTIVE_ANON = LRU_BASE,
190 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
191 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
192 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 193 LRU_UNEVICTABLE,
894bc310
LS
194 NR_LRU_LISTS
195};
b69408e8 196
4111304d 197#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 198
4111304d 199#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 200
4111304d 201static inline int is_file_lru(enum lru_list lru)
4f98a2fe 202{
4111304d 203 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
204}
205
4111304d 206static inline int is_active_lru(enum lru_list lru)
b69408e8 207{
4111304d 208 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
209}
210
89abfab1
HD
211struct zone_reclaim_stat {
212 /*
213 * The pageout code in vmscan.c keeps track of how many of the
59f91e5d 214 * mem/swap backed and file backed pages are referenced.
89abfab1
HD
215 * The higher the rotated/scanned ratio, the more valuable
216 * that cache is.
217 *
218 * The anon LRU stats live in [0], file LRU stats in [1]
219 */
220 unsigned long recent_rotated[2];
221 unsigned long recent_scanned[2];
222};
223
6290df54 224struct lruvec {
23047a96
JW
225 struct list_head lists[NR_LRU_LISTS];
226 struct zone_reclaim_stat reclaim_stat;
227 /* Evictions & activations on the inactive file list */
228 atomic_long_t inactive_age;
c255a458 229#ifdef CONFIG_MEMCG
599d0c95 230 struct pglist_data *pgdat;
7f5e86c2 231#endif
6290df54
JW
232};
233
bb2a0de9
KH
234/* Mask used at gathering information at once (see memcontrol.c) */
235#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
236#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
bb2a0de9
KH
237#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
238
39deaf85 239/* Isolate clean file */
f3fd4a61 240#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
f80c0673 241/* Isolate unmapped file */
f3fd4a61 242#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
c8244935 243/* Isolate for asynchronous migration */
f3fd4a61 244#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
e46a2879
MK
245/* Isolate unevictable pages */
246#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
4356f21d
MK
247
248/* LRU Isolation modes. */
9efeccac 249typedef unsigned __bitwise isolate_mode_t;
4356f21d 250
41858966
MG
251enum zone_watermarks {
252 WMARK_MIN,
253 WMARK_LOW,
254 WMARK_HIGH,
255 NR_WMARK
256};
257
258#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
259#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
260#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
261
1da177e4
LT
262struct per_cpu_pages {
263 int count; /* number of pages in the list */
1da177e4
LT
264 int high; /* high watermark, emptying needed */
265 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
266
267 /* Lists of pages, one per migrate type stored on the pcp-lists */
268 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
269};
270
271struct per_cpu_pageset {
3dfa5721 272 struct per_cpu_pages pcp;
4037d452
CL
273#ifdef CONFIG_NUMA
274 s8 expire;
275#endif
2244b95a 276#ifdef CONFIG_SMP
df9ecaba 277 s8 stat_threshold;
2244b95a
CL
278 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
279#endif
99dcc3e5 280};
e7c8d5c9 281
75ef7184
MG
282struct per_cpu_nodestat {
283 s8 stat_threshold;
284 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
285};
286
97965478
CL
287#endif /* !__GENERATING_BOUNDS.H */
288
2f1b6248 289enum zone_type {
4b51d669 290#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
291 /*
292 * ZONE_DMA is used when there are devices that are not able
293 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
294 * carve out the portion of memory that is needed for these devices.
295 * The range is arch specific.
296 *
297 * Some examples
298 *
299 * Architecture Limit
300 * ---------------------------
301 * parisc, ia64, sparc <4G
302 * s390 <2G
2f1b6248
CL
303 * arm Various
304 * alpha Unlimited or 0-16MB.
305 *
306 * i386, x86_64 and multiple other arches
307 * <16M.
308 */
309 ZONE_DMA,
4b51d669 310#endif
fb0e7942 311#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
312 /*
313 * x86_64 needs two ZONE_DMAs because it supports devices that are
314 * only able to do DMA to the lower 16M but also 32 bit devices that
315 * can only do DMA areas below 4G.
316 */
317 ZONE_DMA32,
fb0e7942 318#endif
2f1b6248
CL
319 /*
320 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
321 * performed on pages in ZONE_NORMAL if the DMA devices support
322 * transfers to all addressable memory.
323 */
324 ZONE_NORMAL,
e53ef38d 325#ifdef CONFIG_HIGHMEM
2f1b6248
CL
326 /*
327 * A memory area that is only addressable by the kernel through
328 * mapping portions into its own address space. This is for example
329 * used by i386 to allow the kernel to address the memory beyond
330 * 900MB. The kernel will set up special mappings (page
331 * table entries on i386) for each page that the kernel needs to
332 * access.
333 */
334 ZONE_HIGHMEM,
e53ef38d 335#endif
2a1e274a 336 ZONE_MOVABLE,
033fbae9
DW
337#ifdef CONFIG_ZONE_DEVICE
338 ZONE_DEVICE,
339#endif
97965478 340 __MAX_NR_ZONES
033fbae9 341
2f1b6248 342};
1da177e4 343
97965478
CL
344#ifndef __GENERATING_BOUNDS_H
345
1da177e4 346struct zone {
3484b2de 347 /* Read-mostly fields */
41858966
MG
348
349 /* zone watermarks, access with *_wmark_pages(zone) macros */
350 unsigned long watermark[NR_WMARK];
351
0aaa29a5
MG
352 unsigned long nr_reserved_highatomic;
353
1da177e4 354 /*
89903327
AM
355 * We don't know if the memory that we're going to allocate will be
356 * freeable or/and it will be released eventually, so to avoid totally
357 * wasting several GB of ram we must reserve some of the lower zone
358 * memory (otherwise we risk to run OOM on the lower zones despite
359 * there being tons of freeable ram on the higher zones). This array is
360 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
361 * changes.
1da177e4 362 */
3484b2de 363 long lowmem_reserve[MAX_NR_ZONES];
ab8fabd4 364
e7c8d5c9 365#ifdef CONFIG_NUMA
d5f541ed 366 int node;
3484b2de 367#endif
3484b2de 368 struct pglist_data *zone_pgdat;
43cf38eb 369 struct per_cpu_pageset __percpu *pageset;
3484b2de 370
835c134e
MG
371#ifndef CONFIG_SPARSEMEM
372 /*
d9c23400 373 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
374 * In SPARSEMEM, this map is stored in struct mem_section
375 */
376 unsigned long *pageblock_flags;
377#endif /* CONFIG_SPARSEMEM */
378
1da177e4
LT
379 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
380 unsigned long zone_start_pfn;
381
bdc8cb98 382 /*
9feedc9d
JL
383 * spanned_pages is the total pages spanned by the zone, including
384 * holes, which is calculated as:
385 * spanned_pages = zone_end_pfn - zone_start_pfn;
bdc8cb98 386 *
9feedc9d
JL
387 * present_pages is physical pages existing within the zone, which
388 * is calculated as:
8761e31c 389 * present_pages = spanned_pages - absent_pages(pages in holes);
9feedc9d
JL
390 *
391 * managed_pages is present pages managed by the buddy system, which
392 * is calculated as (reserved_pages includes pages allocated by the
393 * bootmem allocator):
394 * managed_pages = present_pages - reserved_pages;
395 *
396 * So present_pages may be used by memory hotplug or memory power
397 * management logic to figure out unmanaged pages by checking
398 * (present_pages - managed_pages). And managed_pages should be used
399 * by page allocator and vm scanner to calculate all kinds of watermarks
400 * and thresholds.
401 *
402 * Locking rules:
403 *
404 * zone_start_pfn and spanned_pages are protected by span_seqlock.
405 * It is a seqlock because it has to be read outside of zone->lock,
406 * and it is done in the main allocator path. But, it is written
407 * quite infrequently.
408 *
409 * The span_seq lock is declared along with zone->lock because it is
bdc8cb98
DH
410 * frequently read in proximity to zone->lock. It's good to
411 * give them a chance of being in the same cacheline.
9feedc9d 412 *
c3d5f5f0 413 * Write access to present_pages at runtime should be protected by
bfc8c901
VD
414 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
415 * present_pages should get_online_mems() to get a stable value.
c3d5f5f0
JL
416 *
417 * Read access to managed_pages should be safe because it's unsigned
418 * long. Write access to zone->managed_pages and totalram_pages are
419 * protected by managed_page_count_lock at runtime. Idealy only
420 * adjust_managed_page_count() should be used instead of directly
421 * touching zone->managed_pages and totalram_pages.
bdc8cb98 422 */
3484b2de 423 unsigned long managed_pages;
9feedc9d
JL
424 unsigned long spanned_pages;
425 unsigned long present_pages;
3484b2de
MG
426
427 const char *name;
1da177e4 428
ad53f92e
JK
429#ifdef CONFIG_MEMORY_ISOLATION
430 /*
431 * Number of isolated pageblock. It is used to solve incorrect
432 * freepage counting problem due to racy retrieving migratetype
433 * of pageblock. Protected by zone->lock.
434 */
435 unsigned long nr_isolate_pageblock;
436#endif
437
3484b2de
MG
438#ifdef CONFIG_MEMORY_HOTPLUG
439 /* see spanned/present_pages for more description */
440 seqlock_t span_seqlock;
441#endif
442
9dcb8b68 443 int initialized;
3484b2de 444
0f661148 445 /* Write-intensive fields used from the page allocator */
3484b2de 446 ZONE_PADDING(_pad1_)
0f661148 447
3484b2de
MG
448 /* free areas of different sizes */
449 struct free_area free_area[MAX_ORDER];
450
451 /* zone flags, see below */
452 unsigned long flags;
453
0f661148 454 /* Primarily protects free_area */
a368ab67
MG
455 spinlock_t lock;
456
0f661148 457 /* Write-intensive fields used by compaction and vmstats. */
3484b2de
MG
458 ZONE_PADDING(_pad2_)
459
3484b2de
MG
460 /*
461 * When free pages are below this point, additional steps are taken
462 * when reading the number of free pages to avoid per-cpu counter
463 * drift allowing watermarks to be breached
464 */
465 unsigned long percpu_drift_mark;
466
467#if defined CONFIG_COMPACTION || defined CONFIG_CMA
468 /* pfn where compaction free scanner should start */
469 unsigned long compact_cached_free_pfn;
470 /* pfn where async and sync compaction migration scanner should start */
471 unsigned long compact_cached_migrate_pfn[2];
472#endif
473
474#ifdef CONFIG_COMPACTION
475 /*
476 * On compaction failure, 1<<compact_defer_shift compactions
477 * are skipped before trying again. The number attempted since
478 * last failure is tracked with compact_considered.
479 */
480 unsigned int compact_considered;
481 unsigned int compact_defer_shift;
482 int compact_order_failed;
483#endif
484
485#if defined CONFIG_COMPACTION || defined CONFIG_CMA
486 /* Set to true when the PG_migrate_skip bits should be cleared */
487 bool compact_blockskip_flush;
488#endif
489
7cf91a98
JK
490 bool contiguous;
491
3484b2de
MG
492 ZONE_PADDING(_pad3_)
493 /* Zone statistics */
494 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
22fc6ecc 495} ____cacheline_internodealigned_in_smp;
1da177e4 496
599d0c95
MG
497enum pgdat_flags {
498 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
0e093d99
MG
499 * a congested BDI
500 */
599d0c95 501 PGDAT_DIRTY, /* reclaim scanning has recently found
d43006d5
MG
502 * many dirty file pages at the tail
503 * of the LRU.
504 */
599d0c95 505 PGDAT_WRITEBACK, /* reclaim scanning has recently found
283aba9f
MG
506 * many pages under writeback
507 */
a5f5f91d 508 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
57054651 509};
e815af95 510
f9228b20 511static inline unsigned long zone_end_pfn(const struct zone *zone)
108bcc96
CS
512{
513 return zone->zone_start_pfn + zone->spanned_pages;
514}
515
516static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
517{
518 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
519}
520
2a6e3ebe
CS
521static inline bool zone_is_initialized(struct zone *zone)
522{
9dcb8b68 523 return zone->initialized;
2a6e3ebe
CS
524}
525
526static inline bool zone_is_empty(struct zone *zone)
527{
528 return zone->spanned_pages == 0;
529}
530
1da177e4
LT
531/*
532 * The "priority" of VM scanning is how much of the queues we will scan in one
533 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
534 * queues ("queue_length >> 12") during an aging round.
535 */
536#define DEF_PRIORITY 12
537
9276b1bc
PJ
538/* Maximum number of zones on a zonelist */
539#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
540
c00eb15a
YB
541enum {
542 ZONELIST_FALLBACK, /* zonelist with fallback */
9276b1bc 543#ifdef CONFIG_NUMA
c00eb15a
YB
544 /*
545 * The NUMA zonelists are doubled because we need zonelists that
546 * restrict the allocations to a single node for __GFP_THISNODE.
547 */
548 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
9276b1bc 549#endif
c00eb15a
YB
550 MAX_ZONELISTS
551};
9276b1bc 552
dd1a239f
MG
553/*
554 * This struct contains information about a zone in a zonelist. It is stored
555 * here to avoid dereferences into large structures and lookups of tables
556 */
557struct zoneref {
558 struct zone *zone; /* Pointer to actual zone */
559 int zone_idx; /* zone_idx(zoneref->zone) */
560};
561
1da177e4
LT
562/*
563 * One allocation request operates on a zonelist. A zonelist
564 * is a list of zones, the first one is the 'goal' of the
565 * allocation, the other zones are fallback zones, in decreasing
566 * priority.
567 *
dd1a239f
MG
568 * To speed the reading of the zonelist, the zonerefs contain the zone index
569 * of the entry being read. Helper functions to access information given
570 * a struct zoneref are
571 *
572 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
573 * zonelist_zone_idx() - Return the index of the zone for an entry
574 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
575 */
576struct zonelist {
dd1a239f 577 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1da177e4
LT
578};
579
5b99cd0e
HC
580#ifndef CONFIG_DISCONTIGMEM
581/* The array of struct pages - for discontigmem use pgdat->lmem_map */
582extern struct page *mem_map;
583#endif
584
1da177e4
LT
585/*
586 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
587 * (mostly NUMA machines?) to denote a higher-level memory zone than the
588 * zone denotes.
589 *
590 * On NUMA machines, each NUMA node would have a pg_data_t to describe
591 * it's memory layout.
592 *
593 * Memory statistics and page replacement data structures are maintained on a
594 * per-zone basis.
595 */
596struct bootmem_data;
597typedef struct pglist_data {
598 struct zone node_zones[MAX_NR_ZONES];
523b9458 599 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 600 int nr_zones;
52d4b9ac 601#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 602 struct page *node_mem_map;
eefa864b
JK
603#ifdef CONFIG_PAGE_EXTENSION
604 struct page_ext *node_page_ext;
605#endif
d41dee36 606#endif
08677214 607#ifndef CONFIG_NO_BOOTMEM
1da177e4 608 struct bootmem_data *bdata;
08677214 609#endif
208d54e5
DH
610#ifdef CONFIG_MEMORY_HOTPLUG
611 /*
612 * Must be held any time you expect node_start_pfn, node_present_pages
613 * or node_spanned_pages stay constant. Holding this will also
614 * guarantee that any pfn_valid() stays that way.
615 *
114d4b79
CS
616 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
617 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
618 *
72c3b51b 619 * Nests above zone->lock and zone->span_seqlock
208d54e5
DH
620 */
621 spinlock_t node_size_lock;
622#endif
1da177e4
LT
623 unsigned long node_start_pfn;
624 unsigned long node_present_pages; /* total number of physical pages */
625 unsigned long node_spanned_pages; /* total size of physical page
626 range, including holes */
627 int node_id;
1da177e4 628 wait_queue_head_t kswapd_wait;
5515061d 629 wait_queue_head_t pfmemalloc_wait;
bfc8c901
VD
630 struct task_struct *kswapd; /* Protected by
631 mem_hotplug_begin/end() */
38087d9b
MG
632 int kswapd_order;
633 enum zone_type kswapd_classzone_idx;
634
698b1b30
VB
635#ifdef CONFIG_COMPACTION
636 int kcompactd_max_order;
637 enum zone_type kcompactd_classzone_idx;
638 wait_queue_head_t kcompactd_wait;
639 struct task_struct *kcompactd;
640#endif
8177a420 641#ifdef CONFIG_NUMA_BALANCING
1c5e9c27 642 /* Lock serializing the migrate rate limiting window */
8177a420
AA
643 spinlock_t numabalancing_migrate_lock;
644
645 /* Rate limiting time interval */
646 unsigned long numabalancing_migrate_next_window;
647
648 /* Number of pages migrated during the rate limiting time interval */
649 unsigned long numabalancing_migrate_nr_pages;
650#endif
281e3726
MG
651 /*
652 * This is a per-node reserve of pages that are not available
653 * to userspace allocations.
654 */
655 unsigned long totalreserve_pages;
656
a5f5f91d
MG
657#ifdef CONFIG_NUMA
658 /*
659 * zone reclaim becomes active if more unmapped pages exist.
660 */
661 unsigned long min_unmapped_pages;
662 unsigned long min_slab_pages;
663#endif /* CONFIG_NUMA */
664
a52633d8
MG
665 /* Write-intensive fields used by page reclaim */
666 ZONE_PADDING(_pad1_)
667 spinlock_t lru_lock;
3a80a7fa
MG
668
669#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
670 /*
671 * If memory initialisation on large machines is deferred then this
672 * is the first PFN that needs to be initialised.
673 */
674 unsigned long first_deferred_pfn;
675#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
a3d0a918
KS
676
677#ifdef CONFIG_TRANSPARENT_HUGEPAGE
678 spinlock_t split_queue_lock;
679 struct list_head split_queue;
680 unsigned long split_queue_len;
681#endif
75ef7184 682
599d0c95
MG
683 /* Fields commonly accessed by the page reclaim scanner */
684 struct lruvec lruvec;
685
686 /*
687 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
688 * this node's LRU. Maintained by the pageout code.
689 */
690 unsigned int inactive_ratio;
691
692 unsigned long flags;
693
694 ZONE_PADDING(_pad2_)
695
75ef7184
MG
696 /* Per-node vmstats */
697 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
698 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
1da177e4
LT
699} pg_data_t;
700
701#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
702#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 703#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 704#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
705#else
706#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
707#endif
408fde81 708#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 709
c6830c22 710#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
da3649e1 711#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
a52633d8
MG
712static inline spinlock_t *zone_lru_lock(struct zone *zone)
713{
714 return &zone->zone_pgdat->lru_lock;
715}
c6830c22 716
a9dd0a83 717static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
599d0c95 718{
a9dd0a83 719 return &pgdat->lruvec;
599d0c95
MG
720}
721
da3649e1
CS
722static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
723{
724 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
725}
726
727static inline bool pgdat_is_empty(pg_data_t *pgdat)
728{
729 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
730}
c6830c22 731
033fbae9
DW
732static inline int zone_id(const struct zone *zone)
733{
734 struct pglist_data *pgdat = zone->zone_pgdat;
735
736 return zone - pgdat->node_zones;
737}
738
739#ifdef CONFIG_ZONE_DEVICE
740static inline bool is_dev_zone(const struct zone *zone)
741{
742 return zone_id(zone) == ZONE_DEVICE;
743}
744#else
745static inline bool is_dev_zone(const struct zone *zone)
746{
747 return false;
748}
749#endif
750
208d54e5
DH
751#include <linux/memory_hotplug.h>
752
4eaf3f64 753extern struct mutex zonelists_mutex;
9adb62a5 754void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
99504748 755void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
86a294a8
MH
756bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
757 int classzone_idx, unsigned int alloc_flags,
758 long free_pages);
7aeb09f9 759bool zone_watermark_ok(struct zone *z, unsigned int order,
c603844b
MG
760 unsigned long mark, int classzone_idx,
761 unsigned int alloc_flags);
7aeb09f9 762bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 763 unsigned long mark, int classzone_idx);
a2f3aa02
DH
764enum memmap_context {
765 MEMMAP_EARLY,
766 MEMMAP_HOTPLUG,
767};
718127cc 768extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
b171e409 769 unsigned long size);
718127cc 770
bea8c150 771extern void lruvec_init(struct lruvec *lruvec);
7f5e86c2 772
599d0c95 773static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
7f5e86c2 774{
c255a458 775#ifdef CONFIG_MEMCG
599d0c95 776 return lruvec->pgdat;
7f5e86c2 777#else
599d0c95 778 return container_of(lruvec, struct pglist_data, lruvec);
7f5e86c2
KK
779#endif
780}
781
23047a96
JW
782extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru);
783
1da177e4
LT
784#ifdef CONFIG_HAVE_MEMORY_PRESENT
785void memory_present(int nid, unsigned long start, unsigned long end);
786#else
787static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
788#endif
789
7aac7898
LS
790#ifdef CONFIG_HAVE_MEMORYLESS_NODES
791int local_memory_node(int node_id);
792#else
793static inline int local_memory_node(int node_id) { return node_id; };
794#endif
795
1da177e4
LT
796#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
797unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
798#endif
799
800/*
801 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
802 */
803#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
804
6aa303de
MG
805/*
806 * Returns true if a zone has pages managed by the buddy allocator.
807 * All the reclaim decisions have to use this function rather than
808 * populated_zone(). If the whole zone is reserved then we can easily
809 * end up with populated_zone() && !managed_zone().
810 */
811static inline bool managed_zone(struct zone *zone)
812{
813 return zone->managed_pages;
814}
815
816/* Returns true if a zone has memory */
817static inline bool populated_zone(struct zone *zone)
f3fe6512 818{
6aa303de 819 return zone->present_pages;
f3fe6512
CK
820}
821
2a1e274a
MG
822extern int movable_zone;
823
d7e4a2ea 824#ifdef CONFIG_HIGHMEM
2a1e274a
MG
825static inline int zone_movable_is_highmem(void)
826{
d7e4a2ea 827#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2a1e274a
MG
828 return movable_zone == ZONE_HIGHMEM;
829#else
d7e4a2ea 830 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
2a1e274a
MG
831#endif
832}
d7e4a2ea 833#endif
2a1e274a 834
2f1b6248 835static inline int is_highmem_idx(enum zone_type idx)
1da177e4 836{
e53ef38d 837#ifdef CONFIG_HIGHMEM
2a1e274a
MG
838 return (idx == ZONE_HIGHMEM ||
839 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
840#else
841 return 0;
842#endif
1da177e4
LT
843}
844
1da177e4
LT
845/**
846 * is_highmem - helper function to quickly check if a struct zone is a
847 * highmem zone or not. This is an attempt to keep references
848 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
849 * @zone - pointer to struct zone variable
850 */
851static inline int is_highmem(struct zone *zone)
852{
e53ef38d 853#ifdef CONFIG_HIGHMEM
29f9cb53 854 return is_highmem_idx(zone_idx(zone));
e53ef38d
CL
855#else
856 return 0;
857#endif
1da177e4
LT
858}
859
1da177e4
LT
860/* These two functions are used to setup the per zone pages min values */
861struct ctl_table;
8d65af78 862int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
1da177e4 863 void __user *, size_t *, loff_t *);
795ae7a0
JW
864int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
865 void __user *, size_t *, loff_t *);
1da177e4 866extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
8d65af78 867int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
1da177e4 868 void __user *, size_t *, loff_t *);
8d65af78 869int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
8ad4b1fb 870 void __user *, size_t *, loff_t *);
9614634f 871int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 872 void __user *, size_t *, loff_t *);
0ff38490 873int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 874 void __user *, size_t *, loff_t *);
1da177e4 875
f0c0b2b8 876extern int numa_zonelist_order_handler(struct ctl_table *, int,
8d65af78 877 void __user *, size_t *, loff_t *);
f0c0b2b8
KH
878extern char numa_zonelist_order[];
879#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
880
93b7504e 881#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
882
883extern struct pglist_data contig_page_data;
884#define NODE_DATA(nid) (&contig_page_data)
885#define NODE_MEM_MAP(nid) mem_map
1da177e4 886
93b7504e 887#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
888
889#include <asm/mmzone.h>
890
93b7504e 891#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 892
95144c78
KH
893extern struct pglist_data *first_online_pgdat(void);
894extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
895extern struct zone *next_zone(struct zone *zone);
8357f869
KH
896
897/**
12d15f0d 898 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
899 * @pgdat - pointer to a pg_data_t variable
900 */
901#define for_each_online_pgdat(pgdat) \
902 for (pgdat = first_online_pgdat(); \
903 pgdat; \
904 pgdat = next_online_pgdat(pgdat))
8357f869
KH
905/**
906 * for_each_zone - helper macro to iterate over all memory zones
907 * @zone - pointer to struct zone variable
908 *
909 * The user only needs to declare the zone variable, for_each_zone
910 * fills it in.
911 */
912#define for_each_zone(zone) \
913 for (zone = (first_online_pgdat())->node_zones; \
914 zone; \
915 zone = next_zone(zone))
916
ee99c71c
KM
917#define for_each_populated_zone(zone) \
918 for (zone = (first_online_pgdat())->node_zones; \
919 zone; \
920 zone = next_zone(zone)) \
921 if (!populated_zone(zone)) \
922 ; /* do nothing */ \
923 else
924
dd1a239f
MG
925static inline struct zone *zonelist_zone(struct zoneref *zoneref)
926{
927 return zoneref->zone;
928}
929
930static inline int zonelist_zone_idx(struct zoneref *zoneref)
931{
932 return zoneref->zone_idx;
933}
934
935static inline int zonelist_node_idx(struct zoneref *zoneref)
936{
937#ifdef CONFIG_NUMA
938 /* zone_to_nid not available in this context */
939 return zoneref->zone->node;
940#else
941 return 0;
942#endif /* CONFIG_NUMA */
943}
944
682a3385
MG
945struct zoneref *__next_zones_zonelist(struct zoneref *z,
946 enum zone_type highest_zoneidx,
947 nodemask_t *nodes);
948
19770b32
MG
949/**
950 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
951 * @z - The cursor used as a starting point for the search
952 * @highest_zoneidx - The zone index of the highest zone to return
953 * @nodes - An optional nodemask to filter the zonelist with
19770b32
MG
954 *
955 * This function returns the next zone at or below a given zone index that is
956 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
957 * search. The zoneref returned is a cursor that represents the current zone
958 * being examined. It should be advanced by one before calling
959 * next_zones_zonelist again.
19770b32 960 */
682a3385 961static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
19770b32 962 enum zone_type highest_zoneidx,
682a3385
MG
963 nodemask_t *nodes)
964{
965 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
966 return z;
967 return __next_zones_zonelist(z, highest_zoneidx, nodes);
968}
dd1a239f 969
19770b32
MG
970/**
971 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
972 * @zonelist - The zonelist to search for a suitable zone
973 * @highest_zoneidx - The zone index of the highest zone to return
974 * @nodes - An optional nodemask to filter the zonelist with
975 * @zone - The first suitable zone found is returned via this parameter
976 *
977 * This function returns the first zone at or below a given zone index that is
978 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
979 * used to iterate the zonelist with next_zones_zonelist by advancing it by
980 * one before calling.
19770b32 981 */
dd1a239f 982static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32 983 enum zone_type highest_zoneidx,
c33d6c06 984 nodemask_t *nodes)
54a6eb5c 985{
c33d6c06 986 return next_zones_zonelist(zonelist->_zonerefs,
05891fb0 987 highest_zoneidx, nodes);
54a6eb5c
MG
988}
989
19770b32
MG
990/**
991 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
992 * @zone - The current zone in the iterator
993 * @z - The current pointer within zonelist->zones being iterated
994 * @zlist - The zonelist being iterated
995 * @highidx - The zone index of the highest zone to return
996 * @nodemask - Nodemask allowed by the allocator
997 *
998 * This iterator iterates though all zones at or below a given zone index and
999 * within a given nodemask
1000 */
1001#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
c33d6c06 1002 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
19770b32 1003 zone; \
05891fb0 1004 z = next_zones_zonelist(++z, highidx, nodemask), \
c33d6c06
MG
1005 zone = zonelist_zone(z))
1006
1007#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1008 for (zone = z->zone; \
1009 zone; \
1010 z = next_zones_zonelist(++z, highidx, nodemask), \
1011 zone = zonelist_zone(z))
1012
54a6eb5c
MG
1013
1014/**
1015 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1016 * @zone - The current zone in the iterator
1017 * @z - The current pointer within zonelist->zones being iterated
1018 * @zlist - The zonelist being iterated
1019 * @highidx - The zone index of the highest zone to return
1020 *
1021 * This iterator iterates though all zones at or below a given zone index.
1022 */
1023#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 1024 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 1025
d41dee36
AW
1026#ifdef CONFIG_SPARSEMEM
1027#include <asm/sparsemem.h>
1028#endif
1029
c713216d 1030#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
0ee332c1 1031 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
b4544568
AM
1032static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1033{
1034 return 0;
1035}
b159d43f
AW
1036#endif
1037
2bdaf115
AW
1038#ifdef CONFIG_FLATMEM
1039#define pfn_to_nid(pfn) (0)
1040#endif
1041
d41dee36
AW
1042#ifdef CONFIG_SPARSEMEM
1043
1044/*
1045 * SECTION_SHIFT #bits space required to store a section #
1046 *
1047 * PA_SECTION_SHIFT physical address to/from section number
1048 * PFN_SECTION_SHIFT pfn to/from section number
1049 */
d41dee36
AW
1050#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1051#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1052
1053#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1054
1055#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1056#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1057
835c134e 1058#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1059 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1060
d41dee36
AW
1061#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1062#error Allocator MAX_ORDER exceeds SECTION_SIZE
1063#endif
1064
e3c40f37
DK
1065#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1066#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1067
a539f353
DK
1068#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1069#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1070
d41dee36 1071struct page;
eefa864b 1072struct page_ext;
d41dee36 1073struct mem_section {
29751f69
AW
1074 /*
1075 * This is, logically, a pointer to an array of struct
1076 * pages. However, it is stored with some other magic.
1077 * (see sparse.c::sparse_init_one_section())
1078 *
30c253e6
AW
1079 * Additionally during early boot we encode node id of
1080 * the location of the section here to guide allocation.
1081 * (see sparse.c::memory_present())
1082 *
29751f69
AW
1083 * Making it a UL at least makes someone do a cast
1084 * before using it wrong.
1085 */
1086 unsigned long section_mem_map;
5c0e3066
MG
1087
1088 /* See declaration of similar field in struct zone */
1089 unsigned long *pageblock_flags;
eefa864b
JK
1090#ifdef CONFIG_PAGE_EXTENSION
1091 /*
0c9ad804 1092 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
eefa864b
JK
1093 * section. (see page_ext.h about this.)
1094 */
1095 struct page_ext *page_ext;
1096 unsigned long pad;
1097#endif
55878e88
CS
1098 /*
1099 * WARNING: mem_section must be a power-of-2 in size for the
1100 * calculation and use of SECTION_ROOT_MASK to make sense.
1101 */
d41dee36
AW
1102};
1103
3e347261
BP
1104#ifdef CONFIG_SPARSEMEM_EXTREME
1105#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1106#else
1107#define SECTIONS_PER_ROOT 1
1108#endif
802f192e 1109
3e347261 1110#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1111#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1112#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1113
3e347261
BP
1114#ifdef CONFIG_SPARSEMEM_EXTREME
1115extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 1116#else
3e347261
BP
1117extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1118#endif
d41dee36 1119
29751f69
AW
1120static inline struct mem_section *__nr_to_section(unsigned long nr)
1121{
3e347261
BP
1122 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1123 return NULL;
1124 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 1125}
4ca644d9 1126extern int __section_nr(struct mem_section* ms);
04753278 1127extern unsigned long usemap_size(void);
29751f69
AW
1128
1129/*
1130 * We use the lower bits of the mem_map pointer to store
1131 * a little bit of information. There should be at least
1132 * 3 bits here due to 32-bit alignment.
1133 */
1134#define SECTION_MARKED_PRESENT (1UL<<0)
1135#define SECTION_HAS_MEM_MAP (1UL<<1)
1136#define SECTION_MAP_LAST_BIT (1UL<<2)
1137#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1138#define SECTION_NID_SHIFT 2
29751f69
AW
1139
1140static inline struct page *__section_mem_map_addr(struct mem_section *section)
1141{
1142 unsigned long map = section->section_mem_map;
1143 map &= SECTION_MAP_MASK;
1144 return (struct page *)map;
1145}
1146
540557b9 1147static inline int present_section(struct mem_section *section)
29751f69 1148{
802f192e 1149 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1150}
1151
540557b9
AW
1152static inline int present_section_nr(unsigned long nr)
1153{
1154 return present_section(__nr_to_section(nr));
1155}
1156
1157static inline int valid_section(struct mem_section *section)
29751f69 1158{
802f192e 1159 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1160}
1161
1162static inline int valid_section_nr(unsigned long nr)
1163{
1164 return valid_section(__nr_to_section(nr));
1165}
1166
d41dee36
AW
1167static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1168{
29751f69 1169 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1170}
1171
7b7bf499 1172#ifndef CONFIG_HAVE_ARCH_PFN_VALID
d41dee36
AW
1173static inline int pfn_valid(unsigned long pfn)
1174{
1175 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1176 return 0;
29751f69 1177 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36 1178}
7b7bf499 1179#endif
d41dee36 1180
540557b9
AW
1181static inline int pfn_present(unsigned long pfn)
1182{
1183 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1184 return 0;
1185 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1186}
1187
d41dee36
AW
1188/*
1189 * These are _only_ used during initialisation, therefore they
1190 * can use __initdata ... They could have names to indicate
1191 * this restriction.
1192 */
1193#ifdef CONFIG_NUMA
161599ff
AW
1194#define pfn_to_nid(pfn) \
1195({ \
1196 unsigned long __pfn_to_nid_pfn = (pfn); \
1197 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1198})
2bdaf115
AW
1199#else
1200#define pfn_to_nid(pfn) (0)
d41dee36
AW
1201#endif
1202
d41dee36
AW
1203#define early_pfn_valid(pfn) pfn_valid(pfn)
1204void sparse_init(void);
1205#else
1206#define sparse_init() do {} while (0)
28ae55c9 1207#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1208#endif /* CONFIG_SPARSEMEM */
1209
8a942fde
MG
1210/*
1211 * During memory init memblocks map pfns to nids. The search is expensive and
1212 * this caches recent lookups. The implementation of __early_pfn_to_nid
1213 * may treat start/end as pfns or sections.
1214 */
1215struct mminit_pfnnid_cache {
1216 unsigned long last_start;
1217 unsigned long last_end;
1218 int last_nid;
1219};
1220
d41dee36
AW
1221#ifndef early_pfn_valid
1222#define early_pfn_valid(pfn) (1)
1223#endif
1224
1225void memory_present(int nid, unsigned long start, unsigned long end);
1226unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1227
14e07298
AW
1228/*
1229 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1230 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1231 * pfn_valid_within() should be used in this case; we optimise this away
1232 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1233 */
1234#ifdef CONFIG_HOLES_IN_ZONE
1235#define pfn_valid_within(pfn) pfn_valid(pfn)
1236#else
1237#define pfn_valid_within(pfn) (1)
1238#endif
1239
eb33575c
MG
1240#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1241/*
1242 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1243 * associated with it or not. In FLATMEM, it is expected that holes always
1244 * have valid memmap as long as there is valid PFNs either side of the hole.
1245 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1246 * entire section.
1247 *
1248 * However, an ARM, and maybe other embedded architectures in the future
1249 * free memmap backing holes to save memory on the assumption the memmap is
1250 * never used. The page_zone linkages are then broken even though pfn_valid()
1251 * returns true. A walker of the full memmap must then do this additional
1252 * check to ensure the memmap they are looking at is sane by making sure
1253 * the zone and PFN linkages are still valid. This is expensive, but walkers
1254 * of the full memmap are extremely rare.
1255 */
5b80287a 1256bool memmap_valid_within(unsigned long pfn,
eb33575c
MG
1257 struct page *page, struct zone *zone);
1258#else
5b80287a 1259static inline bool memmap_valid_within(unsigned long pfn,
eb33575c
MG
1260 struct page *page, struct zone *zone)
1261{
5b80287a 1262 return true;
eb33575c
MG
1263}
1264#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1265
97965478 1266#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1267#endif /* !__ASSEMBLY__ */
1da177e4 1268#endif /* _LINUX_MMZONE_H */