mm: fix null-ptr-deref in kswapd_is_running()
[linux-2.6-block.git] / include / linux / mmzone.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
1da177e4 5#ifndef __ASSEMBLY__
97965478 6#ifndef __GENERATING_BOUNDS_H
1da177e4 7
1da177e4
LT
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/wait.h>
e815af95 11#include <linux/bitops.h>
1da177e4
LT
12#include <linux/cache.h>
13#include <linux/threads.h>
14#include <linux/numa.h>
15#include <linux/init.h>
bdc8cb98 16#include <linux/seqlock.h>
8357f869 17#include <linux/nodemask.h>
835c134e 18#include <linux/pageblock-flags.h>
bbeae5b0 19#include <linux/page-flags-layout.h>
60063497 20#include <linux/atomic.h>
b03641af
DW
21#include <linux/mm_types.h>
22#include <linux/page-flags.h>
dbbee9d5 23#include <linux/local_lock.h>
93ff66bf 24#include <asm/page.h>
1da177e4
LT
25
26/* Free memory management - zoned buddy allocator. */
0192445c 27#ifndef CONFIG_ARCH_FORCE_MAX_ORDER
1da177e4
LT
28#define MAX_ORDER 11
29#else
0192445c 30#define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
1da177e4 31#endif
e984bb43 32#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 33
5ad333eb
AW
34/*
35 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
36 * costly to service. That is between allocation orders which should
35fca53e 37 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
38 * will not.
39 */
40#define PAGE_ALLOC_COSTLY_ORDER 3
41
a6ffdc07 42enum migratetype {
47118af0 43 MIGRATE_UNMOVABLE,
47118af0 44 MIGRATE_MOVABLE,
016c13da 45 MIGRATE_RECLAIMABLE,
0aaa29a5
MG
46 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
47 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47118af0
MN
48#ifdef CONFIG_CMA
49 /*
50 * MIGRATE_CMA migration type is designed to mimic the way
51 * ZONE_MOVABLE works. Only movable pages can be allocated
52 * from MIGRATE_CMA pageblocks and page allocator never
53 * implicitly change migration type of MIGRATE_CMA pageblock.
54 *
55 * The way to use it is to change migratetype of a range of
56 * pageblocks to MIGRATE_CMA which can be done by
11ac3e87 57 * __free_pageblock_cma() function.
47118af0
MN
58 */
59 MIGRATE_CMA,
60#endif
194159fb 61#ifdef CONFIG_MEMORY_ISOLATION
47118af0 62 MIGRATE_ISOLATE, /* can't allocate from here */
194159fb 63#endif
47118af0
MN
64 MIGRATE_TYPES
65};
66
60f30350 67/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
c999fbd3 68extern const char * const migratetype_names[MIGRATE_TYPES];
60f30350 69
47118af0
MN
70#ifdef CONFIG_CMA
71# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
7c15d9bb 72# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
47118af0
MN
73#else
74# define is_migrate_cma(migratetype) false
7c15d9bb 75# define is_migrate_cma_page(_page) false
47118af0 76#endif
b2a0ac88 77
b682debd
VB
78static inline bool is_migrate_movable(int mt)
79{
80 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
81}
82
1dd214b8
ZY
83/*
84 * Check whether a migratetype can be merged with another migratetype.
85 *
86 * It is only mergeable when it can fall back to other migratetypes for
87 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
88 */
89static inline bool migratetype_is_mergeable(int mt)
90{
91 return mt < MIGRATE_PCPTYPES;
92}
93
b2a0ac88
MG
94#define for_each_migratetype_order(order, type) \
95 for (order = 0; order < MAX_ORDER; order++) \
96 for (type = 0; type < MIGRATE_TYPES; type++)
97
467c996c
MG
98extern int page_group_by_mobility_disabled;
99
d38ac97f 100#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
e58469ba 101
dc4b0caf 102#define get_pageblock_migratetype(page) \
535b81e2 103 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
dc4b0caf 104
1da177e4 105struct free_area {
b2a0ac88 106 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
107 unsigned long nr_free;
108};
109
b03641af
DW
110static inline struct page *get_page_from_free_area(struct free_area *area,
111 int migratetype)
112{
113 return list_first_entry_or_null(&area->free_list[migratetype],
114 struct page, lru);
115}
116
b03641af
DW
117static inline bool free_area_empty(struct free_area *area, int migratetype)
118{
119 return list_empty(&area->free_list[migratetype]);
120}
121
1da177e4
LT
122struct pglist_data;
123
124/*
041711ce 125 * Add a wild amount of padding here to ensure data fall into separate
1da177e4
LT
126 * cachelines. There are very few zone structures in the machine, so space
127 * consumption is not a concern here.
128 */
129#if defined(CONFIG_SMP)
130struct zone_padding {
131 char x[0];
22fc6ecc 132} ____cacheline_internodealigned_in_smp;
1da177e4
LT
133#define ZONE_PADDING(name) struct zone_padding name;
134#else
135#define ZONE_PADDING(name)
136#endif
137
3a321d2a
KW
138#ifdef CONFIG_NUMA
139enum numa_stat_item {
140 NUMA_HIT, /* allocated in intended node */
141 NUMA_MISS, /* allocated in non intended node */
142 NUMA_FOREIGN, /* was intended here, hit elsewhere */
143 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
144 NUMA_LOCAL, /* allocation from local node */
145 NUMA_OTHER, /* allocation from other node */
f19298b9 146 NR_VM_NUMA_EVENT_ITEMS
3a321d2a
KW
147};
148#else
f19298b9 149#define NR_VM_NUMA_EVENT_ITEMS 0
3a321d2a
KW
150#endif
151
2244b95a 152enum zone_stat_item {
51ed4491 153 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 154 NR_FREE_PAGES,
71c799f4
MK
155 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
156 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
157 NR_ZONE_ACTIVE_ANON,
158 NR_ZONE_INACTIVE_FILE,
159 NR_ZONE_ACTIVE_FILE,
160 NR_ZONE_UNEVICTABLE,
5a1c84b4 161 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
5344b7e6 162 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
c6a7f572 163 /* Second 128 byte cacheline */
d2c5e30c 164 NR_BOUNCE,
91537fee
MK
165#if IS_ENABLED(CONFIG_ZSMALLOC)
166 NR_ZSPAGES, /* allocated in zsmalloc */
ca889e6c 167#endif
d1ce749a 168 NR_FREE_CMA_PAGES,
2244b95a
CL
169 NR_VM_ZONE_STAT_ITEMS };
170
75ef7184 171enum node_stat_item {
599d0c95
MG
172 NR_LRU_BASE,
173 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
174 NR_ACTIVE_ANON, /* " " " " " */
175 NR_INACTIVE_FILE, /* " " " " " */
176 NR_ACTIVE_FILE, /* " " " " " */
177 NR_UNEVICTABLE, /* " " " " " */
d42f3245
RG
178 NR_SLAB_RECLAIMABLE_B,
179 NR_SLAB_UNRECLAIMABLE_B,
599d0c95
MG
180 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
181 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
68d48e6a 182 WORKINGSET_NODES,
170b04b7
JK
183 WORKINGSET_REFAULT_BASE,
184 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
185 WORKINGSET_REFAULT_FILE,
186 WORKINGSET_ACTIVATE_BASE,
187 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
188 WORKINGSET_ACTIVATE_FILE,
189 WORKINGSET_RESTORE_BASE,
190 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
191 WORKINGSET_RESTORE_FILE,
1e6b1085 192 WORKINGSET_NODERECLAIM,
4b9d0fab 193 NR_ANON_MAPPED, /* Mapped anonymous pages */
50658e2e
MG
194 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
195 only modified from process context */
11fb9989
MG
196 NR_FILE_PAGES,
197 NR_FILE_DIRTY,
198 NR_WRITEBACK,
199 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
200 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
201 NR_SHMEM_THPS,
202 NR_SHMEM_PMDMAPPED,
60fbf0ab
SL
203 NR_FILE_THPS,
204 NR_FILE_PMDMAPPED,
11fb9989 205 NR_ANON_THPS,
c4a25635
MG
206 NR_VMSCAN_WRITE,
207 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
208 NR_DIRTIED, /* page dirtyings since bootup */
209 NR_WRITTEN, /* page writings since bootup */
8cd7c588 210 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */
b29940c1 211 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
1970dc6f
JH
212 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
213 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
991e7673
SB
214 NR_KERNEL_STACK_KB, /* measured in KiB */
215#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
216 NR_KERNEL_SCS_KB, /* measured in KiB */
217#endif
f0c0c115 218 NR_PAGETABLE, /* used for pagetables */
b6038942
SB
219#ifdef CONFIG_SWAP
220 NR_SWAPCACHE,
e39bb6be
HY
221#endif
222#ifdef CONFIG_NUMA_BALANCING
223 PGPROMOTE_SUCCESS, /* promote successfully */
c6833e10 224 PGPROMOTE_CANDIDATE, /* candidate pages to promote */
b6038942 225#endif
75ef7184
MG
226 NR_VM_NODE_STAT_ITEMS
227};
228
69473e5d
MS
229/*
230 * Returns true if the item should be printed in THPs (/proc/vmstat
231 * currently prints number of anon, file and shmem THPs. But the item
232 * is charged in pages).
233 */
234static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
235{
236 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
237 return false;
238
bf9ecead 239 return item == NR_ANON_THPS ||
57b2847d 240 item == NR_FILE_THPS ||
a1528e21 241 item == NR_SHMEM_THPS ||
380780e7
MS
242 item == NR_SHMEM_PMDMAPPED ||
243 item == NR_FILE_PMDMAPPED;
69473e5d
MS
244}
245
ea426c2a
RG
246/*
247 * Returns true if the value is measured in bytes (most vmstat values are
248 * measured in pages). This defines the API part, the internal representation
249 * might be different.
250 */
251static __always_inline bool vmstat_item_in_bytes(int idx)
252{
d42f3245
RG
253 /*
254 * Global and per-node slab counters track slab pages.
255 * It's expected that changes are multiples of PAGE_SIZE.
256 * Internally values are stored in pages.
257 *
258 * Per-memcg and per-lruvec counters track memory, consumed
259 * by individual slab objects. These counters are actually
260 * byte-precise.
261 */
262 return (idx == NR_SLAB_RECLAIMABLE_B ||
263 idx == NR_SLAB_UNRECLAIMABLE_B);
ea426c2a
RG
264}
265
4f98a2fe
RR
266/*
267 * We do arithmetic on the LRU lists in various places in the code,
268 * so it is important to keep the active lists LRU_ACTIVE higher in
269 * the array than the corresponding inactive lists, and to keep
270 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
271 *
272 * This has to be kept in sync with the statistics in zone_stat_item
273 * above and the descriptions in vmstat_text in mm/vmstat.c
274 */
275#define LRU_BASE 0
276#define LRU_ACTIVE 1
277#define LRU_FILE 2
278
b69408e8 279enum lru_list {
4f98a2fe
RR
280 LRU_INACTIVE_ANON = LRU_BASE,
281 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
282 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
283 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 284 LRU_UNEVICTABLE,
894bc310
LS
285 NR_LRU_LISTS
286};
b69408e8 287
8cd7c588
MG
288enum vmscan_throttle_state {
289 VMSCAN_THROTTLE_WRITEBACK,
d818fca1 290 VMSCAN_THROTTLE_ISOLATED,
69392a40 291 VMSCAN_THROTTLE_NOPROGRESS,
1b4e3f26 292 VMSCAN_THROTTLE_CONGESTED,
8cd7c588
MG
293 NR_VMSCAN_THROTTLE,
294};
295
4111304d 296#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 297
4111304d 298#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 299
b91ac374 300static inline bool is_file_lru(enum lru_list lru)
4f98a2fe 301{
4111304d 302 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
303}
304
b91ac374 305static inline bool is_active_lru(enum lru_list lru)
b69408e8 306{
4111304d 307 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
308}
309
e9c2dbc8
YY
310#define WORKINGSET_ANON 0
311#define WORKINGSET_FILE 1
ed017373
YZ
312#define ANON_AND_FILE 2
313
1b05117d
JW
314enum lruvec_flags {
315 LRUVEC_CONGESTED, /* lruvec has many dirty pages
316 * backed by a congested BDI
317 */
318};
319
6290df54 320struct lruvec {
23047a96 321 struct list_head lists[NR_LRU_LISTS];
6168d0da
AS
322 /* per lruvec lru_lock for memcg */
323 spinlock_t lru_lock;
1431d4d1
JW
324 /*
325 * These track the cost of reclaiming one LRU - file or anon -
326 * over the other. As the observed cost of reclaiming one LRU
327 * increases, the reclaim scan balance tips toward the other.
328 */
329 unsigned long anon_cost;
330 unsigned long file_cost;
31d8fcac
JW
331 /* Non-resident age, driven by LRU movement */
332 atomic_long_t nonresident_age;
ed017373
YZ
333 /* Refaults at the time of last reclaim cycle */
334 unsigned long refaults[ANON_AND_FILE];
1b05117d
JW
335 /* Various lruvec state flags (enum lruvec_flags) */
336 unsigned long flags;
c255a458 337#ifdef CONFIG_MEMCG
599d0c95 338 struct pglist_data *pgdat;
7f5e86c2 339#endif
6290df54
JW
340};
341
653e003d 342/* Isolate unmapped pages */
f3fd4a61 343#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
c8244935 344/* Isolate for asynchronous migration */
f3fd4a61 345#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
e46a2879
MK
346/* Isolate unevictable pages */
347#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
4356f21d
MK
348
349/* LRU Isolation modes. */
9efeccac 350typedef unsigned __bitwise isolate_mode_t;
4356f21d 351
41858966
MG
352enum zone_watermarks {
353 WMARK_MIN,
354 WMARK_LOW,
355 WMARK_HIGH,
c574bbe9 356 WMARK_PROMO,
41858966
MG
357 NR_WMARK
358};
359
44042b44 360/*
5d0a661d
MG
361 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
362 * for THP which will usually be GFP_MOVABLE. Even if it is another type,
363 * it should not contribute to serious fragmentation causing THP allocation
364 * failures.
44042b44
MG
365 */
366#ifdef CONFIG_TRANSPARENT_HUGEPAGE
367#define NR_PCP_THP 1
368#else
369#define NR_PCP_THP 0
370#endif
5d0a661d
MG
371#define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
372#define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
44042b44
MG
373
374/*
375 * Shift to encode migratetype and order in the same integer, with order
376 * in the least significant bits.
377 */
378#define NR_PCP_ORDER_WIDTH 8
379#define NR_PCP_ORDER_MASK ((1<<NR_PCP_ORDER_WIDTH) - 1)
380
1c30844d
MG
381#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
382#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
383#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
384#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
41858966 385
dbbee9d5 386/* Fields and list protected by pagesets local_lock in page_alloc.c */
1da177e4 387struct per_cpu_pages {
4b23a68f 388 spinlock_t lock; /* Protects lists field */
1da177e4 389 int count; /* number of pages in the list */
1da177e4
LT
390 int high; /* high watermark, emptying needed */
391 int batch; /* chunk size for buddy add/remove */
3b12e7e9 392 short free_factor; /* batch scaling factor during free */
28f836b6 393#ifdef CONFIG_NUMA
3b12e7e9 394 short expire; /* When 0, remote pagesets are drained */
28f836b6 395#endif
5f8dcc21
MG
396
397 /* Lists of pages, one per migrate type stored on the pcp-lists */
44042b44 398 struct list_head lists[NR_PCP_LISTS];
5d0a661d 399} ____cacheline_aligned_in_smp;
1da177e4 400
28f836b6 401struct per_cpu_zonestat {
2244b95a
CL
402#ifdef CONFIG_SMP
403 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
28f836b6
MG
404 s8 stat_threshold;
405#endif
406#ifdef CONFIG_NUMA
f19298b9
MG
407 /*
408 * Low priority inaccurate counters that are only folded
409 * on demand. Use a large type to avoid the overhead of
410 * folding during refresh_cpu_vm_stats.
411 */
412 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
2244b95a 413#endif
99dcc3e5 414};
e7c8d5c9 415
75ef7184
MG
416struct per_cpu_nodestat {
417 s8 stat_threshold;
418 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
419};
420
97965478
CL
421#endif /* !__GENERATING_BOUNDS.H */
422
2f1b6248
CL
423enum zone_type {
424 /*
734f9246
NSJ
425 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
426 * to DMA to all of the addressable memory (ZONE_NORMAL).
427 * On architectures where this area covers the whole 32 bit address
428 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
429 * DMA addressing constraints. This distinction is important as a 32bit
430 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
431 * platforms may need both zones as they support peripherals with
432 * different DMA addressing limitations.
2f1b6248 433 */
734f9246 434#ifdef CONFIG_ZONE_DMA
2f1b6248 435 ZONE_DMA,
4b51d669 436#endif
fb0e7942 437#ifdef CONFIG_ZONE_DMA32
2f1b6248 438 ZONE_DMA32,
fb0e7942 439#endif
2f1b6248
CL
440 /*
441 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
442 * performed on pages in ZONE_NORMAL if the DMA devices support
443 * transfers to all addressable memory.
444 */
445 ZONE_NORMAL,
e53ef38d 446#ifdef CONFIG_HIGHMEM
2f1b6248
CL
447 /*
448 * A memory area that is only addressable by the kernel through
449 * mapping portions into its own address space. This is for example
450 * used by i386 to allow the kernel to address the memory beyond
451 * 900MB. The kernel will set up special mappings (page
452 * table entries on i386) for each page that the kernel needs to
453 * access.
454 */
455 ZONE_HIGHMEM,
e53ef38d 456#endif
9181a980
DH
457 /*
458 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
459 * movable pages with few exceptional cases described below. Main use
460 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
461 * likely to succeed, and to locally limit unmovable allocations - e.g.,
462 * to increase the number of THP/huge pages. Notable special cases are:
463 *
464 * 1. Pinned pages: (long-term) pinning of movable pages might
d1e153fe
PT
465 * essentially turn such pages unmovable. Therefore, we do not allow
466 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
467 * faulted, they come from the right zone right away. However, it is
468 * still possible that address space already has pages in
469 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has
470 * touches that memory before pinning). In such case we migrate them
471 * to a different zone. When migration fails - pinning fails.
9181a980
DH
472 * 2. memblock allocations: kernelcore/movablecore setups might create
473 * situations where ZONE_MOVABLE contains unmovable allocations
474 * after boot. Memory offlining and allocations fail early.
475 * 3. Memory holes: kernelcore/movablecore setups might create very rare
476 * situations where ZONE_MOVABLE contains memory holes after boot,
477 * for example, if we have sections that are only partially
478 * populated. Memory offlining and allocations fail early.
479 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
480 * memory offlining, such pages cannot be allocated.
481 * 5. Unmovable PG_offline pages: in paravirtualized environments,
482 * hotplugged memory blocks might only partially be managed by the
483 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
484 * parts not manged by the buddy are unmovable PG_offline pages. In
485 * some cases (virtio-mem), such pages can be skipped during
486 * memory offlining, however, cannot be moved/allocated. These
487 * techniques might use alloc_contig_range() to hide previously
488 * exposed pages from the buddy again (e.g., to implement some sort
489 * of memory unplug in virtio-mem).
9afaf30f
PT
490 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
491 * situations where ZERO_PAGE(0) which is allocated differently
492 * on different platforms may end up in a movable zone. ZERO_PAGE(0)
493 * cannot be migrated.
a08a2ae3
OS
494 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
495 * memory to the MOVABLE zone, the vmemmap pages are also placed in
496 * such zone. Such pages cannot be really moved around as they are
497 * self-stored in the range, but they are treated as movable when
498 * the range they describe is about to be offlined.
9181a980
DH
499 *
500 * In general, no unmovable allocations that degrade memory offlining
501 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
502 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
503 * if has_unmovable_pages() states that there are no unmovable pages,
504 * there can be false negatives).
505 */
2a1e274a 506 ZONE_MOVABLE,
033fbae9
DW
507#ifdef CONFIG_ZONE_DEVICE
508 ZONE_DEVICE,
509#endif
97965478 510 __MAX_NR_ZONES
033fbae9 511
2f1b6248 512};
1da177e4 513
97965478
CL
514#ifndef __GENERATING_BOUNDS_H
515
ed017373
YZ
516#define ASYNC_AND_SYNC 2
517
1da177e4 518struct zone {
3484b2de 519 /* Read-mostly fields */
41858966
MG
520
521 /* zone watermarks, access with *_wmark_pages(zone) macros */
a9214443 522 unsigned long _watermark[NR_WMARK];
1c30844d 523 unsigned long watermark_boost;
41858966 524
0aaa29a5
MG
525 unsigned long nr_reserved_highatomic;
526
1da177e4 527 /*
89903327
AM
528 * We don't know if the memory that we're going to allocate will be
529 * freeable or/and it will be released eventually, so to avoid totally
530 * wasting several GB of ram we must reserve some of the lower zone
531 * memory (otherwise we risk to run OOM on the lower zones despite
532 * there being tons of freeable ram on the higher zones). This array is
533 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
534 * changes.
1da177e4 535 */
3484b2de 536 long lowmem_reserve[MAX_NR_ZONES];
ab8fabd4 537
e7c8d5c9 538#ifdef CONFIG_NUMA
d5f541ed 539 int node;
3484b2de 540#endif
3484b2de 541 struct pglist_data *zone_pgdat;
28f836b6
MG
542 struct per_cpu_pages __percpu *per_cpu_pageset;
543 struct per_cpu_zonestat __percpu *per_cpu_zonestats;
952eaf81
VB
544 /*
545 * the high and batch values are copied to individual pagesets for
546 * faster access
547 */
548 int pageset_high;
549 int pageset_batch;
3484b2de 550
835c134e
MG
551#ifndef CONFIG_SPARSEMEM
552 /*
d9c23400 553 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
554 * In SPARSEMEM, this map is stored in struct mem_section
555 */
556 unsigned long *pageblock_flags;
557#endif /* CONFIG_SPARSEMEM */
558
1da177e4
LT
559 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
560 unsigned long zone_start_pfn;
561
bdc8cb98 562 /*
9feedc9d
JL
563 * spanned_pages is the total pages spanned by the zone, including
564 * holes, which is calculated as:
565 * spanned_pages = zone_end_pfn - zone_start_pfn;
bdc8cb98 566 *
9feedc9d
JL
567 * present_pages is physical pages existing within the zone, which
568 * is calculated as:
8761e31c 569 * present_pages = spanned_pages - absent_pages(pages in holes);
9feedc9d 570 *
4b097002
DH
571 * present_early_pages is present pages existing within the zone
572 * located on memory available since early boot, excluding hotplugged
573 * memory.
574 *
9feedc9d
JL
575 * managed_pages is present pages managed by the buddy system, which
576 * is calculated as (reserved_pages includes pages allocated by the
577 * bootmem allocator):
578 * managed_pages = present_pages - reserved_pages;
579 *
3c381db1
DH
580 * cma pages is present pages that are assigned for CMA use
581 * (MIGRATE_CMA).
582 *
9feedc9d
JL
583 * So present_pages may be used by memory hotplug or memory power
584 * management logic to figure out unmanaged pages by checking
585 * (present_pages - managed_pages). And managed_pages should be used
586 * by page allocator and vm scanner to calculate all kinds of watermarks
587 * and thresholds.
588 *
589 * Locking rules:
590 *
591 * zone_start_pfn and spanned_pages are protected by span_seqlock.
592 * It is a seqlock because it has to be read outside of zone->lock,
593 * and it is done in the main allocator path. But, it is written
594 * quite infrequently.
595 *
596 * The span_seq lock is declared along with zone->lock because it is
bdc8cb98
DH
597 * frequently read in proximity to zone->lock. It's good to
598 * give them a chance of being in the same cacheline.
9feedc9d 599 *
c3d5f5f0 600 * Write access to present_pages at runtime should be protected by
e8da368a
YZL
601 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
602 * present_pages should use get_online_mems() to get a stable value.
bdc8cb98 603 */
9705bea5 604 atomic_long_t managed_pages;
9feedc9d
JL
605 unsigned long spanned_pages;
606 unsigned long present_pages;
4b097002
DH
607#if defined(CONFIG_MEMORY_HOTPLUG)
608 unsigned long present_early_pages;
609#endif
3c381db1
DH
610#ifdef CONFIG_CMA
611 unsigned long cma_pages;
612#endif
3484b2de
MG
613
614 const char *name;
1da177e4 615
ad53f92e
JK
616#ifdef CONFIG_MEMORY_ISOLATION
617 /*
618 * Number of isolated pageblock. It is used to solve incorrect
619 * freepage counting problem due to racy retrieving migratetype
620 * of pageblock. Protected by zone->lock.
621 */
622 unsigned long nr_isolate_pageblock;
623#endif
624
3484b2de
MG
625#ifdef CONFIG_MEMORY_HOTPLUG
626 /* see spanned/present_pages for more description */
627 seqlock_t span_seqlock;
628#endif
629
9dcb8b68 630 int initialized;
3484b2de 631
0f661148 632 /* Write-intensive fields used from the page allocator */
3484b2de 633 ZONE_PADDING(_pad1_)
0f661148 634
3484b2de
MG
635 /* free areas of different sizes */
636 struct free_area free_area[MAX_ORDER];
637
638 /* zone flags, see below */
639 unsigned long flags;
640
0f661148 641 /* Primarily protects free_area */
a368ab67
MG
642 spinlock_t lock;
643
0f661148 644 /* Write-intensive fields used by compaction and vmstats. */
3484b2de
MG
645 ZONE_PADDING(_pad2_)
646
3484b2de
MG
647 /*
648 * When free pages are below this point, additional steps are taken
649 * when reading the number of free pages to avoid per-cpu counter
650 * drift allowing watermarks to be breached
651 */
652 unsigned long percpu_drift_mark;
653
654#if defined CONFIG_COMPACTION || defined CONFIG_CMA
655 /* pfn where compaction free scanner should start */
656 unsigned long compact_cached_free_pfn;
ed017373
YZ
657 /* pfn where compaction migration scanner should start */
658 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
e332f741
MG
659 unsigned long compact_init_migrate_pfn;
660 unsigned long compact_init_free_pfn;
3484b2de
MG
661#endif
662
663#ifdef CONFIG_COMPACTION
664 /*
665 * On compaction failure, 1<<compact_defer_shift compactions
666 * are skipped before trying again. The number attempted since
667 * last failure is tracked with compact_considered.
860b3272 668 * compact_order_failed is the minimum compaction failed order.
3484b2de
MG
669 */
670 unsigned int compact_considered;
671 unsigned int compact_defer_shift;
672 int compact_order_failed;
673#endif
674
675#if defined CONFIG_COMPACTION || defined CONFIG_CMA
676 /* Set to true when the PG_migrate_skip bits should be cleared */
677 bool compact_blockskip_flush;
678#endif
679
7cf91a98
JK
680 bool contiguous;
681
3484b2de
MG
682 ZONE_PADDING(_pad3_)
683 /* Zone statistics */
684 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
f19298b9 685 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
22fc6ecc 686} ____cacheline_internodealigned_in_smp;
1da177e4 687
599d0c95 688enum pgdat_flags {
599d0c95 689 PGDAT_DIRTY, /* reclaim scanning has recently found
d43006d5
MG
690 * many dirty file pages at the tail
691 * of the LRU.
692 */
599d0c95 693 PGDAT_WRITEBACK, /* reclaim scanning has recently found
283aba9f
MG
694 * many pages under writeback
695 */
a5f5f91d 696 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
57054651 697};
e815af95 698
73444bc4
MG
699enum zone_flags {
700 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
701 * Cleared when kswapd is woken.
702 */
c49c2c47 703 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */
73444bc4
MG
704};
705
9705bea5
AK
706static inline unsigned long zone_managed_pages(struct zone *zone)
707{
708 return (unsigned long)atomic_long_read(&zone->managed_pages);
709}
710
3c381db1
DH
711static inline unsigned long zone_cma_pages(struct zone *zone)
712{
713#ifdef CONFIG_CMA
714 return zone->cma_pages;
715#else
716 return 0;
717#endif
718}
719
f9228b20 720static inline unsigned long zone_end_pfn(const struct zone *zone)
108bcc96
CS
721{
722 return zone->zone_start_pfn + zone->spanned_pages;
723}
724
725static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
726{
727 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
728}
729
2a6e3ebe
CS
730static inline bool zone_is_initialized(struct zone *zone)
731{
9dcb8b68 732 return zone->initialized;
2a6e3ebe
CS
733}
734
735static inline bool zone_is_empty(struct zone *zone)
736{
737 return zone->spanned_pages == 0;
738}
739
5bb88dc5
AS
740#ifndef BUILD_VDSO32_64
741/*
742 * The zone field is never updated after free_area_init_core()
743 * sets it, so none of the operations on it need to be atomic.
744 */
745
746/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
747#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
748#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
749#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
750#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
751#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
752
753/*
754 * Define the bit shifts to access each section. For non-existent
755 * sections we define the shift as 0; that plus a 0 mask ensures
756 * the compiler will optimise away reference to them.
757 */
758#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
759#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
760#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
761#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
762#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
763
764/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
765#ifdef NODE_NOT_IN_PAGE_FLAGS
766#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
767#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \
768 SECTIONS_PGOFF : ZONES_PGOFF)
769#else
770#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
771#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \
772 NODES_PGOFF : ZONES_PGOFF)
773#endif
774
775#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
776
777#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
778#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
779#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
780#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
781#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
782#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
783
784static inline enum zone_type page_zonenum(const struct page *page)
785{
786 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
787 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
788}
789
790static inline enum zone_type folio_zonenum(const struct folio *folio)
791{
792 return page_zonenum(&folio->page);
793}
794
795#ifdef CONFIG_ZONE_DEVICE
796static inline bool is_zone_device_page(const struct page *page)
797{
798 return page_zonenum(page) == ZONE_DEVICE;
799}
800extern void memmap_init_zone_device(struct zone *, unsigned long,
801 unsigned long, struct dev_pagemap *);
802#else
803static inline bool is_zone_device_page(const struct page *page)
804{
805 return false;
806}
807#endif
808
809static inline bool folio_is_zone_device(const struct folio *folio)
810{
811 return is_zone_device_page(&folio->page);
812}
813
814static inline bool is_zone_movable_page(const struct page *page)
815{
816 return page_zonenum(page) == ZONE_MOVABLE;
817}
818#endif
819
f1dd2cd1
MH
820/*
821 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
822 * intersection with the given zone
823 */
824static inline bool zone_intersects(struct zone *zone,
825 unsigned long start_pfn, unsigned long nr_pages)
826{
827 if (zone_is_empty(zone))
828 return false;
829 if (start_pfn >= zone_end_pfn(zone) ||
830 start_pfn + nr_pages <= zone->zone_start_pfn)
831 return false;
832
833 return true;
834}
835
1da177e4
LT
836/*
837 * The "priority" of VM scanning is how much of the queues we will scan in one
838 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
839 * queues ("queue_length >> 12") during an aging round.
840 */
841#define DEF_PRIORITY 12
842
9276b1bc
PJ
843/* Maximum number of zones on a zonelist */
844#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
845
c00eb15a
YB
846enum {
847 ZONELIST_FALLBACK, /* zonelist with fallback */
9276b1bc 848#ifdef CONFIG_NUMA
c00eb15a
YB
849 /*
850 * The NUMA zonelists are doubled because we need zonelists that
851 * restrict the allocations to a single node for __GFP_THISNODE.
852 */
853 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
9276b1bc 854#endif
c00eb15a
YB
855 MAX_ZONELISTS
856};
9276b1bc 857
dd1a239f
MG
858/*
859 * This struct contains information about a zone in a zonelist. It is stored
860 * here to avoid dereferences into large structures and lookups of tables
861 */
862struct zoneref {
863 struct zone *zone; /* Pointer to actual zone */
864 int zone_idx; /* zone_idx(zoneref->zone) */
865};
866
1da177e4
LT
867/*
868 * One allocation request operates on a zonelist. A zonelist
869 * is a list of zones, the first one is the 'goal' of the
870 * allocation, the other zones are fallback zones, in decreasing
871 * priority.
872 *
dd1a239f
MG
873 * To speed the reading of the zonelist, the zonerefs contain the zone index
874 * of the entry being read. Helper functions to access information given
875 * a struct zoneref are
876 *
877 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
878 * zonelist_zone_idx() - Return the index of the zone for an entry
879 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
880 */
881struct zonelist {
dd1a239f 882 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1da177e4
LT
883};
884
bb1c50d3
MR
885/*
886 * The array of struct pages for flatmem.
887 * It must be declared for SPARSEMEM as well because there are configurations
888 * that rely on that.
889 */
5b99cd0e 890extern struct page *mem_map;
5b99cd0e 891
364c1eeb
YS
892#ifdef CONFIG_TRANSPARENT_HUGEPAGE
893struct deferred_split {
894 spinlock_t split_queue_lock;
895 struct list_head split_queue;
896 unsigned long split_queue_len;
897};
898#endif
899
1da177e4 900/*
1da177e4 901 * On NUMA machines, each NUMA node would have a pg_data_t to describe
618b8c20
NB
902 * it's memory layout. On UMA machines there is a single pglist_data which
903 * describes the whole memory.
1da177e4
LT
904 *
905 * Memory statistics and page replacement data structures are maintained on a
906 * per-zone basis.
907 */
1da177e4 908typedef struct pglist_data {
496df3d3
BW
909 /*
910 * node_zones contains just the zones for THIS node. Not all of the
911 * zones may be populated, but it is the full list. It is referenced by
912 * this node's node_zonelists as well as other node's node_zonelists.
913 */
1da177e4 914 struct zone node_zones[MAX_NR_ZONES];
496df3d3
BW
915
916 /*
917 * node_zonelists contains references to all zones in all nodes.
918 * Generally the first zones will be references to this node's
919 * node_zones.
920 */
523b9458 921 struct zonelist node_zonelists[MAX_ZONELISTS];
496df3d3
BW
922
923 int nr_zones; /* number of populated zones in this node */
43b02ba9 924#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */
1da177e4 925 struct page *node_mem_map;
eefa864b
JK
926#ifdef CONFIG_PAGE_EXTENSION
927 struct page_ext *node_page_ext;
928#endif
d41dee36 929#endif
3a2d7fa8 930#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
208d54e5 931 /*
fa004ab7
WY
932 * Must be held any time you expect node_start_pfn,
933 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
3d060856
PT
934 * Also synchronizes pgdat->first_deferred_pfn during deferred page
935 * init.
208d54e5 936 *
114d4b79 937 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
3a2d7fa8
PT
938 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
939 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
114d4b79 940 *
72c3b51b 941 * Nests above zone->lock and zone->span_seqlock
208d54e5
DH
942 */
943 spinlock_t node_size_lock;
944#endif
1da177e4
LT
945 unsigned long node_start_pfn;
946 unsigned long node_present_pages; /* total number of physical pages */
947 unsigned long node_spanned_pages; /* total size of physical page
948 range, including holes */
949 int node_id;
1da177e4 950 wait_queue_head_t kswapd_wait;
5515061d 951 wait_queue_head_t pfmemalloc_wait;
8cd7c588
MG
952
953 /* workqueues for throttling reclaim for different reasons. */
954 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
955
956 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
957 unsigned long nr_reclaim_start; /* nr pages written while throttled
958 * when throttling started. */
b4a0215e
KW
959#ifdef CONFIG_MEMORY_HOTPLUG
960 struct mutex kswapd_lock;
961#endif
962 struct task_struct *kswapd; /* Protected by kswapd_lock */
38087d9b 963 int kswapd_order;
97a225e6 964 enum zone_type kswapd_highest_zoneidx;
38087d9b 965
c73322d0
JW
966 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
967
698b1b30
VB
968#ifdef CONFIG_COMPACTION
969 int kcompactd_max_order;
97a225e6 970 enum zone_type kcompactd_highest_zoneidx;
698b1b30
VB
971 wait_queue_head_t kcompactd_wait;
972 struct task_struct *kcompactd;
65d759c8 973 bool proactive_compact_trigger;
8177a420 974#endif
281e3726
MG
975 /*
976 * This is a per-node reserve of pages that are not available
977 * to userspace allocations.
978 */
979 unsigned long totalreserve_pages;
980
a5f5f91d
MG
981#ifdef CONFIG_NUMA
982 /*
0a3c5772 983 * node reclaim becomes active if more unmapped pages exist.
a5f5f91d
MG
984 */
985 unsigned long min_unmapped_pages;
986 unsigned long min_slab_pages;
987#endif /* CONFIG_NUMA */
988
a52633d8
MG
989 /* Write-intensive fields used by page reclaim */
990 ZONE_PADDING(_pad1_)
3a80a7fa
MG
991
992#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
993 /*
994 * If memory initialisation on large machines is deferred then this
995 * is the first PFN that needs to be initialised.
996 */
997 unsigned long first_deferred_pfn;
998#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
a3d0a918
KS
999
1000#ifdef CONFIG_TRANSPARENT_HUGEPAGE
364c1eeb 1001 struct deferred_split deferred_split_queue;
a3d0a918 1002#endif
75ef7184 1003
c6833e10
HY
1004#ifdef CONFIG_NUMA_BALANCING
1005 /* start time in ms of current promote rate limit period */
1006 unsigned int nbp_rl_start;
1007 /* number of promote candidate pages at start time of current rate limit period */
1008 unsigned long nbp_rl_nr_cand;
c959924b
HY
1009 /* promote threshold in ms */
1010 unsigned int nbp_threshold;
1011 /* start time in ms of current promote threshold adjustment period */
1012 unsigned int nbp_th_start;
1013 /*
1014 * number of promote candidate pages at stat time of current promote
1015 * threshold adjustment period
1016 */
1017 unsigned long nbp_th_nr_cand;
c6833e10 1018#endif
599d0c95 1019 /* Fields commonly accessed by the page reclaim scanner */
867e5e1d
JW
1020
1021 /*
1022 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1023 *
1024 * Use mem_cgroup_lruvec() to look up lruvecs.
1025 */
1026 struct lruvec __lruvec;
599d0c95 1027
599d0c95
MG
1028 unsigned long flags;
1029
1030 ZONE_PADDING(_pad2_)
1031
75ef7184
MG
1032 /* Per-node vmstats */
1033 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1034 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
1da177e4
LT
1035} pg_data_t;
1036
1037#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
1038#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
1039
c6830c22 1040#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
da3649e1 1041#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
c6830c22 1042
da3649e1
CS
1043static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1044{
1045 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1046}
1047
1048static inline bool pgdat_is_empty(pg_data_t *pgdat)
1049{
1050 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
1051}
c6830c22 1052
208d54e5
DH
1053#include <linux/memory_hotplug.h>
1054
72675e13 1055void build_all_zonelists(pg_data_t *pgdat);
5ecd9d40 1056void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
97a225e6 1057 enum zone_type highest_zoneidx);
86a294a8 1058bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 1059 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 1060 long free_pages);
7aeb09f9 1061bool zone_watermark_ok(struct zone *z, unsigned int order,
97a225e6 1062 unsigned long mark, int highest_zoneidx,
c603844b 1063 unsigned int alloc_flags);
7aeb09f9 1064bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 1065 unsigned long mark, int highest_zoneidx);
c1d0da83
LD
1066/*
1067 * Memory initialization context, use to differentiate memory added by
1068 * the platform statically or via memory hotplug interface.
1069 */
1070enum meminit_context {
1071 MEMINIT_EARLY,
1072 MEMINIT_HOTPLUG,
a2f3aa02 1073};
c1d0da83 1074
dc0bbf3b 1075extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
b171e409 1076 unsigned long size);
718127cc 1077
bea8c150 1078extern void lruvec_init(struct lruvec *lruvec);
7f5e86c2 1079
599d0c95 1080static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
7f5e86c2 1081{
c255a458 1082#ifdef CONFIG_MEMCG
599d0c95 1083 return lruvec->pgdat;
7f5e86c2 1084#else
867e5e1d 1085 return container_of(lruvec, struct pglist_data, __lruvec);
7f5e86c2
KK
1086#endif
1087}
1088
7aac7898
LS
1089#ifdef CONFIG_HAVE_MEMORYLESS_NODES
1090int local_memory_node(int node_id);
1091#else
1092static inline int local_memory_node(int node_id) { return node_id; };
1093#endif
1094
1da177e4
LT
1095/*
1096 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1097 */
1098#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
1099
1f90a347
DW
1100#ifdef CONFIG_ZONE_DEVICE
1101static inline bool zone_is_zone_device(struct zone *zone)
1102{
1103 return zone_idx(zone) == ZONE_DEVICE;
1104}
1105#else
1106static inline bool zone_is_zone_device(struct zone *zone)
1107{
1108 return false;
1109}
1110#endif
1111
6aa303de
MG
1112/*
1113 * Returns true if a zone has pages managed by the buddy allocator.
1114 * All the reclaim decisions have to use this function rather than
1115 * populated_zone(). If the whole zone is reserved then we can easily
1116 * end up with populated_zone() && !managed_zone().
1117 */
1118static inline bool managed_zone(struct zone *zone)
1119{
9705bea5 1120 return zone_managed_pages(zone);
6aa303de
MG
1121}
1122
1123/* Returns true if a zone has memory */
1124static inline bool populated_zone(struct zone *zone)
f3fe6512 1125{
6aa303de 1126 return zone->present_pages;
f3fe6512
CK
1127}
1128
c1093b74
PT
1129#ifdef CONFIG_NUMA
1130static inline int zone_to_nid(struct zone *zone)
1131{
1132 return zone->node;
1133}
1134
1135static inline void zone_set_nid(struct zone *zone, int nid)
1136{
1137 zone->node = nid;
1138}
1139#else
1140static inline int zone_to_nid(struct zone *zone)
1141{
1142 return 0;
1143}
1144
1145static inline void zone_set_nid(struct zone *zone, int nid) {}
1146#endif
1147
2a1e274a
MG
1148extern int movable_zone;
1149
2f1b6248 1150static inline int is_highmem_idx(enum zone_type idx)
1da177e4 1151{
e53ef38d 1152#ifdef CONFIG_HIGHMEM
2a1e274a 1153 return (idx == ZONE_HIGHMEM ||
b19bd1c9 1154 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
e53ef38d
CL
1155#else
1156 return 0;
1157#endif
1da177e4
LT
1158}
1159
1da177e4 1160/**
b4a991ec 1161 * is_highmem - helper function to quickly check if a struct zone is a
1da177e4
LT
1162 * highmem zone or not. This is an attempt to keep references
1163 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
198fba41
MR
1164 * @zone: pointer to struct zone variable
1165 * Return: 1 for a highmem zone, 0 otherwise
1da177e4
LT
1166 */
1167static inline int is_highmem(struct zone *zone)
1168{
29f9cb53 1169 return is_highmem_idx(zone_idx(zone));
bb077c3f
KW
1170}
1171
1172#ifdef CONFIG_ZONE_DMA
1173bool has_managed_dma(void);
e53ef38d 1174#else
bb077c3f
KW
1175static inline bool has_managed_dma(void)
1176{
1177 return false;
1da177e4 1178}
bb077c3f 1179#endif
1da177e4 1180
1da177e4
LT
1181/* These two functions are used to setup the per zone pages min values */
1182struct ctl_table;
2374c09b 1183
32927393
CH
1184int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1185 loff_t *);
1186int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1187 size_t *, loff_t *);
d3cda233 1188extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
32927393
CH
1189int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1190 size_t *, loff_t *);
74f44822
MG
1191int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
1192 void *, size_t *, loff_t *);
9614634f 1193int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
32927393 1194 void *, size_t *, loff_t *);
0ff38490 1195int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
32927393
CH
1196 void *, size_t *, loff_t *);
1197int numa_zonelist_order_handler(struct ctl_table *, int,
1198 void *, size_t *, loff_t *);
74f44822 1199extern int percpu_pagelist_high_fraction;
f0c0b2b8 1200extern char numa_zonelist_order[];
c9bff3ee 1201#define NUMA_ZONELIST_ORDER_LEN 16
f0c0b2b8 1202
a9ee6cf5 1203#ifndef CONFIG_NUMA
1da177e4
LT
1204
1205extern struct pglist_data contig_page_data;
351de44f
MG
1206static inline struct pglist_data *NODE_DATA(int nid)
1207{
1208 return &contig_page_data;
1209}
1da177e4 1210
a9ee6cf5 1211#else /* CONFIG_NUMA */
1da177e4
LT
1212
1213#include <asm/mmzone.h>
1214
a9ee6cf5 1215#endif /* !CONFIG_NUMA */
348f8b6c 1216
95144c78
KH
1217extern struct pglist_data *first_online_pgdat(void);
1218extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1219extern struct zone *next_zone(struct zone *zone);
8357f869
KH
1220
1221/**
12d15f0d 1222 * for_each_online_pgdat - helper macro to iterate over all online nodes
198fba41 1223 * @pgdat: pointer to a pg_data_t variable
8357f869
KH
1224 */
1225#define for_each_online_pgdat(pgdat) \
1226 for (pgdat = first_online_pgdat(); \
1227 pgdat; \
1228 pgdat = next_online_pgdat(pgdat))
8357f869
KH
1229/**
1230 * for_each_zone - helper macro to iterate over all memory zones
198fba41 1231 * @zone: pointer to struct zone variable
8357f869
KH
1232 *
1233 * The user only needs to declare the zone variable, for_each_zone
1234 * fills it in.
1235 */
1236#define for_each_zone(zone) \
1237 for (zone = (first_online_pgdat())->node_zones; \
1238 zone; \
1239 zone = next_zone(zone))
1240
ee99c71c
KM
1241#define for_each_populated_zone(zone) \
1242 for (zone = (first_online_pgdat())->node_zones; \
1243 zone; \
1244 zone = next_zone(zone)) \
1245 if (!populated_zone(zone)) \
1246 ; /* do nothing */ \
1247 else
1248
dd1a239f
MG
1249static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1250{
1251 return zoneref->zone;
1252}
1253
1254static inline int zonelist_zone_idx(struct zoneref *zoneref)
1255{
1256 return zoneref->zone_idx;
1257}
1258
1259static inline int zonelist_node_idx(struct zoneref *zoneref)
1260{
c1093b74 1261 return zone_to_nid(zoneref->zone);
dd1a239f
MG
1262}
1263
682a3385
MG
1264struct zoneref *__next_zones_zonelist(struct zoneref *z,
1265 enum zone_type highest_zoneidx,
1266 nodemask_t *nodes);
1267
19770b32
MG
1268/**
1269 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
198fba41
MR
1270 * @z: The cursor used as a starting point for the search
1271 * @highest_zoneidx: The zone index of the highest zone to return
1272 * @nodes: An optional nodemask to filter the zonelist with
19770b32
MG
1273 *
1274 * This function returns the next zone at or below a given zone index that is
1275 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
1276 * search. The zoneref returned is a cursor that represents the current zone
1277 * being examined. It should be advanced by one before calling
1278 * next_zones_zonelist again.
198fba41
MR
1279 *
1280 * Return: the next zone at or below highest_zoneidx within the allowed
1281 * nodemask using a cursor within a zonelist as a starting point
19770b32 1282 */
682a3385 1283static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
19770b32 1284 enum zone_type highest_zoneidx,
682a3385
MG
1285 nodemask_t *nodes)
1286{
1287 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1288 return z;
1289 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1290}
dd1a239f 1291
19770b32
MG
1292/**
1293 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
198fba41
MR
1294 * @zonelist: The zonelist to search for a suitable zone
1295 * @highest_zoneidx: The zone index of the highest zone to return
1296 * @nodes: An optional nodemask to filter the zonelist with
19770b32
MG
1297 *
1298 * This function returns the first zone at or below a given zone index that is
1299 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
1300 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1301 * one before calling.
ea57485a
VB
1302 *
1303 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1304 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1305 * update due to cpuset modification.
198fba41
MR
1306 *
1307 * Return: Zoneref pointer for the first suitable zone found
19770b32 1308 */
dd1a239f 1309static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32 1310 enum zone_type highest_zoneidx,
c33d6c06 1311 nodemask_t *nodes)
54a6eb5c 1312{
c33d6c06 1313 return next_zones_zonelist(zonelist->_zonerefs,
05891fb0 1314 highest_zoneidx, nodes);
54a6eb5c
MG
1315}
1316
19770b32
MG
1317/**
1318 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
198fba41
MR
1319 * @zone: The current zone in the iterator
1320 * @z: The current pointer within zonelist->_zonerefs being iterated
1321 * @zlist: The zonelist being iterated
1322 * @highidx: The zone index of the highest zone to return
1323 * @nodemask: Nodemask allowed by the allocator
19770b32
MG
1324 *
1325 * This iterator iterates though all zones at or below a given zone index and
1326 * within a given nodemask
1327 */
1328#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
c33d6c06 1329 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
19770b32 1330 zone; \
05891fb0 1331 z = next_zones_zonelist(++z, highidx, nodemask), \
c33d6c06
MG
1332 zone = zonelist_zone(z))
1333
30d8ec73 1334#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
c33d6c06
MG
1335 for (zone = z->zone; \
1336 zone; \
1337 z = next_zones_zonelist(++z, highidx, nodemask), \
1338 zone = zonelist_zone(z))
1339
54a6eb5c
MG
1340
1341/**
1342 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
198fba41
MR
1343 * @zone: The current zone in the iterator
1344 * @z: The current pointer within zonelist->zones being iterated
1345 * @zlist: The zonelist being iterated
1346 * @highidx: The zone index of the highest zone to return
54a6eb5c
MG
1347 *
1348 * This iterator iterates though all zones at or below a given zone index.
1349 */
1350#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 1351 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 1352
8ca1b5a4
FT
1353/* Whether the 'nodes' are all movable nodes */
1354static inline bool movable_only_nodes(nodemask_t *nodes)
1355{
1356 struct zonelist *zonelist;
1357 struct zoneref *z;
1358 int nid;
1359
1360 if (nodes_empty(*nodes))
1361 return false;
1362
1363 /*
1364 * We can chose arbitrary node from the nodemask to get a
1365 * zonelist as they are interlinked. We just need to find
1366 * at least one zone that can satisfy kernel allocations.
1367 */
1368 nid = first_node(*nodes);
1369 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1370 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
1371 return (!z->zone) ? true : false;
1372}
1373
1374
d41dee36
AW
1375#ifdef CONFIG_SPARSEMEM
1376#include <asm/sparsemem.h>
1377#endif
1378
2bdaf115
AW
1379#ifdef CONFIG_FLATMEM
1380#define pfn_to_nid(pfn) (0)
1381#endif
1382
d41dee36
AW
1383#ifdef CONFIG_SPARSEMEM
1384
1385/*
d41dee36
AW
1386 * PA_SECTION_SHIFT physical address to/from section number
1387 * PFN_SECTION_SHIFT pfn to/from section number
1388 */
d41dee36
AW
1389#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1390#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1391
1392#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1393
1394#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1395#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1396
835c134e 1397#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1398 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1399
d41dee36
AW
1400#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1401#error Allocator MAX_ORDER exceeds SECTION_SIZE
1402#endif
1403
1dd2bfc8
YI
1404static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1405{
1406 return pfn >> PFN_SECTION_SHIFT;
1407}
1408static inline unsigned long section_nr_to_pfn(unsigned long sec)
1409{
1410 return sec << PFN_SECTION_SHIFT;
1411}
e3c40f37 1412
a539f353
DK
1413#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1414#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1415
f1eca35a 1416#define SUBSECTION_SHIFT 21
9ffc1d19 1417#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
f1eca35a
DW
1418
1419#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1420#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1421#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1422
1423#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1424#error Subsection size exceeds section size
1425#else
1426#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1427#endif
1428
a3619190
DW
1429#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1430#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1431
f1eca35a 1432struct mem_section_usage {
0a9f9f62 1433#ifdef CONFIG_SPARSEMEM_VMEMMAP
f1eca35a 1434 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
0a9f9f62 1435#endif
f1eca35a
DW
1436 /* See declaration of similar field in struct zone */
1437 unsigned long pageblock_flags[0];
1438};
1439
f46edbd1
DW
1440void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1441
d41dee36 1442struct page;
eefa864b 1443struct page_ext;
d41dee36 1444struct mem_section {
29751f69
AW
1445 /*
1446 * This is, logically, a pointer to an array of struct
1447 * pages. However, it is stored with some other magic.
1448 * (see sparse.c::sparse_init_one_section())
1449 *
30c253e6
AW
1450 * Additionally during early boot we encode node id of
1451 * the location of the section here to guide allocation.
1452 * (see sparse.c::memory_present())
1453 *
29751f69
AW
1454 * Making it a UL at least makes someone do a cast
1455 * before using it wrong.
1456 */
1457 unsigned long section_mem_map;
5c0e3066 1458
f1eca35a 1459 struct mem_section_usage *usage;
eefa864b
JK
1460#ifdef CONFIG_PAGE_EXTENSION
1461 /*
0c9ad804 1462 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
eefa864b
JK
1463 * section. (see page_ext.h about this.)
1464 */
1465 struct page_ext *page_ext;
1466 unsigned long pad;
1467#endif
55878e88
CS
1468 /*
1469 * WARNING: mem_section must be a power-of-2 in size for the
1470 * calculation and use of SECTION_ROOT_MASK to make sense.
1471 */
d41dee36
AW
1472};
1473
3e347261
BP
1474#ifdef CONFIG_SPARSEMEM_EXTREME
1475#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1476#else
1477#define SECTIONS_PER_ROOT 1
1478#endif
802f192e 1479
3e347261 1480#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1481#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1482#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1483
3e347261 1484#ifdef CONFIG_SPARSEMEM_EXTREME
83e3c487 1485extern struct mem_section **mem_section;
802f192e 1486#else
3e347261
BP
1487extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1488#endif
d41dee36 1489
f1eca35a
DW
1490static inline unsigned long *section_to_usemap(struct mem_section *ms)
1491{
1492 return ms->usage->pageblock_flags;
1493}
1494
29751f69
AW
1495static inline struct mem_section *__nr_to_section(unsigned long nr)
1496{
a431dbbc
WL
1497 unsigned long root = SECTION_NR_TO_ROOT(nr);
1498
1499 if (unlikely(root >= NR_SECTION_ROOTS))
1500 return NULL;
1501
83e3c487 1502#ifdef CONFIG_SPARSEMEM_EXTREME
a431dbbc 1503 if (!mem_section || !mem_section[root])
83e3c487
KS
1504 return NULL;
1505#endif
a431dbbc 1506 return &mem_section[root][nr & SECTION_ROOT_MASK];
29751f69 1507}
f1eca35a 1508extern size_t mem_section_usage_size(void);
29751f69
AW
1509
1510/*
1511 * We use the lower bits of the mem_map pointer to store
def9b71e
PT
1512 * a little bit of information. The pointer is calculated
1513 * as mem_map - section_nr_to_pfn(pnum). The result is
1514 * aligned to the minimum alignment of the two values:
1515 * 1. All mem_map arrays are page-aligned.
1516 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1517 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1518 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1519 * worst combination is powerpc with 256k pages,
1520 * which results in PFN_SECTION_SHIFT equal 6.
ed7802dd
MS
1521 * To sum it up, at least 6 bits are available on all architectures.
1522 * However, we can exceed 6 bits on some other architectures except
1523 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1524 * with the worst case of 64K pages on arm64) if we make sure the
1525 * exceeded bit is not applicable to powerpc.
29751f69 1526 */
ed7802dd
MS
1527enum {
1528 SECTION_MARKED_PRESENT_BIT,
1529 SECTION_HAS_MEM_MAP_BIT,
1530 SECTION_IS_ONLINE_BIT,
1531 SECTION_IS_EARLY_BIT,
1532#ifdef CONFIG_ZONE_DEVICE
1533 SECTION_TAINT_ZONE_DEVICE_BIT,
1534#endif
1535 SECTION_MAP_LAST_BIT,
1536};
1537
1538#define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT)
1539#define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT)
1540#define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT)
1541#define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT)
1542#ifdef CONFIG_ZONE_DEVICE
1543#define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1544#endif
1545#define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1))
1546#define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT
29751f69
AW
1547
1548static inline struct page *__section_mem_map_addr(struct mem_section *section)
1549{
1550 unsigned long map = section->section_mem_map;
1551 map &= SECTION_MAP_MASK;
1552 return (struct page *)map;
1553}
1554
540557b9 1555static inline int present_section(struct mem_section *section)
29751f69 1556{
802f192e 1557 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1558}
1559
540557b9
AW
1560static inline int present_section_nr(unsigned long nr)
1561{
1562 return present_section(__nr_to_section(nr));
1563}
1564
1565static inline int valid_section(struct mem_section *section)
29751f69 1566{
802f192e 1567 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1568}
1569
326e1b8f
DW
1570static inline int early_section(struct mem_section *section)
1571{
1572 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1573}
1574
29751f69
AW
1575static inline int valid_section_nr(unsigned long nr)
1576{
1577 return valid_section(__nr_to_section(nr));
1578}
1579
2d070eab
MH
1580static inline int online_section(struct mem_section *section)
1581{
1582 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1583}
1584
ed7802dd 1585#ifdef CONFIG_ZONE_DEVICE
1f90a347
DW
1586static inline int online_device_section(struct mem_section *section)
1587{
1588 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1589
1590 return section && ((section->section_mem_map & flags) == flags);
1591}
ed7802dd
MS
1592#else
1593static inline int online_device_section(struct mem_section *section)
1594{
1595 return 0;
1596}
1597#endif
1f90a347 1598
2d070eab
MH
1599static inline int online_section_nr(unsigned long nr)
1600{
1601 return online_section(__nr_to_section(nr));
1602}
1603
1604#ifdef CONFIG_MEMORY_HOTPLUG
1605void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2d070eab
MH
1606void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1607#endif
2d070eab 1608
d41dee36
AW
1609static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1610{
29751f69 1611 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1612}
1613
2491f0a2 1614extern unsigned long __highest_present_section_nr;
c4e1be9e 1615
f46edbd1
DW
1616static inline int subsection_map_index(unsigned long pfn)
1617{
1618 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1619}
1620
1621#ifdef CONFIG_SPARSEMEM_VMEMMAP
1622static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1623{
1624 int idx = subsection_map_index(pfn);
1625
1626 return test_bit(idx, ms->usage->subsection_map);
1627}
1628#else
1629static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1630{
1631 return 1;
1632}
1633#endif
1634
7b7bf499 1635#ifndef CONFIG_HAVE_ARCH_PFN_VALID
51c656ae
MR
1636/**
1637 * pfn_valid - check if there is a valid memory map entry for a PFN
1638 * @pfn: the page frame number to check
1639 *
1640 * Check if there is a valid memory map entry aka struct page for the @pfn.
1641 * Note, that availability of the memory map entry does not imply that
1642 * there is actual usable memory at that @pfn. The struct page may
1643 * represent a hole or an unusable page frame.
1644 *
1645 * Return: 1 for PFNs that have memory map entries and 0 otherwise
1646 */
d41dee36
AW
1647static inline int pfn_valid(unsigned long pfn)
1648{
f46edbd1
DW
1649 struct mem_section *ms;
1650
16c9afc7
AK
1651 /*
1652 * Ensure the upper PAGE_SHIFT bits are clear in the
1653 * pfn. Else it might lead to false positives when
1654 * some of the upper bits are set, but the lower bits
1655 * match a valid pfn.
1656 */
1657 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
1658 return 0;
1659
d41dee36
AW
1660 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1661 return 0;
f1dc0db2 1662 ms = __pfn_to_section(pfn);
f46edbd1
DW
1663 if (!valid_section(ms))
1664 return 0;
1665 /*
1666 * Traditionally early sections always returned pfn_valid() for
1667 * the entire section-sized span.
1668 */
1669 return early_section(ms) || pfn_section_valid(ms, pfn);
d41dee36 1670}
7b7bf499 1671#endif
d41dee36 1672
e03d1f78 1673static inline int pfn_in_present_section(unsigned long pfn)
540557b9
AW
1674{
1675 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1676 return 0;
f1dc0db2 1677 return present_section(__pfn_to_section(pfn));
540557b9
AW
1678}
1679
4c605881
DH
1680static inline unsigned long next_present_section_nr(unsigned long section_nr)
1681{
1682 while (++section_nr <= __highest_present_section_nr) {
1683 if (present_section_nr(section_nr))
1684 return section_nr;
1685 }
1686
1687 return -1;
1688}
1689
d41dee36
AW
1690/*
1691 * These are _only_ used during initialisation, therefore they
1692 * can use __initdata ... They could have names to indicate
1693 * this restriction.
1694 */
1695#ifdef CONFIG_NUMA
161599ff
AW
1696#define pfn_to_nid(pfn) \
1697({ \
1698 unsigned long __pfn_to_nid_pfn = (pfn); \
1699 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1700})
2bdaf115
AW
1701#else
1702#define pfn_to_nid(pfn) (0)
d41dee36
AW
1703#endif
1704
d41dee36
AW
1705void sparse_init(void);
1706#else
1707#define sparse_init() do {} while (0)
28ae55c9 1708#define sparse_index_init(_sec, _nid) do {} while (0)
e03d1f78 1709#define pfn_in_present_section pfn_valid
f46edbd1 1710#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
d41dee36
AW
1711#endif /* CONFIG_SPARSEMEM */
1712
97965478 1713#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1714#endif /* !__ASSEMBLY__ */
1da177e4 1715#endif /* _LINUX_MMZONE_H */