mm/compaction: improve comment for compact_memory tunable knob handler
[linux-2.6-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
1da177e4
LT
24
25struct mempolicy;
26struct anon_vma;
bf181b9f 27struct anon_vma_chain;
4e950f6f 28struct file_ra_state;
e8edc6e0 29struct user_struct;
4e950f6f 30struct writeback_control;
682aa8e1 31struct bdi_writeback;
1da177e4 32
fccc9987 33#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 34extern unsigned long max_mapnr;
fccc9987
JL
35
36static inline void set_max_mapnr(unsigned long limit)
37{
38 max_mapnr = limit;
39}
40#else
41static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
42#endif
43
4481374c 44extern unsigned long totalram_pages;
1da177e4 45extern void * high_memory;
1da177e4
LT
46extern int page_cluster;
47
48#ifdef CONFIG_SYSCTL
49extern int sysctl_legacy_va_layout;
50#else
51#define sysctl_legacy_va_layout 0
52#endif
53
d07e2259
DC
54#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
55extern const int mmap_rnd_bits_min;
56extern const int mmap_rnd_bits_max;
57extern int mmap_rnd_bits __read_mostly;
58#endif
59#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
60extern const int mmap_rnd_compat_bits_min;
61extern const int mmap_rnd_compat_bits_max;
62extern int mmap_rnd_compat_bits __read_mostly;
63#endif
64
1da177e4
LT
65#include <asm/page.h>
66#include <asm/pgtable.h>
67#include <asm/processor.h>
1da177e4 68
79442ed1
TC
69#ifndef __pa_symbol
70#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
71#endif
72
593befa6
DD
73/*
74 * To prevent common memory management code establishing
75 * a zero page mapping on a read fault.
76 * This macro should be defined within <asm/pgtable.h>.
77 * s390 does this to prevent multiplexing of hardware bits
78 * related to the physical page in case of virtualization.
79 */
80#ifndef mm_forbids_zeropage
81#define mm_forbids_zeropage(X) (0)
82#endif
83
c9b1d098 84extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 85extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 86
49f0ce5f
JM
87extern int sysctl_overcommit_memory;
88extern int sysctl_overcommit_ratio;
89extern unsigned long sysctl_overcommit_kbytes;
90
91extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
92 size_t *, loff_t *);
93extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
94 size_t *, loff_t *);
95
1da177e4
LT
96#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
97
27ac792c
AR
98/* to align the pointer to the (next) page boundary */
99#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
100
0fa73b86
AM
101/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
102#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
103
1da177e4
LT
104/*
105 * Linux kernel virtual memory manager primitives.
106 * The idea being to have a "virtual" mm in the same way
107 * we have a virtual fs - giving a cleaner interface to the
108 * mm details, and allowing different kinds of memory mappings
109 * (from shared memory to executable loading to arbitrary
110 * mmap() functions).
111 */
112
c43692e8
CL
113extern struct kmem_cache *vm_area_cachep;
114
1da177e4 115#ifndef CONFIG_MMU
8feae131
DH
116extern struct rb_root nommu_region_tree;
117extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
118
119extern unsigned int kobjsize(const void *objp);
120#endif
121
122/*
605d9288 123 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 124 */
cc2383ec
KK
125#define VM_NONE 0x00000000
126
1da177e4
LT
127#define VM_READ 0x00000001 /* currently active flags */
128#define VM_WRITE 0x00000002
129#define VM_EXEC 0x00000004
130#define VM_SHARED 0x00000008
131
7e2cff42 132/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
133#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
134#define VM_MAYWRITE 0x00000020
135#define VM_MAYEXEC 0x00000040
136#define VM_MAYSHARE 0x00000080
137
138#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 139#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 140#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 141#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 142#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 143
1da177e4
LT
144#define VM_LOCKED 0x00002000
145#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
146
147 /* Used by sys_madvise() */
148#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
149#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
150
151#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
152#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 153#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 154#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 155#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 156#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 157#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 158#define VM_ARCH_2 0x02000000
0103bd16 159#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 160
d9104d1c
CG
161#ifdef CONFIG_MEM_SOFT_DIRTY
162# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
163#else
164# define VM_SOFTDIRTY 0
165#endif
166
b379d790 167#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
168#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
169#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 170#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 171
cc2383ec
KK
172#if defined(CONFIG_X86)
173# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
174#elif defined(CONFIG_PPC)
175# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
176#elif defined(CONFIG_PARISC)
177# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
178#elif defined(CONFIG_METAG)
179# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
180#elif defined(CONFIG_IA64)
181# define VM_GROWSUP VM_ARCH_1
182#elif !defined(CONFIG_MMU)
183# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
184#endif
185
4aae7e43
QR
186#if defined(CONFIG_X86)
187/* MPX specific bounds table or bounds directory */
188# define VM_MPX VM_ARCH_2
189#endif
190
cc2383ec
KK
191#ifndef VM_GROWSUP
192# define VM_GROWSUP VM_NONE
193#endif
194
a8bef8ff
MG
195/* Bits set in the VMA until the stack is in its final location */
196#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
197
1da177e4
LT
198#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
199#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
200#endif
201
202#ifdef CONFIG_STACK_GROWSUP
203#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
204#else
205#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
206#endif
207
b291f000 208/*
78f11a25
AA
209 * Special vmas that are non-mergable, non-mlock()able.
210 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 211 */
9050d7eb 212#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 213
a0715cc2
AT
214/* This mask defines which mm->def_flags a process can inherit its parent */
215#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
216
de60f5f1
EM
217/* This mask is used to clear all the VMA flags used by mlock */
218#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
219
1da177e4
LT
220/*
221 * mapping from the currently active vm_flags protection bits (the
222 * low four bits) to a page protection mask..
223 */
224extern pgprot_t protection_map[16];
225
d0217ac0 226#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
227#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
228#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
229#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
230#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
231#define FAULT_FLAG_TRIED 0x20 /* Second try */
232#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
d0217ac0 233
54cb8821 234/*
d0217ac0 235 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
236 * ->fault function. The vma's ->fault is responsible for returning a bitmask
237 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 238 *
9b4bdd2f 239 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 240 */
d0217ac0
NP
241struct vm_fault {
242 unsigned int flags; /* FAULT_FLAG_xxx flags */
243 pgoff_t pgoff; /* Logical page offset based on vma */
244 void __user *virtual_address; /* Faulting virtual address */
245
2e4cdab0 246 struct page *cow_page; /* Handler may choose to COW */
d0217ac0 247 struct page *page; /* ->fault handlers should return a
83c54070 248 * page here, unless VM_FAULT_NOPAGE
d0217ac0 249 * is set (which is also implied by
83c54070 250 * VM_FAULT_ERROR).
d0217ac0 251 */
8c6e50b0
KS
252 /* for ->map_pages() only */
253 pgoff_t max_pgoff; /* map pages for offset from pgoff till
254 * max_pgoff inclusive */
255 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 256};
1da177e4
LT
257
258/*
259 * These are the virtual MM functions - opening of an area, closing and
260 * unmapping it (needed to keep files on disk up-to-date etc), pointer
261 * to the functions called when a no-page or a wp-page exception occurs.
262 */
263struct vm_operations_struct {
264 void (*open)(struct vm_area_struct * area);
265 void (*close)(struct vm_area_struct * area);
5477e70a 266 int (*mremap)(struct vm_area_struct * area);
d0217ac0 267 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
b96375f7
MW
268 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
269 pmd_t *, unsigned int flags);
8c6e50b0 270 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
271
272 /* notification that a previously read-only page is about to become
273 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 274 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 275
dd906184
BH
276 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
277 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
278
28b2ee20
RR
279 /* called by access_process_vm when get_user_pages() fails, typically
280 * for use by special VMAs that can switch between memory and hardware
281 */
282 int (*access)(struct vm_area_struct *vma, unsigned long addr,
283 void *buf, int len, int write);
78d683e8
AL
284
285 /* Called by the /proc/PID/maps code to ask the vma whether it
286 * has a special name. Returning non-NULL will also cause this
287 * vma to be dumped unconditionally. */
288 const char *(*name)(struct vm_area_struct *vma);
289
1da177e4 290#ifdef CONFIG_NUMA
a6020ed7
LS
291 /*
292 * set_policy() op must add a reference to any non-NULL @new mempolicy
293 * to hold the policy upon return. Caller should pass NULL @new to
294 * remove a policy and fall back to surrounding context--i.e. do not
295 * install a MPOL_DEFAULT policy, nor the task or system default
296 * mempolicy.
297 */
1da177e4 298 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
299
300 /*
301 * get_policy() op must add reference [mpol_get()] to any policy at
302 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
303 * in mm/mempolicy.c will do this automatically.
304 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
305 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
306 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
307 * must return NULL--i.e., do not "fallback" to task or system default
308 * policy.
309 */
1da177e4
LT
310 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
311 unsigned long addr);
312#endif
667a0a06
DV
313 /*
314 * Called by vm_normal_page() for special PTEs to find the
315 * page for @addr. This is useful if the default behavior
316 * (using pte_page()) would not find the correct page.
317 */
318 struct page *(*find_special_page)(struct vm_area_struct *vma,
319 unsigned long addr);
1da177e4
LT
320};
321
322struct mmu_gather;
323struct inode;
324
349aef0b
AM
325#define page_private(page) ((page)->private)
326#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 327
1da177e4
LT
328/*
329 * FIXME: take this include out, include page-flags.h in
330 * files which need it (119 of them)
331 */
332#include <linux/page-flags.h>
71e3aac0 333#include <linux/huge_mm.h>
1da177e4
LT
334
335/*
336 * Methods to modify the page usage count.
337 *
338 * What counts for a page usage:
339 * - cache mapping (page->mapping)
340 * - private data (page->private)
341 * - page mapped in a task's page tables, each mapping
342 * is counted separately
343 *
344 * Also, many kernel routines increase the page count before a critical
345 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
346 */
347
348/*
da6052f7 349 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 350 */
7c8ee9a8
NP
351static inline int put_page_testzero(struct page *page)
352{
309381fe 353 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 354 return atomic_dec_and_test(&page->_count);
7c8ee9a8 355}
1da177e4
LT
356
357/*
7c8ee9a8
NP
358 * Try to grab a ref unless the page has a refcount of zero, return false if
359 * that is the case.
8e0861fa
AK
360 * This can be called when MMU is off so it must not access
361 * any of the virtual mappings.
1da177e4 362 */
7c8ee9a8
NP
363static inline int get_page_unless_zero(struct page *page)
364{
8dc04efb 365 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 366}
1da177e4 367
53df8fdc 368extern int page_is_ram(unsigned long pfn);
124fe20d
DW
369
370enum {
371 REGION_INTERSECTS,
372 REGION_DISJOINT,
373 REGION_MIXED,
374};
375
376int region_intersects(resource_size_t offset, size_t size, const char *type);
53df8fdc 377
48667e7a 378/* Support for virtually mapped pages */
b3bdda02
CL
379struct page *vmalloc_to_page(const void *addr);
380unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 381
0738c4bb
PM
382/*
383 * Determine if an address is within the vmalloc range
384 *
385 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
386 * is no special casing required.
387 */
9e2779fa
CL
388static inline int is_vmalloc_addr(const void *x)
389{
0738c4bb 390#ifdef CONFIG_MMU
9e2779fa
CL
391 unsigned long addr = (unsigned long)x;
392
393 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
394#else
395 return 0;
8ca3ed87 396#endif
0738c4bb 397}
81ac3ad9
KH
398#ifdef CONFIG_MMU
399extern int is_vmalloc_or_module_addr(const void *x);
400#else
934831d0 401static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
402{
403 return 0;
404}
405#endif
9e2779fa 406
39f1f78d
AV
407extern void kvfree(const void *addr);
408
e9da73d6
AA
409static inline void compound_lock(struct page *page)
410{
411#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 412 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
413 bit_spin_lock(PG_compound_lock, &page->flags);
414#endif
415}
416
417static inline void compound_unlock(struct page *page)
418{
419#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 420 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
421 bit_spin_unlock(PG_compound_lock, &page->flags);
422#endif
423}
424
425static inline unsigned long compound_lock_irqsave(struct page *page)
426{
427 unsigned long uninitialized_var(flags);
428#ifdef CONFIG_TRANSPARENT_HUGEPAGE
429 local_irq_save(flags);
430 compound_lock(page);
431#endif
432 return flags;
433}
434
435static inline void compound_unlock_irqrestore(struct page *page,
436 unsigned long flags)
437{
438#ifdef CONFIG_TRANSPARENT_HUGEPAGE
439 compound_unlock(page);
440 local_irq_restore(flags);
441#endif
442}
443
70b50f94
AA
444/*
445 * The atomic page->_mapcount, starts from -1: so that transitions
446 * both from it and to it can be tracked, using atomic_inc_and_test
447 * and atomic_add_negative(-1).
448 */
22b751c3 449static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
450{
451 atomic_set(&(page)->_mapcount, -1);
452}
453
454static inline int page_mapcount(struct page *page)
455{
1d148e21
WY
456 VM_BUG_ON_PAGE(PageSlab(page), page);
457 return atomic_read(&page->_mapcount) + 1;
70b50f94
AA
458}
459
4c21e2f2 460static inline int page_count(struct page *page)
1da177e4 461{
d85f3385 462 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
463}
464
44518d2b
AA
465static inline bool __compound_tail_refcounted(struct page *page)
466{
c761471b 467 return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
44518d2b
AA
468}
469
470/*
471 * This takes a head page as parameter and tells if the
472 * tail page reference counting can be skipped.
473 *
474 * For this to be safe, PageSlab and PageHeadHuge must remain true on
475 * any given page where they return true here, until all tail pins
476 * have been released.
477 */
478static inline bool compound_tail_refcounted(struct page *page)
479{
309381fe 480 VM_BUG_ON_PAGE(!PageHead(page), page);
44518d2b
AA
481 return __compound_tail_refcounted(page);
482}
483
b35a35b5
AA
484static inline void get_huge_page_tail(struct page *page)
485{
486 /*
5eaf1a9e 487 * __split_huge_page_refcount() cannot run from under us.
b35a35b5 488 */
309381fe
SL
489 VM_BUG_ON_PAGE(!PageTail(page), page);
490 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
491 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
1d798ca3 492 if (compound_tail_refcounted(compound_head(page)))
44518d2b 493 atomic_inc(&page->_mapcount);
b35a35b5
AA
494}
495
70b50f94
AA
496extern bool __get_page_tail(struct page *page);
497
1da177e4
LT
498static inline void get_page(struct page *page)
499{
70b50f94
AA
500 if (unlikely(PageTail(page)))
501 if (likely(__get_page_tail(page)))
502 return;
91807063
AA
503 /*
504 * Getting a normal page or the head of a compound page
70b50f94 505 * requires to already have an elevated page->_count.
91807063 506 */
309381fe 507 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
508 atomic_inc(&page->_count);
509}
510
b49af68f
CL
511static inline struct page *virt_to_head_page(const void *x)
512{
513 struct page *page = virt_to_page(x);
ccaafd7f 514
1d798ca3 515 return compound_head(page);
b49af68f
CL
516}
517
7835e98b
NP
518/*
519 * Setup the page count before being freed into the page allocator for
520 * the first time (boot or memory hotplug)
521 */
522static inline void init_page_count(struct page *page)
523{
524 atomic_set(&page->_count, 1);
525}
526
1da177e4 527void put_page(struct page *page);
1d7ea732 528void put_pages_list(struct list_head *pages);
1da177e4 529
8dfcc9ba 530void split_page(struct page *page, unsigned int order);
748446bb 531int split_free_page(struct page *page);
8dfcc9ba 532
33f2ef89
AW
533/*
534 * Compound pages have a destructor function. Provide a
535 * prototype for that function and accessor functions.
f1e61557 536 * These are _only_ valid on the head of a compound page.
33f2ef89 537 */
f1e61557
KS
538typedef void compound_page_dtor(struct page *);
539
540/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
541enum compound_dtor_id {
542 NULL_COMPOUND_DTOR,
543 COMPOUND_PAGE_DTOR,
544#ifdef CONFIG_HUGETLB_PAGE
545 HUGETLB_PAGE_DTOR,
546#endif
547 NR_COMPOUND_DTORS,
548};
549extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
550
551static inline void set_compound_page_dtor(struct page *page,
f1e61557 552 enum compound_dtor_id compound_dtor)
33f2ef89 553{
f1e61557
KS
554 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
555 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
556}
557
558static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
559{
f1e61557
KS
560 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
561 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
562}
563
d00181b9 564static inline unsigned int compound_order(struct page *page)
d85f3385 565{
6d777953 566 if (!PageHead(page))
d85f3385 567 return 0;
e4b294c2 568 return page[1].compound_order;
d85f3385
CL
569}
570
f1e61557 571static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 572{
e4b294c2 573 page[1].compound_order = order;
d85f3385
CL
574}
575
3dece370 576#ifdef CONFIG_MMU
14fd403f
AA
577/*
578 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
579 * servicing faults for write access. In the normal case, do always want
580 * pte_mkwrite. But get_user_pages can cause write faults for mappings
581 * that do not have writing enabled, when used by access_process_vm.
582 */
583static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
584{
585 if (likely(vma->vm_flags & VM_WRITE))
586 pte = pte_mkwrite(pte);
587 return pte;
588}
8c6e50b0
KS
589
590void do_set_pte(struct vm_area_struct *vma, unsigned long address,
591 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 592#endif
14fd403f 593
1da177e4
LT
594/*
595 * Multiple processes may "see" the same page. E.g. for untouched
596 * mappings of /dev/null, all processes see the same page full of
597 * zeroes, and text pages of executables and shared libraries have
598 * only one copy in memory, at most, normally.
599 *
600 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
601 * page_count() == 0 means the page is free. page->lru is then used for
602 * freelist management in the buddy allocator.
da6052f7 603 * page_count() > 0 means the page has been allocated.
1da177e4 604 *
da6052f7
NP
605 * Pages are allocated by the slab allocator in order to provide memory
606 * to kmalloc and kmem_cache_alloc. In this case, the management of the
607 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
608 * unless a particular usage is carefully commented. (the responsibility of
609 * freeing the kmalloc memory is the caller's, of course).
1da177e4 610 *
da6052f7
NP
611 * A page may be used by anyone else who does a __get_free_page().
612 * In this case, page_count still tracks the references, and should only
613 * be used through the normal accessor functions. The top bits of page->flags
614 * and page->virtual store page management information, but all other fields
615 * are unused and could be used privately, carefully. The management of this
616 * page is the responsibility of the one who allocated it, and those who have
617 * subsequently been given references to it.
618 *
619 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
620 * managed by the Linux memory manager: I/O, buffers, swapping etc.
621 * The following discussion applies only to them.
622 *
da6052f7
NP
623 * A pagecache page contains an opaque `private' member, which belongs to the
624 * page's address_space. Usually, this is the address of a circular list of
625 * the page's disk buffers. PG_private must be set to tell the VM to call
626 * into the filesystem to release these pages.
1da177e4 627 *
da6052f7
NP
628 * A page may belong to an inode's memory mapping. In this case, page->mapping
629 * is the pointer to the inode, and page->index is the file offset of the page,
630 * in units of PAGE_CACHE_SIZE.
1da177e4 631 *
da6052f7
NP
632 * If pagecache pages are not associated with an inode, they are said to be
633 * anonymous pages. These may become associated with the swapcache, and in that
634 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 635 *
da6052f7
NP
636 * In either case (swapcache or inode backed), the pagecache itself holds one
637 * reference to the page. Setting PG_private should also increment the
638 * refcount. The each user mapping also has a reference to the page.
1da177e4 639 *
da6052f7
NP
640 * The pagecache pages are stored in a per-mapping radix tree, which is
641 * rooted at mapping->page_tree, and indexed by offset.
642 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
643 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 644 *
da6052f7 645 * All pagecache pages may be subject to I/O:
1da177e4
LT
646 * - inode pages may need to be read from disk,
647 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
648 * to be written back to the inode on disk,
649 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
650 * modified may need to be swapped out to swap space and (later) to be read
651 * back into memory.
1da177e4
LT
652 */
653
654/*
655 * The zone field is never updated after free_area_init_core()
656 * sets it, so none of the operations on it need to be atomic.
1da177e4 657 */
348f8b6c 658
90572890 659/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 660#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
661#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
662#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 663#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 664
348f8b6c 665/*
25985edc 666 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
667 * sections we define the shift as 0; that plus a 0 mask ensures
668 * the compiler will optimise away reference to them.
669 */
d41dee36
AW
670#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
671#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
672#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 673#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 674
bce54bbf
WD
675/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
676#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 677#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
678#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
679 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 680#else
89689ae7 681#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
682#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
683 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
684#endif
685
bd8029b6 686#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 687
9223b419
CL
688#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
689#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
690#endif
691
d41dee36
AW
692#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
693#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
694#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 695#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 696#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 697
33dd4e0e 698static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 699{
348f8b6c 700 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 701}
1da177e4 702
9127ab4f
CS
703#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
704#define SECTION_IN_PAGE_FLAGS
705#endif
706
89689ae7 707/*
7a8010cd
VB
708 * The identification function is mainly used by the buddy allocator for
709 * determining if two pages could be buddies. We are not really identifying
710 * the zone since we could be using the section number id if we do not have
711 * node id available in page flags.
712 * We only guarantee that it will return the same value for two combinable
713 * pages in a zone.
89689ae7 714 */
cb2b95e1
AW
715static inline int page_zone_id(struct page *page)
716{
89689ae7 717 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
718}
719
25ba77c1 720static inline int zone_to_nid(struct zone *zone)
89fa3024 721{
d5f541ed
CL
722#ifdef CONFIG_NUMA
723 return zone->node;
724#else
725 return 0;
726#endif
89fa3024
CL
727}
728
89689ae7 729#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 730extern int page_to_nid(const struct page *page);
89689ae7 731#else
33dd4e0e 732static inline int page_to_nid(const struct page *page)
d41dee36 733{
89689ae7 734 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 735}
89689ae7
CL
736#endif
737
57e0a030 738#ifdef CONFIG_NUMA_BALANCING
90572890 739static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 740{
90572890 741 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
742}
743
90572890 744static inline int cpupid_to_pid(int cpupid)
57e0a030 745{
90572890 746 return cpupid & LAST__PID_MASK;
57e0a030 747}
b795854b 748
90572890 749static inline int cpupid_to_cpu(int cpupid)
b795854b 750{
90572890 751 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
752}
753
90572890 754static inline int cpupid_to_nid(int cpupid)
b795854b 755{
90572890 756 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
757}
758
90572890 759static inline bool cpupid_pid_unset(int cpupid)
57e0a030 760{
90572890 761 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
762}
763
90572890 764static inline bool cpupid_cpu_unset(int cpupid)
b795854b 765{
90572890 766 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
767}
768
8c8a743c
PZ
769static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
770{
771 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
772}
773
774#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
775#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
776static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 777{
1ae71d03 778 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 779}
90572890
PZ
780
781static inline int page_cpupid_last(struct page *page)
782{
783 return page->_last_cpupid;
784}
785static inline void page_cpupid_reset_last(struct page *page)
b795854b 786{
1ae71d03 787 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
788}
789#else
90572890 790static inline int page_cpupid_last(struct page *page)
75980e97 791{
90572890 792 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
793}
794
90572890 795extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 796
90572890 797static inline void page_cpupid_reset_last(struct page *page)
75980e97 798{
90572890 799 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 800
90572890
PZ
801 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
802 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 803}
90572890
PZ
804#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
805#else /* !CONFIG_NUMA_BALANCING */
806static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 807{
90572890 808 return page_to_nid(page); /* XXX */
57e0a030
MG
809}
810
90572890 811static inline int page_cpupid_last(struct page *page)
57e0a030 812{
90572890 813 return page_to_nid(page); /* XXX */
57e0a030
MG
814}
815
90572890 816static inline int cpupid_to_nid(int cpupid)
b795854b
MG
817{
818 return -1;
819}
820
90572890 821static inline int cpupid_to_pid(int cpupid)
b795854b
MG
822{
823 return -1;
824}
825
90572890 826static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
827{
828 return -1;
829}
830
90572890
PZ
831static inline int cpu_pid_to_cpupid(int nid, int pid)
832{
833 return -1;
834}
835
836static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
837{
838 return 1;
839}
840
90572890 841static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
842{
843}
8c8a743c
PZ
844
845static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
846{
847 return false;
848}
90572890 849#endif /* CONFIG_NUMA_BALANCING */
57e0a030 850
33dd4e0e 851static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
852{
853 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
854}
855
9127ab4f 856#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
857static inline void set_page_section(struct page *page, unsigned long section)
858{
859 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
860 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
861}
862
aa462abe 863static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
864{
865 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
866}
308c05e3 867#endif
d41dee36 868
2f1b6248 869static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
870{
871 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
872 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
873}
2f1b6248 874
348f8b6c
DH
875static inline void set_page_node(struct page *page, unsigned long node)
876{
877 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
878 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 879}
89689ae7 880
2f1b6248 881static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 882 unsigned long node, unsigned long pfn)
1da177e4 883{
348f8b6c
DH
884 set_page_zone(page, zone);
885 set_page_node(page, node);
9127ab4f 886#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 887 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 888#endif
1da177e4
LT
889}
890
0610c25d
GT
891#ifdef CONFIG_MEMCG
892static inline struct mem_cgroup *page_memcg(struct page *page)
893{
894 return page->mem_cgroup;
895}
896
897static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
898{
899 page->mem_cgroup = memcg;
900}
901#else
902static inline struct mem_cgroup *page_memcg(struct page *page)
903{
904 return NULL;
905}
906
907static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
908{
909}
910#endif
911
f6ac2354
CL
912/*
913 * Some inline functions in vmstat.h depend on page_zone()
914 */
915#include <linux/vmstat.h>
916
33dd4e0e 917static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 918{
aa462abe 919 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
920}
921
922#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
923#define HASHED_PAGE_VIRTUAL
924#endif
925
926#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
927static inline void *page_address(const struct page *page)
928{
929 return page->virtual;
930}
931static inline void set_page_address(struct page *page, void *address)
932{
933 page->virtual = address;
934}
1da177e4
LT
935#define page_address_init() do { } while(0)
936#endif
937
938#if defined(HASHED_PAGE_VIRTUAL)
f9918794 939void *page_address(const struct page *page);
1da177e4
LT
940void set_page_address(struct page *page, void *virtual);
941void page_address_init(void);
942#endif
943
944#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
945#define page_address(page) lowmem_page_address(page)
946#define set_page_address(page, address) do { } while(0)
947#define page_address_init() do { } while(0)
948#endif
949
e39155ea
KS
950extern void *page_rmapping(struct page *page);
951extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 952extern struct address_space *page_mapping(struct page *page);
1da177e4 953
f981c595
MG
954extern struct address_space *__page_file_mapping(struct page *);
955
956static inline
957struct address_space *page_file_mapping(struct page *page)
958{
959 if (unlikely(PageSwapCache(page)))
960 return __page_file_mapping(page);
961
962 return page->mapping;
963}
964
1da177e4
LT
965/*
966 * Return the pagecache index of the passed page. Regular pagecache pages
967 * use ->index whereas swapcache pages use ->private
968 */
969static inline pgoff_t page_index(struct page *page)
970{
971 if (unlikely(PageSwapCache(page)))
4c21e2f2 972 return page_private(page);
1da177e4
LT
973 return page->index;
974}
975
f981c595
MG
976extern pgoff_t __page_file_index(struct page *page);
977
978/*
979 * Return the file index of the page. Regular pagecache pages use ->index
980 * whereas swapcache pages use swp_offset(->private)
981 */
982static inline pgoff_t page_file_index(struct page *page)
983{
984 if (unlikely(PageSwapCache(page)))
985 return __page_file_index(page);
986
987 return page->index;
988}
989
1da177e4
LT
990/*
991 * Return true if this page is mapped into pagetables.
992 */
993static inline int page_mapped(struct page *page)
994{
995 return atomic_read(&(page)->_mapcount) >= 0;
996}
997
2f064f34
MH
998/*
999 * Return true only if the page has been allocated with
1000 * ALLOC_NO_WATERMARKS and the low watermark was not
1001 * met implying that the system is under some pressure.
1002 */
1003static inline bool page_is_pfmemalloc(struct page *page)
1004{
1005 /*
1006 * Page index cannot be this large so this must be
1007 * a pfmemalloc page.
1008 */
1009 return page->index == -1UL;
1010}
1011
1012/*
1013 * Only to be called by the page allocator on a freshly allocated
1014 * page.
1015 */
1016static inline void set_page_pfmemalloc(struct page *page)
1017{
1018 page->index = -1UL;
1019}
1020
1021static inline void clear_page_pfmemalloc(struct page *page)
1022{
1023 page->index = 0;
1024}
1025
1da177e4
LT
1026/*
1027 * Different kinds of faults, as returned by handle_mm_fault().
1028 * Used to decide whether a process gets delivered SIGBUS or
1029 * just gets major/minor fault counters bumped up.
1030 */
d0217ac0 1031
83c54070 1032#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1033
83c54070
NP
1034#define VM_FAULT_OOM 0x0001
1035#define VM_FAULT_SIGBUS 0x0002
1036#define VM_FAULT_MAJOR 0x0004
1037#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1038#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1039#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1040#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1041
83c54070
NP
1042#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1043#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1044#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1045#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1046
aa50d3a7
AK
1047#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1048
33692f27
LT
1049#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1050 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1051 VM_FAULT_FALLBACK)
aa50d3a7
AK
1052
1053/* Encode hstate index for a hwpoisoned large page */
1054#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1055#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1056
1c0fe6e3
NP
1057/*
1058 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1059 */
1060extern void pagefault_out_of_memory(void);
1061
1da177e4
LT
1062#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1063
ddd588b5 1064/*
7bf02ea2 1065 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1066 * various contexts.
1067 */
4b59e6c4 1068#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1069
7bf02ea2
DR
1070extern void show_free_areas(unsigned int flags);
1071extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1072
1da177e4 1073int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1074#ifdef CONFIG_SHMEM
1075bool shmem_mapping(struct address_space *mapping);
1076#else
1077static inline bool shmem_mapping(struct address_space *mapping)
1078{
1079 return false;
1080}
1081#endif
1da177e4 1082
e8edc6e0 1083extern int can_do_mlock(void);
1da177e4
LT
1084extern int user_shm_lock(size_t, struct user_struct *);
1085extern void user_shm_unlock(size_t, struct user_struct *);
1086
1087/*
1088 * Parameter block passed down to zap_pte_range in exceptional cases.
1089 */
1090struct zap_details {
1da177e4
LT
1091 struct address_space *check_mapping; /* Check page->mapping if set */
1092 pgoff_t first_index; /* Lowest page->index to unmap */
1093 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1094};
1095
7e675137
NP
1096struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1097 pte_t pte);
1098
c627f9cc
JS
1099int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1100 unsigned long size);
14f5ff5d 1101void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1102 unsigned long size, struct zap_details *);
4f74d2c8
LT
1103void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1104 unsigned long start, unsigned long end);
e6473092
MM
1105
1106/**
1107 * mm_walk - callbacks for walk_page_range
e6473092 1108 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1109 * this handler is required to be able to handle
1110 * pmd_trans_huge() pmds. They may simply choose to
1111 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1112 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1113 * @pte_hole: if set, called for each hole at all levels
5dc37642 1114 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426
NH
1115 * @test_walk: caller specific callback function to determine whether
1116 * we walk over the current vma or not. A positive returned
1117 * value means "do page table walk over the current vma,"
1118 * and a negative one means "abort current page table walk
1119 * right now." 0 means "skip the current vma."
1120 * @mm: mm_struct representing the target process of page table walk
1121 * @vma: vma currently walked (NULL if walking outside vmas)
1122 * @private: private data for callbacks' usage
e6473092 1123 *
fafaa426 1124 * (see the comment on walk_page_range() for more details)
e6473092
MM
1125 */
1126struct mm_walk {
0f157a5b
AM
1127 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1128 unsigned long next, struct mm_walk *walk);
1129 int (*pte_entry)(pte_t *pte, unsigned long addr,
1130 unsigned long next, struct mm_walk *walk);
1131 int (*pte_hole)(unsigned long addr, unsigned long next,
1132 struct mm_walk *walk);
1133 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1134 unsigned long addr, unsigned long next,
1135 struct mm_walk *walk);
fafaa426
NH
1136 int (*test_walk)(unsigned long addr, unsigned long next,
1137 struct mm_walk *walk);
2165009b 1138 struct mm_struct *mm;
fafaa426 1139 struct vm_area_struct *vma;
2165009b 1140 void *private;
e6473092
MM
1141};
1142
2165009b
DH
1143int walk_page_range(unsigned long addr, unsigned long end,
1144 struct mm_walk *walk);
900fc5f1 1145int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1146void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1147 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1148int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1149 struct vm_area_struct *vma);
1da177e4
LT
1150void unmap_mapping_range(struct address_space *mapping,
1151 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1152int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1153 unsigned long *pfn);
d87fe660 1154int follow_phys(struct vm_area_struct *vma, unsigned long address,
1155 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1156int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1157 void *buf, int len, int write);
1da177e4
LT
1158
1159static inline void unmap_shared_mapping_range(struct address_space *mapping,
1160 loff_t const holebegin, loff_t const holelen)
1161{
1162 unmap_mapping_range(mapping, holebegin, holelen, 0);
1163}
1164
7caef267 1165extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1166extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1167void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1168void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1169int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1170int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1171int invalidate_inode_page(struct page *page);
1172
7ee1dd3f 1173#ifdef CONFIG_MMU
83c54070 1174extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1175 unsigned long address, unsigned int flags);
5c723ba5
PZ
1176extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1177 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1178#else
1179static inline int handle_mm_fault(struct mm_struct *mm,
1180 struct vm_area_struct *vma, unsigned long address,
d06063cc 1181 unsigned int flags)
7ee1dd3f
DH
1182{
1183 /* should never happen if there's no MMU */
1184 BUG();
1185 return VM_FAULT_SIGBUS;
1186}
5c723ba5
PZ
1187static inline int fixup_user_fault(struct task_struct *tsk,
1188 struct mm_struct *mm, unsigned long address,
1189 unsigned int fault_flags)
1190{
1191 /* should never happen if there's no MMU */
1192 BUG();
1193 return -EFAULT;
1194}
7ee1dd3f 1195#endif
f33ea7f4 1196
1da177e4 1197extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1198extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1199 void *buf, int len, int write);
1da177e4 1200
28a35716
ML
1201long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1202 unsigned long start, unsigned long nr_pages,
1203 unsigned int foll_flags, struct page **pages,
1204 struct vm_area_struct **vmas, int *nonblocking);
1205long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1206 unsigned long start, unsigned long nr_pages,
1207 int write, int force, struct page **pages,
1208 struct vm_area_struct **vmas);
f0818f47
AA
1209long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1210 unsigned long start, unsigned long nr_pages,
1211 int write, int force, struct page **pages,
1212 int *locked);
0fd71a56
AA
1213long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1214 unsigned long start, unsigned long nr_pages,
1215 int write, int force, struct page **pages,
1216 unsigned int gup_flags);
f0818f47
AA
1217long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1218 unsigned long start, unsigned long nr_pages,
1219 int write, int force, struct page **pages);
d2bf6be8
NP
1220int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1221 struct page **pages);
8025e5dd
JK
1222
1223/* Container for pinned pfns / pages */
1224struct frame_vector {
1225 unsigned int nr_allocated; /* Number of frames we have space for */
1226 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1227 bool got_ref; /* Did we pin pages by getting page ref? */
1228 bool is_pfns; /* Does array contain pages or pfns? */
1229 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1230 * pfns_vector_pages() or pfns_vector_pfns()
1231 * for access */
1232};
1233
1234struct frame_vector *frame_vector_create(unsigned int nr_frames);
1235void frame_vector_destroy(struct frame_vector *vec);
1236int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1237 bool write, bool force, struct frame_vector *vec);
1238void put_vaddr_frames(struct frame_vector *vec);
1239int frame_vector_to_pages(struct frame_vector *vec);
1240void frame_vector_to_pfns(struct frame_vector *vec);
1241
1242static inline unsigned int frame_vector_count(struct frame_vector *vec)
1243{
1244 return vec->nr_frames;
1245}
1246
1247static inline struct page **frame_vector_pages(struct frame_vector *vec)
1248{
1249 if (vec->is_pfns) {
1250 int err = frame_vector_to_pages(vec);
1251
1252 if (err)
1253 return ERR_PTR(err);
1254 }
1255 return (struct page **)(vec->ptrs);
1256}
1257
1258static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1259{
1260 if (!vec->is_pfns)
1261 frame_vector_to_pfns(vec);
1262 return (unsigned long *)(vec->ptrs);
1263}
1264
18022c5d
MG
1265struct kvec;
1266int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1267 struct page **pages);
1268int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1269struct page *get_dump_page(unsigned long addr);
1da177e4 1270
cf9a2ae8 1271extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1272extern void do_invalidatepage(struct page *page, unsigned int offset,
1273 unsigned int length);
cf9a2ae8 1274
1da177e4 1275int __set_page_dirty_nobuffers(struct page *page);
76719325 1276int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1277int redirty_page_for_writepage(struct writeback_control *wbc,
1278 struct page *page);
c4843a75
GT
1279void account_page_dirtied(struct page *page, struct address_space *mapping,
1280 struct mem_cgroup *memcg);
1281void account_page_cleaned(struct page *page, struct address_space *mapping,
682aa8e1 1282 struct mem_cgroup *memcg, struct bdi_writeback *wb);
b3c97528 1283int set_page_dirty(struct page *page);
1da177e4 1284int set_page_dirty_lock(struct page *page);
11f81bec 1285void cancel_dirty_page(struct page *page);
1da177e4 1286int clear_page_dirty_for_io(struct page *page);
b9ea2515 1287
a9090253 1288int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1289
39aa3cb3 1290/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1291static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1292{
1293 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1294}
1295
b5330628
ON
1296static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1297{
1298 return !vma->vm_ops;
1299}
1300
a09a79f6
MP
1301static inline int stack_guard_page_start(struct vm_area_struct *vma,
1302 unsigned long addr)
1303{
1304 return (vma->vm_flags & VM_GROWSDOWN) &&
1305 (vma->vm_start == addr) &&
1306 !vma_growsdown(vma->vm_prev, addr);
1307}
1308
1309/* Is the vma a continuation of the stack vma below it? */
1310static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1311{
1312 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1313}
1314
1315static inline int stack_guard_page_end(struct vm_area_struct *vma,
1316 unsigned long addr)
1317{
1318 return (vma->vm_flags & VM_GROWSUP) &&
1319 (vma->vm_end == addr) &&
1320 !vma_growsup(vma->vm_next, addr);
1321}
1322
58cb6548
ON
1323extern struct task_struct *task_of_stack(struct task_struct *task,
1324 struct vm_area_struct *vma, bool in_group);
b7643757 1325
b6a2fea3
OW
1326extern unsigned long move_page_tables(struct vm_area_struct *vma,
1327 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1328 unsigned long new_addr, unsigned long len,
1329 bool need_rmap_locks);
7da4d641
PZ
1330extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1331 unsigned long end, pgprot_t newprot,
4b10e7d5 1332 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1333extern int mprotect_fixup(struct vm_area_struct *vma,
1334 struct vm_area_struct **pprev, unsigned long start,
1335 unsigned long end, unsigned long newflags);
1da177e4 1336
465a454f
PZ
1337/*
1338 * doesn't attempt to fault and will return short.
1339 */
1340int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1341 struct page **pages);
d559db08
KH
1342/*
1343 * per-process(per-mm_struct) statistics.
1344 */
d559db08
KH
1345static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1346{
69c97823
KK
1347 long val = atomic_long_read(&mm->rss_stat.count[member]);
1348
1349#ifdef SPLIT_RSS_COUNTING
1350 /*
1351 * counter is updated in asynchronous manner and may go to minus.
1352 * But it's never be expected number for users.
1353 */
1354 if (val < 0)
1355 val = 0;
172703b0 1356#endif
69c97823
KK
1357 return (unsigned long)val;
1358}
d559db08
KH
1359
1360static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1361{
172703b0 1362 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1363}
1364
1365static inline void inc_mm_counter(struct mm_struct *mm, int member)
1366{
172703b0 1367 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1368}
1369
1370static inline void dec_mm_counter(struct mm_struct *mm, int member)
1371{
172703b0 1372 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1373}
1374
eca56ff9
JM
1375/* Optimized variant when page is already known not to be PageAnon */
1376static inline int mm_counter_file(struct page *page)
1377{
1378 if (PageSwapBacked(page))
1379 return MM_SHMEMPAGES;
1380 return MM_FILEPAGES;
1381}
1382
1383static inline int mm_counter(struct page *page)
1384{
1385 if (PageAnon(page))
1386 return MM_ANONPAGES;
1387 return mm_counter_file(page);
1388}
1389
d559db08
KH
1390static inline unsigned long get_mm_rss(struct mm_struct *mm)
1391{
1392 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1393 get_mm_counter(mm, MM_ANONPAGES) +
1394 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1395}
1396
1397static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1398{
1399 return max(mm->hiwater_rss, get_mm_rss(mm));
1400}
1401
1402static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1403{
1404 return max(mm->hiwater_vm, mm->total_vm);
1405}
1406
1407static inline void update_hiwater_rss(struct mm_struct *mm)
1408{
1409 unsigned long _rss = get_mm_rss(mm);
1410
1411 if ((mm)->hiwater_rss < _rss)
1412 (mm)->hiwater_rss = _rss;
1413}
1414
1415static inline void update_hiwater_vm(struct mm_struct *mm)
1416{
1417 if (mm->hiwater_vm < mm->total_vm)
1418 mm->hiwater_vm = mm->total_vm;
1419}
1420
695f0559
PC
1421static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1422{
1423 mm->hiwater_rss = get_mm_rss(mm);
1424}
1425
d559db08
KH
1426static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1427 struct mm_struct *mm)
1428{
1429 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1430
1431 if (*maxrss < hiwater_rss)
1432 *maxrss = hiwater_rss;
1433}
1434
53bddb4e 1435#if defined(SPLIT_RSS_COUNTING)
05af2e10 1436void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1437#else
05af2e10 1438static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1439{
1440}
1441#endif
465a454f 1442
4e950f6f 1443int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1444
25ca1d6c
NK
1445extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1446 spinlock_t **ptl);
1447static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1448 spinlock_t **ptl)
1449{
1450 pte_t *ptep;
1451 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1452 return ptep;
1453}
c9cfcddf 1454
5f22df00
NP
1455#ifdef __PAGETABLE_PUD_FOLDED
1456static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1457 unsigned long address)
1458{
1459 return 0;
1460}
1461#else
1bb3630e 1462int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1463#endif
1464
2d2f5119 1465#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1466static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1467 unsigned long address)
1468{
1469 return 0;
1470}
dc6c9a35 1471
2d2f5119
KS
1472static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1473
dc6c9a35
KS
1474static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1475{
1476 return 0;
1477}
1478
1479static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1480static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1481
5f22df00 1482#else
1bb3630e 1483int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1484
2d2f5119
KS
1485static inline void mm_nr_pmds_init(struct mm_struct *mm)
1486{
1487 atomic_long_set(&mm->nr_pmds, 0);
1488}
1489
dc6c9a35
KS
1490static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1491{
1492 return atomic_long_read(&mm->nr_pmds);
1493}
1494
1495static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1496{
1497 atomic_long_inc(&mm->nr_pmds);
1498}
1499
1500static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1501{
1502 atomic_long_dec(&mm->nr_pmds);
1503}
5f22df00
NP
1504#endif
1505
8ac1f832
AA
1506int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1507 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1508int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1509
1da177e4
LT
1510/*
1511 * The following ifdef needed to get the 4level-fixup.h header to work.
1512 * Remove it when 4level-fixup.h has been removed.
1513 */
1bb3630e 1514#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1515static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1516{
1bb3630e
HD
1517 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1518 NULL: pud_offset(pgd, address);
1da177e4
LT
1519}
1520
1521static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1522{
1bb3630e
HD
1523 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1524 NULL: pmd_offset(pud, address);
1da177e4 1525}
1bb3630e
HD
1526#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1527
57c1ffce 1528#if USE_SPLIT_PTE_PTLOCKS
597d795a 1529#if ALLOC_SPLIT_PTLOCKS
b35f1819 1530void __init ptlock_cache_init(void);
539edb58
PZ
1531extern bool ptlock_alloc(struct page *page);
1532extern void ptlock_free(struct page *page);
1533
1534static inline spinlock_t *ptlock_ptr(struct page *page)
1535{
1536 return page->ptl;
1537}
597d795a 1538#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1539static inline void ptlock_cache_init(void)
1540{
1541}
1542
49076ec2
KS
1543static inline bool ptlock_alloc(struct page *page)
1544{
49076ec2
KS
1545 return true;
1546}
539edb58 1547
49076ec2
KS
1548static inline void ptlock_free(struct page *page)
1549{
49076ec2
KS
1550}
1551
1552static inline spinlock_t *ptlock_ptr(struct page *page)
1553{
539edb58 1554 return &page->ptl;
49076ec2 1555}
597d795a 1556#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1557
1558static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1559{
1560 return ptlock_ptr(pmd_page(*pmd));
1561}
1562
1563static inline bool ptlock_init(struct page *page)
1564{
1565 /*
1566 * prep_new_page() initialize page->private (and therefore page->ptl)
1567 * with 0. Make sure nobody took it in use in between.
1568 *
1569 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1570 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1571 */
309381fe 1572 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1573 if (!ptlock_alloc(page))
1574 return false;
1575 spin_lock_init(ptlock_ptr(page));
1576 return true;
1577}
1578
1579/* Reset page->mapping so free_pages_check won't complain. */
1580static inline void pte_lock_deinit(struct page *page)
1581{
1582 page->mapping = NULL;
1583 ptlock_free(page);
1584}
1585
57c1ffce 1586#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1587/*
1588 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1589 */
49076ec2
KS
1590static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1591{
1592 return &mm->page_table_lock;
1593}
b35f1819 1594static inline void ptlock_cache_init(void) {}
49076ec2
KS
1595static inline bool ptlock_init(struct page *page) { return true; }
1596static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1597#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1598
b35f1819
KS
1599static inline void pgtable_init(void)
1600{
1601 ptlock_cache_init();
1602 pgtable_cache_init();
1603}
1604
390f44e2 1605static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1606{
706874e9
VD
1607 if (!ptlock_init(page))
1608 return false;
2f569afd 1609 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1610 return true;
2f569afd
MS
1611}
1612
1613static inline void pgtable_page_dtor(struct page *page)
1614{
1615 pte_lock_deinit(page);
1616 dec_zone_page_state(page, NR_PAGETABLE);
1617}
1618
c74df32c
HD
1619#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1620({ \
4c21e2f2 1621 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1622 pte_t *__pte = pte_offset_map(pmd, address); \
1623 *(ptlp) = __ptl; \
1624 spin_lock(__ptl); \
1625 __pte; \
1626})
1627
1628#define pte_unmap_unlock(pte, ptl) do { \
1629 spin_unlock(ptl); \
1630 pte_unmap(pte); \
1631} while (0)
1632
8ac1f832
AA
1633#define pte_alloc_map(mm, vma, pmd, address) \
1634 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1635 pmd, address))? \
1636 NULL: pte_offset_map(pmd, address))
1bb3630e 1637
c74df32c 1638#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1639 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1640 pmd, address))? \
c74df32c
HD
1641 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1642
1bb3630e 1643#define pte_alloc_kernel(pmd, address) \
8ac1f832 1644 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1645 NULL: pte_offset_kernel(pmd, address))
1da177e4 1646
e009bb30
KS
1647#if USE_SPLIT_PMD_PTLOCKS
1648
634391ac
MS
1649static struct page *pmd_to_page(pmd_t *pmd)
1650{
1651 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1652 return virt_to_page((void *)((unsigned long) pmd & mask));
1653}
1654
e009bb30
KS
1655static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1656{
634391ac 1657 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1658}
1659
1660static inline bool pgtable_pmd_page_ctor(struct page *page)
1661{
e009bb30
KS
1662#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1663 page->pmd_huge_pte = NULL;
1664#endif
49076ec2 1665 return ptlock_init(page);
e009bb30
KS
1666}
1667
1668static inline void pgtable_pmd_page_dtor(struct page *page)
1669{
1670#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1671 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1672#endif
49076ec2 1673 ptlock_free(page);
e009bb30
KS
1674}
1675
634391ac 1676#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1677
1678#else
1679
9a86cb7b
KS
1680static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1681{
1682 return &mm->page_table_lock;
1683}
1684
e009bb30
KS
1685static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1686static inline void pgtable_pmd_page_dtor(struct page *page) {}
1687
c389a250 1688#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1689
e009bb30
KS
1690#endif
1691
9a86cb7b
KS
1692static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1693{
1694 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1695 spin_lock(ptl);
1696 return ptl;
1697}
1698
1da177e4 1699extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1700extern void free_area_init_node(int nid, unsigned long * zones_size,
1701 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1702extern void free_initmem(void);
1703
69afade7
JL
1704/*
1705 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1706 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1707 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1708 * Return pages freed into the buddy system.
1709 */
11199692 1710extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1711 int poison, char *s);
c3d5f5f0 1712
cfa11e08
JL
1713#ifdef CONFIG_HIGHMEM
1714/*
1715 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1716 * and totalram_pages.
1717 */
1718extern void free_highmem_page(struct page *page);
1719#endif
69afade7 1720
c3d5f5f0 1721extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1722extern void mem_init_print_info(const char *str);
69afade7 1723
92923ca3
NZ
1724extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1725
69afade7
JL
1726/* Free the reserved page into the buddy system, so it gets managed. */
1727static inline void __free_reserved_page(struct page *page)
1728{
1729 ClearPageReserved(page);
1730 init_page_count(page);
1731 __free_page(page);
1732}
1733
1734static inline void free_reserved_page(struct page *page)
1735{
1736 __free_reserved_page(page);
1737 adjust_managed_page_count(page, 1);
1738}
1739
1740static inline void mark_page_reserved(struct page *page)
1741{
1742 SetPageReserved(page);
1743 adjust_managed_page_count(page, -1);
1744}
1745
1746/*
1747 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1748 * The freed pages will be poisoned with pattern "poison" if it's within
1749 * range [0, UCHAR_MAX].
1750 * Return pages freed into the buddy system.
69afade7
JL
1751 */
1752static inline unsigned long free_initmem_default(int poison)
1753{
1754 extern char __init_begin[], __init_end[];
1755
11199692 1756 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1757 poison, "unused kernel");
1758}
1759
7ee3d4e8
JL
1760static inline unsigned long get_num_physpages(void)
1761{
1762 int nid;
1763 unsigned long phys_pages = 0;
1764
1765 for_each_online_node(nid)
1766 phys_pages += node_present_pages(nid);
1767
1768 return phys_pages;
1769}
1770
0ee332c1 1771#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1772/*
0ee332c1 1773 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1774 * zones, allocate the backing mem_map and account for memory holes in a more
1775 * architecture independent manner. This is a substitute for creating the
1776 * zone_sizes[] and zholes_size[] arrays and passing them to
1777 * free_area_init_node()
1778 *
1779 * An architecture is expected to register range of page frames backed by
0ee332c1 1780 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1781 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1782 * usage, an architecture is expected to do something like
1783 *
1784 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1785 * max_highmem_pfn};
1786 * for_each_valid_physical_page_range()
0ee332c1 1787 * memblock_add_node(base, size, nid)
c713216d
MG
1788 * free_area_init_nodes(max_zone_pfns);
1789 *
0ee332c1
TH
1790 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1791 * registered physical page range. Similarly
1792 * sparse_memory_present_with_active_regions() calls memory_present() for
1793 * each range when SPARSEMEM is enabled.
c713216d
MG
1794 *
1795 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1796 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1797 */
1798extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1799unsigned long node_map_pfn_alignment(void);
32996250
YL
1800unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1801 unsigned long end_pfn);
c713216d
MG
1802extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1803 unsigned long end_pfn);
1804extern void get_pfn_range_for_nid(unsigned int nid,
1805 unsigned long *start_pfn, unsigned long *end_pfn);
1806extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1807extern void free_bootmem_with_active_regions(int nid,
1808 unsigned long max_low_pfn);
1809extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1810
0ee332c1 1811#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1812
0ee332c1 1813#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1814 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1815static inline int __early_pfn_to_nid(unsigned long pfn,
1816 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1817{
1818 return 0;
1819}
1820#else
1821/* please see mm/page_alloc.c */
1822extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1823/* there is a per-arch backend function. */
8a942fde
MG
1824extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1825 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1826#endif
1827
0e0b864e 1828extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1829extern void memmap_init_zone(unsigned long, int, unsigned long,
1830 unsigned long, enum memmap_context);
bc75d33f 1831extern void setup_per_zone_wmarks(void);
1b79acc9 1832extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1833extern void mem_init(void);
8feae131 1834extern void __init mmap_init(void);
b2b755b5 1835extern void show_mem(unsigned int flags);
1da177e4
LT
1836extern void si_meminfo(struct sysinfo * val);
1837extern void si_meminfo_node(struct sysinfo *val, int nid);
1838
3ee9a4f0 1839extern __printf(3, 4)
d00181b9
KS
1840void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1841 const char *fmt, ...);
a238ab5b 1842
e7c8d5c9 1843extern void setup_per_cpu_pageset(void);
e7c8d5c9 1844
112067f0 1845extern void zone_pcp_update(struct zone *zone);
340175b7 1846extern void zone_pcp_reset(struct zone *zone);
112067f0 1847
75f7ad8e
PS
1848/* page_alloc.c */
1849extern int min_free_kbytes;
1850
8feae131 1851/* nommu.c */
33e5d769 1852extern atomic_long_t mmap_pages_allocated;
7e660872 1853extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1854
6b2dbba8 1855/* interval_tree.c */
6b2dbba8
ML
1856void vma_interval_tree_insert(struct vm_area_struct *node,
1857 struct rb_root *root);
9826a516
ML
1858void vma_interval_tree_insert_after(struct vm_area_struct *node,
1859 struct vm_area_struct *prev,
1860 struct rb_root *root);
6b2dbba8
ML
1861void vma_interval_tree_remove(struct vm_area_struct *node,
1862 struct rb_root *root);
1863struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1864 unsigned long start, unsigned long last);
1865struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1866 unsigned long start, unsigned long last);
1867
1868#define vma_interval_tree_foreach(vma, root, start, last) \
1869 for (vma = vma_interval_tree_iter_first(root, start, last); \
1870 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1871
bf181b9f
ML
1872void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1873 struct rb_root *root);
1874void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1875 struct rb_root *root);
1876struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1877 struct rb_root *root, unsigned long start, unsigned long last);
1878struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1879 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1880#ifdef CONFIG_DEBUG_VM_RB
1881void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1882#endif
bf181b9f
ML
1883
1884#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1885 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1886 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1887
1da177e4 1888/* mmap.c */
34b4e4aa 1889extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1890extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1891 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1892extern struct vm_area_struct *vma_merge(struct mm_struct *,
1893 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1894 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 1895 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
1896extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1897extern int split_vma(struct mm_struct *,
1898 struct vm_area_struct *, unsigned long addr, int new_below);
1899extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1900extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1901 struct rb_node **, struct rb_node *);
a8fb5618 1902extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1903extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1904 unsigned long addr, unsigned long len, pgoff_t pgoff,
1905 bool *need_rmap_locks);
1da177e4 1906extern void exit_mmap(struct mm_struct *);
925d1c40 1907
9c599024
CG
1908static inline int check_data_rlimit(unsigned long rlim,
1909 unsigned long new,
1910 unsigned long start,
1911 unsigned long end_data,
1912 unsigned long start_data)
1913{
1914 if (rlim < RLIM_INFINITY) {
1915 if (((new - start) + (end_data - start_data)) > rlim)
1916 return -ENOSPC;
1917 }
1918
1919 return 0;
1920}
1921
7906d00c
AA
1922extern int mm_take_all_locks(struct mm_struct *mm);
1923extern void mm_drop_all_locks(struct mm_struct *mm);
1924
38646013
JS
1925extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1926extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1927
119f657c 1928extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
3935ed6a
SS
1929extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1930 unsigned long addr, unsigned long len,
a62c34bd
AL
1931 unsigned long flags,
1932 const struct vm_special_mapping *spec);
1933/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1934extern int install_special_mapping(struct mm_struct *mm,
1935 unsigned long addr, unsigned long len,
1936 unsigned long flags, struct page **pages);
1da177e4
LT
1937
1938extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1939
0165ab44 1940extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1941 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1fcfd8db 1942extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 1943 unsigned long len, unsigned long prot, unsigned long flags,
1fcfd8db 1944 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1945extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1946
1fcfd8db
ON
1947static inline unsigned long
1948do_mmap_pgoff(struct file *file, unsigned long addr,
1949 unsigned long len, unsigned long prot, unsigned long flags,
1950 unsigned long pgoff, unsigned long *populate)
1951{
1952 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1953}
1954
bebeb3d6
ML
1955#ifdef CONFIG_MMU
1956extern int __mm_populate(unsigned long addr, unsigned long len,
1957 int ignore_errors);
1958static inline void mm_populate(unsigned long addr, unsigned long len)
1959{
1960 /* Ignore errors */
1961 (void) __mm_populate(addr, len, 1);
1962}
1963#else
1964static inline void mm_populate(unsigned long addr, unsigned long len) {}
1965#endif
1966
e4eb1ff6
LT
1967/* These take the mm semaphore themselves */
1968extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1969extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1970extern unsigned long vm_mmap(struct file *, unsigned long,
1971 unsigned long, unsigned long,
1972 unsigned long, unsigned long);
1da177e4 1973
db4fbfb9
ML
1974struct vm_unmapped_area_info {
1975#define VM_UNMAPPED_AREA_TOPDOWN 1
1976 unsigned long flags;
1977 unsigned long length;
1978 unsigned long low_limit;
1979 unsigned long high_limit;
1980 unsigned long align_mask;
1981 unsigned long align_offset;
1982};
1983
1984extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1985extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1986
1987/*
1988 * Search for an unmapped address range.
1989 *
1990 * We are looking for a range that:
1991 * - does not intersect with any VMA;
1992 * - is contained within the [low_limit, high_limit) interval;
1993 * - is at least the desired size.
1994 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1995 */
1996static inline unsigned long
1997vm_unmapped_area(struct vm_unmapped_area_info *info)
1998{
cdd7875e 1999 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2000 return unmapped_area_topdown(info);
cdd7875e
BP
2001 else
2002 return unmapped_area(info);
db4fbfb9
ML
2003}
2004
85821aab 2005/* truncate.c */
1da177e4 2006extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2007extern void truncate_inode_pages_range(struct address_space *,
2008 loff_t lstart, loff_t lend);
91b0abe3 2009extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2010
2011/* generic vm_area_ops exported for stackable file systems */
d0217ac0 2012extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 2013extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 2014extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
2015
2016/* mm/page-writeback.c */
2017int write_one_page(struct page *page, int wait);
1cf6e7d8 2018void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2019
2020/* readahead.c */
2021#define VM_MAX_READAHEAD 128 /* kbytes */
2022#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2023
1da177e4 2024int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2025 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2026
2027void page_cache_sync_readahead(struct address_space *mapping,
2028 struct file_ra_state *ra,
2029 struct file *filp,
2030 pgoff_t offset,
2031 unsigned long size);
2032
2033void page_cache_async_readahead(struct address_space *mapping,
2034 struct file_ra_state *ra,
2035 struct file *filp,
2036 struct page *pg,
2037 pgoff_t offset,
2038 unsigned long size);
2039
d05f3169 2040/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2041extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2042
2043/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2044extern int expand_downwards(struct vm_area_struct *vma,
2045 unsigned long address);
8ca3eb08 2046#if VM_GROWSUP
46dea3d0 2047extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2048#else
fee7e49d 2049 #define expand_upwards(vma, address) (0)
9ab88515 2050#endif
1da177e4
LT
2051
2052/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2053extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2054extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2055 struct vm_area_struct **pprev);
2056
2057/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2058 NULL if none. Assume start_addr < end_addr. */
2059static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2060{
2061 struct vm_area_struct * vma = find_vma(mm,start_addr);
2062
2063 if (vma && end_addr <= vma->vm_start)
2064 vma = NULL;
2065 return vma;
2066}
2067
2068static inline unsigned long vma_pages(struct vm_area_struct *vma)
2069{
2070 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2071}
2072
640708a2
PE
2073/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2074static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2075 unsigned long vm_start, unsigned long vm_end)
2076{
2077 struct vm_area_struct *vma = find_vma(mm, vm_start);
2078
2079 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2080 vma = NULL;
2081
2082 return vma;
2083}
2084
bad849b3 2085#ifdef CONFIG_MMU
804af2cf 2086pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2087void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2088#else
2089static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2090{
2091 return __pgprot(0);
2092}
64e45507
PF
2093static inline void vma_set_page_prot(struct vm_area_struct *vma)
2094{
2095 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2096}
bad849b3
DH
2097#endif
2098
5877231f 2099#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2100unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2101 unsigned long start, unsigned long end);
2102#endif
2103
deceb6cd 2104struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2105int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2106 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2107int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2108int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2109 unsigned long pfn);
423bad60
NP
2110int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2111 unsigned long pfn);
b4cbb197
LT
2112int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2113
deceb6cd 2114
240aadee
ML
2115struct page *follow_page_mask(struct vm_area_struct *vma,
2116 unsigned long address, unsigned int foll_flags,
2117 unsigned int *page_mask);
2118
2119static inline struct page *follow_page(struct vm_area_struct *vma,
2120 unsigned long address, unsigned int foll_flags)
2121{
2122 unsigned int unused_page_mask;
2123 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2124}
2125
deceb6cd
HD
2126#define FOLL_WRITE 0x01 /* check pte is writable */
2127#define FOLL_TOUCH 0x02 /* mark page accessed */
2128#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2129#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2130#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2131#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2132 * and return without waiting upon it */
84d33df2 2133#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2134#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2135#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2136#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2137#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2138#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2139#define FOLL_MLOCK 0x1000 /* lock present pages */
1da177e4 2140
2f569afd 2141typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2142 void *data);
2143extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2144 unsigned long size, pte_fn_t fn, void *data);
2145
1da177e4 2146#ifdef CONFIG_PROC_FS
ab50b8ed 2147void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 2148#else
ab50b8ed 2149static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
2150 unsigned long flags, struct file *file, long pages)
2151{
44de9d0c 2152 mm->total_vm += pages;
1da177e4
LT
2153}
2154#endif /* CONFIG_PROC_FS */
2155
12d6f21e 2156#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2157extern bool _debug_pagealloc_enabled;
2158extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2159
2160static inline bool debug_pagealloc_enabled(void)
2161{
2162 return _debug_pagealloc_enabled;
2163}
2164
2165static inline void
2166kernel_map_pages(struct page *page, int numpages, int enable)
2167{
2168 if (!debug_pagealloc_enabled())
2169 return;
2170
2171 __kernel_map_pages(page, numpages, enable);
2172}
8a235efa
RW
2173#ifdef CONFIG_HIBERNATION
2174extern bool kernel_page_present(struct page *page);
2175#endif /* CONFIG_HIBERNATION */
12d6f21e 2176#else
1da177e4 2177static inline void
9858db50 2178kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2179#ifdef CONFIG_HIBERNATION
2180static inline bool kernel_page_present(struct page *page) { return true; }
2181#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2182#endif
2183
a6c19dfe 2184#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2185extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2186extern int in_gate_area_no_mm(unsigned long addr);
2187extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2188#else
a6c19dfe
AL
2189static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2190{
2191 return NULL;
2192}
2193static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2194static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2195{
2196 return 0;
2197}
1da177e4
LT
2198#endif /* __HAVE_ARCH_GATE_AREA */
2199
146732ce
JT
2200#ifdef CONFIG_SYSCTL
2201extern int sysctl_drop_caches;
8d65af78 2202int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2203 void __user *, size_t *, loff_t *);
146732ce
JT
2204#endif
2205
cb731d6c
VD
2206void drop_slab(void);
2207void drop_slab_node(int nid);
9d0243bc 2208
7a9166e3
LY
2209#ifndef CONFIG_MMU
2210#define randomize_va_space 0
2211#else
a62eaf15 2212extern int randomize_va_space;
7a9166e3 2213#endif
a62eaf15 2214
045e72ac 2215const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2216void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2217
9bdac914
YL
2218void sparse_mem_maps_populate_node(struct page **map_map,
2219 unsigned long pnum_begin,
2220 unsigned long pnum_end,
2221 unsigned long map_count,
2222 int nodeid);
2223
98f3cfc1 2224struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2225pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2226pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2227pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2228pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2229void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2230void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2231void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2232int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2233 int node);
2234int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2235void vmemmap_populate_print_last(void);
0197518c 2236#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2237void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2238#endif
46723bfa
YI
2239void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2240 unsigned long size);
6a46079c 2241
82ba011b
AK
2242enum mf_flags {
2243 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2244 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2245 MF_MUST_KILL = 1 << 2,
cf870c70 2246 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2247};
cd42f4a3 2248extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2249extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2250extern int unpoison_memory(unsigned long pfn);
ead07f6a 2251extern int get_hwpoison_page(struct page *page);
94bf4ec8 2252extern void put_hwpoison_page(struct page *page);
6a46079c
AK
2253extern int sysctl_memory_failure_early_kill;
2254extern int sysctl_memory_failure_recovery;
facb6011 2255extern void shake_page(struct page *p, int access);
293c07e3 2256extern atomic_long_t num_poisoned_pages;
facb6011 2257extern int soft_offline_page(struct page *page, int flags);
6a46079c 2258
cc637b17
XX
2259
2260/*
2261 * Error handlers for various types of pages.
2262 */
cc3e2af4 2263enum mf_result {
cc637b17
XX
2264 MF_IGNORED, /* Error: cannot be handled */
2265 MF_FAILED, /* Error: handling failed */
2266 MF_DELAYED, /* Will be handled later */
2267 MF_RECOVERED, /* Successfully recovered */
2268};
2269
2270enum mf_action_page_type {
2271 MF_MSG_KERNEL,
2272 MF_MSG_KERNEL_HIGH_ORDER,
2273 MF_MSG_SLAB,
2274 MF_MSG_DIFFERENT_COMPOUND,
2275 MF_MSG_POISONED_HUGE,
2276 MF_MSG_HUGE,
2277 MF_MSG_FREE_HUGE,
2278 MF_MSG_UNMAP_FAILED,
2279 MF_MSG_DIRTY_SWAPCACHE,
2280 MF_MSG_CLEAN_SWAPCACHE,
2281 MF_MSG_DIRTY_MLOCKED_LRU,
2282 MF_MSG_CLEAN_MLOCKED_LRU,
2283 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2284 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2285 MF_MSG_DIRTY_LRU,
2286 MF_MSG_CLEAN_LRU,
2287 MF_MSG_TRUNCATED_LRU,
2288 MF_MSG_BUDDY,
2289 MF_MSG_BUDDY_2ND,
2290 MF_MSG_UNKNOWN,
2291};
2292
47ad8475
AA
2293#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2294extern void clear_huge_page(struct page *page,
2295 unsigned long addr,
2296 unsigned int pages_per_huge_page);
2297extern void copy_user_huge_page(struct page *dst, struct page *src,
2298 unsigned long addr, struct vm_area_struct *vma,
2299 unsigned int pages_per_huge_page);
2300#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2301
e30825f1
JK
2302extern struct page_ext_operations debug_guardpage_ops;
2303extern struct page_ext_operations page_poisoning_ops;
2304
c0a32fc5
SG
2305#ifdef CONFIG_DEBUG_PAGEALLOC
2306extern unsigned int _debug_guardpage_minorder;
e30825f1 2307extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2308
2309static inline unsigned int debug_guardpage_minorder(void)
2310{
2311 return _debug_guardpage_minorder;
2312}
2313
e30825f1
JK
2314static inline bool debug_guardpage_enabled(void)
2315{
2316 return _debug_guardpage_enabled;
2317}
2318
c0a32fc5
SG
2319static inline bool page_is_guard(struct page *page)
2320{
e30825f1
JK
2321 struct page_ext *page_ext;
2322
2323 if (!debug_guardpage_enabled())
2324 return false;
2325
2326 page_ext = lookup_page_ext(page);
2327 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2328}
2329#else
2330static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2331static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2332static inline bool page_is_guard(struct page *page) { return false; }
2333#endif /* CONFIG_DEBUG_PAGEALLOC */
2334
f9872caf
CS
2335#if MAX_NUMNODES > 1
2336void __init setup_nr_node_ids(void);
2337#else
2338static inline void setup_nr_node_ids(void) {}
2339#endif
2340
1da177e4
LT
2341#endif /* __KERNEL__ */
2342#endif /* _LINUX_MM_H */