memprofiling: documentation
[linux-2.6-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
d224eb02 8#include <linux/pgalloc_tag.h>
187f1882 9#include <linux/bug.h>
1da177e4
LT
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
83aeeada 13#include <linux/atomic.h>
9a11b49a 14#include <linux/debug_locks.h>
5b99cd0e 15#include <linux/mm_types.h>
9740ca4e 16#include <linux/mmap_lock.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
3565fce3 19#include <linux/percpu-refcount.h>
e9da73d6 20#include <linux/bit_spinlock.h>
b0d40c92 21#include <linux/shrinker.h>
9c599024 22#include <linux/resource.h>
e30825f1 23#include <linux/page_ext.h>
8025e5dd 24#include <linux/err.h>
41901567 25#include <linux/page-flags.h>
fe896d18 26#include <linux/page_ref.h>
3b3b1a29 27#include <linux/overflow.h>
b5420237 28#include <linux/sizes.h>
7969f226 29#include <linux/sched.h>
65fddcfc 30#include <linux/pgtable.h>
34303244 31#include <linux/kasan.h>
f25cbb7a 32#include <linux/memremap.h>
ef6a22b7 33#include <linux/slab.h>
1da177e4
LT
34
35struct mempolicy;
36struct anon_vma;
bf181b9f 37struct anon_vma_chain;
e8edc6e0 38struct user_struct;
bce617ed 39struct pt_regs;
99fbb6bf 40struct folio_batch;
1da177e4 41
5ef64cc8
LT
42extern int sysctl_page_lock_unfairness;
43
b7ec1bf3 44void mm_core_init(void);
597b7305
MH
45void init_mm_internals(void);
46
a9ee6cf5 47#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 48extern unsigned long max_mapnr;
fccc9987
JL
49
50static inline void set_max_mapnr(unsigned long limit)
51{
52 max_mapnr = limit;
53}
54#else
55static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
56#endif
57
ca79b0c2
AK
58extern atomic_long_t _totalram_pages;
59static inline unsigned long totalram_pages(void)
60{
61 return (unsigned long)atomic_long_read(&_totalram_pages);
62}
63
64static inline void totalram_pages_inc(void)
65{
66 atomic_long_inc(&_totalram_pages);
67}
68
69static inline void totalram_pages_dec(void)
70{
71 atomic_long_dec(&_totalram_pages);
72}
73
74static inline void totalram_pages_add(long count)
75{
76 atomic_long_add(count, &_totalram_pages);
77}
78
1da177e4 79extern void * high_memory;
1da177e4 80extern int page_cluster;
ea0ffd0c 81extern const int page_cluster_max;
1da177e4
LT
82
83#ifdef CONFIG_SYSCTL
84extern int sysctl_legacy_va_layout;
85#else
86#define sysctl_legacy_va_layout 0
87#endif
88
d07e2259
DC
89#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90extern const int mmap_rnd_bits_min;
71a5849a 91extern int mmap_rnd_bits_max __ro_after_init;
d07e2259
DC
92extern int mmap_rnd_bits __read_mostly;
93#endif
94#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95extern const int mmap_rnd_compat_bits_min;
96extern const int mmap_rnd_compat_bits_max;
97extern int mmap_rnd_compat_bits __read_mostly;
98#endif
99
1da177e4 100#include <asm/page.h>
1da177e4 101#include <asm/processor.h>
1da177e4 102
79442ed1
TC
103#ifndef __pa_symbol
104#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
105#endif
106
1dff8083
AB
107#ifndef page_to_virt
108#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
109#endif
110
568c5fe5
LA
111#ifndef lm_alias
112#define lm_alias(x) __va(__pa_symbol(x))
113#endif
114
593befa6
DD
115/*
116 * To prevent common memory management code establishing
117 * a zero page mapping on a read fault.
118 * This macro should be defined within <asm/pgtable.h>.
119 * s390 does this to prevent multiplexing of hardware bits
120 * related to the physical page in case of virtualization.
121 */
122#ifndef mm_forbids_zeropage
123#define mm_forbids_zeropage(X) (0)
124#endif
125
a4a3ede2
PT
126/*
127 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
128 * If an architecture decides to implement their own version of
129 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
130 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 131 */
5470dea4 132#if BITS_PER_LONG == 64
3770e52f 133/* This function must be updated when the size of struct page grows above 96
5470dea4
AD
134 * or reduces below 56. The idea that compiler optimizes out switch()
135 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 136 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
137 * this can result in several of the writes here being dropped.
138 */
139#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
140static inline void __mm_zero_struct_page(struct page *page)
141{
142 unsigned long *_pp = (void *)page;
143
3770e52f 144 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
5470dea4
AD
145 BUILD_BUG_ON(sizeof(struct page) & 7);
146 BUILD_BUG_ON(sizeof(struct page) < 56);
3770e52f 147 BUILD_BUG_ON(sizeof(struct page) > 96);
5470dea4
AD
148
149 switch (sizeof(struct page)) {
3770e52f
AB
150 case 96:
151 _pp[11] = 0;
152 fallthrough;
153 case 88:
154 _pp[10] = 0;
155 fallthrough;
5470dea4 156 case 80:
df561f66
GS
157 _pp[9] = 0;
158 fallthrough;
5470dea4 159 case 72:
df561f66
GS
160 _pp[8] = 0;
161 fallthrough;
5470dea4 162 case 64:
df561f66
GS
163 _pp[7] = 0;
164 fallthrough;
5470dea4
AD
165 case 56:
166 _pp[6] = 0;
167 _pp[5] = 0;
168 _pp[4] = 0;
169 _pp[3] = 0;
170 _pp[2] = 0;
171 _pp[1] = 0;
172 _pp[0] = 0;
173 }
174}
175#else
a4a3ede2
PT
176#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
177#endif
178
ea606cf5
AR
179/*
180 * Default maximum number of active map areas, this limits the number of vmas
181 * per mm struct. Users can overwrite this number by sysctl but there is a
182 * problem.
183 *
184 * When a program's coredump is generated as ELF format, a section is created
185 * per a vma. In ELF, the number of sections is represented in unsigned short.
186 * This means the number of sections should be smaller than 65535 at coredump.
187 * Because the kernel adds some informative sections to a image of program at
188 * generating coredump, we need some margin. The number of extra sections is
189 * 1-3 now and depends on arch. We use "5" as safe margin, here.
190 *
191 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
192 * not a hard limit any more. Although some userspace tools can be surprised by
193 * that.
194 */
195#define MAPCOUNT_ELF_CORE_MARGIN (5)
196#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
197
198extern int sysctl_max_map_count;
199
c9b1d098 200extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 201extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 202
49f0ce5f
JM
203extern int sysctl_overcommit_memory;
204extern int sysctl_overcommit_ratio;
205extern unsigned long sysctl_overcommit_kbytes;
206
32927393
CH
207int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
208 loff_t *);
209int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
210 loff_t *);
56f3547b
FT
211int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
212 loff_t *);
49f0ce5f 213
1cfcee72 214#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 215#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 216#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
217#else
218#define nth_page(page,n) ((page) + (n))
659508f9 219#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 220#endif
1da177e4 221
27ac792c
AR
222/* to align the pointer to the (next) page boundary */
223#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224
335e52c2
DG
225/* to align the pointer to the (prev) page boundary */
226#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
227
0fa73b86 228/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 229#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 230
06d20bdb
MWO
231static inline struct folio *lru_to_folio(struct list_head *head)
232{
233 return list_entry((head)->prev, struct folio, lru);
234}
f86196ea 235
5748fbc5
KW
236void setup_initial_init_mm(void *start_code, void *end_code,
237 void *end_data, void *brk);
238
1da177e4
LT
239/*
240 * Linux kernel virtual memory manager primitives.
241 * The idea being to have a "virtual" mm in the same way
242 * we have a virtual fs - giving a cleaner interface to the
243 * mm details, and allowing different kinds of memory mappings
244 * (from shared memory to executable loading to arbitrary
245 * mmap() functions).
246 */
247
490fc053 248struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
249struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
250void vm_area_free(struct vm_area_struct *);
0d2ebf9c
SB
251/* Use only if VMA has no other users */
252void __vm_area_free(struct vm_area_struct *vma);
c43692e8 253
1da177e4 254#ifndef CONFIG_MMU
8feae131
DH
255extern struct rb_root nommu_region_tree;
256extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
257
258extern unsigned int kobjsize(const void *objp);
259#endif
260
261/*
605d9288 262 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 263 * When changing, update also include/trace/events/mmflags.h
1da177e4 264 */
cc2383ec
KK
265#define VM_NONE 0x00000000
266
1da177e4
LT
267#define VM_READ 0x00000001 /* currently active flags */
268#define VM_WRITE 0x00000002
269#define VM_EXEC 0x00000004
270#define VM_SHARED 0x00000008
271
7e2cff42 272/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
273#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
274#define VM_MAYWRITE 0x00000020
275#define VM_MAYEXEC 0x00000040
276#define VM_MAYSHARE 0x00000080
277
278#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
b6b7a8fa 279#ifdef CONFIG_MMU
16ba6f81 280#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
b6b7a8fa
DH
281#else /* CONFIG_MMU */
282#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
283#define VM_UFFD_MISSING 0
284#endif /* CONFIG_MMU */
6aab341e 285#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 286#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 287
1da177e4
LT
288#define VM_LOCKED 0x00002000
289#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
290
291 /* Used by sys_madvise() */
292#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
293#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
294
295#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
296#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 297#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 298#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 299#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 300#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 301#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 302#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 303#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 304#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 305
d9104d1c
CG
306#ifdef CONFIG_MEM_SOFT_DIRTY
307# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
308#else
309# define VM_SOFTDIRTY 0
310#endif
311
b379d790 312#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
313#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
314#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 315#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 316
63c17fb8
DH
317#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
318#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
319#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
320#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
321#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 322#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
54007f81 323#define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
63c17fb8
DH
324#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
325#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
326#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
327#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 328#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
54007f81 329#define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
63c17fb8
DH
330#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
331
5212213a 332#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
333# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
334# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 335# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
336# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
337# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
338#ifdef CONFIG_PPC
339# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
340#else
341# define VM_PKEY_BIT4 0
8f62c883 342#endif
5212213a
RP
343#endif /* CONFIG_ARCH_HAS_PKEYS */
344
54007f81 345#ifdef CONFIG_X86_USER_SHADOW_STACK
0266e7c5 346/*
87f0df78
RE
347 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
348 * support core mm.
0266e7c5 349 *
87f0df78
RE
350 * These VMAs will get a single end guard page. This helps userspace protect
351 * itself from attacks. A single page is enough for current shadow stack archs
352 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
353 * for more details on the guard size.
0266e7c5
RE
354 */
355# define VM_SHADOW_STACK VM_HIGH_ARCH_5
54007f81
YY
356#else
357# define VM_SHADOW_STACK VM_NONE
358#endif
359
5212213a
RP
360#if defined(CONFIG_X86)
361# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
362#elif defined(CONFIG_PPC)
363# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
364#elif defined(CONFIG_PARISC)
365# define VM_GROWSUP VM_ARCH_1
74a04967
KA
366#elif defined(CONFIG_SPARC64)
367# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
368# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
369#elif defined(CONFIG_ARM64)
370# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
371# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
372#elif !defined(CONFIG_MMU)
373# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
374#endif
375
9f341931
CM
376#if defined(CONFIG_ARM64_MTE)
377# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
378# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
379#else
380# define VM_MTE VM_NONE
381# define VM_MTE_ALLOWED VM_NONE
382#endif
383
cc2383ec
KK
384#ifndef VM_GROWSUP
385# define VM_GROWSUP VM_NONE
386#endif
387
7677f7fd 388#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
fb47a799 389# define VM_UFFD_MINOR_BIT 38
7677f7fd
AR
390# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
391#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
392# define VM_UFFD_MINOR VM_NONE
393#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
394
5c656fcd
AA
395/*
396 * This flag is used to connect VFIO to arch specific KVM code. It
397 * indicates that the memory under this VMA is safe for use with any
398 * non-cachable memory type inside KVM. Some VFIO devices, on some
399 * platforms, are thought to be unsafe and can cause machine crashes
400 * if KVM does not lock down the memory type.
401 */
402#ifdef CONFIG_64BIT
403#define VM_ALLOW_ANY_UNCACHED_BIT 39
404#define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
405#else
406#define VM_ALLOW_ANY_UNCACHED VM_NONE
407#endif
408
a8bef8ff 409/* Bits set in the VMA until the stack is in its final location */
f66066bc 410#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
a8bef8ff 411
c62da0c3
AK
412#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
413
414/* Common data flag combinations */
415#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
416 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
417#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
418 VM_MAYWRITE | VM_MAYEXEC)
419#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
420 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
421
422#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
423#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
424#endif
425
1da177e4
LT
426#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
427#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
428#endif
429
0266e7c5
RE
430#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
431
1da177e4 432#ifdef CONFIG_STACK_GROWSUP
30bdbb78 433#define VM_STACK VM_GROWSUP
f66066bc 434#define VM_STACK_EARLY VM_GROWSDOWN
1da177e4 435#else
30bdbb78 436#define VM_STACK VM_GROWSDOWN
f66066bc 437#define VM_STACK_EARLY 0
1da177e4
LT
438#endif
439
30bdbb78
KK
440#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
441
6cb4d9a2
AK
442/* VMA basic access permission flags */
443#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
444
445
b291f000 446/*
78f11a25 447 * Special vmas that are non-mergable, non-mlock()able.
b291f000 448 */
9050d7eb 449#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 450
b4443772
AK
451/* This mask prevents VMA from being scanned with khugepaged */
452#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
453
a0715cc2
AT
454/* This mask defines which mm->def_flags a process can inherit its parent */
455#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
456
e430a95a
SB
457/* This mask represents all the VMA flag bits used by mlock */
458#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
de60f5f1 459
2c2d57b5
KA
460/* Arch-specific flags to clear when updating VM flags on protection change */
461#ifndef VM_ARCH_CLEAR
462# define VM_ARCH_CLEAR VM_NONE
463#endif
464#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
465
1da177e4
LT
466/*
467 * mapping from the currently active vm_flags protection bits (the
468 * low four bits) to a page protection mask..
469 */
1da177e4 470
dde16072
PX
471/*
472 * The default fault flags that should be used by most of the
473 * arch-specific page fault handlers.
474 */
475#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
476 FAULT_FLAG_KILLABLE | \
477 FAULT_FLAG_INTERRUPTIBLE)
dde16072 478
4064b982
PX
479/**
480 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 481 * @flags: Fault flags.
4064b982
PX
482 *
483 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 484 * the mmap_lock for too long a time when waiting for another condition
4064b982 485 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
486 * mmap_lock in the first round to avoid potential starvation of other
487 * processes that would also want the mmap_lock.
4064b982
PX
488 *
489 * Return: true if the page fault allows retry and this is the first
490 * attempt of the fault handling; false otherwise.
491 */
da2f5eb3 492static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
493{
494 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
495 (!(flags & FAULT_FLAG_TRIED));
496}
497
282a8e03
RZ
498#define FAULT_FLAG_TRACE \
499 { FAULT_FLAG_WRITE, "WRITE" }, \
500 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
501 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
502 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
503 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
504 { FAULT_FLAG_TRIED, "TRIED" }, \
505 { FAULT_FLAG_USER, "USER" }, \
506 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee 507 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
55324e46
SB
508 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
509 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
282a8e03 510
54cb8821 511/*
11192337 512 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
513 * ->fault function. The vma's ->fault is responsible for returning a bitmask
514 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 515 *
c20cd45e
MH
516 * MM layer fills up gfp_mask for page allocations but fault handler might
517 * alter it if its implementation requires a different allocation context.
518 *
9b4bdd2f 519 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 520 */
d0217ac0 521struct vm_fault {
5857c920 522 const struct {
742d3372
WD
523 struct vm_area_struct *vma; /* Target VMA */
524 gfp_t gfp_mask; /* gfp mask to be used for allocations */
525 pgoff_t pgoff; /* Logical page offset based on vma */
824ddc60
NA
526 unsigned long address; /* Faulting virtual address - masked */
527 unsigned long real_address; /* Faulting virtual address - unmasked */
742d3372 528 };
da2f5eb3 529 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 530 * XXX: should really be 'const' */
82b0f8c3 531 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 532 * the 'address' */
a2d58167
DJ
533 pud_t *pud; /* Pointer to pud entry matching
534 * the 'address'
535 */
5db4f15c
YS
536 union {
537 pte_t orig_pte; /* Value of PTE at the time of fault */
538 pmd_t orig_pmd; /* Value of PMD at the time of fault,
539 * used by PMD fault only.
540 */
541 };
d0217ac0 542
3917048d 543 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 544 struct page *page; /* ->fault handlers should return a
83c54070 545 * page here, unless VM_FAULT_NOPAGE
d0217ac0 546 * is set (which is also implied by
83c54070 547 * VM_FAULT_ERROR).
d0217ac0 548 */
82b0f8c3 549 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
550 pte_t *pte; /* Pointer to pte entry matching
551 * the 'address'. NULL if the page
552 * table hasn't been allocated.
553 */
554 spinlock_t *ptl; /* Page table lock.
555 * Protects pte page table if 'pte'
556 * is not NULL, otherwise pmd.
557 */
7267ec00 558 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
559 * vm_ops->map_pages() sets up a page
560 * table from atomic context.
7267ec00
KS
561 * do_fault_around() pre-allocates
562 * page table to avoid allocation from
563 * atomic context.
564 */
54cb8821 565};
1da177e4
LT
566
567/*
568 * These are the virtual MM functions - opening of an area, closing and
569 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 570 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
571 */
572struct vm_operations_struct {
573 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
574 /**
575 * @close: Called when the VMA is being removed from the MM.
576 * Context: User context. May sleep. Caller holds mmap_lock.
577 */
1da177e4 578 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
579 /* Called any time before splitting to check if it's allowed */
580 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 581 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
582 /*
583 * Called by mprotect() to make driver-specific permission
584 * checks before mprotect() is finalised. The VMA must not
3e0ee843 585 * be modified. Returns 0 if mprotect() can proceed.
95bb7c42
SC
586 */
587 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
588 unsigned long end, unsigned long newflags);
1c8f4220 589 vm_fault_t (*fault)(struct vm_fault *vmf);
1d024e7a 590 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
f9ce0be7 591 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 592 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 593 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
594
595 /* notification that a previously read-only page is about to become
596 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 597 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 598
dd906184 599 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 600 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 601
28b2ee20 602 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
603 * for use by special VMAs. See also generic_access_phys() for a generic
604 * implementation useful for any iomem mapping.
28b2ee20
RR
605 */
606 int (*access)(struct vm_area_struct *vma, unsigned long addr,
607 void *buf, int len, int write);
78d683e8
AL
608
609 /* Called by the /proc/PID/maps code to ask the vma whether it
610 * has a special name. Returning non-NULL will also cause this
611 * vma to be dumped unconditionally. */
612 const char *(*name)(struct vm_area_struct *vma);
613
1da177e4 614#ifdef CONFIG_NUMA
a6020ed7
LS
615 /*
616 * set_policy() op must add a reference to any non-NULL @new mempolicy
617 * to hold the policy upon return. Caller should pass NULL @new to
618 * remove a policy and fall back to surrounding context--i.e. do not
619 * install a MPOL_DEFAULT policy, nor the task or system default
620 * mempolicy.
621 */
1da177e4 622 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
623
624 /*
625 * get_policy() op must add reference [mpol_get()] to any policy at
626 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
627 * in mm/mempolicy.c will do this automatically.
628 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 629 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
630 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
631 * must return NULL--i.e., do not "fallback" to task or system default
632 * policy.
633 */
1da177e4 634 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
ddc1a5cb 635 unsigned long addr, pgoff_t *ilx);
1da177e4 636#endif
667a0a06
DV
637 /*
638 * Called by vm_normal_page() for special PTEs to find the
639 * page for @addr. This is useful if the default behavior
640 * (using pte_page()) would not find the correct page.
641 */
642 struct page *(*find_special_page)(struct vm_area_struct *vma,
643 unsigned long addr);
1da177e4
LT
644};
645
ef6a22b7
MG
646#ifdef CONFIG_NUMA_BALANCING
647static inline void vma_numab_state_init(struct vm_area_struct *vma)
648{
649 vma->numab_state = NULL;
650}
651static inline void vma_numab_state_free(struct vm_area_struct *vma)
652{
653 kfree(vma->numab_state);
654}
655#else
656static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
657static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
658#endif /* CONFIG_NUMA_BALANCING */
659
5e31275c 660#ifdef CONFIG_PER_VMA_LOCK
5e31275c
SB
661/*
662 * Try to read-lock a vma. The function is allowed to occasionally yield false
663 * locked result to avoid performance overhead, in which case we fall back to
664 * using mmap_lock. The function should never yield false unlocked result.
665 */
666static inline bool vma_start_read(struct vm_area_struct *vma)
667{
b1f02b95
JH
668 /*
669 * Check before locking. A race might cause false locked result.
670 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
671 * ACQUIRE semantics, because this is just a lockless check whose result
672 * we don't rely on for anything - the mm_lock_seq read against which we
673 * need ordering is below.
674 */
675 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
5e31275c
SB
676 return false;
677
c7f8f31c 678 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
5e31275c
SB
679 return false;
680
681 /*
682 * Overflow might produce false locked result.
683 * False unlocked result is impossible because we modify and check
c7f8f31c 684 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
5e31275c 685 * modification invalidates all existing locks.
b1f02b95
JH
686 *
687 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
688 * racing with vma_end_write_all(), we only start reading from the VMA
689 * after it has been unlocked.
690 * This pairs with RELEASE semantics in vma_end_write_all().
5e31275c 691 */
b1f02b95 692 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
c7f8f31c 693 up_read(&vma->vm_lock->lock);
5e31275c
SB
694 return false;
695 }
696 return true;
697}
698
699static inline void vma_end_read(struct vm_area_struct *vma)
700{
701 rcu_read_lock(); /* keeps vma alive till the end of up_read */
c7f8f31c 702 up_read(&vma->vm_lock->lock);
5e31275c
SB
703 rcu_read_unlock();
704}
705
29a22b9e 706/* WARNING! Can only be used if mmap_lock is expected to be write-locked */
55fd6fcc 707static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
5e31275c 708{
5e31275c
SB
709 mmap_assert_write_locked(vma->vm_mm);
710
711 /*
712 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
713 * mm->mm_lock_seq can't be concurrently modified.
714 */
b1f02b95 715 *mm_lock_seq = vma->vm_mm->mm_lock_seq;
55fd6fcc
SB
716 return (vma->vm_lock_seq == *mm_lock_seq);
717}
718
90717566
JH
719/*
720 * Begin writing to a VMA.
721 * Exclude concurrent readers under the per-VMA lock until the currently
722 * write-locked mmap_lock is dropped or downgraded.
723 */
55fd6fcc
SB
724static inline void vma_start_write(struct vm_area_struct *vma)
725{
726 int mm_lock_seq;
727
728 if (__is_vma_write_locked(vma, &mm_lock_seq))
5e31275c
SB
729 return;
730
c7f8f31c 731 down_write(&vma->vm_lock->lock);
b1f02b95
JH
732 /*
733 * We should use WRITE_ONCE() here because we can have concurrent reads
734 * from the early lockless pessimistic check in vma_start_read().
735 * We don't really care about the correctness of that early check, but
736 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
737 */
738 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
c7f8f31c 739 up_write(&vma->vm_lock->lock);
5e31275c
SB
740}
741
742static inline void vma_assert_write_locked(struct vm_area_struct *vma)
743{
55fd6fcc
SB
744 int mm_lock_seq;
745
746 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
5e31275c
SB
747}
748
29a22b9e
SB
749static inline void vma_assert_locked(struct vm_area_struct *vma)
750{
751 if (!rwsem_is_locked(&vma->vm_lock->lock))
752 vma_assert_write_locked(vma);
753}
754
457f67be
SB
755static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
756{
757 /* When detaching vma should be write-locked */
758 if (detached)
759 vma_assert_write_locked(vma);
760 vma->detached = detached;
761}
762
1235ccd0
SB
763static inline void release_fault_lock(struct vm_fault *vmf)
764{
765 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
766 vma_end_read(vmf->vma);
767 else
768 mmap_read_unlock(vmf->vma->vm_mm);
769}
770
29a22b9e
SB
771static inline void assert_fault_locked(struct vm_fault *vmf)
772{
773 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
774 vma_assert_locked(vmf->vma);
775 else
776 mmap_assert_locked(vmf->vma->vm_mm);
777}
778
50ee3253
SB
779struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
780 unsigned long address);
781
5e31275c
SB
782#else /* CONFIG_PER_VMA_LOCK */
783
5e31275c
SB
784static inline bool vma_start_read(struct vm_area_struct *vma)
785 { return false; }
786static inline void vma_end_read(struct vm_area_struct *vma) {}
787static inline void vma_start_write(struct vm_area_struct *vma) {}
ce2fc5ff
SB
788static inline void vma_assert_write_locked(struct vm_area_struct *vma)
789 { mmap_assert_write_locked(vma->vm_mm); }
457f67be
SB
790static inline void vma_mark_detached(struct vm_area_struct *vma,
791 bool detached) {}
5e31275c 792
284e0592
MWO
793static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
794 unsigned long address)
795{
796 return NULL;
797}
798
32af81af
LG
799static inline void vma_assert_locked(struct vm_area_struct *vma)
800{
801 mmap_assert_locked(vma->vm_mm);
802}
803
1235ccd0
SB
804static inline void release_fault_lock(struct vm_fault *vmf)
805{
806 mmap_read_unlock(vmf->vma->vm_mm);
807}
808
29a22b9e
SB
809static inline void assert_fault_locked(struct vm_fault *vmf)
810{
811 mmap_assert_locked(vmf->vma->vm_mm);
812}
813
5e31275c
SB
814#endif /* CONFIG_PER_VMA_LOCK */
815
9a9d0b82
MG
816extern const struct vm_operations_struct vma_dummy_vm_ops;
817
c7f8f31c
SB
818/*
819 * WARNING: vma_init does not initialize vma->vm_lock.
820 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
821 */
027232da
KS
822static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
823{
a670468f 824 memset(vma, 0, sizeof(*vma));
027232da 825 vma->vm_mm = mm;
9a9d0b82 826 vma->vm_ops = &vma_dummy_vm_ops;
027232da 827 INIT_LIST_HEAD(&vma->anon_vma_chain);
457f67be 828 vma_mark_detached(vma, false);
ef6a22b7 829 vma_numab_state_init(vma);
027232da
KS
830}
831
bc292ab0
SB
832/* Use when VMA is not part of the VMA tree and needs no locking */
833static inline void vm_flags_init(struct vm_area_struct *vma,
834 vm_flags_t flags)
835{
836 ACCESS_PRIVATE(vma, __vm_flags) = flags;
837}
838
60081bf1
SB
839/*
840 * Use when VMA is part of the VMA tree and modifications need coordination
841 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
842 * it should be locked explicitly beforehand.
843 */
bc292ab0
SB
844static inline void vm_flags_reset(struct vm_area_struct *vma,
845 vm_flags_t flags)
846{
60081bf1 847 vma_assert_write_locked(vma);
bc292ab0
SB
848 vm_flags_init(vma, flags);
849}
850
601c3c29
SB
851static inline void vm_flags_reset_once(struct vm_area_struct *vma,
852 vm_flags_t flags)
853{
60081bf1 854 vma_assert_write_locked(vma);
601c3c29
SB
855 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
856}
857
bc292ab0
SB
858static inline void vm_flags_set(struct vm_area_struct *vma,
859 vm_flags_t flags)
860{
c7322933 861 vma_start_write(vma);
bc292ab0
SB
862 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
863}
864
865static inline void vm_flags_clear(struct vm_area_struct *vma,
866 vm_flags_t flags)
867{
c7322933 868 vma_start_write(vma);
bc292ab0
SB
869 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
870}
871
68f48381
SB
872/*
873 * Use only if VMA is not part of the VMA tree or has no other users and
874 * therefore needs no locking.
875 */
876static inline void __vm_flags_mod(struct vm_area_struct *vma,
877 vm_flags_t set, vm_flags_t clear)
878{
879 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
880}
881
bc292ab0
SB
882/*
883 * Use only when the order of set/clear operations is unimportant, otherwise
884 * use vm_flags_{set|clear} explicitly.
885 */
886static inline void vm_flags_mod(struct vm_area_struct *vma,
887 vm_flags_t set, vm_flags_t clear)
888{
c7322933 889 vma_start_write(vma);
68f48381 890 __vm_flags_mod(vma, set, clear);
bc292ab0
SB
891}
892
bfd40eaf
KS
893static inline void vma_set_anonymous(struct vm_area_struct *vma)
894{
895 vma->vm_ops = NULL;
896}
897
43675e6f
YS
898static inline bool vma_is_anonymous(struct vm_area_struct *vma)
899{
900 return !vma->vm_ops;
901}
902
11250fd1
KW
903/*
904 * Indicate if the VMA is a heap for the given task; for
905 * /proc/PID/maps that is the heap of the main task.
906 */
907static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
908{
d3bb89ea
KW
909 return vma->vm_start < vma->vm_mm->brk &&
910 vma->vm_end > vma->vm_mm->start_brk;
11250fd1
KW
911}
912
913/*
914 * Indicate if the VMA is a stack for the given task; for
915 * /proc/PID/maps that is the stack of the main task.
916 */
917static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
918{
919 /*
920 * We make no effort to guess what a given thread considers to be
921 * its "stack". It's not even well-defined for programs written
922 * languages like Go.
923 */
d3bb89ea
KW
924 return vma->vm_start <= vma->vm_mm->start_stack &&
925 vma->vm_end >= vma->vm_mm->start_stack;
11250fd1
KW
926}
927
222100ee
AK
928static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
929{
930 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
931
932 if (!maybe_stack)
933 return false;
934
935 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
936 VM_STACK_INCOMPLETE_SETUP)
937 return true;
938
939 return false;
940}
941
7969f226
AK
942static inline bool vma_is_foreign(struct vm_area_struct *vma)
943{
944 if (!current->mm)
945 return true;
946
947 if (current->mm != vma->vm_mm)
948 return true;
949
950 return false;
951}
3122e80e
AK
952
953static inline bool vma_is_accessible(struct vm_area_struct *vma)
954{
6cb4d9a2 955 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
956}
957
e8e17ee9
LS
958static inline bool is_shared_maywrite(vm_flags_t vm_flags)
959{
960 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
961 (VM_SHARED | VM_MAYWRITE);
962}
963
964static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
965{
966 return is_shared_maywrite(vma->vm_flags);
967}
968
f39af059
MWO
969static inline
970struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
971{
b62b633e 972 return mas_find(&vmi->mas, max - 1);
f39af059
MWO
973}
974
975static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
976{
977 /*
b62b633e 978 * Uses mas_find() to get the first VMA when the iterator starts.
f39af059
MWO
979 * Calling mas_next() could skip the first entry.
980 */
b62b633e 981 return mas_find(&vmi->mas, ULONG_MAX);
f39af059
MWO
982}
983
bb5dbd22
LH
984static inline
985struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
986{
987 return mas_next_range(&vmi->mas, ULONG_MAX);
988}
989
990
f39af059
MWO
991static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
992{
993 return mas_prev(&vmi->mas, 0);
994}
995
bb5dbd22
LH
996static inline
997struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
998{
999 return mas_prev_range(&vmi->mas, 0);
1000}
1001
f39af059
MWO
1002static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
1003{
1004 return vmi->mas.index;
1005}
1006
b62b633e
LH
1007static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
1008{
1009 return vmi->mas.last + 1;
1010}
1011static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
1012 unsigned long count)
1013{
1014 return mas_expected_entries(&vmi->mas, count);
1015}
1016
d2406291
PZ
1017static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1018 unsigned long start, unsigned long end, gfp_t gfp)
1019{
1020 __mas_set_range(&vmi->mas, start, end - 1);
1021 mas_store_gfp(&vmi->mas, NULL, gfp);
1022 if (unlikely(mas_is_err(&vmi->mas)))
1023 return -ENOMEM;
1024
1025 return 0;
1026}
1027
b62b633e
LH
1028/* Free any unused preallocations */
1029static inline void vma_iter_free(struct vma_iterator *vmi)
1030{
1031 mas_destroy(&vmi->mas);
1032}
1033
1034static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1035 struct vm_area_struct *vma)
1036{
1037 vmi->mas.index = vma->vm_start;
1038 vmi->mas.last = vma->vm_end - 1;
1039 mas_store(&vmi->mas, vma);
1040 if (unlikely(mas_is_err(&vmi->mas)))
1041 return -ENOMEM;
1042
1043 return 0;
1044}
1045
1046static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1047{
1048 mas_pause(&vmi->mas);
1049}
1050
1051static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1052{
1053 mas_set(&vmi->mas, addr);
1054}
1055
f39af059
MWO
1056#define for_each_vma(__vmi, __vma) \
1057 while (((__vma) = vma_next(&(__vmi))) != NULL)
1058
1059/* The MM code likes to work with exclusive end addresses */
1060#define for_each_vma_range(__vmi, __vma, __end) \
b62b633e 1061 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
f39af059 1062
43675e6f
YS
1063#ifdef CONFIG_SHMEM
1064/*
1065 * The vma_is_shmem is not inline because it is used only by slow
1066 * paths in userfault.
1067 */
1068bool vma_is_shmem(struct vm_area_struct *vma);
d09e8ca6 1069bool vma_is_anon_shmem(struct vm_area_struct *vma);
43675e6f
YS
1070#else
1071static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
d09e8ca6 1072static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
43675e6f
YS
1073#endif
1074
1075int vma_is_stack_for_current(struct vm_area_struct *vma);
1076
8b11ec1b
LT
1077/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1078#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1079
1da177e4
LT
1080struct mmu_gather;
1081struct inode;
1082
5eb5cea1
MWO
1083/*
1084 * compound_order() can be called without holding a reference, which means
1085 * that niceties like page_folio() don't work. These callers should be
1086 * prepared to handle wild return values. For example, PG_head may be
ebc1baf5 1087 * set before the order is initialised, or this may be a tail page.
5eb5cea1
MWO
1088 * See compaction.c for some good examples.
1089 */
5bf34d7c
MWO
1090static inline unsigned int compound_order(struct page *page)
1091{
5eb5cea1
MWO
1092 struct folio *folio = (struct folio *)page;
1093
1094 if (!test_bit(PG_head, &folio->flags))
5bf34d7c 1095 return 0;
ebc1baf5 1096 return folio->_flags_1 & 0xff;
5bf34d7c
MWO
1097}
1098
1099/**
1100 * folio_order - The allocation order of a folio.
1101 * @folio: The folio.
1102 *
1103 * A folio is composed of 2^order pages. See get_order() for the definition
1104 * of order.
1105 *
1106 * Return: The order of the folio.
1107 */
1108static inline unsigned int folio_order(struct folio *folio)
1109{
c3a15bff
MWO
1110 if (!folio_test_large(folio))
1111 return 0;
ebc1baf5 1112 return folio->_flags_1 & 0xff;
5bf34d7c
MWO
1113}
1114
71e3aac0 1115#include <linux/huge_mm.h>
1da177e4
LT
1116
1117/*
1118 * Methods to modify the page usage count.
1119 *
1120 * What counts for a page usage:
1121 * - cache mapping (page->mapping)
1122 * - private data (page->private)
1123 * - page mapped in a task's page tables, each mapping
1124 * is counted separately
1125 *
1126 * Also, many kernel routines increase the page count before a critical
1127 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
1128 */
1129
1130/*
da6052f7 1131 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 1132 */
7c8ee9a8
NP
1133static inline int put_page_testzero(struct page *page)
1134{
fe896d18
JK
1135 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1136 return page_ref_dec_and_test(page);
7c8ee9a8 1137}
1da177e4 1138
b620f633
MWO
1139static inline int folio_put_testzero(struct folio *folio)
1140{
1141 return put_page_testzero(&folio->page);
1142}
1143
1da177e4 1144/*
7c8ee9a8
NP
1145 * Try to grab a ref unless the page has a refcount of zero, return false if
1146 * that is the case.
8e0861fa
AK
1147 * This can be called when MMU is off so it must not access
1148 * any of the virtual mappings.
1da177e4 1149 */
c2530328 1150static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 1151{
fe896d18 1152 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 1153}
1da177e4 1154
3c1ea2c7
VMO
1155static inline struct folio *folio_get_nontail_page(struct page *page)
1156{
1157 if (unlikely(!get_page_unless_zero(page)))
1158 return NULL;
1159 return (struct folio *)page;
1160}
1161
53df8fdc 1162extern int page_is_ram(unsigned long pfn);
124fe20d
DW
1163
1164enum {
1165 REGION_INTERSECTS,
1166 REGION_DISJOINT,
1167 REGION_MIXED,
1168};
1169
1c29f25b
TK
1170int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1171 unsigned long desc);
53df8fdc 1172
48667e7a 1173/* Support for virtually mapped pages */
b3bdda02
CL
1174struct page *vmalloc_to_page(const void *addr);
1175unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 1176
0738c4bb
PM
1177/*
1178 * Determine if an address is within the vmalloc range
1179 *
1180 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1181 * is no special casing required.
1182 */
81ac3ad9 1183#ifdef CONFIG_MMU
186525bd 1184extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
1185extern int is_vmalloc_or_module_addr(const void *x);
1186#else
186525bd
IM
1187static inline bool is_vmalloc_addr(const void *x)
1188{
1189 return false;
1190}
934831d0 1191static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
1192{
1193 return 0;
1194}
1195#endif
9e2779fa 1196
74e8ee47
MWO
1197/*
1198 * How many times the entire folio is mapped as a single unit (eg by a
1199 * PMD or PUD entry). This is probably not what you want, except for
cb67f428 1200 * debugging purposes - it does not include PTE-mapped sub-pages; look
5ce1f484 1201 * at folio_mapcount() or page_mapcount() instead.
74e8ee47
MWO
1202 */
1203static inline int folio_entire_mapcount(struct folio *folio)
6dc5ea16 1204{
74e8ee47 1205 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1aa4d03b 1206 return atomic_read(&folio->_entire_mapcount) + 1;
53f9263b
KS
1207}
1208
70b50f94
AA
1209/*
1210 * The atomic page->_mapcount, starts from -1: so that transitions
1211 * both from it and to it can be tracked, using atomic_inc_and_test
1212 * and atomic_add_negative(-1).
1213 */
22b751c3 1214static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
1215{
1216 atomic_set(&(page)->_mapcount, -1);
1217}
1218
c97eeb8f
MWO
1219/**
1220 * page_mapcount() - Number of times this precise page is mapped.
1221 * @page: The page.
1222 *
1223 * The number of times this page is mapped. If this page is part of
1224 * a large folio, it includes the number of times this page is mapped
1225 * as part of that folio.
6988f31d 1226 *
fd1a745c
MWO
1227 * Will report 0 for pages which cannot be mapped into userspace, eg
1228 * slab, page tables and similar.
6988f31d 1229 */
70b50f94
AA
1230static inline int page_mapcount(struct page *page)
1231{
cb67f428 1232 int mapcount = atomic_read(&page->_mapcount) + 1;
b20ce5e0 1233
fd1a745c
MWO
1234 /* Handle page_has_type() pages */
1235 if (mapcount < 0)
1236 mapcount = 0;
c97eeb8f
MWO
1237 if (unlikely(PageCompound(page)))
1238 mapcount += folio_entire_mapcount(page_folio(page));
1239
1240 return mapcount;
b20ce5e0
KS
1241}
1242
b14224fb 1243int folio_total_mapcount(struct folio *folio);
4ba1119c 1244
cb67f428
HD
1245/**
1246 * folio_mapcount() - Calculate the number of mappings of this folio.
1247 * @folio: The folio.
1248 *
1249 * A large folio tracks both how many times the entire folio is mapped,
1250 * and how many times each individual page in the folio is mapped.
1251 * This function calculates the total number of times the folio is
1252 * mapped.
1253 *
1254 * Return: The number of times this folio is mapped.
1255 */
1256static inline int folio_mapcount(struct folio *folio)
4ba1119c 1257{
cb67f428
HD
1258 if (likely(!folio_test_large(folio)))
1259 return atomic_read(&folio->_mapcount) + 1;
b14224fb 1260 return folio_total_mapcount(folio);
4ba1119c
MWO
1261}
1262
be5ef2d9
HD
1263static inline bool folio_large_is_mapped(struct folio *folio)
1264{
4b51634c 1265 /*
1aa4d03b 1266 * Reading _entire_mapcount below could be omitted if hugetlb
eec20426 1267 * participated in incrementing nr_pages_mapped when compound mapped.
4b51634c 1268 */
eec20426 1269 return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1aa4d03b 1270 atomic_read(&folio->_entire_mapcount) >= 0;
cb67f428
HD
1271}
1272
1273/**
1274 * folio_mapped - Is this folio mapped into userspace?
1275 * @folio: The folio.
1276 *
1277 * Return: True if any page in this folio is referenced by user page tables.
1278 */
1279static inline bool folio_mapped(struct folio *folio)
1280{
be5ef2d9
HD
1281 if (likely(!folio_test_large(folio)))
1282 return atomic_read(&folio->_mapcount) >= 0;
1283 return folio_large_is_mapped(folio);
1284}
1285
1286/*
1287 * Return true if this page is mapped into pagetables.
1288 * For compound page it returns true if any sub-page of compound page is mapped,
1289 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1290 */
1291static inline bool page_mapped(struct page *page)
1292{
1293 if (likely(!PageCompound(page)))
1294 return atomic_read(&page->_mapcount) >= 0;
1295 return folio_large_is_mapped(page_folio(page));
70b50f94
AA
1296}
1297
b49af68f
CL
1298static inline struct page *virt_to_head_page(const void *x)
1299{
1300 struct page *page = virt_to_page(x);
ccaafd7f 1301
1d798ca3 1302 return compound_head(page);
b49af68f
CL
1303}
1304
7d4203c1
VB
1305static inline struct folio *virt_to_folio(const void *x)
1306{
1307 struct page *page = virt_to_page(x);
1308
1309 return page_folio(page);
1310}
1311
8d29c703 1312void __folio_put(struct folio *folio);
ddc58f27 1313
1d7ea732 1314void put_pages_list(struct list_head *pages);
1da177e4 1315
8dfcc9ba 1316void split_page(struct page *page, unsigned int order);
715cbfd6 1317void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 1318
a1554c00
ML
1319unsigned long nr_free_buffer_pages(void);
1320
5375336c 1321void destroy_large_folio(struct folio *folio);
33f2ef89 1322
a50b854e
MWO
1323/* Returns the number of bytes in this potentially compound page. */
1324static inline unsigned long page_size(struct page *page)
1325{
1326 return PAGE_SIZE << compound_order(page);
1327}
1328
94ad9338
MWO
1329/* Returns the number of bits needed for the number of bytes in a page */
1330static inline unsigned int page_shift(struct page *page)
1331{
1332 return PAGE_SHIFT + compound_order(page);
1333}
1334
18788cfa
MWO
1335/**
1336 * thp_order - Order of a transparent huge page.
1337 * @page: Head page of a transparent huge page.
1338 */
1339static inline unsigned int thp_order(struct page *page)
1340{
1341 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1342 return compound_order(page);
1343}
1344
18788cfa
MWO
1345/**
1346 * thp_size - Size of a transparent huge page.
1347 * @page: Head page of a transparent huge page.
1348 *
1349 * Return: Number of bytes in this page.
1350 */
1351static inline unsigned long thp_size(struct page *page)
1352{
1353 return PAGE_SIZE << thp_order(page);
1354}
1355
3dece370 1356#ifdef CONFIG_MMU
14fd403f
AA
1357/*
1358 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1359 * servicing faults for write access. In the normal case, do always want
1360 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1361 * that do not have writing enabled, when used by access_process_vm.
1362 */
1363static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1364{
1365 if (likely(vma->vm_flags & VM_WRITE))
161e393c 1366 pte = pte_mkwrite(pte, vma);
14fd403f
AA
1367 return pte;
1368}
8c6e50b0 1369
f9ce0be7 1370vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
3bd786f7
YF
1371void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1372 struct page *page, unsigned int nr, unsigned long addr);
f9ce0be7 1373
2b740303 1374vm_fault_t finish_fault(struct vm_fault *vmf);
3dece370 1375#endif
14fd403f 1376
1da177e4
LT
1377/*
1378 * Multiple processes may "see" the same page. E.g. for untouched
1379 * mappings of /dev/null, all processes see the same page full of
1380 * zeroes, and text pages of executables and shared libraries have
1381 * only one copy in memory, at most, normally.
1382 *
1383 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1384 * page_count() == 0 means the page is free. page->lru is then used for
1385 * freelist management in the buddy allocator.
da6052f7 1386 * page_count() > 0 means the page has been allocated.
1da177e4 1387 *
da6052f7
NP
1388 * Pages are allocated by the slab allocator in order to provide memory
1389 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1390 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1391 * unless a particular usage is carefully commented. (the responsibility of
1392 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1393 *
da6052f7
NP
1394 * A page may be used by anyone else who does a __get_free_page().
1395 * In this case, page_count still tracks the references, and should only
1396 * be used through the normal accessor functions. The top bits of page->flags
1397 * and page->virtual store page management information, but all other fields
1398 * are unused and could be used privately, carefully. The management of this
1399 * page is the responsibility of the one who allocated it, and those who have
1400 * subsequently been given references to it.
1401 *
1402 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1403 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1404 * The following discussion applies only to them.
1405 *
da6052f7
NP
1406 * A pagecache page contains an opaque `private' member, which belongs to the
1407 * page's address_space. Usually, this is the address of a circular list of
1408 * the page's disk buffers. PG_private must be set to tell the VM to call
1409 * into the filesystem to release these pages.
1da177e4 1410 *
da6052f7
NP
1411 * A page may belong to an inode's memory mapping. In this case, page->mapping
1412 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1413 * in units of PAGE_SIZE.
1da177e4 1414 *
da6052f7
NP
1415 * If pagecache pages are not associated with an inode, they are said to be
1416 * anonymous pages. These may become associated with the swapcache, and in that
1417 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1418 *
da6052f7
NP
1419 * In either case (swapcache or inode backed), the pagecache itself holds one
1420 * reference to the page. Setting PG_private should also increment the
1421 * refcount. The each user mapping also has a reference to the page.
1da177e4 1422 *
da6052f7 1423 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1424 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1425 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1426 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1427 *
da6052f7 1428 * All pagecache pages may be subject to I/O:
1da177e4
LT
1429 * - inode pages may need to be read from disk,
1430 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1431 * to be written back to the inode on disk,
1432 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1433 * modified may need to be swapped out to swap space and (later) to be read
1434 * back into memory.
1da177e4
LT
1435 */
1436
27674ef6 1437#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1438DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1439
f4f451a1
MS
1440bool __put_devmap_managed_page_refs(struct page *page, int refs);
1441static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1442{
1443 if (!static_branch_unlikely(&devmap_managed_key))
1444 return false;
1445 if (!is_zone_device_page(page))
1446 return false;
f4f451a1 1447 return __put_devmap_managed_page_refs(page, refs);
e7638488 1448}
27674ef6 1449#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
f4f451a1 1450static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1451{
1452 return false;
1453}
27674ef6 1454#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
7b2d55d2 1455
f4f451a1
MS
1456static inline bool put_devmap_managed_page(struct page *page)
1457{
1458 return put_devmap_managed_page_refs(page, 1);
1459}
1460
f958d7b5 1461/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1462#define folio_ref_zero_or_close_to_overflow(folio) \
1463 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1464
1465/**
1466 * folio_get - Increment the reference count on a folio.
1467 * @folio: The folio.
1468 *
1469 * Context: May be called in any context, as long as you know that
1470 * you have a refcount on the folio. If you do not already have one,
1471 * folio_try_get() may be the right interface for you to use.
1472 */
1473static inline void folio_get(struct folio *folio)
1474{
1475 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1476 folio_ref_inc(folio);
1477}
f958d7b5 1478
3565fce3
DW
1479static inline void get_page(struct page *page)
1480{
86d234cb 1481 folio_get(page_folio(page));
3565fce3
DW
1482}
1483
cd1adf1b
LT
1484static inline __must_check bool try_get_page(struct page *page)
1485{
1486 page = compound_head(page);
1487 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1488 return false;
1489 page_ref_inc(page);
1490 return true;
1491}
3565fce3 1492
b620f633
MWO
1493/**
1494 * folio_put - Decrement the reference count on a folio.
1495 * @folio: The folio.
1496 *
1497 * If the folio's reference count reaches zero, the memory will be
1498 * released back to the page allocator and may be used by another
1499 * allocation immediately. Do not access the memory or the struct folio
1500 * after calling folio_put() unless you can be sure that it wasn't the
1501 * last reference.
1502 *
1503 * Context: May be called in process or interrupt context, but not in NMI
1504 * context. May be called while holding a spinlock.
1505 */
1506static inline void folio_put(struct folio *folio)
1507{
1508 if (folio_put_testzero(folio))
8d29c703 1509 __folio_put(folio);
b620f633
MWO
1510}
1511
3fe7fa58
MWO
1512/**
1513 * folio_put_refs - Reduce the reference count on a folio.
1514 * @folio: The folio.
1515 * @refs: The amount to subtract from the folio's reference count.
1516 *
1517 * If the folio's reference count reaches zero, the memory will be
1518 * released back to the page allocator and may be used by another
1519 * allocation immediately. Do not access the memory or the struct folio
1520 * after calling folio_put_refs() unless you can be sure that these weren't
1521 * the last references.
1522 *
1523 * Context: May be called in process or interrupt context, but not in NMI
1524 * context. May be called while holding a spinlock.
1525 */
1526static inline void folio_put_refs(struct folio *folio, int refs)
1527{
1528 if (folio_ref_sub_and_test(folio, refs))
8d29c703 1529 __folio_put(folio);
3fe7fa58
MWO
1530}
1531
99fbb6bf
MWO
1532void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1533
0411d6ee
SP
1534/*
1535 * union release_pages_arg - an array of pages or folios
449c7967 1536 *
0411d6ee 1537 * release_pages() releases a simple array of multiple pages, and
449c7967
LT
1538 * accepts various different forms of said page array: either
1539 * a regular old boring array of pages, an array of folios, or
1540 * an array of encoded page pointers.
1541 *
1542 * The transparent union syntax for this kind of "any of these
1543 * argument types" is all kinds of ugly, so look away.
1544 */
1545typedef union {
1546 struct page **pages;
1547 struct folio **folios;
1548 struct encoded_page **encoded_pages;
1549} release_pages_arg __attribute__ ((__transparent_union__));
1550
1551void release_pages(release_pages_arg, int nr);
e3c4cebf
MWO
1552
1553/**
1554 * folios_put - Decrement the reference count on an array of folios.
1555 * @folios: The folios.
e3c4cebf 1556 *
99fbb6bf
MWO
1557 * Like folio_put(), but for a batch of folios. This is more efficient
1558 * than writing the loop yourself as it will optimise the locks which need
1559 * to be taken if the folios are freed. The folios batch is returned
1560 * empty and ready to be reused for another batch; there is no need to
1561 * reinitialise it.
e3c4cebf
MWO
1562 *
1563 * Context: May be called in process or interrupt context, but not in NMI
1564 * context. May be called while holding a spinlock.
1565 */
99fbb6bf 1566static inline void folios_put(struct folio_batch *folios)
e3c4cebf 1567{
99fbb6bf 1568 folios_put_refs(folios, NULL);
3fe7fa58
MWO
1569}
1570
3565fce3
DW
1571static inline void put_page(struct page *page)
1572{
b620f633 1573 struct folio *folio = page_folio(page);
3565fce3 1574
7b2d55d2 1575 /*
89574945
CH
1576 * For some devmap managed pages we need to catch refcount transition
1577 * from 2 to 1:
7b2d55d2 1578 */
89574945 1579 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1580 return;
b620f633 1581 folio_put(folio);
3565fce3
DW
1582}
1583
3faa52c0
JH
1584/*
1585 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1586 * the page's refcount so that two separate items are tracked: the original page
1587 * reference count, and also a new count of how many pin_user_pages() calls were
1588 * made against the page. ("gup-pinned" is another term for the latter).
1589 *
1590 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1591 * distinct from normal pages. As such, the unpin_user_page() call (and its
1592 * variants) must be used in order to release gup-pinned pages.
1593 *
1594 * Choice of value:
1595 *
1596 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1597 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1598 * simpler, due to the fact that adding an even power of two to the page
1599 * refcount has the effect of using only the upper N bits, for the code that
1600 * counts up using the bias value. This means that the lower bits are left for
1601 * the exclusive use of the original code that increments and decrements by one
1602 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1603 *
3faa52c0
JH
1604 * Of course, once the lower bits overflow into the upper bits (and this is
1605 * OK, because subtraction recovers the original values), then visual inspection
1606 * no longer suffices to directly view the separate counts. However, for normal
1607 * applications that don't have huge page reference counts, this won't be an
1608 * issue.
fc1d8e7c 1609 *
40fcc7fc
MWO
1610 * Locking: the lockless algorithm described in folio_try_get_rcu()
1611 * provides safe operation for get_user_pages(), page_mkclean() and
1612 * other calls that race to set up page table entries.
fc1d8e7c 1613 */
3faa52c0 1614#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1615
3faa52c0 1616void unpin_user_page(struct page *page);
f1f6a7dd
JH
1617void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1618 bool make_dirty);
458a4f78
JM
1619void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1620 bool make_dirty);
f1f6a7dd 1621void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1622
97a7e473
PX
1623static inline bool is_cow_mapping(vm_flags_t flags)
1624{
1625 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1626}
1627
fc4f4be9
DH
1628#ifndef CONFIG_MMU
1629static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1630{
1631 /*
1632 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1633 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1634 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1635 * underlying memory if ptrace is active, so this is only possible if
1636 * ptrace does not apply. Note that there is no mprotect() to upgrade
1637 * write permissions later.
1638 */
b6b7a8fa 1639 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
fc4f4be9
DH
1640}
1641#endif
1642
9127ab4f
CS
1643#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1644#define SECTION_IN_PAGE_FLAGS
1645#endif
1646
89689ae7 1647/*
7a8010cd
VB
1648 * The identification function is mainly used by the buddy allocator for
1649 * determining if two pages could be buddies. We are not really identifying
1650 * the zone since we could be using the section number id if we do not have
1651 * node id available in page flags.
1652 * We only guarantee that it will return the same value for two combinable
1653 * pages in a zone.
89689ae7 1654 */
cb2b95e1
AW
1655static inline int page_zone_id(struct page *page)
1656{
89689ae7 1657 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1658}
1659
89689ae7 1660#ifdef NODE_NOT_IN_PAGE_FLAGS
9164448d 1661int page_to_nid(const struct page *page);
89689ae7 1662#else
33dd4e0e 1663static inline int page_to_nid(const struct page *page)
d41dee36 1664{
9164448d 1665 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1666}
89689ae7
CL
1667#endif
1668
874fd90c
MWO
1669static inline int folio_nid(const struct folio *folio)
1670{
1671 return page_to_nid(&folio->page);
1672}
1673
57e0a030 1674#ifdef CONFIG_NUMA_BALANCING
33024536
HY
1675/* page access time bits needs to hold at least 4 seconds */
1676#define PAGE_ACCESS_TIME_MIN_BITS 12
1677#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1678#define PAGE_ACCESS_TIME_BUCKETS \
1679 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1680#else
1681#define PAGE_ACCESS_TIME_BUCKETS 0
1682#endif
1683
1684#define PAGE_ACCESS_TIME_MASK \
1685 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1686
90572890 1687static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1688{
90572890 1689 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1690}
1691
90572890 1692static inline int cpupid_to_pid(int cpupid)
57e0a030 1693{
90572890 1694 return cpupid & LAST__PID_MASK;
57e0a030 1695}
b795854b 1696
90572890 1697static inline int cpupid_to_cpu(int cpupid)
b795854b 1698{
90572890 1699 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1700}
1701
90572890 1702static inline int cpupid_to_nid(int cpupid)
b795854b 1703{
90572890 1704 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1705}
1706
90572890 1707static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1708{
90572890 1709 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1710}
1711
90572890 1712static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1713{
90572890 1714 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1715}
1716
8c8a743c
PZ
1717static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1718{
1719 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1720}
1721
1722#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890 1723#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
8f0f4788 1724static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
b795854b 1725{
8f0f4788 1726 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1727}
90572890 1728
f39eac30 1729static inline int folio_last_cpupid(struct folio *folio)
90572890 1730{
f39eac30 1731 return folio->_last_cpupid;
90572890
PZ
1732}
1733static inline void page_cpupid_reset_last(struct page *page)
b795854b 1734{
1ae71d03 1735 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1736}
1737#else
f39eac30 1738static inline int folio_last_cpupid(struct folio *folio)
75980e97 1739{
f39eac30 1740 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1741}
1742
8f0f4788 1743int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
75980e97 1744
90572890 1745static inline void page_cpupid_reset_last(struct page *page)
75980e97 1746{
09940a4f 1747 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1748}
90572890 1749#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
33024536 1750
f3930843 1751static inline int folio_xchg_access_time(struct folio *folio, int time)
33024536
HY
1752{
1753 int last_time;
1754
8f0f4788
KW
1755 last_time = folio_xchg_last_cpupid(folio,
1756 time >> PAGE_ACCESS_TIME_BUCKETS);
33024536
HY
1757 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1758}
fc137c0d
R
1759
1760static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1761{
1762 unsigned int pid_bit;
1763
d46031f4 1764 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
f3a6c979
MG
1765 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1766 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
fc137c0d
R
1767 }
1768}
90572890 1769#else /* !CONFIG_NUMA_BALANCING */
8f0f4788 1770static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
57e0a030 1771{
8f0f4788 1772 return folio_nid(folio); /* XXX */
57e0a030
MG
1773}
1774
f3930843 1775static inline int folio_xchg_access_time(struct folio *folio, int time)
33024536
HY
1776{
1777 return 0;
1778}
1779
f39eac30 1780static inline int folio_last_cpupid(struct folio *folio)
57e0a030 1781{
f39eac30 1782 return folio_nid(folio); /* XXX */
57e0a030
MG
1783}
1784
90572890 1785static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1786{
1787 return -1;
1788}
1789
90572890 1790static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1791{
1792 return -1;
1793}
1794
90572890 1795static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1796{
1797 return -1;
1798}
1799
90572890
PZ
1800static inline int cpu_pid_to_cpupid(int nid, int pid)
1801{
1802 return -1;
1803}
1804
1805static inline bool cpupid_pid_unset(int cpupid)
b795854b 1806{
2b787449 1807 return true;
b795854b
MG
1808}
1809
90572890 1810static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1811{
1812}
8c8a743c
PZ
1813
1814static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1815{
1816 return false;
1817}
fc137c0d
R
1818
1819static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1820{
1821}
90572890 1822#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1823
2e903b91 1824#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1825
cf10bd4c
AK
1826/*
1827 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1828 * setting tags for all pages to native kernel tag value 0xff, as the default
1829 * value 0x00 maps to 0xff.
1830 */
1831
2813b9c0
AK
1832static inline u8 page_kasan_tag(const struct page *page)
1833{
5cb6674b 1834 u8 tag = KASAN_TAG_KERNEL;
cf10bd4c
AK
1835
1836 if (kasan_enabled()) {
1837 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1838 tag ^= 0xff;
1839 }
1840
1841 return tag;
2813b9c0
AK
1842}
1843
1844static inline void page_kasan_tag_set(struct page *page, u8 tag)
1845{
27fe7339
PC
1846 unsigned long old_flags, flags;
1847
1848 if (!kasan_enabled())
1849 return;
1850
1851 tag ^= 0xff;
1852 old_flags = READ_ONCE(page->flags);
1853 do {
1854 flags = old_flags;
1855 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1856 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1857 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1858}
1859
1860static inline void page_kasan_tag_reset(struct page *page)
1861{
34303244 1862 if (kasan_enabled())
5cb6674b 1863 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
2813b9c0 1864}
34303244
AK
1865
1866#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1867
2813b9c0
AK
1868static inline u8 page_kasan_tag(const struct page *page)
1869{
1870 return 0xff;
1871}
1872
1873static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1874static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1875
1876#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1877
33dd4e0e 1878static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1879{
1880 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1881}
1882
75ef7184
MG
1883static inline pg_data_t *page_pgdat(const struct page *page)
1884{
1885 return NODE_DATA(page_to_nid(page));
1886}
1887
32b8fc48
MWO
1888static inline struct zone *folio_zone(const struct folio *folio)
1889{
1890 return page_zone(&folio->page);
1891}
1892
1893static inline pg_data_t *folio_pgdat(const struct folio *folio)
1894{
1895 return page_pgdat(&folio->page);
1896}
1897
9127ab4f 1898#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1899static inline void set_page_section(struct page *page, unsigned long section)
1900{
1901 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1902 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1903}
1904
aa462abe 1905static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1906{
1907 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1908}
308c05e3 1909#endif
d41dee36 1910
bf6bd276
MWO
1911/**
1912 * folio_pfn - Return the Page Frame Number of a folio.
1913 * @folio: The folio.
1914 *
1915 * A folio may contain multiple pages. The pages have consecutive
1916 * Page Frame Numbers.
1917 *
1918 * Return: The Page Frame Number of the first page in the folio.
1919 */
1920static inline unsigned long folio_pfn(struct folio *folio)
1921{
1922 return page_to_pfn(&folio->page);
1923}
1924
018ee47f
YZ
1925static inline struct folio *pfn_folio(unsigned long pfn)
1926{
1927 return page_folio(pfn_to_page(pfn));
1928}
1929
0b90ddae
MWO
1930/**
1931 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1932 * @folio: The folio.
1933 *
1934 * This function checks if a folio has been pinned via a call to
1935 * a function in the pin_user_pages() family.
1936 *
1937 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1938 * because it means "definitely not pinned for DMA", but true means "probably
1939 * pinned for DMA, but possibly a false positive due to having at least
1940 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1941 *
1942 * False positives are OK, because: a) it's unlikely for a folio to
1943 * get that many refcounts, and b) all the callers of this routine are
1944 * expected to be able to deal gracefully with a false positive.
1945 *
1946 * For large folios, the result will be exactly correct. That's because
94688e8e 1947 * we have more tracking data available: the _pincount field is used
0b90ddae
MWO
1948 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1949 *
1950 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1951 *
1952 * Return: True, if it is likely that the page has been "dma-pinned".
1953 * False, if the page is definitely not dma-pinned.
1954 */
1955static inline bool folio_maybe_dma_pinned(struct folio *folio)
1956{
1957 if (folio_test_large(folio))
94688e8e 1958 return atomic_read(&folio->_pincount) > 0;
0b90ddae
MWO
1959
1960 /*
1961 * folio_ref_count() is signed. If that refcount overflows, then
1962 * folio_ref_count() returns a negative value, and callers will avoid
1963 * further incrementing the refcount.
1964 *
1965 * Here, for that overflow case, use the sign bit to count a little
1966 * bit higher via unsigned math, and thus still get an accurate result.
1967 */
1968 return ((unsigned int)folio_ref_count(folio)) >=
1969 GUP_PIN_COUNTING_BIAS;
1970}
1971
1972static inline bool page_maybe_dma_pinned(struct page *page)
1973{
1974 return folio_maybe_dma_pinned(page_folio(page));
1975}
1976
1977/*
1978 * This should most likely only be called during fork() to see whether we
fb3d824d 1979 * should break the cow immediately for an anon page on the src mm.
623a1ddf
DH
1980 *
1981 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
0b90ddae 1982 */
ebe2e35e
DH
1983static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1984 struct folio *folio)
0b90ddae 1985{
623a1ddf 1986 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
0b90ddae
MWO
1987
1988 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1989 return false;
1990
ebe2e35e
DH
1991 return folio_maybe_dma_pinned(folio);
1992}
1993
c8070b78
DH
1994/**
1995 * is_zero_page - Query if a page is a zero page
1996 * @page: The page to query
1997 *
1998 * This returns true if @page is one of the permanent zero pages.
1999 */
2000static inline bool is_zero_page(const struct page *page)
2001{
2002 return is_zero_pfn(page_to_pfn(page));
2003}
2004
2005/**
2006 * is_zero_folio - Query if a folio is a zero page
2007 * @folio: The folio to query
2008 *
2009 * This returns true if @folio is one of the permanent zero pages.
2010 */
2011static inline bool is_zero_folio(const struct folio *folio)
2012{
2013 return is_zero_page(&folio->page);
2014}
2015
5d949953 2016/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
8e3560d9 2017#ifdef CONFIG_MIGRATION
5d949953 2018static inline bool folio_is_longterm_pinnable(struct folio *folio)
8e3560d9 2019{
1c563432 2020#ifdef CONFIG_CMA
5d949953 2021 int mt = folio_migratetype(folio);
1c563432
MK
2022
2023 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2024 return false;
2025#endif
c8070b78 2026 /* The zero page can be "pinned" but gets special handling. */
6e17c6de 2027 if (is_zero_folio(folio))
fcab34b4
AW
2028 return true;
2029
2030 /* Coherent device memory must always allow eviction. */
5d949953 2031 if (folio_is_device_coherent(folio))
fcab34b4
AW
2032 return false;
2033
5d949953
VMO
2034 /* Otherwise, non-movable zone folios can be pinned. */
2035 return !folio_is_zone_movable(folio);
2036
8e3560d9
PT
2037}
2038#else
5d949953 2039static inline bool folio_is_longterm_pinnable(struct folio *folio)
8e3560d9
PT
2040{
2041 return true;
2042}
2043#endif
2044
2f1b6248 2045static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
2046{
2047 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2048 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2049}
2f1b6248 2050
348f8b6c
DH
2051static inline void set_page_node(struct page *page, unsigned long node)
2052{
2053 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2054 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 2055}
89689ae7 2056
2f1b6248 2057static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 2058 unsigned long node, unsigned long pfn)
1da177e4 2059{
348f8b6c
DH
2060 set_page_zone(page, zone);
2061 set_page_node(page, node);
9127ab4f 2062#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 2063 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 2064#endif
1da177e4
LT
2065}
2066
7b230db3
MWO
2067/**
2068 * folio_nr_pages - The number of pages in the folio.
2069 * @folio: The folio.
2070 *
2071 * Return: A positive power of two.
2072 */
2073static inline long folio_nr_pages(struct folio *folio)
2074{
c3a15bff
MWO
2075 if (!folio_test_large(folio))
2076 return 1;
2077#ifdef CONFIG_64BIT
2078 return folio->_folio_nr_pages;
2079#else
ebc1baf5 2080 return 1L << (folio->_flags_1 & 0xff);
c3a15bff 2081#endif
7b230db3
MWO
2082}
2083
fae7d834
MWO
2084/* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2085#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2086#define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
2087#else
2088#define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
2089#endif
2090
21a000fe
MWO
2091/*
2092 * compound_nr() returns the number of pages in this potentially compound
2093 * page. compound_nr() can be called on a tail page, and is defined to
2094 * return 1 in that case.
2095 */
2096static inline unsigned long compound_nr(struct page *page)
2097{
2098 struct folio *folio = (struct folio *)page;
2099
2100 if (!test_bit(PG_head, &folio->flags))
2101 return 1;
2102#ifdef CONFIG_64BIT
2103 return folio->_folio_nr_pages;
2104#else
ebc1baf5 2105 return 1L << (folio->_flags_1 & 0xff);
21a000fe
MWO
2106#endif
2107}
2108
2109/**
2110 * thp_nr_pages - The number of regular pages in this huge page.
2111 * @page: The head page of a huge page.
2112 */
2113static inline int thp_nr_pages(struct page *page)
2114{
2115 return folio_nr_pages((struct folio *)page);
2116}
2117
7b230db3
MWO
2118/**
2119 * folio_next - Move to the next physical folio.
2120 * @folio: The folio we're currently operating on.
2121 *
2122 * If you have physically contiguous memory which may span more than
2123 * one folio (eg a &struct bio_vec), use this function to move from one
2124 * folio to the next. Do not use it if the memory is only virtually
2125 * contiguous as the folios are almost certainly not adjacent to each
2126 * other. This is the folio equivalent to writing ``page++``.
2127 *
2128 * Context: We assume that the folios are refcounted and/or locked at a
2129 * higher level and do not adjust the reference counts.
2130 * Return: The next struct folio.
2131 */
2132static inline struct folio *folio_next(struct folio *folio)
2133{
2134 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2135}
2136
2137/**
2138 * folio_shift - The size of the memory described by this folio.
2139 * @folio: The folio.
2140 *
2141 * A folio represents a number of bytes which is a power-of-two in size.
2142 * This function tells you which power-of-two the folio is. See also
2143 * folio_size() and folio_order().
2144 *
2145 * Context: The caller should have a reference on the folio to prevent
2146 * it from being split. It is not necessary for the folio to be locked.
2147 * Return: The base-2 logarithm of the size of this folio.
2148 */
2149static inline unsigned int folio_shift(struct folio *folio)
2150{
2151 return PAGE_SHIFT + folio_order(folio);
2152}
2153
2154/**
2155 * folio_size - The number of bytes in a folio.
2156 * @folio: The folio.
2157 *
2158 * Context: The caller should have a reference on the folio to prevent
2159 * it from being split. It is not necessary for the folio to be locked.
2160 * Return: The number of bytes in this folio.
2161 */
2162static inline size_t folio_size(struct folio *folio)
2163{
2164 return PAGE_SIZE << folio_order(folio);
2165}
2166
fa4e3f5f
VMO
2167/**
2168 * folio_estimated_sharers - Estimate the number of sharers of a folio.
2169 * @folio: The folio.
2170 *
2171 * folio_estimated_sharers() aims to serve as a function to efficiently
2172 * estimate the number of processes sharing a folio. This is done by
2173 * looking at the precise mapcount of the first subpage in the folio, and
2174 * assuming the other subpages are the same. This may not be true for large
2175 * folios. If you want exact mapcounts for exact calculations, look at
2176 * page_mapcount() or folio_total_mapcount().
2177 *
2178 * Return: The estimated number of processes sharing a folio.
2179 */
2180static inline int folio_estimated_sharers(struct folio *folio)
2181{
2182 return page_mapcount(folio_page(folio, 0));
2183}
2184
b424de33
MWO
2185#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2186static inline int arch_make_page_accessible(struct page *page)
2187{
2188 return 0;
2189}
2190#endif
2191
2192#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2193static inline int arch_make_folio_accessible(struct folio *folio)
2194{
2195 int ret;
2196 long i, nr = folio_nr_pages(folio);
2197
2198 for (i = 0; i < nr; i++) {
2199 ret = arch_make_page_accessible(folio_page(folio, i));
2200 if (ret)
2201 break;
2202 }
2203
2204 return ret;
2205}
2206#endif
2207
f6ac2354
CL
2208/*
2209 * Some inline functions in vmstat.h depend on page_zone()
2210 */
2211#include <linux/vmstat.h>
2212
1da177e4
LT
2213#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2214#define HASHED_PAGE_VIRTUAL
2215#endif
2216
2217#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
2218static inline void *page_address(const struct page *page)
2219{
2220 return page->virtual;
2221}
2222static inline void set_page_address(struct page *page, void *address)
2223{
2224 page->virtual = address;
2225}
1da177e4
LT
2226#define page_address_init() do { } while(0)
2227#endif
2228
2229#if defined(HASHED_PAGE_VIRTUAL)
f9918794 2230void *page_address(const struct page *page);
1da177e4
LT
2231void set_page_address(struct page *page, void *virtual);
2232void page_address_init(void);
2233#endif
2234
0871bc01
HC
2235static __always_inline void *lowmem_page_address(const struct page *page)
2236{
2237 return page_to_virt(page);
2238}
2239
1da177e4
LT
2240#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2241#define page_address(page) lowmem_page_address(page)
2242#define set_page_address(page, address) do { } while(0)
2243#define page_address_init() do { } while(0)
2244#endif
2245
7d4203c1
VB
2246static inline void *folio_address(const struct folio *folio)
2247{
2248 return page_address(&folio->page);
2249}
2250
f6ab1f7f
HY
2251extern pgoff_t __page_file_index(struct page *page);
2252
1da177e4
LT
2253/*
2254 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 2255 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
2256 */
2257static inline pgoff_t page_index(struct page *page)
2258{
2259 if (unlikely(PageSwapCache(page)))
f6ab1f7f 2260 return __page_file_index(page);
1da177e4
LT
2261 return page->index;
2262}
2263
2f064f34
MH
2264/*
2265 * Return true only if the page has been allocated with
2266 * ALLOC_NO_WATERMARKS and the low watermark was not
2267 * met implying that the system is under some pressure.
2268 */
1d7bab6a 2269static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
2270{
2271 /*
c07aea3e
MC
2272 * lru.next has bit 1 set if the page is allocated from the
2273 * pfmemalloc reserves. Callers may simply overwrite it if
2274 * they do not need to preserve that information.
2f064f34 2275 */
c07aea3e 2276 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
2277}
2278
02d65d6f
SK
2279/*
2280 * Return true only if the folio has been allocated with
2281 * ALLOC_NO_WATERMARKS and the low watermark was not
2282 * met implying that the system is under some pressure.
2283 */
2284static inline bool folio_is_pfmemalloc(const struct folio *folio)
2285{
2286 /*
2287 * lru.next has bit 1 set if the page is allocated from the
2288 * pfmemalloc reserves. Callers may simply overwrite it if
2289 * they do not need to preserve that information.
2290 */
2291 return (uintptr_t)folio->lru.next & BIT(1);
2292}
2293
2f064f34
MH
2294/*
2295 * Only to be called by the page allocator on a freshly allocated
2296 * page.
2297 */
2298static inline void set_page_pfmemalloc(struct page *page)
2299{
c07aea3e 2300 page->lru.next = (void *)BIT(1);
2f064f34
MH
2301}
2302
2303static inline void clear_page_pfmemalloc(struct page *page)
2304{
c07aea3e 2305 page->lru.next = NULL;
2f064f34
MH
2306}
2307
1c0fe6e3
NP
2308/*
2309 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2310 */
2311extern void pagefault_out_of_memory(void);
2312
1da177e4 2313#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 2314#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 2315#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 2316
21b85b09
MK
2317/*
2318 * Parameter block passed down to zap_pte_range in exceptional cases.
2319 */
2320struct zap_details {
2321 struct folio *single_folio; /* Locked folio to be unmapped */
2322 bool even_cows; /* Zap COWed private pages too? */
2323 zap_flags_t zap_flags; /* Extra flags for zapping */
2324};
2325
2326/*
2327 * Whether to drop the pte markers, for example, the uffd-wp information for
2328 * file-backed memory. This should only be specified when we will completely
2329 * drop the page in the mm, either by truncation or unmapping of the vma. By
2330 * default, the flag is not set.
2331 */
2332#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
04ada095
MK
2333/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2334#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
21b85b09 2335
af7f588d
MD
2336#ifdef CONFIG_SCHED_MM_CID
2337void sched_mm_cid_before_execve(struct task_struct *t);
2338void sched_mm_cid_after_execve(struct task_struct *t);
2339void sched_mm_cid_fork(struct task_struct *t);
2340void sched_mm_cid_exit_signals(struct task_struct *t);
2341static inline int task_mm_cid(struct task_struct *t)
2342{
2343 return t->mm_cid;
2344}
2345#else
2346static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2347static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2348static inline void sched_mm_cid_fork(struct task_struct *t) { }
2349static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2350static inline int task_mm_cid(struct task_struct *t)
2351{
2352 /*
2353 * Use the processor id as a fall-back when the mm cid feature is
2354 * disabled. This provides functional per-cpu data structure accesses
2355 * in user-space, althrough it won't provide the memory usage benefits.
2356 */
2357 return raw_smp_processor_id();
2358}
2359#endif
2360
710ec38b 2361#ifdef CONFIG_MMU
7f43add4 2362extern bool can_do_mlock(void);
710ec38b
AB
2363#else
2364static inline bool can_do_mlock(void) { return false; }
2365#endif
d7c9e99a
AG
2366extern int user_shm_lock(size_t, struct ucounts *);
2367extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 2368
318e9342
VMO
2369struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2370 pte_t pte);
25b2995a
CH
2371struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2372 pte_t pte);
65610453
KW
2373struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2374 unsigned long addr, pmd_t pmd);
28093f9f
GS
2375struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2376 pmd_t pmd);
7e675137 2377
27d036e3
LR
2378void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2379 unsigned long size);
21b85b09
MK
2380void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2381 unsigned long size, struct zap_details *details);
e9adcfec
MK
2382static inline void zap_vma_pages(struct vm_area_struct *vma)
2383{
2384 zap_page_range_single(vma, vma->vm_start,
2385 vma->vm_end - vma->vm_start, NULL);
2386}
fd892593 2387void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
763ecb03 2388 struct vm_area_struct *start_vma, unsigned long start,
fd892593 2389 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
e6473092 2390
ac46d4f3
JG
2391struct mmu_notifier_range;
2392
42b77728 2393void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 2394 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
2395int
2396copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed 2397int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 2398 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
2399int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2400 unsigned long *pfn);
d87fe660 2401int follow_phys(struct vm_area_struct *vma, unsigned long address,
2402 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
2403int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2404 void *buf, int len, int write);
1da177e4 2405
7caef267 2406extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 2407extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 2408void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 2409void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
af7628d6
MWO
2410int generic_error_remove_folio(struct address_space *mapping,
2411 struct folio *folio);
83f78668 2412
d85a143b
LT
2413struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2414 unsigned long address, struct pt_regs *regs);
2415
7ee1dd3f 2416#ifdef CONFIG_MMU
2b740303 2417extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2418 unsigned long address, unsigned int flags,
2419 struct pt_regs *regs);
64019a2e 2420extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
2421 unsigned long address, unsigned int fault_flags,
2422 bool *unlocked);
977fbdcd
MW
2423void unmap_mapping_pages(struct address_space *mapping,
2424 pgoff_t start, pgoff_t nr, bool even_cows);
2425void unmap_mapping_range(struct address_space *mapping,
2426 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 2427#else
2b740303 2428static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2429 unsigned long address, unsigned int flags,
2430 struct pt_regs *regs)
7ee1dd3f
DH
2431{
2432 /* should never happen if there's no MMU */
2433 BUG();
2434 return VM_FAULT_SIGBUS;
2435}
64019a2e 2436static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 2437 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
2438{
2439 /* should never happen if there's no MMU */
2440 BUG();
2441 return -EFAULT;
2442}
977fbdcd
MW
2443static inline void unmap_mapping_pages(struct address_space *mapping,
2444 pgoff_t start, pgoff_t nr, bool even_cows) { }
2445static inline void unmap_mapping_range(struct address_space *mapping,
2446 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 2447#endif
f33ea7f4 2448
977fbdcd
MW
2449static inline void unmap_shared_mapping_range(struct address_space *mapping,
2450 loff_t const holebegin, loff_t const holelen)
2451{
2452 unmap_mapping_range(mapping, holebegin, holelen, 0);
2453}
2454
ca5e8632
LS
2455static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2456 unsigned long addr);
2457
977fbdcd
MW
2458extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2459 void *buf, int len, unsigned int gup_flags);
5ddd36b9 2460extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 2461 void *buf, int len, unsigned int gup_flags);
1da177e4 2462
64019a2e 2463long get_user_pages_remote(struct mm_struct *mm,
ca5e8632
LS
2464 unsigned long start, unsigned long nr_pages,
2465 unsigned int gup_flags, struct page **pages,
2466 int *locked);
64019a2e 2467long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2468 unsigned long start, unsigned long nr_pages,
2469 unsigned int gup_flags, struct page **pages,
0b295316 2470 int *locked);
ca5e8632 2471
6a1960b8
LS
2472/*
2473 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2474 */
ca5e8632
LS
2475static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2476 unsigned long addr,
2477 int gup_flags,
2478 struct vm_area_struct **vmap)
2479{
2480 struct page *page;
2481 struct vm_area_struct *vma;
6a1960b8
LS
2482 int got;
2483
2484 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2485 return ERR_PTR(-EINVAL);
2486
2487 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
ca5e8632
LS
2488
2489 if (got < 0)
2490 return ERR_PTR(got);
ca5e8632
LS
2491
2492 vma = vma_lookup(mm, addr);
2493 if (WARN_ON_ONCE(!vma)) {
2494 put_page(page);
2495 return ERR_PTR(-EINVAL);
2496 }
2497
2498 *vmap = vma;
2499 return page;
2500}
2501
c12d2da5 2502long get_user_pages(unsigned long start, unsigned long nr_pages,
54d02069 2503 unsigned int gup_flags, struct page **pages);
eddb1c22 2504long pin_user_pages(unsigned long start, unsigned long nr_pages,
4c630f30 2505 unsigned int gup_flags, struct page **pages);
c12d2da5 2506long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 2507 struct page **pages, unsigned int gup_flags);
91429023
JH
2508long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2509 struct page **pages, unsigned int gup_flags);
9a4e9f3b 2510
73b0140b
IW
2511int get_user_pages_fast(unsigned long start, int nr_pages,
2512 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
2513int pin_user_pages_fast(unsigned long start, int nr_pages,
2514 unsigned int gup_flags, struct page **pages);
1101fb8f 2515void folio_add_pin(struct folio *folio);
8025e5dd 2516
79eb597c
DJ
2517int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2518int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2519 struct task_struct *task, bool bypass_rlim);
2520
18022c5d 2521struct kvec;
f3e8fccd 2522struct page *get_dump_page(unsigned long addr);
1da177e4 2523
b5e84594
MWO
2524bool folio_mark_dirty(struct folio *folio);
2525bool set_page_dirty(struct page *page);
1da177e4 2526int set_page_dirty_lock(struct page *page);
b9ea2515 2527
a9090253 2528int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 2529
b6a2fea3
OW
2530extern unsigned long move_page_tables(struct vm_area_struct *vma,
2531 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013 2532 unsigned long new_addr, unsigned long len,
b1e5a3de 2533 bool need_rmap_locks, bool for_stack);
58705444
PX
2534
2535/*
2536 * Flags used by change_protection(). For now we make it a bitmap so
2537 * that we can pass in multiple flags just like parameters. However
2538 * for now all the callers are only use one of the flags at the same
2539 * time.
2540 */
64fe24a3
DH
2541/*
2542 * Whether we should manually check if we can map individual PTEs writable,
2543 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2544 * PTEs automatically in a writable mapping.
2545 */
2546#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
58705444
PX
2547/* Whether this protection change is for NUMA hints */
2548#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
2549/* Whether this change is for write protecting */
2550#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2551#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2552#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2553 MM_CP_UFFD_WP_RESOLVE)
58705444 2554
54cbbbf3 2555bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
eb309ec8
DH
2556int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2557static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2558{
2559 /*
2560 * We want to check manually if we can change individual PTEs writable
2561 * if we can't do that automatically for all PTEs in a mapping. For
2562 * private mappings, that's always the case when we have write
2563 * permissions as we properly have to handle COW.
2564 */
2565 if (vma->vm_flags & VM_SHARED)
2566 return vma_wants_writenotify(vma, vma->vm_page_prot);
2567 return !!(vma->vm_flags & VM_WRITE);
2568
2569}
6a56ccbc
DH
2570bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2571 pte_t pte);
a79390f5 2572extern long change_protection(struct mmu_gather *tlb,
4a18419f 2573 struct vm_area_struct *vma, unsigned long start,
1ef488ed 2574 unsigned long end, unsigned long cp_flags);
2286a691
LH
2575extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2576 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2577 unsigned long start, unsigned long end, unsigned long newflags);
1da177e4 2578
465a454f
PZ
2579/*
2580 * doesn't attempt to fault and will return short.
2581 */
dadbb612
SJ
2582int get_user_pages_fast_only(unsigned long start, int nr_pages,
2583 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
2584
2585static inline bool get_user_page_fast_only(unsigned long addr,
2586 unsigned int gup_flags, struct page **pagep)
2587{
2588 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2589}
d559db08
KH
2590/*
2591 * per-process(per-mm_struct) statistics.
2592 */
d559db08
KH
2593static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2594{
f1a79412 2595 return percpu_counter_read_positive(&mm->rss_stat[member]);
69c97823 2596}
d559db08 2597
f1a79412 2598void mm_trace_rss_stat(struct mm_struct *mm, int member);
b3d1411b 2599
d559db08
KH
2600static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2601{
f1a79412 2602 percpu_counter_add(&mm->rss_stat[member], value);
b3d1411b 2603
f1a79412 2604 mm_trace_rss_stat(mm, member);
d559db08
KH
2605}
2606
2607static inline void inc_mm_counter(struct mm_struct *mm, int member)
2608{
f1a79412 2609 percpu_counter_inc(&mm->rss_stat[member]);
b3d1411b 2610
f1a79412 2611 mm_trace_rss_stat(mm, member);
d559db08
KH
2612}
2613
2614static inline void dec_mm_counter(struct mm_struct *mm, int member)
2615{
f1a79412 2616 percpu_counter_dec(&mm->rss_stat[member]);
b3d1411b 2617
f1a79412 2618 mm_trace_rss_stat(mm, member);
d559db08
KH
2619}
2620
6b27cc6c
KW
2621/* Optimized variant when folio is already known not to be anon */
2622static inline int mm_counter_file(struct folio *folio)
eca56ff9 2623{
6b27cc6c 2624 if (folio_test_swapbacked(folio))
eca56ff9
JM
2625 return MM_SHMEMPAGES;
2626 return MM_FILEPAGES;
2627}
2628
a23f517b 2629static inline int mm_counter(struct folio *folio)
eca56ff9 2630{
a23f517b 2631 if (folio_test_anon(folio))
eca56ff9 2632 return MM_ANONPAGES;
6b27cc6c 2633 return mm_counter_file(folio);
eca56ff9
JM
2634}
2635
d559db08
KH
2636static inline unsigned long get_mm_rss(struct mm_struct *mm)
2637{
2638 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2639 get_mm_counter(mm, MM_ANONPAGES) +
2640 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2641}
2642
2643static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2644{
2645 return max(mm->hiwater_rss, get_mm_rss(mm));
2646}
2647
2648static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2649{
2650 return max(mm->hiwater_vm, mm->total_vm);
2651}
2652
2653static inline void update_hiwater_rss(struct mm_struct *mm)
2654{
2655 unsigned long _rss = get_mm_rss(mm);
2656
2657 if ((mm)->hiwater_rss < _rss)
2658 (mm)->hiwater_rss = _rss;
2659}
2660
2661static inline void update_hiwater_vm(struct mm_struct *mm)
2662{
2663 if (mm->hiwater_vm < mm->total_vm)
2664 mm->hiwater_vm = mm->total_vm;
2665}
2666
695f0559
PC
2667static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2668{
2669 mm->hiwater_rss = get_mm_rss(mm);
2670}
2671
d559db08
KH
2672static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2673 struct mm_struct *mm)
2674{
2675 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2676
2677 if (*maxrss < hiwater_rss)
2678 *maxrss = hiwater_rss;
2679}
2680
78e7c5af
AK
2681#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2682static inline int pte_special(pte_t pte)
2683{
2684 return 0;
2685}
2686
2687static inline pte_t pte_mkspecial(pte_t pte)
2688{
2689 return pte;
2690}
2691#endif
2692
17596731 2693#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2694static inline int pte_devmap(pte_t pte)
2695{
2696 return 0;
2697}
2698#endif
2699
25ca1d6c
NK
2700extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2701 spinlock_t **ptl);
2702static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2703 spinlock_t **ptl)
2704{
2705 pte_t *ptep;
2706 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2707 return ptep;
2708}
c9cfcddf 2709
c2febafc
KS
2710#ifdef __PAGETABLE_P4D_FOLDED
2711static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2712 unsigned long address)
2713{
2714 return 0;
2715}
2716#else
2717int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2718#endif
2719
b4e98d9a 2720#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2721static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2722 unsigned long address)
2723{
2724 return 0;
2725}
b4e98d9a
KS
2726static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2727static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2728
5f22df00 2729#else
c2febafc 2730int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2731
b4e98d9a
KS
2732static inline void mm_inc_nr_puds(struct mm_struct *mm)
2733{
6d212db1
MS
2734 if (mm_pud_folded(mm))
2735 return;
af5b0f6a 2736 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2737}
2738
2739static inline void mm_dec_nr_puds(struct mm_struct *mm)
2740{
6d212db1
MS
2741 if (mm_pud_folded(mm))
2742 return;
af5b0f6a 2743 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2744}
5f22df00
NP
2745#endif
2746
2d2f5119 2747#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2748static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2749 unsigned long address)
2750{
2751 return 0;
2752}
dc6c9a35 2753
dc6c9a35
KS
2754static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2755static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2756
5f22df00 2757#else
1bb3630e 2758int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2759
dc6c9a35
KS
2760static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2761{
6d212db1
MS
2762 if (mm_pmd_folded(mm))
2763 return;
af5b0f6a 2764 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2765}
2766
2767static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2768{
6d212db1
MS
2769 if (mm_pmd_folded(mm))
2770 return;
af5b0f6a 2771 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2772}
5f22df00
NP
2773#endif
2774
c4812909 2775#ifdef CONFIG_MMU
af5b0f6a 2776static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2777{
af5b0f6a 2778 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2779}
2780
af5b0f6a 2781static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2782{
af5b0f6a 2783 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2784}
2785
2786static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2787{
af5b0f6a 2788 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2789}
2790
2791static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2792{
af5b0f6a 2793 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2794}
2795#else
c4812909 2796
af5b0f6a
KS
2797static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2798static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2799{
2800 return 0;
2801}
2802
2803static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2804static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2805#endif
2806
4cf58924
JFG
2807int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2808int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2809
f949286c
MR
2810#if defined(CONFIG_MMU)
2811
c2febafc
KS
2812static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2813 unsigned long address)
2814{
2815 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2816 NULL : p4d_offset(pgd, address);
2817}
2818
2819static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2820 unsigned long address)
1da177e4 2821{
c2febafc
KS
2822 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2823 NULL : pud_offset(p4d, address);
1da177e4 2824}
d8626138 2825
1da177e4
LT
2826static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2827{
1bb3630e
HD
2828 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2829 NULL: pmd_offset(pud, address);
1da177e4 2830}
f949286c 2831#endif /* CONFIG_MMU */
1bb3630e 2832
bf2d4334
VMO
2833static inline struct ptdesc *virt_to_ptdesc(const void *x)
2834{
2835 return page_ptdesc(virt_to_page(x));
2836}
2837
2838static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2839{
2840 return page_to_virt(ptdesc_page(pt));
2841}
2842
2843static inline void *ptdesc_address(const struct ptdesc *pt)
2844{
2845 return folio_address(ptdesc_folio(pt));
2846}
2847
2848static inline bool pagetable_is_reserved(struct ptdesc *pt)
2849{
2850 return folio_test_reserved(ptdesc_folio(pt));
2851}
2852
2853/**
2854 * pagetable_alloc - Allocate pagetables
2855 * @gfp: GFP flags
2856 * @order: desired pagetable order
2857 *
2858 * pagetable_alloc allocates memory for page tables as well as a page table
2859 * descriptor to describe that memory.
2860 *
2861 * Return: The ptdesc describing the allocated page tables.
2862 */
2863static inline struct ptdesc *pagetable_alloc(gfp_t gfp, unsigned int order)
2864{
2865 struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2866
2867 return page_ptdesc(page);
2868}
2869
2870/**
2871 * pagetable_free - Free pagetables
2872 * @pt: The page table descriptor
2873 *
2874 * pagetable_free frees the memory of all page tables described by a page
2875 * table descriptor and the memory for the descriptor itself.
2876 */
2877static inline void pagetable_free(struct ptdesc *pt)
2878{
2879 struct page *page = ptdesc_page(pt);
2880
2881 __free_pages(page, compound_order(page));
2882}
2883
57c1ffce 2884#if USE_SPLIT_PTE_PTLOCKS
597d795a 2885#if ALLOC_SPLIT_PTLOCKS
b35f1819 2886void __init ptlock_cache_init(void);
f5ecca06 2887bool ptlock_alloc(struct ptdesc *ptdesc);
6ed1b8a0 2888void ptlock_free(struct ptdesc *ptdesc);
539edb58 2889
1865484a 2890static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
539edb58 2891{
1865484a 2892 return ptdesc->ptl;
539edb58 2893}
597d795a 2894#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2895static inline void ptlock_cache_init(void)
2896{
2897}
2898
f5ecca06 2899static inline bool ptlock_alloc(struct ptdesc *ptdesc)
49076ec2 2900{
49076ec2
KS
2901 return true;
2902}
539edb58 2903
6ed1b8a0 2904static inline void ptlock_free(struct ptdesc *ptdesc)
49076ec2 2905{
49076ec2
KS
2906}
2907
1865484a 2908static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
49076ec2 2909{
1865484a 2910 return &ptdesc->ptl;
49076ec2 2911}
597d795a 2912#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2913
2914static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2915{
1865484a 2916 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
49076ec2
KS
2917}
2918
75b25d49 2919static inline bool ptlock_init(struct ptdesc *ptdesc)
49076ec2
KS
2920{
2921 /*
2922 * prep_new_page() initialize page->private (and therefore page->ptl)
2923 * with 0. Make sure nobody took it in use in between.
2924 *
2925 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2926 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2927 */
75b25d49
VMO
2928 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2929 if (!ptlock_alloc(ptdesc))
49076ec2 2930 return false;
75b25d49 2931 spin_lock_init(ptlock_ptr(ptdesc));
49076ec2
KS
2932 return true;
2933}
2934
57c1ffce 2935#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2936/*
2937 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2938 */
49076ec2
KS
2939static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2940{
2941 return &mm->page_table_lock;
2942}
b35f1819 2943static inline void ptlock_cache_init(void) {}
75b25d49 2944static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
6ed1b8a0 2945static inline void ptlock_free(struct ptdesc *ptdesc) {}
57c1ffce 2946#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2947
7e11dca1 2948static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2f569afd 2949{
7e11dca1
VMO
2950 struct folio *folio = ptdesc_folio(ptdesc);
2951
2952 if (!ptlock_init(ptdesc))
706874e9 2953 return false;
7e11dca1
VMO
2954 __folio_set_pgtable(folio);
2955 lruvec_stat_add_folio(folio, NR_PAGETABLE);
706874e9 2956 return true;
2f569afd
MS
2957}
2958
7e11dca1
VMO
2959static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2960{
2961 struct folio *folio = ptdesc_folio(ptdesc);
2962
2963 ptlock_free(ptdesc);
2964 __folio_clear_pgtable(folio);
2965 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2966}
2967
0d940a9b
HD
2968pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2969static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2970{
2971 return __pte_offset_map(pmd, addr, NULL);
2972}
2973
2974pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2975 unsigned long addr, spinlock_t **ptlp);
2976static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2977 unsigned long addr, spinlock_t **ptlp)
2978{
2979 pte_t *pte;
2980
2981 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2982 return pte;
2983}
2984
2985pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2986 unsigned long addr, spinlock_t **ptlp);
c74df32c
HD
2987
2988#define pte_unmap_unlock(pte, ptl) do { \
2989 spin_unlock(ptl); \
2990 pte_unmap(pte); \
2991} while (0)
2992
4cf58924 2993#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2994
2995#define pte_alloc_map(mm, pmd, address) \
4cf58924 2996 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2997
c74df32c 2998#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2999 (pte_alloc(mm, pmd) ? \
3ed3a4f0 3000 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 3001
1bb3630e 3002#define pte_alloc_kernel(pmd, address) \
4cf58924 3003 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 3004 NULL: pte_offset_kernel(pmd, address))
1da177e4 3005
e009bb30
KS
3006#if USE_SPLIT_PMD_PTLOCKS
3007
7e25de77 3008static inline struct page *pmd_pgtable_page(pmd_t *pmd)
634391ac
MS
3009{
3010 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3011 return virt_to_page((void *)((unsigned long) pmd & mask));
3012}
3013
bf2d4334
VMO
3014static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3015{
3016 return page_ptdesc(pmd_pgtable_page(pmd));
3017}
3018
e009bb30
KS
3019static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3020{
1865484a 3021 return ptlock_ptr(pmd_ptdesc(pmd));
e009bb30
KS
3022}
3023
edbaefe5 3024static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
e009bb30 3025{
e009bb30 3026#ifdef CONFIG_TRANSPARENT_HUGEPAGE
edbaefe5 3027 ptdesc->pmd_huge_pte = NULL;
e009bb30 3028#endif
75b25d49 3029 return ptlock_init(ptdesc);
e009bb30
KS
3030}
3031
7e5f42ae 3032static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
e009bb30
KS
3033{
3034#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7e5f42ae 3035 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
e009bb30 3036#endif
6ed1b8a0 3037 ptlock_free(ptdesc);
e009bb30
KS
3038}
3039
f8546d84 3040#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
e009bb30
KS
3041
3042#else
3043
9a86cb7b
KS
3044static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3045{
3046 return &mm->page_table_lock;
3047}
3048
edbaefe5 3049static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
7e5f42ae 3050static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
e009bb30 3051
c389a250 3052#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 3053
e009bb30
KS
3054#endif
3055
9a86cb7b
KS
3056static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3057{
3058 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3059 spin_lock(ptl);
3060 return ptl;
3061}
3062
7e11dca1 3063static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
b2b29d6d 3064{
7e11dca1
VMO
3065 struct folio *folio = ptdesc_folio(ptdesc);
3066
3067 if (!pmd_ptlock_init(ptdesc))
b2b29d6d 3068 return false;
7e11dca1
VMO
3069 __folio_set_pgtable(folio);
3070 lruvec_stat_add_folio(folio, NR_PAGETABLE);
b2b29d6d
MW
3071 return true;
3072}
3073
7e11dca1
VMO
3074static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3075{
3076 struct folio *folio = ptdesc_folio(ptdesc);
3077
3078 pmd_ptlock_free(ptdesc);
3079 __folio_clear_pgtable(folio);
3080 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3081}
3082
a00cc7d9
MW
3083/*
3084 * No scalability reason to split PUD locks yet, but follow the same pattern
3085 * as the PMD locks to make it easier if we decide to. The VM should not be
3086 * considered ready to switch to split PUD locks yet; there may be places
3087 * which need to be converted from page_table_lock.
3088 */
3089static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3090{
3091 return &mm->page_table_lock;
3092}
3093
3094static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3095{
3096 spinlock_t *ptl = pud_lockptr(mm, pud);
3097
3098 spin_lock(ptl);
3099 return ptl;
3100}
62906027 3101
55d2a0bd
BW
3102static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3103{
3104 struct folio *folio = ptdesc_folio(ptdesc);
3105
3106 __folio_set_pgtable(folio);
3107 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3108}
3109
3110static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3111{
3112 struct folio *folio = ptdesc_folio(ptdesc);
3113
3114 __folio_clear_pgtable(folio);
3115 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3116}
3117
a00cc7d9 3118extern void __init pagecache_init(void);
49a7f04a
DH
3119extern void free_initmem(void);
3120
69afade7
JL
3121/*
3122 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3123 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 3124 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
3125 * Return pages freed into the buddy system.
3126 */
11199692 3127extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 3128 int poison, const char *s);
c3d5f5f0 3129
c3d5f5f0 3130extern void adjust_managed_page_count(struct page *page, long count);
69afade7 3131
61167ad5
YD
3132extern void reserve_bootmem_region(phys_addr_t start,
3133 phys_addr_t end, int nid);
92923ca3 3134
69afade7 3135/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 3136static inline void free_reserved_page(struct page *page)
69afade7 3137{
d224eb02
SB
3138 if (mem_alloc_profiling_enabled()) {
3139 union codetag_ref *ref = get_page_tag_ref(page);
3140
3141 if (ref) {
3142 set_codetag_empty(ref);
3143 put_page_tag_ref(ref);
3144 }
3145 }
69afade7
JL
3146 ClearPageReserved(page);
3147 init_page_count(page);
3148 __free_page(page);
69afade7
JL
3149 adjust_managed_page_count(page, 1);
3150}
a0cd7a7c 3151#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
3152
3153static inline void mark_page_reserved(struct page *page)
3154{
3155 SetPageReserved(page);
3156 adjust_managed_page_count(page, -1);
3157}
3158
bf2d4334
VMO
3159static inline void free_reserved_ptdesc(struct ptdesc *pt)
3160{
3161 free_reserved_page(ptdesc_page(pt));
3162}
3163
69afade7
JL
3164/*
3165 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
3166 * The freed pages will be poisoned with pattern "poison" if it's within
3167 * range [0, UCHAR_MAX].
3168 * Return pages freed into the buddy system.
69afade7
JL
3169 */
3170static inline unsigned long free_initmem_default(int poison)
3171{
3172 extern char __init_begin[], __init_end[];
3173
11199692 3174 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 3175 poison, "unused kernel image (initmem)");
69afade7
JL
3176}
3177
7ee3d4e8
JL
3178static inline unsigned long get_num_physpages(void)
3179{
3180 int nid;
3181 unsigned long phys_pages = 0;
3182
3183 for_each_online_node(nid)
3184 phys_pages += node_present_pages(nid);
3185
3186 return phys_pages;
3187}
3188
c713216d 3189/*
3f08a302 3190 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
3191 * zones, allocate the backing mem_map and account for memory holes in an
3192 * architecture independent manner.
c713216d
MG
3193 *
3194 * An architecture is expected to register range of page frames backed by
0ee332c1 3195 * physical memory with memblock_add[_node]() before calling
9691a071 3196 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
3197 * usage, an architecture is expected to do something like
3198 *
3199 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3200 * max_highmem_pfn};
3201 * for_each_valid_physical_page_range()
952eea9b 3202 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 3203 * free_area_init(max_zone_pfns);
c713216d 3204 */
9691a071 3205void free_area_init(unsigned long *max_zone_pfn);
1e01979c 3206unsigned long node_map_pfn_alignment(void);
32996250
YL
3207unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3208 unsigned long end_pfn);
c713216d
MG
3209extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3210 unsigned long end_pfn);
3211extern void get_pfn_range_for_nid(unsigned int nid,
3212 unsigned long *start_pfn, unsigned long *end_pfn);
f2dbcfa7 3213
a9ee6cf5 3214#ifndef CONFIG_NUMA
6f24fbd3 3215static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
3216{
3217 return 0;
3218}
3219#else
3220/* please see mm/page_alloc.c */
3221extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
3222#endif
3223
0e0b864e 3224extern void set_dma_reserve(unsigned long new_dma_reserve);
1da177e4 3225extern void mem_init(void);
8feae131 3226extern void __init mmap_init(void);
974f4367
MH
3227
3228extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
527ed4f7 3229static inline void show_mem(void)
974f4367 3230{
527ed4f7 3231 __show_mem(0, NULL, MAX_NR_ZONES - 1);
974f4367 3232}
d02bd27b 3233extern long si_mem_available(void);
1da177e4
LT
3234extern void si_meminfo(struct sysinfo * val);
3235extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
3236#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3237extern unsigned long arch_reserved_kernel_pages(void);
3238#endif
1da177e4 3239
a8e99259
MH
3240extern __printf(3, 4)
3241void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 3242
e7c8d5c9 3243extern void setup_per_cpu_pageset(void);
e7c8d5c9 3244
8feae131 3245/* nommu.c */
33e5d769 3246extern atomic_long_t mmap_pages_allocated;
7e660872 3247extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 3248
6b2dbba8 3249/* interval_tree.c */
6b2dbba8 3250void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 3251 struct rb_root_cached *root);
9826a516
ML
3252void vma_interval_tree_insert_after(struct vm_area_struct *node,
3253 struct vm_area_struct *prev,
f808c13f 3254 struct rb_root_cached *root);
6b2dbba8 3255void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
3256 struct rb_root_cached *root);
3257struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
3258 unsigned long start, unsigned long last);
3259struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3260 unsigned long start, unsigned long last);
3261
3262#define vma_interval_tree_foreach(vma, root, start, last) \
3263 for (vma = vma_interval_tree_iter_first(root, start, last); \
3264 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 3265
bf181b9f 3266void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 3267 struct rb_root_cached *root);
bf181b9f 3268void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
3269 struct rb_root_cached *root);
3270struct anon_vma_chain *
3271anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3272 unsigned long start, unsigned long last);
bf181b9f
ML
3273struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3274 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
3275#ifdef CONFIG_DEBUG_VM_RB
3276void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3277#endif
bf181b9f
ML
3278
3279#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3280 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3281 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3282
1da177e4 3283/* mmap.c */
34b4e4aa 3284extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
7c9813e8
LH
3285extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3286 unsigned long start, unsigned long end, pgoff_t pgoff,
3287 struct vm_area_struct *next);
cf51e86d
LH
3288extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3289 unsigned long start, unsigned long end, pgoff_t pgoff);
1da177e4 3290extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1da177e4 3291extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
a8fb5618 3292extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 3293extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
3294 unsigned long addr, unsigned long len, pgoff_t pgoff,
3295 bool *need_rmap_locks);
1da177e4 3296extern void exit_mmap(struct mm_struct *);
94d7d923
LS
3297struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
3298 struct vm_area_struct *prev,
3299 struct vm_area_struct *vma,
3300 unsigned long start, unsigned long end,
3301 unsigned long vm_flags,
3302 struct mempolicy *policy,
3303 struct vm_userfaultfd_ctx uffd_ctx,
3304 struct anon_vma_name *anon_name);
3305
3306/* We are about to modify the VMA's flags. */
3307static inline struct vm_area_struct
3308*vma_modify_flags(struct vma_iterator *vmi,
3309 struct vm_area_struct *prev,
3310 struct vm_area_struct *vma,
3311 unsigned long start, unsigned long end,
3312 unsigned long new_flags)
3313{
3314 return vma_modify(vmi, prev, vma, start, end, new_flags,
3315 vma_policy(vma), vma->vm_userfaultfd_ctx,
3316 anon_vma_name(vma));
3317}
3318
3319/* We are about to modify the VMA's flags and/or anon_name. */
3320static inline struct vm_area_struct
3321*vma_modify_flags_name(struct vma_iterator *vmi,
3322 struct vm_area_struct *prev,
3323 struct vm_area_struct *vma,
3324 unsigned long start,
3325 unsigned long end,
3326 unsigned long new_flags,
3327 struct anon_vma_name *new_name)
3328{
3329 return vma_modify(vmi, prev, vma, start, end, new_flags,
3330 vma_policy(vma), vma->vm_userfaultfd_ctx, new_name);
3331}
3332
3333/* We are about to modify the VMA's memory policy. */
3334static inline struct vm_area_struct
3335*vma_modify_policy(struct vma_iterator *vmi,
3336 struct vm_area_struct *prev,
3337 struct vm_area_struct *vma,
3338 unsigned long start, unsigned long end,
3339 struct mempolicy *new_pol)
3340{
3341 return vma_modify(vmi, prev, vma, start, end, vma->vm_flags,
3342 new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3343}
3344
3345/* We are about to modify the VMA's flags and/or uffd context. */
3346static inline struct vm_area_struct
3347*vma_modify_flags_uffd(struct vma_iterator *vmi,
3348 struct vm_area_struct *prev,
3349 struct vm_area_struct *vma,
3350 unsigned long start, unsigned long end,
3351 unsigned long new_flags,
3352 struct vm_userfaultfd_ctx new_ctx)
3353{
3354 return vma_modify(vmi, prev, vma, start, end, new_flags,
3355 vma_policy(vma), new_ctx, anon_vma_name(vma));
3356}
925d1c40 3357
9c599024
CG
3358static inline int check_data_rlimit(unsigned long rlim,
3359 unsigned long new,
3360 unsigned long start,
3361 unsigned long end_data,
3362 unsigned long start_data)
3363{
3364 if (rlim < RLIM_INFINITY) {
3365 if (((new - start) + (end_data - start_data)) > rlim)
3366 return -ENOSPC;
3367 }
3368
3369 return 0;
3370}
3371
7906d00c
AA
3372extern int mm_take_all_locks(struct mm_struct *mm);
3373extern void mm_drop_all_locks(struct mm_struct *mm);
3374
fe69d560 3375extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 3376extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 3377extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 3378extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 3379
84638335
KK
3380extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3381extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3382
2eefd878
DS
3383extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3384 const struct vm_special_mapping *sm);
3935ed6a
SS
3385extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3386 unsigned long addr, unsigned long len,
a62c34bd
AL
3387 unsigned long flags,
3388 const struct vm_special_mapping *spec);
3389/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
3390extern int install_special_mapping(struct mm_struct *mm,
3391 unsigned long addr, unsigned long len,
3392 unsigned long flags, struct page **pages);
1da177e4 3393
649775be 3394unsigned long randomize_stack_top(unsigned long stack_top);
5ad7dd88 3395unsigned long randomize_page(unsigned long start, unsigned long range);
649775be 3396
1da177e4
LT
3397extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3398
0165ab44 3399extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
3400 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3401 struct list_head *uf);
1fcfd8db 3402extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 3403 unsigned long len, unsigned long prot, unsigned long flags,
592b5fad
YY
3404 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3405 struct list_head *uf);
183654ce 3406extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
11f9a21a 3407 unsigned long start, size_t len, struct list_head *uf,
408579cd 3408 bool unlock);
897ab3e0
MR
3409extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3410 struct list_head *uf);
0726b01e 3411extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 3412
bebeb3d6 3413#ifdef CONFIG_MMU
27b26701
LH
3414extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3415 unsigned long start, unsigned long end,
408579cd 3416 struct list_head *uf, bool unlock);
bebeb3d6
ML
3417extern int __mm_populate(unsigned long addr, unsigned long len,
3418 int ignore_errors);
3419static inline void mm_populate(unsigned long addr, unsigned long len)
3420{
3421 /* Ignore errors */
3422 (void) __mm_populate(addr, len, 1);
3423}
3424#else
3425static inline void mm_populate(unsigned long addr, unsigned long len) {}
3426#endif
3427
2632bb84 3428/* This takes the mm semaphore itself */
16e72e9b 3429extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 3430extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 3431extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
3432 unsigned long, unsigned long,
3433 unsigned long, unsigned long);
1da177e4 3434
db4fbfb9
ML
3435struct vm_unmapped_area_info {
3436#define VM_UNMAPPED_AREA_TOPDOWN 1
3437 unsigned long flags;
3438 unsigned long length;
3439 unsigned long low_limit;
3440 unsigned long high_limit;
3441 unsigned long align_mask;
3442 unsigned long align_offset;
3443};
3444
baceaf1c 3445extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 3446
85821aab 3447/* truncate.c */
1da177e4 3448extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
3449extern void truncate_inode_pages_range(struct address_space *,
3450 loff_t lstart, loff_t lend);
91b0abe3 3451extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
3452
3453/* generic vm_area_ops exported for stackable file systems */
2bcd6454 3454extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 3455extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 3456 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 3457extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 3458
1be7107f 3459extern unsigned long stack_guard_gap;
d05f3169 3460/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
8d7071af
LT
3461int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3462struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
d05f3169 3463
11192337 3464/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
8d7071af 3465int expand_downwards(struct vm_area_struct *vma, unsigned long address);
1da177e4
LT
3466
3467/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3468extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3469extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3470 struct vm_area_struct **pprev);
3471
abdba2dd
LH
3472/*
3473 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3474 * NULL if none. Assume start_addr < end_addr.
ce6d42f2 3475 */
ce6d42f2 3476struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
abdba2dd 3477 unsigned long start_addr, unsigned long end_addr);
1da177e4 3478
ce6d42f2
LH
3479/**
3480 * vma_lookup() - Find a VMA at a specific address
3481 * @mm: The process address space.
3482 * @addr: The user address.
3483 *
3484 * Return: The vm_area_struct at the given address, %NULL otherwise.
3485 */
3486static inline
3487struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3488{
d7c62295 3489 return mtree_load(&mm->mm_mt, addr);
ce6d42f2
LH
3490}
3491
0266e7c5
RE
3492static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3493{
3494 if (vma->vm_flags & VM_GROWSDOWN)
3495 return stack_guard_gap;
3496
3497 /* See reasoning around the VM_SHADOW_STACK definition */
3498 if (vma->vm_flags & VM_SHADOW_STACK)
3499 return PAGE_SIZE;
3500
3501 return 0;
3502}
3503
1be7107f
HD
3504static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3505{
0266e7c5 3506 unsigned long gap = stack_guard_start_gap(vma);
1be7107f
HD
3507 unsigned long vm_start = vma->vm_start;
3508
0266e7c5
RE
3509 vm_start -= gap;
3510 if (vm_start > vma->vm_start)
3511 vm_start = 0;
1be7107f
HD
3512 return vm_start;
3513}
3514
3515static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3516{
3517 unsigned long vm_end = vma->vm_end;
3518
3519 if (vma->vm_flags & VM_GROWSUP) {
3520 vm_end += stack_guard_gap;
3521 if (vm_end < vma->vm_end)
3522 vm_end = -PAGE_SIZE;
3523 }
3524 return vm_end;
3525}
3526
1da177e4
LT
3527static inline unsigned long vma_pages(struct vm_area_struct *vma)
3528{
3529 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3530}
3531
640708a2
PE
3532/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3533static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3534 unsigned long vm_start, unsigned long vm_end)
3535{
dc8635b2 3536 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
640708a2
PE
3537
3538 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3539 vma = NULL;
3540
3541 return vma;
3542}
3543
017b1660
MK
3544static inline bool range_in_vma(struct vm_area_struct *vma,
3545 unsigned long start, unsigned long end)
3546{
3547 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3548}
3549
bad849b3 3550#ifdef CONFIG_MMU
804af2cf 3551pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 3552void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
3553#else
3554static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3555{
3556 return __pgprot(0);
3557}
64e45507
PF
3558static inline void vma_set_page_prot(struct vm_area_struct *vma)
3559{
3560 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3561}
bad849b3
DH
3562#endif
3563
295992fb
CK
3564void vma_set_file(struct vm_area_struct *vma, struct file *file);
3565
5877231f 3566#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 3567unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
3568 unsigned long start, unsigned long end);
3569#endif
3570
f440fa1a 3571struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
8d7071af 3572 unsigned long addr);
deceb6cd
HD
3573int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3574 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
3575int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3576 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 3577int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
3578int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3579 struct page **pages, unsigned long *num);
a667d745
SJ
3580int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3581 unsigned long num);
3582int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3583 unsigned long num);
ae2b01f3 3584vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 3585 unsigned long pfn);
f5e6d1d5
MW
3586vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3587 unsigned long pfn, pgprot_t pgprot);
5d747637 3588vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 3589 pfn_t pfn);
ab77dab4
SJ
3590vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3591 unsigned long addr, pfn_t pfn);
b4cbb197
LT
3592int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3593
1c8f4220
SJ
3594static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3595 unsigned long addr, struct page *page)
3596{
3597 int err = vm_insert_page(vma, addr, page);
3598
3599 if (err == -ENOMEM)
3600 return VM_FAULT_OOM;
3601 if (err < 0 && err != -EBUSY)
3602 return VM_FAULT_SIGBUS;
3603
3604 return VM_FAULT_NOPAGE;
3605}
3606
f8f6ae5d
JG
3607#ifndef io_remap_pfn_range
3608static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3609 unsigned long addr, unsigned long pfn,
3610 unsigned long size, pgprot_t prot)
3611{
3612 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3613}
3614#endif
3615
d97baf94
SJ
3616static inline vm_fault_t vmf_error(int err)
3617{
3618 if (err == -ENOMEM)
3619 return VM_FAULT_OOM;
1ea7ca1b
JC
3620 else if (err == -EHWPOISON)
3621 return VM_FAULT_HWPOISON;
d97baf94
SJ
3622 return VM_FAULT_SIGBUS;
3623}
3624
2ba39cc4
CH
3625/*
3626 * Convert errno to return value for ->page_mkwrite() calls.
3627 *
3628 * This should eventually be merged with vmf_error() above, but will need a
3629 * careful audit of all vmf_error() callers.
3630 */
3631static inline vm_fault_t vmf_fs_error(int err)
3632{
3633 if (err == 0)
3634 return VM_FAULT_LOCKED;
3635 if (err == -EFAULT || err == -EAGAIN)
3636 return VM_FAULT_NOPAGE;
3637 if (err == -ENOMEM)
3638 return VM_FAULT_OOM;
3639 /* -ENOSPC, -EDQUOT, -EIO ... */
3640 return VM_FAULT_SIGBUS;
3641}
3642
df06b37f
KB
3643struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3644 unsigned int foll_flags);
240aadee 3645
2b740303 3646static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3647{
3648 if (vm_fault & VM_FAULT_OOM)
3649 return -ENOMEM;
3650 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3651 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3652 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3653 return -EFAULT;
3654 return 0;
3655}
3656
474098ed
DH
3657/*
3658 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3659 * a (NUMA hinting) fault is required.
3660 */
d74943a2
DH
3661static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3662 unsigned int flags)
474098ed
DH
3663{
3664 /*
d74943a2
DH
3665 * If callers don't want to honor NUMA hinting faults, no need to
3666 * determine if we would actually have to trigger a NUMA hinting fault.
474098ed 3667 */
d74943a2
DH
3668 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3669 return true;
3670
3671 /*
3672 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3673 *
3674 * Requiring a fault here even for inaccessible VMAs would mean that
3675 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3676 * refuses to process NUMA hinting faults in inaccessible VMAs.
3677 */
3678 return !vma_is_accessible(vma);
474098ed
DH
3679}
3680
8b1e0f81 3681typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3682extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3683 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3684extern int apply_to_existing_page_range(struct mm_struct *mm,
3685 unsigned long address, unsigned long size,
3686 pte_fn_t fn, void *data);
aee16b3c 3687
8823b1db 3688#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3689extern void __kernel_poison_pages(struct page *page, int numpages);
3690extern void __kernel_unpoison_pages(struct page *page, int numpages);
3691extern bool _page_poisoning_enabled_early;
3692DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3693static inline bool page_poisoning_enabled(void)
3694{
3695 return _page_poisoning_enabled_early;
3696}
3697/*
3698 * For use in fast paths after init_mem_debugging() has run, or when a
3699 * false negative result is not harmful when called too early.
3700 */
3701static inline bool page_poisoning_enabled_static(void)
3702{
3703 return static_branch_unlikely(&_page_poisoning_enabled);
3704}
3705static inline void kernel_poison_pages(struct page *page, int numpages)
3706{
3707 if (page_poisoning_enabled_static())
3708 __kernel_poison_pages(page, numpages);
3709}
3710static inline void kernel_unpoison_pages(struct page *page, int numpages)
3711{
3712 if (page_poisoning_enabled_static())
3713 __kernel_unpoison_pages(page, numpages);
3714}
8823b1db
LA
3715#else
3716static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3717static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3718static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3719static inline void kernel_poison_pages(struct page *page, int numpages) { }
3720static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3721#endif
3722
51cba1eb 3723DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3724static inline bool want_init_on_alloc(gfp_t flags)
3725{
51cba1eb
KC
3726 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3727 &init_on_alloc))
6471384a
AP
3728 return true;
3729 return flags & __GFP_ZERO;
3730}
3731
51cba1eb 3732DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3733static inline bool want_init_on_free(void)
3734{
51cba1eb
KC
3735 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3736 &init_on_free);
6471384a
AP
3737}
3738
8e57f8ac
VB
3739extern bool _debug_pagealloc_enabled_early;
3740DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3741
3742static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3743{
3744 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3745 _debug_pagealloc_enabled_early;
3746}
3747
3748/*
ea09800b
ML
3749 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3750 * or when a false negative result is not harmful when called too early.
8e57f8ac
VB
3751 */
3752static inline bool debug_pagealloc_enabled_static(void)
031bc574 3753{
96a2b03f
VB
3754 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3755 return false;
3756
3757 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3758}
3759
c87cbc1f 3760/*
5d6ad668
MR
3761 * To support DEBUG_PAGEALLOC architecture must ensure that
3762 * __kernel_map_pages() never fails
c87cbc1f 3763 */
d6332692 3764extern void __kernel_map_pages(struct page *page, int numpages, int enable);
8f14a963 3765#ifdef CONFIG_DEBUG_PAGEALLOC
77bc7fd6
MR
3766static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3767{
3768 if (debug_pagealloc_enabled_static())
3769 __kernel_map_pages(page, numpages, 1);
3770}
3771
3772static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3773{
3774 if (debug_pagealloc_enabled_static())
3775 __kernel_map_pages(page, numpages, 0);
3776}
884c175f
KW
3777
3778extern unsigned int _debug_guardpage_minorder;
3779DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3780
3781static inline unsigned int debug_guardpage_minorder(void)
3782{
3783 return _debug_guardpage_minorder;
3784}
3785
3786static inline bool debug_guardpage_enabled(void)
3787{
3788 return static_branch_unlikely(&_debug_guardpage_enabled);
3789}
3790
3791static inline bool page_is_guard(struct page *page)
3792{
3793 if (!debug_guardpage_enabled())
3794 return false;
3795
3796 return PageGuard(page);
3797}
3798
3799bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
3800 int migratetype);
3801static inline bool set_page_guard(struct zone *zone, struct page *page,
3802 unsigned int order, int migratetype)
3803{
3804 if (!debug_guardpage_enabled())
3805 return false;
3806 return __set_page_guard(zone, page, order, migratetype);
3807}
3808
3809void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
3810 int migratetype);
3811static inline void clear_page_guard(struct zone *zone, struct page *page,
3812 unsigned int order, int migratetype)
3813{
3814 if (!debug_guardpage_enabled())
3815 return;
3816 __clear_page_guard(zone, page, order, migratetype);
3817}
3818
5d6ad668 3819#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3820static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3821static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
884c175f
KW
3822static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3823static inline bool debug_guardpage_enabled(void) { return false; }
3824static inline bool page_is_guard(struct page *page) { return false; }
3825static inline bool set_page_guard(struct zone *zone, struct page *page,
3826 unsigned int order, int migratetype) { return false; }
3827static inline void clear_page_guard(struct zone *zone, struct page *page,
3828 unsigned int order, int migratetype) {}
5d6ad668 3829#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3830
a6c19dfe 3831#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3832extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3833extern int in_gate_area_no_mm(unsigned long addr);
3834extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3835#else
a6c19dfe
AL
3836static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3837{
3838 return NULL;
3839}
3840static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3841static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3842{
3843 return 0;
3844}
1da177e4
LT
3845#endif /* __HAVE_ARCH_GATE_AREA */
3846
44a70ade
MH
3847extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3848
146732ce
JT
3849#ifdef CONFIG_SYSCTL
3850extern int sysctl_drop_caches;
32927393
CH
3851int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3852 loff_t *);
146732ce
JT
3853#endif
3854
cb731d6c 3855void drop_slab(void);
9d0243bc 3856
7a9166e3
LY
3857#ifndef CONFIG_MMU
3858#define randomize_va_space 0
3859#else
a62eaf15 3860extern int randomize_va_space;
7a9166e3 3861#endif
a62eaf15 3862
045e72ac 3863const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3864#ifdef CONFIG_MMU
03252919 3865void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3866#else
3867static inline void print_vma_addr(char *prefix, unsigned long rip)
3868{
3869}
3870#endif
e6e5494c 3871
35fd1eb1 3872void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0 3873struct page * __populate_section_memmap(unsigned long pfn,
e3246d8f
JM
3874 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3875 struct dev_pagemap *pgmap);
7b09f5af
FC
3876void pmd_init(void *addr);
3877void pud_init(void *addr);
29c71111 3878pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3879p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3880pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3881pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7 3882pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4917f55b 3883 struct vmem_altmap *altmap, struct page *reuse);
8f6aac41 3884void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3885struct vmem_altmap;
56993b4e
AK
3886void *vmemmap_alloc_block_buf(unsigned long size, int node,
3887 struct vmem_altmap *altmap);
8f6aac41 3888void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2045a3b8
FC
3889void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3890 unsigned long addr, unsigned long next);
3891int vmemmap_check_pmd(pmd_t *pmd, int node,
3892 unsigned long addr, unsigned long next);
0aad818b 3893int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3894 int node, struct vmem_altmap *altmap);
2045a3b8
FC
3895int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3896 int node, struct vmem_altmap *altmap);
7b73d978
CH
3897int vmemmap_populate(unsigned long start, unsigned long end, int node,
3898 struct vmem_altmap *altmap);
c2b91e2e 3899void vmemmap_populate_print_last(void);
0197518c 3900#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3901void vmemmap_free(unsigned long start, unsigned long end,
3902 struct vmem_altmap *altmap);
0197518c 3903#endif
87a7ae75 3904
95a2ac93
SK
3905#ifdef CONFIG_SPARSEMEM_VMEMMAP
3906static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3907{
3908 /* number of pfns from base where pfn_to_page() is valid */
3909 if (altmap)
3910 return altmap->reserve + altmap->free;
3911 return 0;
3912}
3913
3914static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3915 unsigned long nr_pfns)
3916{
3917 altmap->alloc -= nr_pfns;
3918}
3919#else
3920static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3921{
3922 return 0;
3923}
3924
3925static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3926 unsigned long nr_pfns)
3927{
3928}
3929#endif
3930
c1a6c536 3931#define VMEMMAP_RESERVE_NR 2
0b6f1582 3932#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
c1a6c536
AK
3933static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3934 struct dev_pagemap *pgmap)
87a7ae75 3935{
c1a6c536
AK
3936 unsigned long nr_pages;
3937 unsigned long nr_vmemmap_pages;
3938
3939 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3940 return false;
3941
3942 nr_pages = pgmap_vmemmap_nr(pgmap);
3943 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3944 /*
3945 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3946 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3947 */
3948 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
87a7ae75 3949}
c1a6c536
AK
3950/*
3951 * If we don't have an architecture override, use the generic rule
3952 */
3953#ifndef vmemmap_can_optimize
3954#define vmemmap_can_optimize __vmemmap_can_optimize
3955#endif
3956
87a7ae75
AK
3957#else
3958static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3959 struct dev_pagemap *pgmap)
3960{
3961 return false;
3962}
3963#endif
3964
46723bfa 3965void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3966 unsigned long nr_pages);
6a46079c 3967
82ba011b
AK
3968enum mf_flags {
3969 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3970 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3971 MF_MUST_KILL = 1 << 2,
cf870c70 3972 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3973 MF_UNPOISON = 1 << 4,
67f22ba7 3974 MF_SW_SIMULATED = 1 << 5,
38f6d293 3975 MF_NO_RETRY = 1 << 6,
fa422b35 3976 MF_MEM_PRE_REMOVE = 1 << 7,
82ba011b 3977};
c36e2024
SR
3978int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3979 unsigned long count, int mf_flags);
83b57531 3980extern int memory_failure(unsigned long pfn, int flags);
06202231 3981extern void memory_failure_queue_kick(int cpu);
847ce401 3982extern int unpoison_memory(unsigned long pfn);
d0505e9f 3983extern void shake_page(struct page *p);
5844a486 3984extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3985extern int soft_offline_page(unsigned long pfn, int flags);
405ce051 3986#ifdef CONFIG_MEMORY_FAILURE
870388db
KW
3987/*
3988 * Sysfs entries for memory failure handling statistics.
3989 */
3990extern const struct attribute_group memory_failure_attr_group;
d302c239 3991extern void memory_failure_queue(unsigned long pfn, int flags);
e591ef7d
NH
3992extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3993 bool *migratable_cleared);
5033091d
NH
3994void num_poisoned_pages_inc(unsigned long pfn);
3995void num_poisoned_pages_sub(unsigned long pfn, long i);
4248d008 3996struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
405ce051 3997#else
d302c239
TL
3998static inline void memory_failure_queue(unsigned long pfn, int flags)
3999{
4000}
4001
e591ef7d
NH
4002static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4003 bool *migratable_cleared)
405ce051
NH
4004{
4005 return 0;
4006}
d027122d 4007
a46c9304 4008static inline void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
4009{
4010}
5033091d
NH
4011
4012static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4013{
4014}
4015#endif
4016
4248d008
LX
4017#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
4018void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
4019 struct vm_area_struct *vma, struct list_head *to_kill,
4020 unsigned long ksm_addr);
4021#endif
4022
5033091d
NH
4023#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4024extern void memblk_nr_poison_inc(unsigned long pfn);
4025extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4026#else
4027static inline void memblk_nr_poison_inc(unsigned long pfn)
4028{
4029}
4030
4031static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4032{
4033}
405ce051 4034#endif
6a46079c 4035
03b122da
TL
4036#ifndef arch_memory_failure
4037static inline int arch_memory_failure(unsigned long pfn, int flags)
4038{
4039 return -ENXIO;
4040}
4041#endif
4042
4043#ifndef arch_is_platform_page
4044static inline bool arch_is_platform_page(u64 paddr)
4045{
4046 return false;
4047}
4048#endif
cc637b17
XX
4049
4050/*
4051 * Error handlers for various types of pages.
4052 */
cc3e2af4 4053enum mf_result {
cc637b17
XX
4054 MF_IGNORED, /* Error: cannot be handled */
4055 MF_FAILED, /* Error: handling failed */
4056 MF_DELAYED, /* Will be handled later */
4057 MF_RECOVERED, /* Successfully recovered */
4058};
4059
4060enum mf_action_page_type {
4061 MF_MSG_KERNEL,
4062 MF_MSG_KERNEL_HIGH_ORDER,
4063 MF_MSG_SLAB,
4064 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
4065 MF_MSG_HUGE,
4066 MF_MSG_FREE_HUGE,
4067 MF_MSG_UNMAP_FAILED,
4068 MF_MSG_DIRTY_SWAPCACHE,
4069 MF_MSG_CLEAN_SWAPCACHE,
4070 MF_MSG_DIRTY_MLOCKED_LRU,
4071 MF_MSG_CLEAN_MLOCKED_LRU,
4072 MF_MSG_DIRTY_UNEVICTABLE_LRU,
4073 MF_MSG_CLEAN_UNEVICTABLE_LRU,
4074 MF_MSG_DIRTY_LRU,
4075 MF_MSG_CLEAN_LRU,
4076 MF_MSG_TRUNCATED_LRU,
4077 MF_MSG_BUDDY,
6100e34b 4078 MF_MSG_DAX,
5d1fd5dc 4079 MF_MSG_UNSPLIT_THP,
cc637b17
XX
4080 MF_MSG_UNKNOWN,
4081};
4082
47ad8475
AA
4083#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4084extern void clear_huge_page(struct page *page,
c79b57e4 4085 unsigned long addr_hint,
47ad8475 4086 unsigned int pages_per_huge_page);
1cb9dc4b
LS
4087int copy_user_large_folio(struct folio *dst, struct folio *src,
4088 unsigned long addr_hint,
4089 struct vm_area_struct *vma);
e87340ca
Z
4090long copy_folio_from_user(struct folio *dst_folio,
4091 const void __user *usr_src,
4092 bool allow_pagefault);
2484ca9b
THV
4093
4094/**
4095 * vma_is_special_huge - Are transhuge page-table entries considered special?
4096 * @vma: Pointer to the struct vm_area_struct to consider
4097 *
4098 * Whether transhuge page-table entries are considered "special" following
4099 * the definition in vm_normal_page().
4100 *
4101 * Return: true if transhuge page-table entries should be considered special,
4102 * false otherwise.
4103 */
4104static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4105{
4106 return vma_is_dax(vma) || (vma->vm_file &&
4107 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4108}
4109
47ad8475
AA
4110#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4111
f9872caf
CS
4112#if MAX_NUMNODES > 1
4113void __init setup_nr_node_ids(void);
4114#else
4115static inline void setup_nr_node_ids(void) {}
4116#endif
4117
010c164a
SL
4118extern int memcmp_pages(struct page *page1, struct page *page2);
4119
4120static inline int pages_identical(struct page *page1, struct page *page2)
4121{
4122 return !memcmp_pages(page1, page2);
4123}
4124
c5acad84
TH
4125#ifdef CONFIG_MAPPING_DIRTY_HELPERS
4126unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4127 pgoff_t first_index, pgoff_t nr,
4128 pgoff_t bitmap_pgoff,
4129 unsigned long *bitmap,
4130 pgoff_t *start,
4131 pgoff_t *end);
4132
4133unsigned long wp_shared_mapping_range(struct address_space *mapping,
4134 pgoff_t first_index, pgoff_t nr);
4135#endif
4136
2374c09b
CH
4137extern int sysctl_nr_trim_pages;
4138
5bb1bb35 4139#ifdef CONFIG_PRINTK
8e7f37f2 4140void mem_dump_obj(void *object);
5bb1bb35
PM
4141#else
4142static inline void mem_dump_obj(void *object) {}
4143#endif
8e7f37f2 4144
22247efd 4145/**
28464bbb
LS
4146 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4147 * handle them.
22247efd
PX
4148 * @seals: the seals to check
4149 * @vma: the vma to operate on
4150 *
28464bbb
LS
4151 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4152 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors.
22247efd 4153 */
28464bbb 4154static inline int seal_check_write(int seals, struct vm_area_struct *vma)
22247efd 4155{
28464bbb 4156 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
22247efd
PX
4157 /*
4158 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
28464bbb 4159 * write seals are active.
22247efd
PX
4160 */
4161 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4162 return -EPERM;
4163
4164 /*
28464bbb 4165 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
22247efd
PX
4166 * MAP_SHARED and read-only, take care to not allow mprotect to
4167 * revert protections on such mappings. Do this only for shared
4168 * mappings. For private mappings, don't need to mask
4169 * VM_MAYWRITE as we still want them to be COW-writable.
4170 */
4171 if (vma->vm_flags & VM_SHARED)
1c71222e 4172 vm_flags_clear(vma, VM_MAYWRITE);
22247efd
PX
4173 }
4174
4175 return 0;
4176}
4177
9a10064f
CC
4178#ifdef CONFIG_ANON_VMA_NAME
4179int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac
SB
4180 unsigned long len_in,
4181 struct anon_vma_name *anon_name);
9a10064f
CC
4182#else
4183static inline int
4184madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac 4185 unsigned long len_in, struct anon_vma_name *anon_name) {
9a10064f
CC
4186 return 0;
4187}
4188#endif
4189
dcdfdd40
KS
4190#ifdef CONFIG_UNACCEPTED_MEMORY
4191
4192bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4193void accept_memory(phys_addr_t start, phys_addr_t end);
4194
4195#else
4196
4197static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4198 phys_addr_t end)
4199{
4200 return false;
4201}
4202
4203static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4204{
4205}
4206
4207#endif
4208
7cd34dd3
AH
4209static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4210{
4211 phys_addr_t paddr = pfn << PAGE_SHIFT;
4212
4213 return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE);
4214}
4215
1da177e4 4216#endif /* _LINUX_MM_H */