mm: Always downgrade mmap_lock if requested
[linux-2.6-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
f25cbb7a 31#include <linux/memremap.h>
ef6a22b7 32#include <linux/slab.h>
1da177e4
LT
33
34struct mempolicy;
35struct anon_vma;
bf181b9f 36struct anon_vma_chain;
e8edc6e0 37struct user_struct;
bce617ed 38struct pt_regs;
1da177e4 39
5ef64cc8
LT
40extern int sysctl_page_lock_unfairness;
41
b7ec1bf3 42void mm_core_init(void);
597b7305
MH
43void init_mm_internals(void);
44
a9ee6cf5 45#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 46extern unsigned long max_mapnr;
fccc9987
JL
47
48static inline void set_max_mapnr(unsigned long limit)
49{
50 max_mapnr = limit;
51}
52#else
53static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
54#endif
55
ca79b0c2
AK
56extern atomic_long_t _totalram_pages;
57static inline unsigned long totalram_pages(void)
58{
59 return (unsigned long)atomic_long_read(&_totalram_pages);
60}
61
62static inline void totalram_pages_inc(void)
63{
64 atomic_long_inc(&_totalram_pages);
65}
66
67static inline void totalram_pages_dec(void)
68{
69 atomic_long_dec(&_totalram_pages);
70}
71
72static inline void totalram_pages_add(long count)
73{
74 atomic_long_add(count, &_totalram_pages);
75}
76
1da177e4 77extern void * high_memory;
1da177e4 78extern int page_cluster;
ea0ffd0c 79extern const int page_cluster_max;
1da177e4
LT
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
d07e2259
DC
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
1da177e4 98#include <asm/page.h>
1da177e4 99#include <asm/processor.h>
1da177e4 100
79442ed1
TC
101#ifndef __pa_symbol
102#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
103#endif
104
1dff8083
AB
105#ifndef page_to_virt
106#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
107#endif
108
568c5fe5
LA
109#ifndef lm_alias
110#define lm_alias(x) __va(__pa_symbol(x))
111#endif
112
593befa6
DD
113/*
114 * To prevent common memory management code establishing
115 * a zero page mapping on a read fault.
116 * This macro should be defined within <asm/pgtable.h>.
117 * s390 does this to prevent multiplexing of hardware bits
118 * related to the physical page in case of virtualization.
119 */
120#ifndef mm_forbids_zeropage
121#define mm_forbids_zeropage(X) (0)
122#endif
123
a4a3ede2
PT
124/*
125 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
126 * If an architecture decides to implement their own version of
127 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
128 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 129 */
5470dea4 130#if BITS_PER_LONG == 64
3770e52f 131/* This function must be updated when the size of struct page grows above 96
5470dea4
AD
132 * or reduces below 56. The idea that compiler optimizes out switch()
133 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 134 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
135 * this can result in several of the writes here being dropped.
136 */
137#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
138static inline void __mm_zero_struct_page(struct page *page)
139{
140 unsigned long *_pp = (void *)page;
141
3770e52f 142 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
5470dea4
AD
143 BUILD_BUG_ON(sizeof(struct page) & 7);
144 BUILD_BUG_ON(sizeof(struct page) < 56);
3770e52f 145 BUILD_BUG_ON(sizeof(struct page) > 96);
5470dea4
AD
146
147 switch (sizeof(struct page)) {
3770e52f
AB
148 case 96:
149 _pp[11] = 0;
150 fallthrough;
151 case 88:
152 _pp[10] = 0;
153 fallthrough;
5470dea4 154 case 80:
df561f66
GS
155 _pp[9] = 0;
156 fallthrough;
5470dea4 157 case 72:
df561f66
GS
158 _pp[8] = 0;
159 fallthrough;
5470dea4 160 case 64:
df561f66
GS
161 _pp[7] = 0;
162 fallthrough;
5470dea4
AD
163 case 56:
164 _pp[6] = 0;
165 _pp[5] = 0;
166 _pp[4] = 0;
167 _pp[3] = 0;
168 _pp[2] = 0;
169 _pp[1] = 0;
170 _pp[0] = 0;
171 }
172}
173#else
a4a3ede2
PT
174#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
175#endif
176
ea606cf5
AR
177/*
178 * Default maximum number of active map areas, this limits the number of vmas
179 * per mm struct. Users can overwrite this number by sysctl but there is a
180 * problem.
181 *
182 * When a program's coredump is generated as ELF format, a section is created
183 * per a vma. In ELF, the number of sections is represented in unsigned short.
184 * This means the number of sections should be smaller than 65535 at coredump.
185 * Because the kernel adds some informative sections to a image of program at
186 * generating coredump, we need some margin. The number of extra sections is
187 * 1-3 now and depends on arch. We use "5" as safe margin, here.
188 *
189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190 * not a hard limit any more. Although some userspace tools can be surprised by
191 * that.
192 */
193#define MAPCOUNT_ELF_CORE_MARGIN (5)
194#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195
196extern int sysctl_max_map_count;
197
c9b1d098 198extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 199extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 200
49f0ce5f
JM
201extern int sysctl_overcommit_memory;
202extern int sysctl_overcommit_ratio;
203extern unsigned long sysctl_overcommit_kbytes;
204
32927393
CH
205int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 loff_t *);
207int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 loff_t *);
56f3547b
FT
209int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
210 loff_t *);
49f0ce5f 211
1cfcee72 212#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 214#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
215#else
216#define nth_page(page,n) ((page) + (n))
659508f9 217#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 218#endif
1da177e4 219
27ac792c
AR
220/* to align the pointer to the (next) page boundary */
221#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
222
335e52c2
DG
223/* to align the pointer to the (prev) page boundary */
224#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
225
0fa73b86 226/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 227#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 228
f86196ea 229#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
06d20bdb
MWO
230static inline struct folio *lru_to_folio(struct list_head *head)
231{
232 return list_entry((head)->prev, struct folio, lru);
233}
f86196ea 234
5748fbc5
KW
235void setup_initial_init_mm(void *start_code, void *end_code,
236 void *end_data, void *brk);
237
1da177e4
LT
238/*
239 * Linux kernel virtual memory manager primitives.
240 * The idea being to have a "virtual" mm in the same way
241 * we have a virtual fs - giving a cleaner interface to the
242 * mm details, and allowing different kinds of memory mappings
243 * (from shared memory to executable loading to arbitrary
244 * mmap() functions).
245 */
246
490fc053 247struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
248struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249void vm_area_free(struct vm_area_struct *);
0d2ebf9c
SB
250/* Use only if VMA has no other users */
251void __vm_area_free(struct vm_area_struct *vma);
c43692e8 252
1da177e4 253#ifndef CONFIG_MMU
8feae131
DH
254extern struct rb_root nommu_region_tree;
255extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
256
257extern unsigned int kobjsize(const void *objp);
258#endif
259
260/*
605d9288 261 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 262 * When changing, update also include/trace/events/mmflags.h
1da177e4 263 */
cc2383ec
KK
264#define VM_NONE 0x00000000
265
1da177e4
LT
266#define VM_READ 0x00000001 /* currently active flags */
267#define VM_WRITE 0x00000002
268#define VM_EXEC 0x00000004
269#define VM_SHARED 0x00000008
270
7e2cff42 271/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
272#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
273#define VM_MAYWRITE 0x00000020
274#define VM_MAYEXEC 0x00000040
275#define VM_MAYSHARE 0x00000080
276
277#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
b6b7a8fa 278#ifdef CONFIG_MMU
16ba6f81 279#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
b6b7a8fa
DH
280#else /* CONFIG_MMU */
281#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
282#define VM_UFFD_MISSING 0
283#endif /* CONFIG_MMU */
6aab341e 284#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 285#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 286
1da177e4
LT
287#define VM_LOCKED 0x00002000
288#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
289
290 /* Used by sys_madvise() */
291#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
292#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
293
294#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
295#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 296#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 297#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 298#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 299#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 300#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 301#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 302#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 303#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 304
d9104d1c
CG
305#ifdef CONFIG_MEM_SOFT_DIRTY
306# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
307#else
308# define VM_SOFTDIRTY 0
309#endif
310
b379d790 311#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
312#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
313#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 314#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 315
63c17fb8
DH
316#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
318#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
319#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
320#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 321#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
322#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
323#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
324#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
325#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 326#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
327#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
328
5212213a 329#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
330# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
331# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 332# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
333# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
334# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
335#ifdef CONFIG_PPC
336# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
337#else
338# define VM_PKEY_BIT4 0
8f62c883 339#endif
5212213a
RP
340#endif /* CONFIG_ARCH_HAS_PKEYS */
341
342#if defined(CONFIG_X86)
343# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
344#elif defined(CONFIG_PPC)
345# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
346#elif defined(CONFIG_PARISC)
347# define VM_GROWSUP VM_ARCH_1
348#elif defined(CONFIG_IA64)
349# define VM_GROWSUP VM_ARCH_1
74a04967
KA
350#elif defined(CONFIG_SPARC64)
351# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
352# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
353#elif defined(CONFIG_ARM64)
354# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
355# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
356#elif !defined(CONFIG_MMU)
357# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
358#endif
359
9f341931
CM
360#if defined(CONFIG_ARM64_MTE)
361# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
362# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
363#else
364# define VM_MTE VM_NONE
365# define VM_MTE_ALLOWED VM_NONE
366#endif
367
cc2383ec
KK
368#ifndef VM_GROWSUP
369# define VM_GROWSUP VM_NONE
370#endif
371
7677f7fd
AR
372#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
373# define VM_UFFD_MINOR_BIT 37
374# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
375#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
376# define VM_UFFD_MINOR VM_NONE
377#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
378
a8bef8ff
MG
379/* Bits set in the VMA until the stack is in its final location */
380#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
381
c62da0c3
AK
382#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
383
384/* Common data flag combinations */
385#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
387#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
388 VM_MAYWRITE | VM_MAYEXEC)
389#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
390 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
391
392#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
393#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
394#endif
395
1da177e4
LT
396#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
397#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
398#endif
399
400#ifdef CONFIG_STACK_GROWSUP
30bdbb78 401#define VM_STACK VM_GROWSUP
1da177e4 402#else
30bdbb78 403#define VM_STACK VM_GROWSDOWN
1da177e4
LT
404#endif
405
30bdbb78
KK
406#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
407
6cb4d9a2
AK
408/* VMA basic access permission flags */
409#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
410
411
b291f000 412/*
78f11a25 413 * Special vmas that are non-mergable, non-mlock()able.
b291f000 414 */
9050d7eb 415#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 416
b4443772
AK
417/* This mask prevents VMA from being scanned with khugepaged */
418#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
419
a0715cc2
AT
420/* This mask defines which mm->def_flags a process can inherit its parent */
421#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
422
e430a95a
SB
423/* This mask represents all the VMA flag bits used by mlock */
424#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
de60f5f1 425
2c2d57b5
KA
426/* Arch-specific flags to clear when updating VM flags on protection change */
427#ifndef VM_ARCH_CLEAR
428# define VM_ARCH_CLEAR VM_NONE
429#endif
430#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
431
1da177e4
LT
432/*
433 * mapping from the currently active vm_flags protection bits (the
434 * low four bits) to a page protection mask..
435 */
1da177e4 436
dde16072
PX
437/*
438 * The default fault flags that should be used by most of the
439 * arch-specific page fault handlers.
440 */
441#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
442 FAULT_FLAG_KILLABLE | \
443 FAULT_FLAG_INTERRUPTIBLE)
dde16072 444
4064b982
PX
445/**
446 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 447 * @flags: Fault flags.
4064b982
PX
448 *
449 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 450 * the mmap_lock for too long a time when waiting for another condition
4064b982 451 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
452 * mmap_lock in the first round to avoid potential starvation of other
453 * processes that would also want the mmap_lock.
4064b982
PX
454 *
455 * Return: true if the page fault allows retry and this is the first
456 * attempt of the fault handling; false otherwise.
457 */
da2f5eb3 458static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
459{
460 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
461 (!(flags & FAULT_FLAG_TRIED));
462}
463
282a8e03
RZ
464#define FAULT_FLAG_TRACE \
465 { FAULT_FLAG_WRITE, "WRITE" }, \
466 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
467 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
468 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
469 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
470 { FAULT_FLAG_TRIED, "TRIED" }, \
471 { FAULT_FLAG_USER, "USER" }, \
472 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee 473 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
55324e46
SB
474 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
475 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
282a8e03 476
54cb8821 477/*
11192337 478 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
479 * ->fault function. The vma's ->fault is responsible for returning a bitmask
480 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 481 *
c20cd45e
MH
482 * MM layer fills up gfp_mask for page allocations but fault handler might
483 * alter it if its implementation requires a different allocation context.
484 *
9b4bdd2f 485 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 486 */
d0217ac0 487struct vm_fault {
5857c920 488 const struct {
742d3372
WD
489 struct vm_area_struct *vma; /* Target VMA */
490 gfp_t gfp_mask; /* gfp mask to be used for allocations */
491 pgoff_t pgoff; /* Logical page offset based on vma */
824ddc60
NA
492 unsigned long address; /* Faulting virtual address - masked */
493 unsigned long real_address; /* Faulting virtual address - unmasked */
742d3372 494 };
da2f5eb3 495 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 496 * XXX: should really be 'const' */
82b0f8c3 497 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 498 * the 'address' */
a2d58167
DJ
499 pud_t *pud; /* Pointer to pud entry matching
500 * the 'address'
501 */
5db4f15c
YS
502 union {
503 pte_t orig_pte; /* Value of PTE at the time of fault */
504 pmd_t orig_pmd; /* Value of PMD at the time of fault,
505 * used by PMD fault only.
506 */
507 };
d0217ac0 508
3917048d 509 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 510 struct page *page; /* ->fault handlers should return a
83c54070 511 * page here, unless VM_FAULT_NOPAGE
d0217ac0 512 * is set (which is also implied by
83c54070 513 * VM_FAULT_ERROR).
d0217ac0 514 */
82b0f8c3 515 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
516 pte_t *pte; /* Pointer to pte entry matching
517 * the 'address'. NULL if the page
518 * table hasn't been allocated.
519 */
520 spinlock_t *ptl; /* Page table lock.
521 * Protects pte page table if 'pte'
522 * is not NULL, otherwise pmd.
523 */
7267ec00 524 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
525 * vm_ops->map_pages() sets up a page
526 * table from atomic context.
7267ec00
KS
527 * do_fault_around() pre-allocates
528 * page table to avoid allocation from
529 * atomic context.
530 */
54cb8821 531};
1da177e4 532
c791ace1
DJ
533/* page entry size for vm->huge_fault() */
534enum page_entry_size {
535 PE_SIZE_PTE = 0,
536 PE_SIZE_PMD,
537 PE_SIZE_PUD,
538};
539
1da177e4
LT
540/*
541 * These are the virtual MM functions - opening of an area, closing and
542 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 543 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
544 */
545struct vm_operations_struct {
546 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
547 /**
548 * @close: Called when the VMA is being removed from the MM.
549 * Context: User context. May sleep. Caller holds mmap_lock.
550 */
1da177e4 551 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
552 /* Called any time before splitting to check if it's allowed */
553 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 554 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
555 /*
556 * Called by mprotect() to make driver-specific permission
557 * checks before mprotect() is finalised. The VMA must not
3e0ee843 558 * be modified. Returns 0 if mprotect() can proceed.
95bb7c42
SC
559 */
560 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
561 unsigned long end, unsigned long newflags);
1c8f4220
SJ
562 vm_fault_t (*fault)(struct vm_fault *vmf);
563 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
564 enum page_entry_size pe_size);
f9ce0be7 565 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 566 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 567 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
568
569 /* notification that a previously read-only page is about to become
570 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 571 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 572
dd906184 573 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 574 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 575
28b2ee20 576 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
577 * for use by special VMAs. See also generic_access_phys() for a generic
578 * implementation useful for any iomem mapping.
28b2ee20
RR
579 */
580 int (*access)(struct vm_area_struct *vma, unsigned long addr,
581 void *buf, int len, int write);
78d683e8
AL
582
583 /* Called by the /proc/PID/maps code to ask the vma whether it
584 * has a special name. Returning non-NULL will also cause this
585 * vma to be dumped unconditionally. */
586 const char *(*name)(struct vm_area_struct *vma);
587
1da177e4 588#ifdef CONFIG_NUMA
a6020ed7
LS
589 /*
590 * set_policy() op must add a reference to any non-NULL @new mempolicy
591 * to hold the policy upon return. Caller should pass NULL @new to
592 * remove a policy and fall back to surrounding context--i.e. do not
593 * install a MPOL_DEFAULT policy, nor the task or system default
594 * mempolicy.
595 */
1da177e4 596 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
597
598 /*
599 * get_policy() op must add reference [mpol_get()] to any policy at
600 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
601 * in mm/mempolicy.c will do this automatically.
602 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 603 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
604 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
605 * must return NULL--i.e., do not "fallback" to task or system default
606 * policy.
607 */
1da177e4
LT
608 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
609 unsigned long addr);
610#endif
667a0a06
DV
611 /*
612 * Called by vm_normal_page() for special PTEs to find the
613 * page for @addr. This is useful if the default behavior
614 * (using pte_page()) would not find the correct page.
615 */
616 struct page *(*find_special_page)(struct vm_area_struct *vma,
617 unsigned long addr);
1da177e4
LT
618};
619
ef6a22b7
MG
620#ifdef CONFIG_NUMA_BALANCING
621static inline void vma_numab_state_init(struct vm_area_struct *vma)
622{
623 vma->numab_state = NULL;
624}
625static inline void vma_numab_state_free(struct vm_area_struct *vma)
626{
627 kfree(vma->numab_state);
628}
629#else
630static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
631static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
632#endif /* CONFIG_NUMA_BALANCING */
633
5e31275c 634#ifdef CONFIG_PER_VMA_LOCK
5e31275c
SB
635/*
636 * Try to read-lock a vma. The function is allowed to occasionally yield false
637 * locked result to avoid performance overhead, in which case we fall back to
638 * using mmap_lock. The function should never yield false unlocked result.
639 */
640static inline bool vma_start_read(struct vm_area_struct *vma)
641{
642 /* Check before locking. A race might cause false locked result. */
643 if (vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))
644 return false;
645
c7f8f31c 646 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
5e31275c
SB
647 return false;
648
649 /*
650 * Overflow might produce false locked result.
651 * False unlocked result is impossible because we modify and check
c7f8f31c 652 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
5e31275c
SB
653 * modification invalidates all existing locks.
654 */
655 if (unlikely(vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))) {
c7f8f31c 656 up_read(&vma->vm_lock->lock);
5e31275c
SB
657 return false;
658 }
659 return true;
660}
661
662static inline void vma_end_read(struct vm_area_struct *vma)
663{
664 rcu_read_lock(); /* keeps vma alive till the end of up_read */
c7f8f31c 665 up_read(&vma->vm_lock->lock);
5e31275c
SB
666 rcu_read_unlock();
667}
668
55fd6fcc 669static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
5e31275c 670{
5e31275c
SB
671 mmap_assert_write_locked(vma->vm_mm);
672
673 /*
674 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
675 * mm->mm_lock_seq can't be concurrently modified.
676 */
55fd6fcc
SB
677 *mm_lock_seq = READ_ONCE(vma->vm_mm->mm_lock_seq);
678 return (vma->vm_lock_seq == *mm_lock_seq);
679}
680
681static inline void vma_start_write(struct vm_area_struct *vma)
682{
683 int mm_lock_seq;
684
685 if (__is_vma_write_locked(vma, &mm_lock_seq))
5e31275c
SB
686 return;
687
c7f8f31c 688 down_write(&vma->vm_lock->lock);
5e31275c 689 vma->vm_lock_seq = mm_lock_seq;
c7f8f31c 690 up_write(&vma->vm_lock->lock);
5e31275c
SB
691}
692
55fd6fcc
SB
693static inline bool vma_try_start_write(struct vm_area_struct *vma)
694{
695 int mm_lock_seq;
696
697 if (__is_vma_write_locked(vma, &mm_lock_seq))
698 return true;
699
700 if (!down_write_trylock(&vma->vm_lock->lock))
701 return false;
702
703 vma->vm_lock_seq = mm_lock_seq;
704 up_write(&vma->vm_lock->lock);
705 return true;
706}
707
5e31275c
SB
708static inline void vma_assert_write_locked(struct vm_area_struct *vma)
709{
55fd6fcc
SB
710 int mm_lock_seq;
711
712 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
5e31275c
SB
713}
714
457f67be
SB
715static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
716{
717 /* When detaching vma should be write-locked */
718 if (detached)
719 vma_assert_write_locked(vma);
720 vma->detached = detached;
721}
722
50ee3253
SB
723struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
724 unsigned long address);
725
5e31275c
SB
726#else /* CONFIG_PER_VMA_LOCK */
727
5e31275c
SB
728static inline bool vma_start_read(struct vm_area_struct *vma)
729 { return false; }
730static inline void vma_end_read(struct vm_area_struct *vma) {}
731static inline void vma_start_write(struct vm_area_struct *vma) {}
55fd6fcc
SB
732static inline bool vma_try_start_write(struct vm_area_struct *vma)
733 { return true; }
5e31275c 734static inline void vma_assert_write_locked(struct vm_area_struct *vma) {}
457f67be
SB
735static inline void vma_mark_detached(struct vm_area_struct *vma,
736 bool detached) {}
5e31275c
SB
737
738#endif /* CONFIG_PER_VMA_LOCK */
739
c7f8f31c
SB
740/*
741 * WARNING: vma_init does not initialize vma->vm_lock.
742 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
743 */
027232da
KS
744static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
745{
bfd40eaf
KS
746 static const struct vm_operations_struct dummy_vm_ops = {};
747
a670468f 748 memset(vma, 0, sizeof(*vma));
027232da 749 vma->vm_mm = mm;
bfd40eaf 750 vma->vm_ops = &dummy_vm_ops;
027232da 751 INIT_LIST_HEAD(&vma->anon_vma_chain);
457f67be 752 vma_mark_detached(vma, false);
ef6a22b7 753 vma_numab_state_init(vma);
027232da
KS
754}
755
bc292ab0
SB
756/* Use when VMA is not part of the VMA tree and needs no locking */
757static inline void vm_flags_init(struct vm_area_struct *vma,
758 vm_flags_t flags)
759{
760 ACCESS_PRIVATE(vma, __vm_flags) = flags;
761}
762
763/* Use when VMA is part of the VMA tree and modifications need coordination */
764static inline void vm_flags_reset(struct vm_area_struct *vma,
765 vm_flags_t flags)
766{
c7322933 767 vma_start_write(vma);
bc292ab0
SB
768 vm_flags_init(vma, flags);
769}
770
601c3c29
SB
771static inline void vm_flags_reset_once(struct vm_area_struct *vma,
772 vm_flags_t flags)
773{
c7322933 774 vma_start_write(vma);
601c3c29
SB
775 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
776}
777
bc292ab0
SB
778static inline void vm_flags_set(struct vm_area_struct *vma,
779 vm_flags_t flags)
780{
c7322933 781 vma_start_write(vma);
bc292ab0
SB
782 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
783}
784
785static inline void vm_flags_clear(struct vm_area_struct *vma,
786 vm_flags_t flags)
787{
c7322933 788 vma_start_write(vma);
bc292ab0
SB
789 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
790}
791
68f48381
SB
792/*
793 * Use only if VMA is not part of the VMA tree or has no other users and
794 * therefore needs no locking.
795 */
796static inline void __vm_flags_mod(struct vm_area_struct *vma,
797 vm_flags_t set, vm_flags_t clear)
798{
799 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
800}
801
bc292ab0
SB
802/*
803 * Use only when the order of set/clear operations is unimportant, otherwise
804 * use vm_flags_{set|clear} explicitly.
805 */
806static inline void vm_flags_mod(struct vm_area_struct *vma,
807 vm_flags_t set, vm_flags_t clear)
808{
c7322933 809 vma_start_write(vma);
68f48381 810 __vm_flags_mod(vma, set, clear);
bc292ab0
SB
811}
812
bfd40eaf
KS
813static inline void vma_set_anonymous(struct vm_area_struct *vma)
814{
815 vma->vm_ops = NULL;
816}
817
43675e6f
YS
818static inline bool vma_is_anonymous(struct vm_area_struct *vma)
819{
820 return !vma->vm_ops;
821}
822
222100ee
AK
823static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
824{
825 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
826
827 if (!maybe_stack)
828 return false;
829
830 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
831 VM_STACK_INCOMPLETE_SETUP)
832 return true;
833
834 return false;
835}
836
7969f226
AK
837static inline bool vma_is_foreign(struct vm_area_struct *vma)
838{
839 if (!current->mm)
840 return true;
841
842 if (current->mm != vma->vm_mm)
843 return true;
844
845 return false;
846}
3122e80e
AK
847
848static inline bool vma_is_accessible(struct vm_area_struct *vma)
849{
6cb4d9a2 850 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
851}
852
f39af059
MWO
853static inline
854struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
855{
b62b633e 856 return mas_find(&vmi->mas, max - 1);
f39af059
MWO
857}
858
859static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
860{
861 /*
b62b633e 862 * Uses mas_find() to get the first VMA when the iterator starts.
f39af059
MWO
863 * Calling mas_next() could skip the first entry.
864 */
b62b633e 865 return mas_find(&vmi->mas, ULONG_MAX);
f39af059
MWO
866}
867
bb5dbd22
LH
868static inline
869struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
870{
871 return mas_next_range(&vmi->mas, ULONG_MAX);
872}
873
874
f39af059
MWO
875static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
876{
877 return mas_prev(&vmi->mas, 0);
878}
879
bb5dbd22
LH
880static inline
881struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
882{
883 return mas_prev_range(&vmi->mas, 0);
884}
885
f39af059
MWO
886static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
887{
888 return vmi->mas.index;
889}
890
b62b633e
LH
891static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
892{
893 return vmi->mas.last + 1;
894}
895static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
896 unsigned long count)
897{
898 return mas_expected_entries(&vmi->mas, count);
899}
900
901/* Free any unused preallocations */
902static inline void vma_iter_free(struct vma_iterator *vmi)
903{
904 mas_destroy(&vmi->mas);
905}
906
907static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
908 struct vm_area_struct *vma)
909{
910 vmi->mas.index = vma->vm_start;
911 vmi->mas.last = vma->vm_end - 1;
912 mas_store(&vmi->mas, vma);
913 if (unlikely(mas_is_err(&vmi->mas)))
914 return -ENOMEM;
915
916 return 0;
917}
918
919static inline void vma_iter_invalidate(struct vma_iterator *vmi)
920{
921 mas_pause(&vmi->mas);
922}
923
924static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
925{
926 mas_set(&vmi->mas, addr);
927}
928
f39af059
MWO
929#define for_each_vma(__vmi, __vma) \
930 while (((__vma) = vma_next(&(__vmi))) != NULL)
931
932/* The MM code likes to work with exclusive end addresses */
933#define for_each_vma_range(__vmi, __vma, __end) \
b62b633e 934 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
f39af059 935
43675e6f
YS
936#ifdef CONFIG_SHMEM
937/*
938 * The vma_is_shmem is not inline because it is used only by slow
939 * paths in userfault.
940 */
941bool vma_is_shmem(struct vm_area_struct *vma);
d09e8ca6 942bool vma_is_anon_shmem(struct vm_area_struct *vma);
43675e6f
YS
943#else
944static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
d09e8ca6 945static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
43675e6f
YS
946#endif
947
948int vma_is_stack_for_current(struct vm_area_struct *vma);
949
8b11ec1b
LT
950/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
951#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
952
1da177e4
LT
953struct mmu_gather;
954struct inode;
955
5eb5cea1
MWO
956/*
957 * compound_order() can be called without holding a reference, which means
958 * that niceties like page_folio() don't work. These callers should be
959 * prepared to handle wild return values. For example, PG_head may be
960 * set before _folio_order is initialised, or this may be a tail page.
961 * See compaction.c for some good examples.
962 */
5bf34d7c
MWO
963static inline unsigned int compound_order(struct page *page)
964{
5eb5cea1
MWO
965 struct folio *folio = (struct folio *)page;
966
967 if (!test_bit(PG_head, &folio->flags))
5bf34d7c 968 return 0;
5eb5cea1 969 return folio->_folio_order;
5bf34d7c
MWO
970}
971
972/**
973 * folio_order - The allocation order of a folio.
974 * @folio: The folio.
975 *
976 * A folio is composed of 2^order pages. See get_order() for the definition
977 * of order.
978 *
979 * Return: The order of the folio.
980 */
981static inline unsigned int folio_order(struct folio *folio)
982{
c3a15bff
MWO
983 if (!folio_test_large(folio))
984 return 0;
985 return folio->_folio_order;
5bf34d7c
MWO
986}
987
71e3aac0 988#include <linux/huge_mm.h>
1da177e4
LT
989
990/*
991 * Methods to modify the page usage count.
992 *
993 * What counts for a page usage:
994 * - cache mapping (page->mapping)
995 * - private data (page->private)
996 * - page mapped in a task's page tables, each mapping
997 * is counted separately
998 *
999 * Also, many kernel routines increase the page count before a critical
1000 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
1001 */
1002
1003/*
da6052f7 1004 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 1005 */
7c8ee9a8
NP
1006static inline int put_page_testzero(struct page *page)
1007{
fe896d18
JK
1008 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1009 return page_ref_dec_and_test(page);
7c8ee9a8 1010}
1da177e4 1011
b620f633
MWO
1012static inline int folio_put_testzero(struct folio *folio)
1013{
1014 return put_page_testzero(&folio->page);
1015}
1016
1da177e4 1017/*
7c8ee9a8
NP
1018 * Try to grab a ref unless the page has a refcount of zero, return false if
1019 * that is the case.
8e0861fa
AK
1020 * This can be called when MMU is off so it must not access
1021 * any of the virtual mappings.
1da177e4 1022 */
c2530328 1023static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 1024{
fe896d18 1025 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 1026}
1da177e4 1027
3c1ea2c7
VMO
1028static inline struct folio *folio_get_nontail_page(struct page *page)
1029{
1030 if (unlikely(!get_page_unless_zero(page)))
1031 return NULL;
1032 return (struct folio *)page;
1033}
1034
53df8fdc 1035extern int page_is_ram(unsigned long pfn);
124fe20d
DW
1036
1037enum {
1038 REGION_INTERSECTS,
1039 REGION_DISJOINT,
1040 REGION_MIXED,
1041};
1042
1c29f25b
TK
1043int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1044 unsigned long desc);
53df8fdc 1045
48667e7a 1046/* Support for virtually mapped pages */
b3bdda02
CL
1047struct page *vmalloc_to_page(const void *addr);
1048unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 1049
0738c4bb
PM
1050/*
1051 * Determine if an address is within the vmalloc range
1052 *
1053 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1054 * is no special casing required.
1055 */
9bd3bb67
AK
1056
1057#ifndef is_ioremap_addr
1058#define is_ioremap_addr(x) is_vmalloc_addr(x)
1059#endif
1060
81ac3ad9 1061#ifdef CONFIG_MMU
186525bd 1062extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
1063extern int is_vmalloc_or_module_addr(const void *x);
1064#else
186525bd
IM
1065static inline bool is_vmalloc_addr(const void *x)
1066{
1067 return false;
1068}
934831d0 1069static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
1070{
1071 return 0;
1072}
1073#endif
9e2779fa 1074
74e8ee47
MWO
1075/*
1076 * How many times the entire folio is mapped as a single unit (eg by a
1077 * PMD or PUD entry). This is probably not what you want, except for
cb67f428
HD
1078 * debugging purposes - it does not include PTE-mapped sub-pages; look
1079 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
74e8ee47
MWO
1080 */
1081static inline int folio_entire_mapcount(struct folio *folio)
6dc5ea16 1082{
74e8ee47 1083 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1aa4d03b 1084 return atomic_read(&folio->_entire_mapcount) + 1;
53f9263b
KS
1085}
1086
70b50f94
AA
1087/*
1088 * The atomic page->_mapcount, starts from -1: so that transitions
1089 * both from it and to it can be tracked, using atomic_inc_and_test
1090 * and atomic_add_negative(-1).
1091 */
22b751c3 1092static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
1093{
1094 atomic_set(&(page)->_mapcount, -1);
1095}
1096
c97eeb8f
MWO
1097/**
1098 * page_mapcount() - Number of times this precise page is mapped.
1099 * @page: The page.
1100 *
1101 * The number of times this page is mapped. If this page is part of
1102 * a large folio, it includes the number of times this page is mapped
1103 * as part of that folio.
6988f31d 1104 *
c97eeb8f 1105 * The result is undefined for pages which cannot be mapped into userspace.
6988f31d 1106 * For example SLAB or special types of pages. See function page_has_type().
c97eeb8f 1107 * They use this field in struct page differently.
6988f31d 1108 */
70b50f94
AA
1109static inline int page_mapcount(struct page *page)
1110{
cb67f428 1111 int mapcount = atomic_read(&page->_mapcount) + 1;
b20ce5e0 1112
c97eeb8f
MWO
1113 if (unlikely(PageCompound(page)))
1114 mapcount += folio_entire_mapcount(page_folio(page));
1115
1116 return mapcount;
b20ce5e0
KS
1117}
1118
b14224fb 1119int folio_total_mapcount(struct folio *folio);
4ba1119c 1120
cb67f428
HD
1121/**
1122 * folio_mapcount() - Calculate the number of mappings of this folio.
1123 * @folio: The folio.
1124 *
1125 * A large folio tracks both how many times the entire folio is mapped,
1126 * and how many times each individual page in the folio is mapped.
1127 * This function calculates the total number of times the folio is
1128 * mapped.
1129 *
1130 * Return: The number of times this folio is mapped.
1131 */
1132static inline int folio_mapcount(struct folio *folio)
4ba1119c 1133{
cb67f428
HD
1134 if (likely(!folio_test_large(folio)))
1135 return atomic_read(&folio->_mapcount) + 1;
b14224fb 1136 return folio_total_mapcount(folio);
4ba1119c
MWO
1137}
1138
b20ce5e0
KS
1139static inline int total_mapcount(struct page *page)
1140{
be5ef2d9
HD
1141 if (likely(!PageCompound(page)))
1142 return atomic_read(&page->_mapcount) + 1;
b14224fb 1143 return folio_total_mapcount(page_folio(page));
be5ef2d9
HD
1144}
1145
1146static inline bool folio_large_is_mapped(struct folio *folio)
1147{
4b51634c 1148 /*
1aa4d03b 1149 * Reading _entire_mapcount below could be omitted if hugetlb
eec20426 1150 * participated in incrementing nr_pages_mapped when compound mapped.
4b51634c 1151 */
eec20426 1152 return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1aa4d03b 1153 atomic_read(&folio->_entire_mapcount) >= 0;
cb67f428
HD
1154}
1155
1156/**
1157 * folio_mapped - Is this folio mapped into userspace?
1158 * @folio: The folio.
1159 *
1160 * Return: True if any page in this folio is referenced by user page tables.
1161 */
1162static inline bool folio_mapped(struct folio *folio)
1163{
be5ef2d9
HD
1164 if (likely(!folio_test_large(folio)))
1165 return atomic_read(&folio->_mapcount) >= 0;
1166 return folio_large_is_mapped(folio);
1167}
1168
1169/*
1170 * Return true if this page is mapped into pagetables.
1171 * For compound page it returns true if any sub-page of compound page is mapped,
1172 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1173 */
1174static inline bool page_mapped(struct page *page)
1175{
1176 if (likely(!PageCompound(page)))
1177 return atomic_read(&page->_mapcount) >= 0;
1178 return folio_large_is_mapped(page_folio(page));
70b50f94
AA
1179}
1180
b49af68f
CL
1181static inline struct page *virt_to_head_page(const void *x)
1182{
1183 struct page *page = virt_to_page(x);
ccaafd7f 1184
1d798ca3 1185 return compound_head(page);
b49af68f
CL
1186}
1187
7d4203c1
VB
1188static inline struct folio *virt_to_folio(const void *x)
1189{
1190 struct page *page = virt_to_page(x);
1191
1192 return page_folio(page);
1193}
1194
8d29c703 1195void __folio_put(struct folio *folio);
ddc58f27 1196
1d7ea732 1197void put_pages_list(struct list_head *pages);
1da177e4 1198
8dfcc9ba 1199void split_page(struct page *page, unsigned int order);
715cbfd6 1200void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 1201
a1554c00
ML
1202unsigned long nr_free_buffer_pages(void);
1203
33f2ef89
AW
1204/*
1205 * Compound pages have a destructor function. Provide a
1206 * prototype for that function and accessor functions.
f1e61557 1207 * These are _only_ valid on the head of a compound page.
33f2ef89 1208 */
f1e61557
KS
1209typedef void compound_page_dtor(struct page *);
1210
1211/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
1212enum compound_dtor_id {
1213 NULL_COMPOUND_DTOR,
1214 COMPOUND_PAGE_DTOR,
1215#ifdef CONFIG_HUGETLB_PAGE
1216 HUGETLB_PAGE_DTOR,
9a982250
KS
1217#endif
1218#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1219 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
1220#endif
1221 NR_COMPOUND_DTORS,
1222};
33f2ef89 1223
9fd33058
SK
1224static inline void folio_set_compound_dtor(struct folio *folio,
1225 enum compound_dtor_id compound_dtor)
1226{
1227 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1228 folio->_folio_dtor = compound_dtor;
1229}
1230
5375336c 1231void destroy_large_folio(struct folio *folio);
33f2ef89 1232
a50b854e
MWO
1233/* Returns the number of bytes in this potentially compound page. */
1234static inline unsigned long page_size(struct page *page)
1235{
1236 return PAGE_SIZE << compound_order(page);
1237}
1238
94ad9338
MWO
1239/* Returns the number of bits needed for the number of bytes in a page */
1240static inline unsigned int page_shift(struct page *page)
1241{
1242 return PAGE_SHIFT + compound_order(page);
1243}
1244
18788cfa
MWO
1245/**
1246 * thp_order - Order of a transparent huge page.
1247 * @page: Head page of a transparent huge page.
1248 */
1249static inline unsigned int thp_order(struct page *page)
1250{
1251 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1252 return compound_order(page);
1253}
1254
18788cfa
MWO
1255/**
1256 * thp_size - Size of a transparent huge page.
1257 * @page: Head page of a transparent huge page.
1258 *
1259 * Return: Number of bytes in this page.
1260 */
1261static inline unsigned long thp_size(struct page *page)
1262{
1263 return PAGE_SIZE << thp_order(page);
1264}
1265
9a982250
KS
1266void free_compound_page(struct page *page);
1267
3dece370 1268#ifdef CONFIG_MMU
14fd403f
AA
1269/*
1270 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1271 * servicing faults for write access. In the normal case, do always want
1272 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1273 * that do not have writing enabled, when used by access_process_vm.
1274 */
1275static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1276{
1277 if (likely(vma->vm_flags & VM_WRITE))
1278 pte = pte_mkwrite(pte);
1279 return pte;
1280}
8c6e50b0 1281
f9ce0be7 1282vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1283void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1284
2b740303
SJ
1285vm_fault_t finish_fault(struct vm_fault *vmf);
1286vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1287#endif
14fd403f 1288
1da177e4
LT
1289/*
1290 * Multiple processes may "see" the same page. E.g. for untouched
1291 * mappings of /dev/null, all processes see the same page full of
1292 * zeroes, and text pages of executables and shared libraries have
1293 * only one copy in memory, at most, normally.
1294 *
1295 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1296 * page_count() == 0 means the page is free. page->lru is then used for
1297 * freelist management in the buddy allocator.
da6052f7 1298 * page_count() > 0 means the page has been allocated.
1da177e4 1299 *
da6052f7
NP
1300 * Pages are allocated by the slab allocator in order to provide memory
1301 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1302 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1303 * unless a particular usage is carefully commented. (the responsibility of
1304 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1305 *
da6052f7
NP
1306 * A page may be used by anyone else who does a __get_free_page().
1307 * In this case, page_count still tracks the references, and should only
1308 * be used through the normal accessor functions. The top bits of page->flags
1309 * and page->virtual store page management information, but all other fields
1310 * are unused and could be used privately, carefully. The management of this
1311 * page is the responsibility of the one who allocated it, and those who have
1312 * subsequently been given references to it.
1313 *
1314 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1315 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1316 * The following discussion applies only to them.
1317 *
da6052f7
NP
1318 * A pagecache page contains an opaque `private' member, which belongs to the
1319 * page's address_space. Usually, this is the address of a circular list of
1320 * the page's disk buffers. PG_private must be set to tell the VM to call
1321 * into the filesystem to release these pages.
1da177e4 1322 *
da6052f7
NP
1323 * A page may belong to an inode's memory mapping. In this case, page->mapping
1324 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1325 * in units of PAGE_SIZE.
1da177e4 1326 *
da6052f7
NP
1327 * If pagecache pages are not associated with an inode, they are said to be
1328 * anonymous pages. These may become associated with the swapcache, and in that
1329 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1330 *
da6052f7
NP
1331 * In either case (swapcache or inode backed), the pagecache itself holds one
1332 * reference to the page. Setting PG_private should also increment the
1333 * refcount. The each user mapping also has a reference to the page.
1da177e4 1334 *
da6052f7 1335 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1336 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1337 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1338 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1339 *
da6052f7 1340 * All pagecache pages may be subject to I/O:
1da177e4
LT
1341 * - inode pages may need to be read from disk,
1342 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1343 * to be written back to the inode on disk,
1344 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1345 * modified may need to be swapped out to swap space and (later) to be read
1346 * back into memory.
1da177e4
LT
1347 */
1348
27674ef6 1349#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1350DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1351
f4f451a1
MS
1352bool __put_devmap_managed_page_refs(struct page *page, int refs);
1353static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1354{
1355 if (!static_branch_unlikely(&devmap_managed_key))
1356 return false;
1357 if (!is_zone_device_page(page))
1358 return false;
f4f451a1 1359 return __put_devmap_managed_page_refs(page, refs);
e7638488 1360}
27674ef6 1361#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
f4f451a1 1362static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1363{
1364 return false;
1365}
27674ef6 1366#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
7b2d55d2 1367
f4f451a1
MS
1368static inline bool put_devmap_managed_page(struct page *page)
1369{
1370 return put_devmap_managed_page_refs(page, 1);
1371}
1372
f958d7b5 1373/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1374#define folio_ref_zero_or_close_to_overflow(folio) \
1375 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1376
1377/**
1378 * folio_get - Increment the reference count on a folio.
1379 * @folio: The folio.
1380 *
1381 * Context: May be called in any context, as long as you know that
1382 * you have a refcount on the folio. If you do not already have one,
1383 * folio_try_get() may be the right interface for you to use.
1384 */
1385static inline void folio_get(struct folio *folio)
1386{
1387 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1388 folio_ref_inc(folio);
1389}
f958d7b5 1390
3565fce3
DW
1391static inline void get_page(struct page *page)
1392{
86d234cb 1393 folio_get(page_folio(page));
3565fce3
DW
1394}
1395
cd1adf1b
LT
1396static inline __must_check bool try_get_page(struct page *page)
1397{
1398 page = compound_head(page);
1399 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1400 return false;
1401 page_ref_inc(page);
1402 return true;
1403}
3565fce3 1404
b620f633
MWO
1405/**
1406 * folio_put - Decrement the reference count on a folio.
1407 * @folio: The folio.
1408 *
1409 * If the folio's reference count reaches zero, the memory will be
1410 * released back to the page allocator and may be used by another
1411 * allocation immediately. Do not access the memory or the struct folio
1412 * after calling folio_put() unless you can be sure that it wasn't the
1413 * last reference.
1414 *
1415 * Context: May be called in process or interrupt context, but not in NMI
1416 * context. May be called while holding a spinlock.
1417 */
1418static inline void folio_put(struct folio *folio)
1419{
1420 if (folio_put_testzero(folio))
8d29c703 1421 __folio_put(folio);
b620f633
MWO
1422}
1423
3fe7fa58
MWO
1424/**
1425 * folio_put_refs - Reduce the reference count on a folio.
1426 * @folio: The folio.
1427 * @refs: The amount to subtract from the folio's reference count.
1428 *
1429 * If the folio's reference count reaches zero, the memory will be
1430 * released back to the page allocator and may be used by another
1431 * allocation immediately. Do not access the memory or the struct folio
1432 * after calling folio_put_refs() unless you can be sure that these weren't
1433 * the last references.
1434 *
1435 * Context: May be called in process or interrupt context, but not in NMI
1436 * context. May be called while holding a spinlock.
1437 */
1438static inline void folio_put_refs(struct folio *folio, int refs)
1439{
1440 if (folio_ref_sub_and_test(folio, refs))
8d29c703 1441 __folio_put(folio);
3fe7fa58
MWO
1442}
1443
0411d6ee
SP
1444/*
1445 * union release_pages_arg - an array of pages or folios
449c7967 1446 *
0411d6ee 1447 * release_pages() releases a simple array of multiple pages, and
449c7967
LT
1448 * accepts various different forms of said page array: either
1449 * a regular old boring array of pages, an array of folios, or
1450 * an array of encoded page pointers.
1451 *
1452 * The transparent union syntax for this kind of "any of these
1453 * argument types" is all kinds of ugly, so look away.
1454 */
1455typedef union {
1456 struct page **pages;
1457 struct folio **folios;
1458 struct encoded_page **encoded_pages;
1459} release_pages_arg __attribute__ ((__transparent_union__));
1460
1461void release_pages(release_pages_arg, int nr);
e3c4cebf
MWO
1462
1463/**
1464 * folios_put - Decrement the reference count on an array of folios.
1465 * @folios: The folios.
1466 * @nr: How many folios there are.
1467 *
1468 * Like folio_put(), but for an array of folios. This is more efficient
1469 * than writing the loop yourself as it will optimise the locks which
1470 * need to be taken if the folios are freed.
1471 *
1472 * Context: May be called in process or interrupt context, but not in NMI
1473 * context. May be called while holding a spinlock.
1474 */
1475static inline void folios_put(struct folio **folios, unsigned int nr)
1476{
449c7967 1477 release_pages(folios, nr);
3fe7fa58
MWO
1478}
1479
3565fce3
DW
1480static inline void put_page(struct page *page)
1481{
b620f633 1482 struct folio *folio = page_folio(page);
3565fce3 1483
7b2d55d2 1484 /*
89574945
CH
1485 * For some devmap managed pages we need to catch refcount transition
1486 * from 2 to 1:
7b2d55d2 1487 */
89574945 1488 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1489 return;
b620f633 1490 folio_put(folio);
3565fce3
DW
1491}
1492
3faa52c0
JH
1493/*
1494 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1495 * the page's refcount so that two separate items are tracked: the original page
1496 * reference count, and also a new count of how many pin_user_pages() calls were
1497 * made against the page. ("gup-pinned" is another term for the latter).
1498 *
1499 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1500 * distinct from normal pages. As such, the unpin_user_page() call (and its
1501 * variants) must be used in order to release gup-pinned pages.
1502 *
1503 * Choice of value:
1504 *
1505 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1506 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1507 * simpler, due to the fact that adding an even power of two to the page
1508 * refcount has the effect of using only the upper N bits, for the code that
1509 * counts up using the bias value. This means that the lower bits are left for
1510 * the exclusive use of the original code that increments and decrements by one
1511 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1512 *
3faa52c0
JH
1513 * Of course, once the lower bits overflow into the upper bits (and this is
1514 * OK, because subtraction recovers the original values), then visual inspection
1515 * no longer suffices to directly view the separate counts. However, for normal
1516 * applications that don't have huge page reference counts, this won't be an
1517 * issue.
fc1d8e7c 1518 *
40fcc7fc
MWO
1519 * Locking: the lockless algorithm described in folio_try_get_rcu()
1520 * provides safe operation for get_user_pages(), page_mkclean() and
1521 * other calls that race to set up page table entries.
fc1d8e7c 1522 */
3faa52c0 1523#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1524
3faa52c0 1525void unpin_user_page(struct page *page);
f1f6a7dd
JH
1526void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1527 bool make_dirty);
458a4f78
JM
1528void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1529 bool make_dirty);
f1f6a7dd 1530void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1531
97a7e473
PX
1532static inline bool is_cow_mapping(vm_flags_t flags)
1533{
1534 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1535}
1536
fc4f4be9
DH
1537#ifndef CONFIG_MMU
1538static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1539{
1540 /*
1541 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1542 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1543 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1544 * underlying memory if ptrace is active, so this is only possible if
1545 * ptrace does not apply. Note that there is no mprotect() to upgrade
1546 * write permissions later.
1547 */
b6b7a8fa 1548 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
fc4f4be9
DH
1549}
1550#endif
1551
9127ab4f
CS
1552#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1553#define SECTION_IN_PAGE_FLAGS
1554#endif
1555
89689ae7 1556/*
7a8010cd
VB
1557 * The identification function is mainly used by the buddy allocator for
1558 * determining if two pages could be buddies. We are not really identifying
1559 * the zone since we could be using the section number id if we do not have
1560 * node id available in page flags.
1561 * We only guarantee that it will return the same value for two combinable
1562 * pages in a zone.
89689ae7 1563 */
cb2b95e1
AW
1564static inline int page_zone_id(struct page *page)
1565{
89689ae7 1566 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1567}
1568
89689ae7 1569#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1570extern int page_to_nid(const struct page *page);
89689ae7 1571#else
33dd4e0e 1572static inline int page_to_nid(const struct page *page)
d41dee36 1573{
f165b378
PT
1574 struct page *p = (struct page *)page;
1575
1576 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1577}
89689ae7
CL
1578#endif
1579
874fd90c
MWO
1580static inline int folio_nid(const struct folio *folio)
1581{
1582 return page_to_nid(&folio->page);
1583}
1584
57e0a030 1585#ifdef CONFIG_NUMA_BALANCING
33024536
HY
1586/* page access time bits needs to hold at least 4 seconds */
1587#define PAGE_ACCESS_TIME_MIN_BITS 12
1588#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1589#define PAGE_ACCESS_TIME_BUCKETS \
1590 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1591#else
1592#define PAGE_ACCESS_TIME_BUCKETS 0
1593#endif
1594
1595#define PAGE_ACCESS_TIME_MASK \
1596 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1597
90572890 1598static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1599{
90572890 1600 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1601}
1602
90572890 1603static inline int cpupid_to_pid(int cpupid)
57e0a030 1604{
90572890 1605 return cpupid & LAST__PID_MASK;
57e0a030 1606}
b795854b 1607
90572890 1608static inline int cpupid_to_cpu(int cpupid)
b795854b 1609{
90572890 1610 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1611}
1612
90572890 1613static inline int cpupid_to_nid(int cpupid)
b795854b 1614{
90572890 1615 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1616}
1617
90572890 1618static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1619{
90572890 1620 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1621}
1622
90572890 1623static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1624{
90572890 1625 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1626}
1627
8c8a743c
PZ
1628static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1629{
1630 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1631}
1632
1633#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1634#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1635static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1636{
1ae71d03 1637 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1638}
90572890
PZ
1639
1640static inline int page_cpupid_last(struct page *page)
1641{
1642 return page->_last_cpupid;
1643}
1644static inline void page_cpupid_reset_last(struct page *page)
b795854b 1645{
1ae71d03 1646 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1647}
1648#else
90572890 1649static inline int page_cpupid_last(struct page *page)
75980e97 1650{
90572890 1651 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1652}
1653
90572890 1654extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1655
90572890 1656static inline void page_cpupid_reset_last(struct page *page)
75980e97 1657{
09940a4f 1658 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1659}
90572890 1660#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
33024536
HY
1661
1662static inline int xchg_page_access_time(struct page *page, int time)
1663{
1664 int last_time;
1665
1666 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1667 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1668}
fc137c0d
R
1669
1670static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1671{
1672 unsigned int pid_bit;
1673
d46031f4 1674 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
20f58648
R
1675 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) {
1676 __set_bit(pid_bit, &vma->numab_state->access_pids[1]);
fc137c0d
R
1677 }
1678}
90572890
PZ
1679#else /* !CONFIG_NUMA_BALANCING */
1680static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1681{
90572890 1682 return page_to_nid(page); /* XXX */
57e0a030
MG
1683}
1684
33024536
HY
1685static inline int xchg_page_access_time(struct page *page, int time)
1686{
1687 return 0;
1688}
1689
90572890 1690static inline int page_cpupid_last(struct page *page)
57e0a030 1691{
90572890 1692 return page_to_nid(page); /* XXX */
57e0a030
MG
1693}
1694
90572890 1695static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1696{
1697 return -1;
1698}
1699
90572890 1700static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1701{
1702 return -1;
1703}
1704
90572890 1705static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1706{
1707 return -1;
1708}
1709
90572890
PZ
1710static inline int cpu_pid_to_cpupid(int nid, int pid)
1711{
1712 return -1;
1713}
1714
1715static inline bool cpupid_pid_unset(int cpupid)
b795854b 1716{
2b787449 1717 return true;
b795854b
MG
1718}
1719
90572890 1720static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1721{
1722}
8c8a743c
PZ
1723
1724static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1725{
1726 return false;
1727}
fc137c0d
R
1728
1729static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1730{
1731}
90572890 1732#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1733
2e903b91 1734#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1735
cf10bd4c
AK
1736/*
1737 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1738 * setting tags for all pages to native kernel tag value 0xff, as the default
1739 * value 0x00 maps to 0xff.
1740 */
1741
2813b9c0
AK
1742static inline u8 page_kasan_tag(const struct page *page)
1743{
cf10bd4c
AK
1744 u8 tag = 0xff;
1745
1746 if (kasan_enabled()) {
1747 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1748 tag ^= 0xff;
1749 }
1750
1751 return tag;
2813b9c0
AK
1752}
1753
1754static inline void page_kasan_tag_set(struct page *page, u8 tag)
1755{
27fe7339
PC
1756 unsigned long old_flags, flags;
1757
1758 if (!kasan_enabled())
1759 return;
1760
1761 tag ^= 0xff;
1762 old_flags = READ_ONCE(page->flags);
1763 do {
1764 flags = old_flags;
1765 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1766 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1767 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1768}
1769
1770static inline void page_kasan_tag_reset(struct page *page)
1771{
34303244
AK
1772 if (kasan_enabled())
1773 page_kasan_tag_set(page, 0xff);
2813b9c0 1774}
34303244
AK
1775
1776#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1777
2813b9c0
AK
1778static inline u8 page_kasan_tag(const struct page *page)
1779{
1780 return 0xff;
1781}
1782
1783static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1784static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1785
1786#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1787
33dd4e0e 1788static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1789{
1790 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1791}
1792
75ef7184
MG
1793static inline pg_data_t *page_pgdat(const struct page *page)
1794{
1795 return NODE_DATA(page_to_nid(page));
1796}
1797
32b8fc48
MWO
1798static inline struct zone *folio_zone(const struct folio *folio)
1799{
1800 return page_zone(&folio->page);
1801}
1802
1803static inline pg_data_t *folio_pgdat(const struct folio *folio)
1804{
1805 return page_pgdat(&folio->page);
1806}
1807
9127ab4f 1808#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1809static inline void set_page_section(struct page *page, unsigned long section)
1810{
1811 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1812 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1813}
1814
aa462abe 1815static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1816{
1817 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1818}
308c05e3 1819#endif
d41dee36 1820
bf6bd276
MWO
1821/**
1822 * folio_pfn - Return the Page Frame Number of a folio.
1823 * @folio: The folio.
1824 *
1825 * A folio may contain multiple pages. The pages have consecutive
1826 * Page Frame Numbers.
1827 *
1828 * Return: The Page Frame Number of the first page in the folio.
1829 */
1830static inline unsigned long folio_pfn(struct folio *folio)
1831{
1832 return page_to_pfn(&folio->page);
1833}
1834
018ee47f
YZ
1835static inline struct folio *pfn_folio(unsigned long pfn)
1836{
1837 return page_folio(pfn_to_page(pfn));
1838}
1839
0b90ddae
MWO
1840/**
1841 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1842 * @folio: The folio.
1843 *
1844 * This function checks if a folio has been pinned via a call to
1845 * a function in the pin_user_pages() family.
1846 *
1847 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1848 * because it means "definitely not pinned for DMA", but true means "probably
1849 * pinned for DMA, but possibly a false positive due to having at least
1850 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1851 *
1852 * False positives are OK, because: a) it's unlikely for a folio to
1853 * get that many refcounts, and b) all the callers of this routine are
1854 * expected to be able to deal gracefully with a false positive.
1855 *
1856 * For large folios, the result will be exactly correct. That's because
94688e8e 1857 * we have more tracking data available: the _pincount field is used
0b90ddae
MWO
1858 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1859 *
1860 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1861 *
1862 * Return: True, if it is likely that the page has been "dma-pinned".
1863 * False, if the page is definitely not dma-pinned.
1864 */
1865static inline bool folio_maybe_dma_pinned(struct folio *folio)
1866{
1867 if (folio_test_large(folio))
94688e8e 1868 return atomic_read(&folio->_pincount) > 0;
0b90ddae
MWO
1869
1870 /*
1871 * folio_ref_count() is signed. If that refcount overflows, then
1872 * folio_ref_count() returns a negative value, and callers will avoid
1873 * further incrementing the refcount.
1874 *
1875 * Here, for that overflow case, use the sign bit to count a little
1876 * bit higher via unsigned math, and thus still get an accurate result.
1877 */
1878 return ((unsigned int)folio_ref_count(folio)) >=
1879 GUP_PIN_COUNTING_BIAS;
1880}
1881
1882static inline bool page_maybe_dma_pinned(struct page *page)
1883{
1884 return folio_maybe_dma_pinned(page_folio(page));
1885}
1886
1887/*
1888 * This should most likely only be called during fork() to see whether we
fb3d824d 1889 * should break the cow immediately for an anon page on the src mm.
623a1ddf
DH
1890 *
1891 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
0b90ddae
MWO
1892 */
1893static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1894 struct page *page)
1895{
623a1ddf 1896 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
0b90ddae
MWO
1897
1898 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1899 return false;
1900
1901 return page_maybe_dma_pinned(page);
1902}
1903
c8070b78
DH
1904/**
1905 * is_zero_page - Query if a page is a zero page
1906 * @page: The page to query
1907 *
1908 * This returns true if @page is one of the permanent zero pages.
1909 */
1910static inline bool is_zero_page(const struct page *page)
1911{
1912 return is_zero_pfn(page_to_pfn(page));
1913}
1914
1915/**
1916 * is_zero_folio - Query if a folio is a zero page
1917 * @folio: The folio to query
1918 *
1919 * This returns true if @folio is one of the permanent zero pages.
1920 */
1921static inline bool is_zero_folio(const struct folio *folio)
1922{
1923 return is_zero_page(&folio->page);
1924}
1925
5d949953 1926/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
8e3560d9 1927#ifdef CONFIG_MIGRATION
5d949953 1928static inline bool folio_is_longterm_pinnable(struct folio *folio)
8e3560d9 1929{
1c563432 1930#ifdef CONFIG_CMA
5d949953 1931 int mt = folio_migratetype(folio);
1c563432
MK
1932
1933 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1934 return false;
1935#endif
c8070b78 1936 /* The zero page can be "pinned" but gets special handling. */
6e17c6de 1937 if (is_zero_folio(folio))
fcab34b4
AW
1938 return true;
1939
1940 /* Coherent device memory must always allow eviction. */
5d949953 1941 if (folio_is_device_coherent(folio))
fcab34b4
AW
1942 return false;
1943
5d949953
VMO
1944 /* Otherwise, non-movable zone folios can be pinned. */
1945 return !folio_is_zone_movable(folio);
1946
8e3560d9
PT
1947}
1948#else
5d949953 1949static inline bool folio_is_longterm_pinnable(struct folio *folio)
8e3560d9
PT
1950{
1951 return true;
1952}
1953#endif
1954
2f1b6248 1955static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1956{
1957 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1958 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1959}
2f1b6248 1960
348f8b6c
DH
1961static inline void set_page_node(struct page *page, unsigned long node)
1962{
1963 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1964 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1965}
89689ae7 1966
2f1b6248 1967static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1968 unsigned long node, unsigned long pfn)
1da177e4 1969{
348f8b6c
DH
1970 set_page_zone(page, zone);
1971 set_page_node(page, node);
9127ab4f 1972#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1973 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1974#endif
1da177e4
LT
1975}
1976
7b230db3
MWO
1977/**
1978 * folio_nr_pages - The number of pages in the folio.
1979 * @folio: The folio.
1980 *
1981 * Return: A positive power of two.
1982 */
1983static inline long folio_nr_pages(struct folio *folio)
1984{
c3a15bff
MWO
1985 if (!folio_test_large(folio))
1986 return 1;
1987#ifdef CONFIG_64BIT
1988 return folio->_folio_nr_pages;
1989#else
1990 return 1L << folio->_folio_order;
1991#endif
7b230db3
MWO
1992}
1993
21a000fe
MWO
1994/*
1995 * compound_nr() returns the number of pages in this potentially compound
1996 * page. compound_nr() can be called on a tail page, and is defined to
1997 * return 1 in that case.
1998 */
1999static inline unsigned long compound_nr(struct page *page)
2000{
2001 struct folio *folio = (struct folio *)page;
2002
2003 if (!test_bit(PG_head, &folio->flags))
2004 return 1;
2005#ifdef CONFIG_64BIT
2006 return folio->_folio_nr_pages;
2007#else
2008 return 1L << folio->_folio_order;
2009#endif
2010}
2011
2012/**
2013 * thp_nr_pages - The number of regular pages in this huge page.
2014 * @page: The head page of a huge page.
2015 */
2016static inline int thp_nr_pages(struct page *page)
2017{
2018 return folio_nr_pages((struct folio *)page);
2019}
2020
7b230db3
MWO
2021/**
2022 * folio_next - Move to the next physical folio.
2023 * @folio: The folio we're currently operating on.
2024 *
2025 * If you have physically contiguous memory which may span more than
2026 * one folio (eg a &struct bio_vec), use this function to move from one
2027 * folio to the next. Do not use it if the memory is only virtually
2028 * contiguous as the folios are almost certainly not adjacent to each
2029 * other. This is the folio equivalent to writing ``page++``.
2030 *
2031 * Context: We assume that the folios are refcounted and/or locked at a
2032 * higher level and do not adjust the reference counts.
2033 * Return: The next struct folio.
2034 */
2035static inline struct folio *folio_next(struct folio *folio)
2036{
2037 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2038}
2039
2040/**
2041 * folio_shift - The size of the memory described by this folio.
2042 * @folio: The folio.
2043 *
2044 * A folio represents a number of bytes which is a power-of-two in size.
2045 * This function tells you which power-of-two the folio is. See also
2046 * folio_size() and folio_order().
2047 *
2048 * Context: The caller should have a reference on the folio to prevent
2049 * it from being split. It is not necessary for the folio to be locked.
2050 * Return: The base-2 logarithm of the size of this folio.
2051 */
2052static inline unsigned int folio_shift(struct folio *folio)
2053{
2054 return PAGE_SHIFT + folio_order(folio);
2055}
2056
2057/**
2058 * folio_size - The number of bytes in a folio.
2059 * @folio: The folio.
2060 *
2061 * Context: The caller should have a reference on the folio to prevent
2062 * it from being split. It is not necessary for the folio to be locked.
2063 * Return: The number of bytes in this folio.
2064 */
2065static inline size_t folio_size(struct folio *folio)
2066{
2067 return PAGE_SIZE << folio_order(folio);
2068}
2069
fa4e3f5f
VMO
2070/**
2071 * folio_estimated_sharers - Estimate the number of sharers of a folio.
2072 * @folio: The folio.
2073 *
2074 * folio_estimated_sharers() aims to serve as a function to efficiently
2075 * estimate the number of processes sharing a folio. This is done by
2076 * looking at the precise mapcount of the first subpage in the folio, and
2077 * assuming the other subpages are the same. This may not be true for large
2078 * folios. If you want exact mapcounts for exact calculations, look at
2079 * page_mapcount() or folio_total_mapcount().
2080 *
2081 * Return: The estimated number of processes sharing a folio.
2082 */
2083static inline int folio_estimated_sharers(struct folio *folio)
2084{
2085 return page_mapcount(folio_page(folio, 0));
2086}
2087
b424de33
MWO
2088#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2089static inline int arch_make_page_accessible(struct page *page)
2090{
2091 return 0;
2092}
2093#endif
2094
2095#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2096static inline int arch_make_folio_accessible(struct folio *folio)
2097{
2098 int ret;
2099 long i, nr = folio_nr_pages(folio);
2100
2101 for (i = 0; i < nr; i++) {
2102 ret = arch_make_page_accessible(folio_page(folio, i));
2103 if (ret)
2104 break;
2105 }
2106
2107 return ret;
2108}
2109#endif
2110
f6ac2354
CL
2111/*
2112 * Some inline functions in vmstat.h depend on page_zone()
2113 */
2114#include <linux/vmstat.h>
2115
33dd4e0e 2116static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 2117{
1dff8083 2118 return page_to_virt(page);
1da177e4
LT
2119}
2120
2121#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2122#define HASHED_PAGE_VIRTUAL
2123#endif
2124
2125#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
2126static inline void *page_address(const struct page *page)
2127{
2128 return page->virtual;
2129}
2130static inline void set_page_address(struct page *page, void *address)
2131{
2132 page->virtual = address;
2133}
1da177e4
LT
2134#define page_address_init() do { } while(0)
2135#endif
2136
2137#if defined(HASHED_PAGE_VIRTUAL)
f9918794 2138void *page_address(const struct page *page);
1da177e4
LT
2139void set_page_address(struct page *page, void *virtual);
2140void page_address_init(void);
2141#endif
2142
2143#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2144#define page_address(page) lowmem_page_address(page)
2145#define set_page_address(page, address) do { } while(0)
2146#define page_address_init() do { } while(0)
2147#endif
2148
7d4203c1
VB
2149static inline void *folio_address(const struct folio *folio)
2150{
2151 return page_address(&folio->page);
2152}
2153
e39155ea 2154extern void *page_rmapping(struct page *page);
f6ab1f7f
HY
2155extern pgoff_t __page_file_index(struct page *page);
2156
1da177e4
LT
2157/*
2158 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 2159 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
2160 */
2161static inline pgoff_t page_index(struct page *page)
2162{
2163 if (unlikely(PageSwapCache(page)))
f6ab1f7f 2164 return __page_file_index(page);
1da177e4
LT
2165 return page->index;
2166}
2167
2f064f34
MH
2168/*
2169 * Return true only if the page has been allocated with
2170 * ALLOC_NO_WATERMARKS and the low watermark was not
2171 * met implying that the system is under some pressure.
2172 */
1d7bab6a 2173static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
2174{
2175 /*
c07aea3e
MC
2176 * lru.next has bit 1 set if the page is allocated from the
2177 * pfmemalloc reserves. Callers may simply overwrite it if
2178 * they do not need to preserve that information.
2f064f34 2179 */
c07aea3e 2180 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
2181}
2182
02d65d6f
SK
2183/*
2184 * Return true only if the folio has been allocated with
2185 * ALLOC_NO_WATERMARKS and the low watermark was not
2186 * met implying that the system is under some pressure.
2187 */
2188static inline bool folio_is_pfmemalloc(const struct folio *folio)
2189{
2190 /*
2191 * lru.next has bit 1 set if the page is allocated from the
2192 * pfmemalloc reserves. Callers may simply overwrite it if
2193 * they do not need to preserve that information.
2194 */
2195 return (uintptr_t)folio->lru.next & BIT(1);
2196}
2197
2f064f34
MH
2198/*
2199 * Only to be called by the page allocator on a freshly allocated
2200 * page.
2201 */
2202static inline void set_page_pfmemalloc(struct page *page)
2203{
c07aea3e 2204 page->lru.next = (void *)BIT(1);
2f064f34
MH
2205}
2206
2207static inline void clear_page_pfmemalloc(struct page *page)
2208{
c07aea3e 2209 page->lru.next = NULL;
2f064f34
MH
2210}
2211
1c0fe6e3
NP
2212/*
2213 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2214 */
2215extern void pagefault_out_of_memory(void);
2216
1da177e4 2217#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 2218#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 2219#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 2220
ddd588b5 2221/*
7bf02ea2 2222 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
2223 * various contexts.
2224 */
4b59e6c4 2225#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 2226
974f4367
MH
2227extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2228static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
2229{
2230 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
2231}
1da177e4 2232
21b85b09
MK
2233/*
2234 * Parameter block passed down to zap_pte_range in exceptional cases.
2235 */
2236struct zap_details {
2237 struct folio *single_folio; /* Locked folio to be unmapped */
2238 bool even_cows; /* Zap COWed private pages too? */
2239 zap_flags_t zap_flags; /* Extra flags for zapping */
2240};
2241
2242/*
2243 * Whether to drop the pte markers, for example, the uffd-wp information for
2244 * file-backed memory. This should only be specified when we will completely
2245 * drop the page in the mm, either by truncation or unmapping of the vma. By
2246 * default, the flag is not set.
2247 */
2248#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
04ada095
MK
2249/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2250#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
21b85b09 2251
af7f588d
MD
2252#ifdef CONFIG_SCHED_MM_CID
2253void sched_mm_cid_before_execve(struct task_struct *t);
2254void sched_mm_cid_after_execve(struct task_struct *t);
2255void sched_mm_cid_fork(struct task_struct *t);
2256void sched_mm_cid_exit_signals(struct task_struct *t);
2257static inline int task_mm_cid(struct task_struct *t)
2258{
2259 return t->mm_cid;
2260}
2261#else
2262static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2263static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2264static inline void sched_mm_cid_fork(struct task_struct *t) { }
2265static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2266static inline int task_mm_cid(struct task_struct *t)
2267{
2268 /*
2269 * Use the processor id as a fall-back when the mm cid feature is
2270 * disabled. This provides functional per-cpu data structure accesses
2271 * in user-space, althrough it won't provide the memory usage benefits.
2272 */
2273 return raw_smp_processor_id();
2274}
2275#endif
2276
710ec38b 2277#ifdef CONFIG_MMU
7f43add4 2278extern bool can_do_mlock(void);
710ec38b
AB
2279#else
2280static inline bool can_do_mlock(void) { return false; }
2281#endif
d7c9e99a
AG
2282extern int user_shm_lock(size_t, struct ucounts *);
2283extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 2284
318e9342
VMO
2285struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2286 pte_t pte);
25b2995a
CH
2287struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2288 pte_t pte);
28093f9f
GS
2289struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2290 pmd_t pmd);
7e675137 2291
27d036e3
LR
2292void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2293 unsigned long size);
21b85b09
MK
2294void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2295 unsigned long size, struct zap_details *details);
e9adcfec
MK
2296static inline void zap_vma_pages(struct vm_area_struct *vma)
2297{
2298 zap_page_range_single(vma, vma->vm_start,
2299 vma->vm_end - vma->vm_start, NULL);
2300}
763ecb03
LH
2301void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2302 struct vm_area_struct *start_vma, unsigned long start,
68f48381 2303 unsigned long end, bool mm_wr_locked);
e6473092 2304
ac46d4f3
JG
2305struct mmu_notifier_range;
2306
42b77728 2307void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 2308 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
2309int
2310copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed 2311int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 2312 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
2313int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2314 unsigned long *pfn);
d87fe660 2315int follow_phys(struct vm_area_struct *vma, unsigned long address,
2316 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
2317int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2318 void *buf, int len, int write);
1da177e4 2319
7caef267 2320extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 2321extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 2322void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 2323void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 2324int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668 2325
d85a143b
LT
2326struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2327 unsigned long address, struct pt_regs *regs);
2328
7ee1dd3f 2329#ifdef CONFIG_MMU
2b740303 2330extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2331 unsigned long address, unsigned int flags,
2332 struct pt_regs *regs);
64019a2e 2333extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
2334 unsigned long address, unsigned int fault_flags,
2335 bool *unlocked);
977fbdcd
MW
2336void unmap_mapping_pages(struct address_space *mapping,
2337 pgoff_t start, pgoff_t nr, bool even_cows);
2338void unmap_mapping_range(struct address_space *mapping,
2339 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 2340#else
2b740303 2341static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2342 unsigned long address, unsigned int flags,
2343 struct pt_regs *regs)
7ee1dd3f
DH
2344{
2345 /* should never happen if there's no MMU */
2346 BUG();
2347 return VM_FAULT_SIGBUS;
2348}
64019a2e 2349static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 2350 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
2351{
2352 /* should never happen if there's no MMU */
2353 BUG();
2354 return -EFAULT;
2355}
977fbdcd
MW
2356static inline void unmap_mapping_pages(struct address_space *mapping,
2357 pgoff_t start, pgoff_t nr, bool even_cows) { }
2358static inline void unmap_mapping_range(struct address_space *mapping,
2359 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 2360#endif
f33ea7f4 2361
977fbdcd
MW
2362static inline void unmap_shared_mapping_range(struct address_space *mapping,
2363 loff_t const holebegin, loff_t const holelen)
2364{
2365 unmap_mapping_range(mapping, holebegin, holelen, 0);
2366}
2367
ca5e8632
LS
2368static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2369 unsigned long addr);
2370
977fbdcd
MW
2371extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2372 void *buf, int len, unsigned int gup_flags);
5ddd36b9 2373extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 2374 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
2375extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2376 void *buf, int len, unsigned int gup_flags);
1da177e4 2377
64019a2e 2378long get_user_pages_remote(struct mm_struct *mm,
ca5e8632
LS
2379 unsigned long start, unsigned long nr_pages,
2380 unsigned int gup_flags, struct page **pages,
2381 int *locked);
64019a2e 2382long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2383 unsigned long start, unsigned long nr_pages,
2384 unsigned int gup_flags, struct page **pages,
0b295316 2385 int *locked);
ca5e8632
LS
2386
2387static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2388 unsigned long addr,
2389 int gup_flags,
2390 struct vm_area_struct **vmap)
2391{
2392 struct page *page;
2393 struct vm_area_struct *vma;
2394 int got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2395
2396 if (got < 0)
2397 return ERR_PTR(got);
2398 if (got == 0)
2399 return NULL;
2400
2401 vma = vma_lookup(mm, addr);
2402 if (WARN_ON_ONCE(!vma)) {
2403 put_page(page);
2404 return ERR_PTR(-EINVAL);
2405 }
2406
2407 *vmap = vma;
2408 return page;
2409}
2410
c12d2da5 2411long get_user_pages(unsigned long start, unsigned long nr_pages,
54d02069 2412 unsigned int gup_flags, struct page **pages);
eddb1c22 2413long pin_user_pages(unsigned long start, unsigned long nr_pages,
4c630f30 2414 unsigned int gup_flags, struct page **pages);
c12d2da5 2415long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 2416 struct page **pages, unsigned int gup_flags);
91429023
JH
2417long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2418 struct page **pages, unsigned int gup_flags);
9a4e9f3b 2419
73b0140b
IW
2420int get_user_pages_fast(unsigned long start, int nr_pages,
2421 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
2422int pin_user_pages_fast(unsigned long start, int nr_pages,
2423 unsigned int gup_flags, struct page **pages);
1101fb8f 2424void folio_add_pin(struct folio *folio);
8025e5dd 2425
79eb597c
DJ
2426int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2427int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2428 struct task_struct *task, bool bypass_rlim);
2429
18022c5d 2430struct kvec;
f3e8fccd 2431struct page *get_dump_page(unsigned long addr);
1da177e4 2432
b5e84594
MWO
2433bool folio_mark_dirty(struct folio *folio);
2434bool set_page_dirty(struct page *page);
1da177e4 2435int set_page_dirty_lock(struct page *page);
b9ea2515 2436
a9090253 2437int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 2438
b6a2fea3
OW
2439extern unsigned long move_page_tables(struct vm_area_struct *vma,
2440 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
2441 unsigned long new_addr, unsigned long len,
2442 bool need_rmap_locks);
58705444
PX
2443
2444/*
2445 * Flags used by change_protection(). For now we make it a bitmap so
2446 * that we can pass in multiple flags just like parameters. However
2447 * for now all the callers are only use one of the flags at the same
2448 * time.
2449 */
64fe24a3
DH
2450/*
2451 * Whether we should manually check if we can map individual PTEs writable,
2452 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2453 * PTEs automatically in a writable mapping.
2454 */
2455#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
58705444
PX
2456/* Whether this protection change is for NUMA hints */
2457#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
2458/* Whether this change is for write protecting */
2459#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2460#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2461#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2462 MM_CP_UFFD_WP_RESOLVE)
58705444 2463
54cbbbf3 2464bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
eb309ec8
DH
2465int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2466static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2467{
2468 /*
2469 * We want to check manually if we can change individual PTEs writable
2470 * if we can't do that automatically for all PTEs in a mapping. For
2471 * private mappings, that's always the case when we have write
2472 * permissions as we properly have to handle COW.
2473 */
2474 if (vma->vm_flags & VM_SHARED)
2475 return vma_wants_writenotify(vma, vma->vm_page_prot);
2476 return !!(vma->vm_flags & VM_WRITE);
2477
2478}
6a56ccbc
DH
2479bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2480 pte_t pte);
a79390f5 2481extern long change_protection(struct mmu_gather *tlb,
4a18419f 2482 struct vm_area_struct *vma, unsigned long start,
1ef488ed 2483 unsigned long end, unsigned long cp_flags);
2286a691
LH
2484extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2485 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2486 unsigned long start, unsigned long end, unsigned long newflags);
1da177e4 2487
465a454f
PZ
2488/*
2489 * doesn't attempt to fault and will return short.
2490 */
dadbb612
SJ
2491int get_user_pages_fast_only(unsigned long start, int nr_pages,
2492 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
2493
2494static inline bool get_user_page_fast_only(unsigned long addr,
2495 unsigned int gup_flags, struct page **pagep)
2496{
2497 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2498}
d559db08
KH
2499/*
2500 * per-process(per-mm_struct) statistics.
2501 */
d559db08
KH
2502static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2503{
f1a79412 2504 return percpu_counter_read_positive(&mm->rss_stat[member]);
69c97823 2505}
d559db08 2506
f1a79412 2507void mm_trace_rss_stat(struct mm_struct *mm, int member);
b3d1411b 2508
d559db08
KH
2509static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2510{
f1a79412 2511 percpu_counter_add(&mm->rss_stat[member], value);
b3d1411b 2512
f1a79412 2513 mm_trace_rss_stat(mm, member);
d559db08
KH
2514}
2515
2516static inline void inc_mm_counter(struct mm_struct *mm, int member)
2517{
f1a79412 2518 percpu_counter_inc(&mm->rss_stat[member]);
b3d1411b 2519
f1a79412 2520 mm_trace_rss_stat(mm, member);
d559db08
KH
2521}
2522
2523static inline void dec_mm_counter(struct mm_struct *mm, int member)
2524{
f1a79412 2525 percpu_counter_dec(&mm->rss_stat[member]);
b3d1411b 2526
f1a79412 2527 mm_trace_rss_stat(mm, member);
d559db08
KH
2528}
2529
eca56ff9
JM
2530/* Optimized variant when page is already known not to be PageAnon */
2531static inline int mm_counter_file(struct page *page)
2532{
2533 if (PageSwapBacked(page))
2534 return MM_SHMEMPAGES;
2535 return MM_FILEPAGES;
2536}
2537
2538static inline int mm_counter(struct page *page)
2539{
2540 if (PageAnon(page))
2541 return MM_ANONPAGES;
2542 return mm_counter_file(page);
2543}
2544
d559db08
KH
2545static inline unsigned long get_mm_rss(struct mm_struct *mm)
2546{
2547 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2548 get_mm_counter(mm, MM_ANONPAGES) +
2549 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2550}
2551
2552static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2553{
2554 return max(mm->hiwater_rss, get_mm_rss(mm));
2555}
2556
2557static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2558{
2559 return max(mm->hiwater_vm, mm->total_vm);
2560}
2561
2562static inline void update_hiwater_rss(struct mm_struct *mm)
2563{
2564 unsigned long _rss = get_mm_rss(mm);
2565
2566 if ((mm)->hiwater_rss < _rss)
2567 (mm)->hiwater_rss = _rss;
2568}
2569
2570static inline void update_hiwater_vm(struct mm_struct *mm)
2571{
2572 if (mm->hiwater_vm < mm->total_vm)
2573 mm->hiwater_vm = mm->total_vm;
2574}
2575
695f0559
PC
2576static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2577{
2578 mm->hiwater_rss = get_mm_rss(mm);
2579}
2580
d559db08
KH
2581static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2582 struct mm_struct *mm)
2583{
2584 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2585
2586 if (*maxrss < hiwater_rss)
2587 *maxrss = hiwater_rss;
2588}
2589
53bddb4e 2590#if defined(SPLIT_RSS_COUNTING)
05af2e10 2591void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2592#else
05af2e10 2593static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2594{
2595}
2596#endif
465a454f 2597
78e7c5af
AK
2598#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2599static inline int pte_special(pte_t pte)
2600{
2601 return 0;
2602}
2603
2604static inline pte_t pte_mkspecial(pte_t pte)
2605{
2606 return pte;
2607}
2608#endif
2609
17596731 2610#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2611static inline int pte_devmap(pte_t pte)
2612{
2613 return 0;
2614}
2615#endif
2616
25ca1d6c
NK
2617extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2618 spinlock_t **ptl);
2619static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2620 spinlock_t **ptl)
2621{
2622 pte_t *ptep;
2623 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2624 return ptep;
2625}
c9cfcddf 2626
c2febafc
KS
2627#ifdef __PAGETABLE_P4D_FOLDED
2628static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2629 unsigned long address)
2630{
2631 return 0;
2632}
2633#else
2634int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2635#endif
2636
b4e98d9a 2637#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2638static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2639 unsigned long address)
2640{
2641 return 0;
2642}
b4e98d9a
KS
2643static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2644static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2645
5f22df00 2646#else
c2febafc 2647int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2648
b4e98d9a
KS
2649static inline void mm_inc_nr_puds(struct mm_struct *mm)
2650{
6d212db1
MS
2651 if (mm_pud_folded(mm))
2652 return;
af5b0f6a 2653 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2654}
2655
2656static inline void mm_dec_nr_puds(struct mm_struct *mm)
2657{
6d212db1
MS
2658 if (mm_pud_folded(mm))
2659 return;
af5b0f6a 2660 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2661}
5f22df00
NP
2662#endif
2663
2d2f5119 2664#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2665static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2666 unsigned long address)
2667{
2668 return 0;
2669}
dc6c9a35 2670
dc6c9a35
KS
2671static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2672static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2673
5f22df00 2674#else
1bb3630e 2675int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2676
dc6c9a35
KS
2677static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2678{
6d212db1
MS
2679 if (mm_pmd_folded(mm))
2680 return;
af5b0f6a 2681 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2682}
2683
2684static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2685{
6d212db1
MS
2686 if (mm_pmd_folded(mm))
2687 return;
af5b0f6a 2688 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2689}
5f22df00
NP
2690#endif
2691
c4812909 2692#ifdef CONFIG_MMU
af5b0f6a 2693static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2694{
af5b0f6a 2695 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2696}
2697
af5b0f6a 2698static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2699{
af5b0f6a 2700 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2701}
2702
2703static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2704{
af5b0f6a 2705 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2706}
2707
2708static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2709{
af5b0f6a 2710 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2711}
2712#else
c4812909 2713
af5b0f6a
KS
2714static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2715static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2716{
2717 return 0;
2718}
2719
2720static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2721static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2722#endif
2723
4cf58924
JFG
2724int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2725int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2726
f949286c
MR
2727#if defined(CONFIG_MMU)
2728
c2febafc
KS
2729static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2730 unsigned long address)
2731{
2732 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2733 NULL : p4d_offset(pgd, address);
2734}
2735
2736static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2737 unsigned long address)
1da177e4 2738{
c2febafc
KS
2739 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2740 NULL : pud_offset(p4d, address);
1da177e4 2741}
d8626138 2742
1da177e4
LT
2743static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2744{
1bb3630e
HD
2745 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2746 NULL: pmd_offset(pud, address);
1da177e4 2747}
f949286c 2748#endif /* CONFIG_MMU */
1bb3630e 2749
57c1ffce 2750#if USE_SPLIT_PTE_PTLOCKS
597d795a 2751#if ALLOC_SPLIT_PTLOCKS
b35f1819 2752void __init ptlock_cache_init(void);
539edb58
PZ
2753extern bool ptlock_alloc(struct page *page);
2754extern void ptlock_free(struct page *page);
2755
2756static inline spinlock_t *ptlock_ptr(struct page *page)
2757{
2758 return page->ptl;
2759}
597d795a 2760#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2761static inline void ptlock_cache_init(void)
2762{
2763}
2764
49076ec2
KS
2765static inline bool ptlock_alloc(struct page *page)
2766{
49076ec2
KS
2767 return true;
2768}
539edb58 2769
49076ec2
KS
2770static inline void ptlock_free(struct page *page)
2771{
49076ec2
KS
2772}
2773
2774static inline spinlock_t *ptlock_ptr(struct page *page)
2775{
539edb58 2776 return &page->ptl;
49076ec2 2777}
597d795a 2778#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2779
2780static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2781{
2782 return ptlock_ptr(pmd_page(*pmd));
2783}
2784
2785static inline bool ptlock_init(struct page *page)
2786{
2787 /*
2788 * prep_new_page() initialize page->private (and therefore page->ptl)
2789 * with 0. Make sure nobody took it in use in between.
2790 *
2791 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2792 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2793 */
309381fe 2794 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2795 if (!ptlock_alloc(page))
2796 return false;
2797 spin_lock_init(ptlock_ptr(page));
2798 return true;
2799}
2800
57c1ffce 2801#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2802/*
2803 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2804 */
49076ec2
KS
2805static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2806{
2807 return &mm->page_table_lock;
2808}
b35f1819 2809static inline void ptlock_cache_init(void) {}
49076ec2 2810static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2811static inline void ptlock_free(struct page *page) {}
57c1ffce 2812#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2813
b4ed71f5 2814static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2815{
706874e9
VD
2816 if (!ptlock_init(page))
2817 return false;
1d40a5ea 2818 __SetPageTable(page);
f0c0c115 2819 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2820 return true;
2f569afd
MS
2821}
2822
b4ed71f5 2823static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2824{
9e247bab 2825 ptlock_free(page);
1d40a5ea 2826 __ClearPageTable(page);
f0c0c115 2827 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2828}
2829
0d940a9b
HD
2830pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2831static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2832{
2833 return __pte_offset_map(pmd, addr, NULL);
2834}
2835
2836pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2837 unsigned long addr, spinlock_t **ptlp);
2838static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2839 unsigned long addr, spinlock_t **ptlp)
2840{
2841 pte_t *pte;
2842
2843 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2844 return pte;
2845}
2846
2847pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2848 unsigned long addr, spinlock_t **ptlp);
c74df32c
HD
2849
2850#define pte_unmap_unlock(pte, ptl) do { \
2851 spin_unlock(ptl); \
2852 pte_unmap(pte); \
2853} while (0)
2854
4cf58924 2855#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2856
2857#define pte_alloc_map(mm, pmd, address) \
4cf58924 2858 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2859
c74df32c 2860#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2861 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2862 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2863
1bb3630e 2864#define pte_alloc_kernel(pmd, address) \
4cf58924 2865 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2866 NULL: pte_offset_kernel(pmd, address))
1da177e4 2867
e009bb30
KS
2868#if USE_SPLIT_PMD_PTLOCKS
2869
7e25de77 2870static inline struct page *pmd_pgtable_page(pmd_t *pmd)
634391ac
MS
2871{
2872 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2873 return virt_to_page((void *)((unsigned long) pmd & mask));
2874}
2875
e009bb30
KS
2876static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2877{
373dfda2 2878 return ptlock_ptr(pmd_pgtable_page(pmd));
e009bb30
KS
2879}
2880
b2b29d6d 2881static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2882{
e009bb30
KS
2883#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2884 page->pmd_huge_pte = NULL;
2885#endif
49076ec2 2886 return ptlock_init(page);
e009bb30
KS
2887}
2888
b2b29d6d 2889static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2890{
2891#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2892 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2893#endif
49076ec2 2894 ptlock_free(page);
e009bb30
KS
2895}
2896
373dfda2 2897#define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
e009bb30
KS
2898
2899#else
2900
9a86cb7b
KS
2901static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2902{
2903 return &mm->page_table_lock;
2904}
2905
b2b29d6d
MW
2906static inline bool pmd_ptlock_init(struct page *page) { return true; }
2907static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2908
c389a250 2909#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2910
e009bb30
KS
2911#endif
2912
9a86cb7b
KS
2913static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2914{
2915 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2916 spin_lock(ptl);
2917 return ptl;
2918}
2919
b2b29d6d
MW
2920static inline bool pgtable_pmd_page_ctor(struct page *page)
2921{
2922 if (!pmd_ptlock_init(page))
2923 return false;
2924 __SetPageTable(page);
f0c0c115 2925 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2926 return true;
2927}
2928
2929static inline void pgtable_pmd_page_dtor(struct page *page)
2930{
2931 pmd_ptlock_free(page);
2932 __ClearPageTable(page);
f0c0c115 2933 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2934}
2935
a00cc7d9
MW
2936/*
2937 * No scalability reason to split PUD locks yet, but follow the same pattern
2938 * as the PMD locks to make it easier if we decide to. The VM should not be
2939 * considered ready to switch to split PUD locks yet; there may be places
2940 * which need to be converted from page_table_lock.
2941 */
2942static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2943{
2944 return &mm->page_table_lock;
2945}
2946
2947static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2948{
2949 spinlock_t *ptl = pud_lockptr(mm, pud);
2950
2951 spin_lock(ptl);
2952 return ptl;
2953}
62906027 2954
a00cc7d9 2955extern void __init pagecache_init(void);
49a7f04a
DH
2956extern void free_initmem(void);
2957
69afade7
JL
2958/*
2959 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2960 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2961 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2962 * Return pages freed into the buddy system.
2963 */
11199692 2964extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2965 int poison, const char *s);
c3d5f5f0 2966
c3d5f5f0 2967extern void adjust_managed_page_count(struct page *page, long count);
69afade7 2968
61167ad5
YD
2969extern void reserve_bootmem_region(phys_addr_t start,
2970 phys_addr_t end, int nid);
92923ca3 2971
69afade7 2972/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2973static inline void free_reserved_page(struct page *page)
69afade7
JL
2974{
2975 ClearPageReserved(page);
2976 init_page_count(page);
2977 __free_page(page);
69afade7
JL
2978 adjust_managed_page_count(page, 1);
2979}
a0cd7a7c 2980#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2981
2982static inline void mark_page_reserved(struct page *page)
2983{
2984 SetPageReserved(page);
2985 adjust_managed_page_count(page, -1);
2986}
2987
2988/*
2989 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2990 * The freed pages will be poisoned with pattern "poison" if it's within
2991 * range [0, UCHAR_MAX].
2992 * Return pages freed into the buddy system.
69afade7
JL
2993 */
2994static inline unsigned long free_initmem_default(int poison)
2995{
2996 extern char __init_begin[], __init_end[];
2997
11199692 2998 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2999 poison, "unused kernel image (initmem)");
69afade7
JL
3000}
3001
7ee3d4e8
JL
3002static inline unsigned long get_num_physpages(void)
3003{
3004 int nid;
3005 unsigned long phys_pages = 0;
3006
3007 for_each_online_node(nid)
3008 phys_pages += node_present_pages(nid);
3009
3010 return phys_pages;
3011}
3012
c713216d 3013/*
3f08a302 3014 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
3015 * zones, allocate the backing mem_map and account for memory holes in an
3016 * architecture independent manner.
c713216d
MG
3017 *
3018 * An architecture is expected to register range of page frames backed by
0ee332c1 3019 * physical memory with memblock_add[_node]() before calling
9691a071 3020 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
3021 * usage, an architecture is expected to do something like
3022 *
3023 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3024 * max_highmem_pfn};
3025 * for_each_valid_physical_page_range()
952eea9b 3026 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 3027 * free_area_init(max_zone_pfns);
c713216d 3028 */
9691a071 3029void free_area_init(unsigned long *max_zone_pfn);
1e01979c 3030unsigned long node_map_pfn_alignment(void);
32996250
YL
3031unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3032 unsigned long end_pfn);
c713216d
MG
3033extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3034 unsigned long end_pfn);
3035extern void get_pfn_range_for_nid(unsigned int nid,
3036 unsigned long *start_pfn, unsigned long *end_pfn);
f2dbcfa7 3037
a9ee6cf5 3038#ifndef CONFIG_NUMA
6f24fbd3 3039static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
3040{
3041 return 0;
3042}
3043#else
3044/* please see mm/page_alloc.c */
3045extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
3046#endif
3047
0e0b864e 3048extern void set_dma_reserve(unsigned long new_dma_reserve);
1da177e4 3049extern void mem_init(void);
8feae131 3050extern void __init mmap_init(void);
974f4367
MH
3051
3052extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3053static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
3054{
3055 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
3056}
d02bd27b 3057extern long si_mem_available(void);
1da177e4
LT
3058extern void si_meminfo(struct sysinfo * val);
3059extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
3060#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3061extern unsigned long arch_reserved_kernel_pages(void);
3062#endif
1da177e4 3063
a8e99259
MH
3064extern __printf(3, 4)
3065void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 3066
e7c8d5c9 3067extern void setup_per_cpu_pageset(void);
e7c8d5c9 3068
8feae131 3069/* nommu.c */
33e5d769 3070extern atomic_long_t mmap_pages_allocated;
7e660872 3071extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 3072
6b2dbba8 3073/* interval_tree.c */
6b2dbba8 3074void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 3075 struct rb_root_cached *root);
9826a516
ML
3076void vma_interval_tree_insert_after(struct vm_area_struct *node,
3077 struct vm_area_struct *prev,
f808c13f 3078 struct rb_root_cached *root);
6b2dbba8 3079void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
3080 struct rb_root_cached *root);
3081struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
3082 unsigned long start, unsigned long last);
3083struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3084 unsigned long start, unsigned long last);
3085
3086#define vma_interval_tree_foreach(vma, root, start, last) \
3087 for (vma = vma_interval_tree_iter_first(root, start, last); \
3088 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 3089
bf181b9f 3090void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 3091 struct rb_root_cached *root);
bf181b9f 3092void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
3093 struct rb_root_cached *root);
3094struct anon_vma_chain *
3095anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3096 unsigned long start, unsigned long last);
bf181b9f
ML
3097struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3098 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
3099#ifdef CONFIG_DEBUG_VM_RB
3100void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3101#endif
bf181b9f
ML
3102
3103#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3104 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3105 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3106
1da177e4 3107/* mmap.c */
34b4e4aa 3108extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
7c9813e8
LH
3109extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3110 unsigned long start, unsigned long end, pgoff_t pgoff,
3111 struct vm_area_struct *next);
cf51e86d
LH
3112extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3113 unsigned long start, unsigned long end, pgoff_t pgoff);
9760ebff 3114extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
f2ebfe43
LH
3115 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
3116 unsigned long end, unsigned long vm_flags, struct anon_vma *,
3117 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
3118 struct anon_vma_name *);
1da177e4 3119extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
9760ebff
LH
3120extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3121 unsigned long addr, int new_below);
3122extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3123 unsigned long addr, int new_below);
1da177e4 3124extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
a8fb5618 3125extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 3126extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
3127 unsigned long addr, unsigned long len, pgoff_t pgoff,
3128 bool *need_rmap_locks);
1da177e4 3129extern void exit_mmap(struct mm_struct *);
925d1c40 3130
9c599024
CG
3131static inline int check_data_rlimit(unsigned long rlim,
3132 unsigned long new,
3133 unsigned long start,
3134 unsigned long end_data,
3135 unsigned long start_data)
3136{
3137 if (rlim < RLIM_INFINITY) {
3138 if (((new - start) + (end_data - start_data)) > rlim)
3139 return -ENOSPC;
3140 }
3141
3142 return 0;
3143}
3144
7906d00c
AA
3145extern int mm_take_all_locks(struct mm_struct *mm);
3146extern void mm_drop_all_locks(struct mm_struct *mm);
3147
fe69d560 3148extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 3149extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 3150extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 3151extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 3152
84638335
KK
3153extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3154extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3155
2eefd878
DS
3156extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3157 const struct vm_special_mapping *sm);
3935ed6a
SS
3158extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3159 unsigned long addr, unsigned long len,
a62c34bd
AL
3160 unsigned long flags,
3161 const struct vm_special_mapping *spec);
3162/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
3163extern int install_special_mapping(struct mm_struct *mm,
3164 unsigned long addr, unsigned long len,
3165 unsigned long flags, struct page **pages);
1da177e4 3166
649775be 3167unsigned long randomize_stack_top(unsigned long stack_top);
5ad7dd88 3168unsigned long randomize_page(unsigned long start, unsigned long range);
649775be 3169
1da177e4
LT
3170extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3171
0165ab44 3172extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
3173 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3174 struct list_head *uf);
1fcfd8db 3175extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 3176 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 3177 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
183654ce 3178extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
11f9a21a
LH
3179 unsigned long start, size_t len, struct list_head *uf,
3180 bool downgrade);
897ab3e0
MR
3181extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3182 struct list_head *uf);
0726b01e 3183extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 3184
bebeb3d6 3185#ifdef CONFIG_MMU
27b26701
LH
3186extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3187 unsigned long start, unsigned long end,
3188 struct list_head *uf, bool downgrade);
bebeb3d6
ML
3189extern int __mm_populate(unsigned long addr, unsigned long len,
3190 int ignore_errors);
3191static inline void mm_populate(unsigned long addr, unsigned long len)
3192{
3193 /* Ignore errors */
3194 (void) __mm_populate(addr, len, 1);
3195}
3196#else
3197static inline void mm_populate(unsigned long addr, unsigned long len) {}
3198#endif
3199
e4eb1ff6 3200/* These take the mm semaphore themselves */
5d22fc25 3201extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 3202extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 3203extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 3204extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
3205 unsigned long, unsigned long,
3206 unsigned long, unsigned long);
1da177e4 3207
db4fbfb9
ML
3208struct vm_unmapped_area_info {
3209#define VM_UNMAPPED_AREA_TOPDOWN 1
3210 unsigned long flags;
3211 unsigned long length;
3212 unsigned long low_limit;
3213 unsigned long high_limit;
3214 unsigned long align_mask;
3215 unsigned long align_offset;
3216};
3217
baceaf1c 3218extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 3219
85821aab 3220/* truncate.c */
1da177e4 3221extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
3222extern void truncate_inode_pages_range(struct address_space *,
3223 loff_t lstart, loff_t lend);
91b0abe3 3224extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
3225
3226/* generic vm_area_ops exported for stackable file systems */
2bcd6454 3227extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 3228extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 3229 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 3230extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 3231
1be7107f 3232extern unsigned long stack_guard_gap;
d05f3169 3233/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
8d7071af
LT
3234int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3235struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
d05f3169 3236
11192337 3237/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
8d7071af 3238int expand_downwards(struct vm_area_struct *vma, unsigned long address);
1da177e4
LT
3239
3240/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3241extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3242extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3243 struct vm_area_struct **pprev);
3244
abdba2dd
LH
3245/*
3246 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3247 * NULL if none. Assume start_addr < end_addr.
ce6d42f2 3248 */
ce6d42f2 3249struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
abdba2dd 3250 unsigned long start_addr, unsigned long end_addr);
1da177e4 3251
ce6d42f2
LH
3252/**
3253 * vma_lookup() - Find a VMA at a specific address
3254 * @mm: The process address space.
3255 * @addr: The user address.
3256 *
3257 * Return: The vm_area_struct at the given address, %NULL otherwise.
3258 */
3259static inline
3260struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3261{
d7c62295 3262 return mtree_load(&mm->mm_mt, addr);
ce6d42f2
LH
3263}
3264
1be7107f
HD
3265static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3266{
3267 unsigned long vm_start = vma->vm_start;
3268
3269 if (vma->vm_flags & VM_GROWSDOWN) {
3270 vm_start -= stack_guard_gap;
3271 if (vm_start > vma->vm_start)
3272 vm_start = 0;
3273 }
3274 return vm_start;
3275}
3276
3277static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3278{
3279 unsigned long vm_end = vma->vm_end;
3280
3281 if (vma->vm_flags & VM_GROWSUP) {
3282 vm_end += stack_guard_gap;
3283 if (vm_end < vma->vm_end)
3284 vm_end = -PAGE_SIZE;
3285 }
3286 return vm_end;
3287}
3288
1da177e4
LT
3289static inline unsigned long vma_pages(struct vm_area_struct *vma)
3290{
3291 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3292}
3293
640708a2
PE
3294/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3295static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3296 unsigned long vm_start, unsigned long vm_end)
3297{
dc8635b2 3298 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
640708a2
PE
3299
3300 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3301 vma = NULL;
3302
3303 return vma;
3304}
3305
017b1660
MK
3306static inline bool range_in_vma(struct vm_area_struct *vma,
3307 unsigned long start, unsigned long end)
3308{
3309 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3310}
3311
bad849b3 3312#ifdef CONFIG_MMU
804af2cf 3313pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 3314void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
3315#else
3316static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3317{
3318 return __pgprot(0);
3319}
64e45507
PF
3320static inline void vma_set_page_prot(struct vm_area_struct *vma)
3321{
3322 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3323}
bad849b3
DH
3324#endif
3325
295992fb
CK
3326void vma_set_file(struct vm_area_struct *vma, struct file *file);
3327
5877231f 3328#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 3329unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
3330 unsigned long start, unsigned long end);
3331#endif
3332
f440fa1a 3333struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
8d7071af 3334 unsigned long addr);
deceb6cd
HD
3335int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3336 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
3337int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3338 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 3339int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
3340int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3341 struct page **pages, unsigned long *num);
a667d745
SJ
3342int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3343 unsigned long num);
3344int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3345 unsigned long num);
ae2b01f3 3346vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 3347 unsigned long pfn);
f5e6d1d5
MW
3348vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3349 unsigned long pfn, pgprot_t pgprot);
5d747637 3350vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 3351 pfn_t pfn);
ab77dab4
SJ
3352vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3353 unsigned long addr, pfn_t pfn);
b4cbb197
LT
3354int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3355
1c8f4220
SJ
3356static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3357 unsigned long addr, struct page *page)
3358{
3359 int err = vm_insert_page(vma, addr, page);
3360
3361 if (err == -ENOMEM)
3362 return VM_FAULT_OOM;
3363 if (err < 0 && err != -EBUSY)
3364 return VM_FAULT_SIGBUS;
3365
3366 return VM_FAULT_NOPAGE;
3367}
3368
f8f6ae5d
JG
3369#ifndef io_remap_pfn_range
3370static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3371 unsigned long addr, unsigned long pfn,
3372 unsigned long size, pgprot_t prot)
3373{
3374 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3375}
3376#endif
3377
d97baf94
SJ
3378static inline vm_fault_t vmf_error(int err)
3379{
3380 if (err == -ENOMEM)
3381 return VM_FAULT_OOM;
3382 return VM_FAULT_SIGBUS;
3383}
3384
df06b37f
KB
3385struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3386 unsigned int foll_flags);
240aadee 3387
2b740303 3388static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3389{
3390 if (vm_fault & VM_FAULT_OOM)
3391 return -ENOMEM;
3392 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3393 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3394 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3395 return -EFAULT;
3396 return 0;
3397}
3398
474098ed
DH
3399/*
3400 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3401 * a (NUMA hinting) fault is required.
3402 */
3403static inline bool gup_can_follow_protnone(unsigned int flags)
3404{
3405 /*
3406 * FOLL_FORCE has to be able to make progress even if the VMA is
3407 * inaccessible. Further, FOLL_FORCE access usually does not represent
3408 * application behaviour and we should avoid triggering NUMA hinting
3409 * faults.
3410 */
3411 return flags & FOLL_FORCE;
3412}
3413
8b1e0f81 3414typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3415extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3416 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3417extern int apply_to_existing_page_range(struct mm_struct *mm,
3418 unsigned long address, unsigned long size,
3419 pte_fn_t fn, void *data);
aee16b3c 3420
8823b1db 3421#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3422extern void __kernel_poison_pages(struct page *page, int numpages);
3423extern void __kernel_unpoison_pages(struct page *page, int numpages);
3424extern bool _page_poisoning_enabled_early;
3425DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3426static inline bool page_poisoning_enabled(void)
3427{
3428 return _page_poisoning_enabled_early;
3429}
3430/*
3431 * For use in fast paths after init_mem_debugging() has run, or when a
3432 * false negative result is not harmful when called too early.
3433 */
3434static inline bool page_poisoning_enabled_static(void)
3435{
3436 return static_branch_unlikely(&_page_poisoning_enabled);
3437}
3438static inline void kernel_poison_pages(struct page *page, int numpages)
3439{
3440 if (page_poisoning_enabled_static())
3441 __kernel_poison_pages(page, numpages);
3442}
3443static inline void kernel_unpoison_pages(struct page *page, int numpages)
3444{
3445 if (page_poisoning_enabled_static())
3446 __kernel_unpoison_pages(page, numpages);
3447}
8823b1db
LA
3448#else
3449static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3450static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3451static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3452static inline void kernel_poison_pages(struct page *page, int numpages) { }
3453static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3454#endif
3455
51cba1eb 3456DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3457static inline bool want_init_on_alloc(gfp_t flags)
3458{
51cba1eb
KC
3459 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3460 &init_on_alloc))
6471384a
AP
3461 return true;
3462 return flags & __GFP_ZERO;
3463}
3464
51cba1eb 3465DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3466static inline bool want_init_on_free(void)
3467{
51cba1eb
KC
3468 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3469 &init_on_free);
6471384a
AP
3470}
3471
8e57f8ac
VB
3472extern bool _debug_pagealloc_enabled_early;
3473DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3474
3475static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3476{
3477 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3478 _debug_pagealloc_enabled_early;
3479}
3480
3481/*
3482 * For use in fast paths after init_debug_pagealloc() has run, or when a
3483 * false negative result is not harmful when called too early.
3484 */
3485static inline bool debug_pagealloc_enabled_static(void)
031bc574 3486{
96a2b03f
VB
3487 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3488 return false;
3489
3490 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3491}
3492
c87cbc1f 3493/*
5d6ad668
MR
3494 * To support DEBUG_PAGEALLOC architecture must ensure that
3495 * __kernel_map_pages() never fails
c87cbc1f 3496 */
d6332692 3497extern void __kernel_map_pages(struct page *page, int numpages, int enable);
8f14a963 3498#ifdef CONFIG_DEBUG_PAGEALLOC
77bc7fd6
MR
3499static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3500{
3501 if (debug_pagealloc_enabled_static())
3502 __kernel_map_pages(page, numpages, 1);
3503}
3504
3505static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3506{
3507 if (debug_pagealloc_enabled_static())
3508 __kernel_map_pages(page, numpages, 0);
3509}
884c175f
KW
3510
3511extern unsigned int _debug_guardpage_minorder;
3512DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3513
3514static inline unsigned int debug_guardpage_minorder(void)
3515{
3516 return _debug_guardpage_minorder;
3517}
3518
3519static inline bool debug_guardpage_enabled(void)
3520{
3521 return static_branch_unlikely(&_debug_guardpage_enabled);
3522}
3523
3524static inline bool page_is_guard(struct page *page)
3525{
3526 if (!debug_guardpage_enabled())
3527 return false;
3528
3529 return PageGuard(page);
3530}
3531
3532bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
3533 int migratetype);
3534static inline bool set_page_guard(struct zone *zone, struct page *page,
3535 unsigned int order, int migratetype)
3536{
3537 if (!debug_guardpage_enabled())
3538 return false;
3539 return __set_page_guard(zone, page, order, migratetype);
3540}
3541
3542void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
3543 int migratetype);
3544static inline void clear_page_guard(struct zone *zone, struct page *page,
3545 unsigned int order, int migratetype)
3546{
3547 if (!debug_guardpage_enabled())
3548 return;
3549 __clear_page_guard(zone, page, order, migratetype);
3550}
3551
5d6ad668 3552#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3553static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3554static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
884c175f
KW
3555static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3556static inline bool debug_guardpage_enabled(void) { return false; }
3557static inline bool page_is_guard(struct page *page) { return false; }
3558static inline bool set_page_guard(struct zone *zone, struct page *page,
3559 unsigned int order, int migratetype) { return false; }
3560static inline void clear_page_guard(struct zone *zone, struct page *page,
3561 unsigned int order, int migratetype) {}
5d6ad668 3562#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3563
a6c19dfe 3564#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3565extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3566extern int in_gate_area_no_mm(unsigned long addr);
3567extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3568#else
a6c19dfe
AL
3569static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3570{
3571 return NULL;
3572}
3573static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3574static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3575{
3576 return 0;
3577}
1da177e4
LT
3578#endif /* __HAVE_ARCH_GATE_AREA */
3579
44a70ade
MH
3580extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3581
146732ce
JT
3582#ifdef CONFIG_SYSCTL
3583extern int sysctl_drop_caches;
32927393
CH
3584int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3585 loff_t *);
146732ce
JT
3586#endif
3587
cb731d6c 3588void drop_slab(void);
9d0243bc 3589
7a9166e3
LY
3590#ifndef CONFIG_MMU
3591#define randomize_va_space 0
3592#else
a62eaf15 3593extern int randomize_va_space;
7a9166e3 3594#endif
a62eaf15 3595
045e72ac 3596const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3597#ifdef CONFIG_MMU
03252919 3598void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3599#else
3600static inline void print_vma_addr(char *prefix, unsigned long rip)
3601{
3602}
3603#endif
e6e5494c 3604
35fd1eb1 3605void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0 3606struct page * __populate_section_memmap(unsigned long pfn,
e3246d8f
JM
3607 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3608 struct dev_pagemap *pgmap);
7b09f5af
FC
3609void pmd_init(void *addr);
3610void pud_init(void *addr);
29c71111 3611pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3612p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3613pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3614pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7 3615pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4917f55b 3616 struct vmem_altmap *altmap, struct page *reuse);
8f6aac41 3617void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3618struct vmem_altmap;
56993b4e
AK
3619void *vmemmap_alloc_block_buf(unsigned long size, int node,
3620 struct vmem_altmap *altmap);
8f6aac41 3621void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2045a3b8
FC
3622void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3623 unsigned long addr, unsigned long next);
3624int vmemmap_check_pmd(pmd_t *pmd, int node,
3625 unsigned long addr, unsigned long next);
0aad818b 3626int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3627 int node, struct vmem_altmap *altmap);
2045a3b8
FC
3628int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3629 int node, struct vmem_altmap *altmap);
7b73d978
CH
3630int vmemmap_populate(unsigned long start, unsigned long end, int node,
3631 struct vmem_altmap *altmap);
c2b91e2e 3632void vmemmap_populate_print_last(void);
0197518c 3633#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3634void vmemmap_free(unsigned long start, unsigned long end,
3635 struct vmem_altmap *altmap);
0197518c 3636#endif
87a7ae75 3637
0b376f1e 3638#ifdef CONFIG_ARCH_WANT_OPTIMIZE_VMEMMAP
87a7ae75
AK
3639static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3640 struct dev_pagemap *pgmap)
3641{
3642 return is_power_of_2(sizeof(struct page)) &&
3643 pgmap && (pgmap_vmemmap_nr(pgmap) > 1) && !altmap;
3644}
3645#else
3646static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3647 struct dev_pagemap *pgmap)
3648{
3649 return false;
3650}
3651#endif
3652
46723bfa 3653void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3654 unsigned long nr_pages);
6a46079c 3655
82ba011b
AK
3656enum mf_flags {
3657 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3658 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3659 MF_MUST_KILL = 1 << 2,
cf870c70 3660 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3661 MF_UNPOISON = 1 << 4,
67f22ba7 3662 MF_SW_SIMULATED = 1 << 5,
38f6d293 3663 MF_NO_RETRY = 1 << 6,
82ba011b 3664};
c36e2024
SR
3665int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3666 unsigned long count, int mf_flags);
83b57531 3667extern int memory_failure(unsigned long pfn, int flags);
06202231 3668extern void memory_failure_queue_kick(int cpu);
847ce401 3669extern int unpoison_memory(unsigned long pfn);
d0505e9f 3670extern void shake_page(struct page *p);
5844a486 3671extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3672extern int soft_offline_page(unsigned long pfn, int flags);
405ce051 3673#ifdef CONFIG_MEMORY_FAILURE
870388db
KW
3674/*
3675 * Sysfs entries for memory failure handling statistics.
3676 */
3677extern const struct attribute_group memory_failure_attr_group;
d302c239 3678extern void memory_failure_queue(unsigned long pfn, int flags);
e591ef7d
NH
3679extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3680 bool *migratable_cleared);
5033091d
NH
3681void num_poisoned_pages_inc(unsigned long pfn);
3682void num_poisoned_pages_sub(unsigned long pfn, long i);
4248d008 3683struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
405ce051 3684#else
d302c239
TL
3685static inline void memory_failure_queue(unsigned long pfn, int flags)
3686{
3687}
3688
e591ef7d
NH
3689static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3690 bool *migratable_cleared)
405ce051
NH
3691{
3692 return 0;
3693}
d027122d 3694
a46c9304 3695static inline void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
3696{
3697}
5033091d
NH
3698
3699static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3700{
3701}
3702#endif
3703
4248d008
LX
3704#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
3705void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
3706 struct vm_area_struct *vma, struct list_head *to_kill,
3707 unsigned long ksm_addr);
3708#endif
3709
5033091d
NH
3710#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3711extern void memblk_nr_poison_inc(unsigned long pfn);
3712extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3713#else
3714static inline void memblk_nr_poison_inc(unsigned long pfn)
3715{
3716}
3717
3718static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3719{
3720}
405ce051 3721#endif
6a46079c 3722
03b122da
TL
3723#ifndef arch_memory_failure
3724static inline int arch_memory_failure(unsigned long pfn, int flags)
3725{
3726 return -ENXIO;
3727}
3728#endif
3729
3730#ifndef arch_is_platform_page
3731static inline bool arch_is_platform_page(u64 paddr)
3732{
3733 return false;
3734}
3735#endif
cc637b17
XX
3736
3737/*
3738 * Error handlers for various types of pages.
3739 */
cc3e2af4 3740enum mf_result {
cc637b17
XX
3741 MF_IGNORED, /* Error: cannot be handled */
3742 MF_FAILED, /* Error: handling failed */
3743 MF_DELAYED, /* Will be handled later */
3744 MF_RECOVERED, /* Successfully recovered */
3745};
3746
3747enum mf_action_page_type {
3748 MF_MSG_KERNEL,
3749 MF_MSG_KERNEL_HIGH_ORDER,
3750 MF_MSG_SLAB,
3751 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3752 MF_MSG_HUGE,
3753 MF_MSG_FREE_HUGE,
3754 MF_MSG_UNMAP_FAILED,
3755 MF_MSG_DIRTY_SWAPCACHE,
3756 MF_MSG_CLEAN_SWAPCACHE,
3757 MF_MSG_DIRTY_MLOCKED_LRU,
3758 MF_MSG_CLEAN_MLOCKED_LRU,
3759 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3760 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3761 MF_MSG_DIRTY_LRU,
3762 MF_MSG_CLEAN_LRU,
3763 MF_MSG_TRUNCATED_LRU,
3764 MF_MSG_BUDDY,
6100e34b 3765 MF_MSG_DAX,
5d1fd5dc 3766 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3767 MF_MSG_UNKNOWN,
3768};
3769
47ad8475
AA
3770#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3771extern void clear_huge_page(struct page *page,
c79b57e4 3772 unsigned long addr_hint,
47ad8475 3773 unsigned int pages_per_huge_page);
1cb9dc4b
LS
3774int copy_user_large_folio(struct folio *dst, struct folio *src,
3775 unsigned long addr_hint,
3776 struct vm_area_struct *vma);
e87340ca
Z
3777long copy_folio_from_user(struct folio *dst_folio,
3778 const void __user *usr_src,
3779 bool allow_pagefault);
2484ca9b
THV
3780
3781/**
3782 * vma_is_special_huge - Are transhuge page-table entries considered special?
3783 * @vma: Pointer to the struct vm_area_struct to consider
3784 *
3785 * Whether transhuge page-table entries are considered "special" following
3786 * the definition in vm_normal_page().
3787 *
3788 * Return: true if transhuge page-table entries should be considered special,
3789 * false otherwise.
3790 */
3791static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3792{
3793 return vma_is_dax(vma) || (vma->vm_file &&
3794 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3795}
3796
47ad8475
AA
3797#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3798
f9872caf
CS
3799#if MAX_NUMNODES > 1
3800void __init setup_nr_node_ids(void);
3801#else
3802static inline void setup_nr_node_ids(void) {}
3803#endif
3804
010c164a
SL
3805extern int memcmp_pages(struct page *page1, struct page *page2);
3806
3807static inline int pages_identical(struct page *page1, struct page *page2)
3808{
3809 return !memcmp_pages(page1, page2);
3810}
3811
c5acad84
TH
3812#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3813unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3814 pgoff_t first_index, pgoff_t nr,
3815 pgoff_t bitmap_pgoff,
3816 unsigned long *bitmap,
3817 pgoff_t *start,
3818 pgoff_t *end);
3819
3820unsigned long wp_shared_mapping_range(struct address_space *mapping,
3821 pgoff_t first_index, pgoff_t nr);
3822#endif
3823
2374c09b
CH
3824extern int sysctl_nr_trim_pages;
3825
5bb1bb35 3826#ifdef CONFIG_PRINTK
8e7f37f2 3827void mem_dump_obj(void *object);
5bb1bb35
PM
3828#else
3829static inline void mem_dump_obj(void *object) {}
3830#endif
8e7f37f2 3831
22247efd
PX
3832/**
3833 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3834 * @seals: the seals to check
3835 * @vma: the vma to operate on
3836 *
3837 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3838 * the vma flags. Return 0 if check pass, or <0 for errors.
3839 */
3840static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3841{
3842 if (seals & F_SEAL_FUTURE_WRITE) {
3843 /*
3844 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3845 * "future write" seal active.
3846 */
3847 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3848 return -EPERM;
3849
3850 /*
3851 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3852 * MAP_SHARED and read-only, take care to not allow mprotect to
3853 * revert protections on such mappings. Do this only for shared
3854 * mappings. For private mappings, don't need to mask
3855 * VM_MAYWRITE as we still want them to be COW-writable.
3856 */
3857 if (vma->vm_flags & VM_SHARED)
1c71222e 3858 vm_flags_clear(vma, VM_MAYWRITE);
22247efd
PX
3859 }
3860
3861 return 0;
3862}
3863
9a10064f
CC
3864#ifdef CONFIG_ANON_VMA_NAME
3865int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac
SB
3866 unsigned long len_in,
3867 struct anon_vma_name *anon_name);
9a10064f
CC
3868#else
3869static inline int
3870madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac 3871 unsigned long len_in, struct anon_vma_name *anon_name) {
9a10064f
CC
3872 return 0;
3873}
3874#endif
3875
dcdfdd40
KS
3876#ifdef CONFIG_UNACCEPTED_MEMORY
3877
3878bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
3879void accept_memory(phys_addr_t start, phys_addr_t end);
3880
3881#else
3882
3883static inline bool range_contains_unaccepted_memory(phys_addr_t start,
3884 phys_addr_t end)
3885{
3886 return false;
3887}
3888
3889static inline void accept_memory(phys_addr_t start, phys_addr_t end)
3890{
3891}
3892
3893#endif
3894
1da177e4 3895#endif /* _LINUX_MM_H */