treewide: use initializer for struct vm_unmapped_area_info
[linux-2.6-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
d224eb02 8#include <linux/pgalloc_tag.h>
187f1882 9#include <linux/bug.h>
1da177e4
LT
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
83aeeada 13#include <linux/atomic.h>
9a11b49a 14#include <linux/debug_locks.h>
5b99cd0e 15#include <linux/mm_types.h>
9740ca4e 16#include <linux/mmap_lock.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
3565fce3 19#include <linux/percpu-refcount.h>
e9da73d6 20#include <linux/bit_spinlock.h>
b0d40c92 21#include <linux/shrinker.h>
9c599024 22#include <linux/resource.h>
e30825f1 23#include <linux/page_ext.h>
8025e5dd 24#include <linux/err.h>
41901567 25#include <linux/page-flags.h>
fe896d18 26#include <linux/page_ref.h>
3b3b1a29 27#include <linux/overflow.h>
b5420237 28#include <linux/sizes.h>
7969f226 29#include <linux/sched.h>
65fddcfc 30#include <linux/pgtable.h>
34303244 31#include <linux/kasan.h>
f25cbb7a 32#include <linux/memremap.h>
ef6a22b7 33#include <linux/slab.h>
1da177e4
LT
34
35struct mempolicy;
36struct anon_vma;
bf181b9f 37struct anon_vma_chain;
e8edc6e0 38struct user_struct;
bce617ed 39struct pt_regs;
99fbb6bf 40struct folio_batch;
1da177e4 41
5ef64cc8
LT
42extern int sysctl_page_lock_unfairness;
43
b7ec1bf3 44void mm_core_init(void);
597b7305
MH
45void init_mm_internals(void);
46
a9ee6cf5 47#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 48extern unsigned long max_mapnr;
fccc9987
JL
49
50static inline void set_max_mapnr(unsigned long limit)
51{
52 max_mapnr = limit;
53}
54#else
55static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
56#endif
57
ca79b0c2
AK
58extern atomic_long_t _totalram_pages;
59static inline unsigned long totalram_pages(void)
60{
61 return (unsigned long)atomic_long_read(&_totalram_pages);
62}
63
64static inline void totalram_pages_inc(void)
65{
66 atomic_long_inc(&_totalram_pages);
67}
68
69static inline void totalram_pages_dec(void)
70{
71 atomic_long_dec(&_totalram_pages);
72}
73
74static inline void totalram_pages_add(long count)
75{
76 atomic_long_add(count, &_totalram_pages);
77}
78
1da177e4 79extern void * high_memory;
1da177e4 80extern int page_cluster;
ea0ffd0c 81extern const int page_cluster_max;
1da177e4
LT
82
83#ifdef CONFIG_SYSCTL
84extern int sysctl_legacy_va_layout;
85#else
86#define sysctl_legacy_va_layout 0
87#endif
88
d07e2259
DC
89#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90extern const int mmap_rnd_bits_min;
71a5849a 91extern int mmap_rnd_bits_max __ro_after_init;
d07e2259
DC
92extern int mmap_rnd_bits __read_mostly;
93#endif
94#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95extern const int mmap_rnd_compat_bits_min;
96extern const int mmap_rnd_compat_bits_max;
97extern int mmap_rnd_compat_bits __read_mostly;
98#endif
99
1da177e4 100#include <asm/page.h>
1da177e4 101#include <asm/processor.h>
1da177e4 102
79442ed1
TC
103#ifndef __pa_symbol
104#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
105#endif
106
1dff8083
AB
107#ifndef page_to_virt
108#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
109#endif
110
568c5fe5
LA
111#ifndef lm_alias
112#define lm_alias(x) __va(__pa_symbol(x))
113#endif
114
593befa6
DD
115/*
116 * To prevent common memory management code establishing
117 * a zero page mapping on a read fault.
118 * This macro should be defined within <asm/pgtable.h>.
119 * s390 does this to prevent multiplexing of hardware bits
120 * related to the physical page in case of virtualization.
121 */
122#ifndef mm_forbids_zeropage
123#define mm_forbids_zeropage(X) (0)
124#endif
125
a4a3ede2
PT
126/*
127 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
128 * If an architecture decides to implement their own version of
129 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
130 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 131 */
5470dea4 132#if BITS_PER_LONG == 64
3770e52f 133/* This function must be updated when the size of struct page grows above 96
5470dea4
AD
134 * or reduces below 56. The idea that compiler optimizes out switch()
135 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 136 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
137 * this can result in several of the writes here being dropped.
138 */
139#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
140static inline void __mm_zero_struct_page(struct page *page)
141{
142 unsigned long *_pp = (void *)page;
143
3770e52f 144 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
5470dea4
AD
145 BUILD_BUG_ON(sizeof(struct page) & 7);
146 BUILD_BUG_ON(sizeof(struct page) < 56);
3770e52f 147 BUILD_BUG_ON(sizeof(struct page) > 96);
5470dea4
AD
148
149 switch (sizeof(struct page)) {
3770e52f
AB
150 case 96:
151 _pp[11] = 0;
152 fallthrough;
153 case 88:
154 _pp[10] = 0;
155 fallthrough;
5470dea4 156 case 80:
df561f66
GS
157 _pp[9] = 0;
158 fallthrough;
5470dea4 159 case 72:
df561f66
GS
160 _pp[8] = 0;
161 fallthrough;
5470dea4 162 case 64:
df561f66
GS
163 _pp[7] = 0;
164 fallthrough;
5470dea4
AD
165 case 56:
166 _pp[6] = 0;
167 _pp[5] = 0;
168 _pp[4] = 0;
169 _pp[3] = 0;
170 _pp[2] = 0;
171 _pp[1] = 0;
172 _pp[0] = 0;
173 }
174}
175#else
a4a3ede2
PT
176#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
177#endif
178
ea606cf5
AR
179/*
180 * Default maximum number of active map areas, this limits the number of vmas
181 * per mm struct. Users can overwrite this number by sysctl but there is a
182 * problem.
183 *
184 * When a program's coredump is generated as ELF format, a section is created
185 * per a vma. In ELF, the number of sections is represented in unsigned short.
186 * This means the number of sections should be smaller than 65535 at coredump.
187 * Because the kernel adds some informative sections to a image of program at
188 * generating coredump, we need some margin. The number of extra sections is
189 * 1-3 now and depends on arch. We use "5" as safe margin, here.
190 *
191 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
192 * not a hard limit any more. Although some userspace tools can be surprised by
193 * that.
194 */
195#define MAPCOUNT_ELF_CORE_MARGIN (5)
196#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
197
198extern int sysctl_max_map_count;
199
c9b1d098 200extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 201extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 202
49f0ce5f
JM
203extern int sysctl_overcommit_memory;
204extern int sysctl_overcommit_ratio;
205extern unsigned long sysctl_overcommit_kbytes;
206
32927393
CH
207int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
208 loff_t *);
209int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
210 loff_t *);
56f3547b
FT
211int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
212 loff_t *);
49f0ce5f 213
1cfcee72 214#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 215#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 216#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
217#else
218#define nth_page(page,n) ((page) + (n))
659508f9 219#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 220#endif
1da177e4 221
27ac792c
AR
222/* to align the pointer to the (next) page boundary */
223#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224
335e52c2
DG
225/* to align the pointer to the (prev) page boundary */
226#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
227
0fa73b86 228/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 229#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 230
06d20bdb
MWO
231static inline struct folio *lru_to_folio(struct list_head *head)
232{
233 return list_entry((head)->prev, struct folio, lru);
234}
f86196ea 235
5748fbc5
KW
236void setup_initial_init_mm(void *start_code, void *end_code,
237 void *end_data, void *brk);
238
1da177e4
LT
239/*
240 * Linux kernel virtual memory manager primitives.
241 * The idea being to have a "virtual" mm in the same way
242 * we have a virtual fs - giving a cleaner interface to the
243 * mm details, and allowing different kinds of memory mappings
244 * (from shared memory to executable loading to arbitrary
245 * mmap() functions).
246 */
247
490fc053 248struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
249struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
250void vm_area_free(struct vm_area_struct *);
0d2ebf9c
SB
251/* Use only if VMA has no other users */
252void __vm_area_free(struct vm_area_struct *vma);
c43692e8 253
1da177e4 254#ifndef CONFIG_MMU
8feae131
DH
255extern struct rb_root nommu_region_tree;
256extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
257
258extern unsigned int kobjsize(const void *objp);
259#endif
260
261/*
605d9288 262 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 263 * When changing, update also include/trace/events/mmflags.h
1da177e4 264 */
cc2383ec
KK
265#define VM_NONE 0x00000000
266
1da177e4
LT
267#define VM_READ 0x00000001 /* currently active flags */
268#define VM_WRITE 0x00000002
269#define VM_EXEC 0x00000004
270#define VM_SHARED 0x00000008
271
7e2cff42 272/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
273#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
274#define VM_MAYWRITE 0x00000020
275#define VM_MAYEXEC 0x00000040
276#define VM_MAYSHARE 0x00000080
277
278#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
b6b7a8fa 279#ifdef CONFIG_MMU
16ba6f81 280#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
b6b7a8fa
DH
281#else /* CONFIG_MMU */
282#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
283#define VM_UFFD_MISSING 0
284#endif /* CONFIG_MMU */
6aab341e 285#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 286#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 287
1da177e4
LT
288#define VM_LOCKED 0x00002000
289#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
290
291 /* Used by sys_madvise() */
292#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
293#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
294
295#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
296#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 297#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 298#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 299#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 300#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 301#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 302#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 303#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 304#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 305
d9104d1c
CG
306#ifdef CONFIG_MEM_SOFT_DIRTY
307# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
308#else
309# define VM_SOFTDIRTY 0
310#endif
311
b379d790 312#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
313#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
314#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 315#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 316
63c17fb8
DH
317#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
318#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
319#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
320#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
321#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 322#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
54007f81 323#define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
63c17fb8
DH
324#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
325#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
326#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
327#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 328#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
54007f81 329#define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
63c17fb8
DH
330#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
331
5212213a 332#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
333# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
334# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 335# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
336# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
337# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
338#ifdef CONFIG_PPC
339# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
340#else
341# define VM_PKEY_BIT4 0
8f62c883 342#endif
5212213a
RP
343#endif /* CONFIG_ARCH_HAS_PKEYS */
344
54007f81 345#ifdef CONFIG_X86_USER_SHADOW_STACK
0266e7c5 346/*
87f0df78
RE
347 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
348 * support core mm.
0266e7c5 349 *
87f0df78
RE
350 * These VMAs will get a single end guard page. This helps userspace protect
351 * itself from attacks. A single page is enough for current shadow stack archs
352 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
353 * for more details on the guard size.
0266e7c5
RE
354 */
355# define VM_SHADOW_STACK VM_HIGH_ARCH_5
54007f81
YY
356#else
357# define VM_SHADOW_STACK VM_NONE
358#endif
359
5212213a
RP
360#if defined(CONFIG_X86)
361# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
362#elif defined(CONFIG_PPC)
363# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
364#elif defined(CONFIG_PARISC)
365# define VM_GROWSUP VM_ARCH_1
74a04967
KA
366#elif defined(CONFIG_SPARC64)
367# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
368# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
369#elif defined(CONFIG_ARM64)
370# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
371# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
372#elif !defined(CONFIG_MMU)
373# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
374#endif
375
9f341931
CM
376#if defined(CONFIG_ARM64_MTE)
377# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
378# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
379#else
380# define VM_MTE VM_NONE
381# define VM_MTE_ALLOWED VM_NONE
382#endif
383
cc2383ec
KK
384#ifndef VM_GROWSUP
385# define VM_GROWSUP VM_NONE
386#endif
387
7677f7fd 388#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
fb47a799 389# define VM_UFFD_MINOR_BIT 38
7677f7fd
AR
390# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
391#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
392# define VM_UFFD_MINOR VM_NONE
393#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
394
5c656fcd
AA
395/*
396 * This flag is used to connect VFIO to arch specific KVM code. It
397 * indicates that the memory under this VMA is safe for use with any
398 * non-cachable memory type inside KVM. Some VFIO devices, on some
399 * platforms, are thought to be unsafe and can cause machine crashes
400 * if KVM does not lock down the memory type.
401 */
402#ifdef CONFIG_64BIT
403#define VM_ALLOW_ANY_UNCACHED_BIT 39
404#define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
405#else
406#define VM_ALLOW_ANY_UNCACHED VM_NONE
407#endif
408
a8bef8ff 409/* Bits set in the VMA until the stack is in its final location */
f66066bc 410#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
a8bef8ff 411
c62da0c3
AK
412#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
413
414/* Common data flag combinations */
415#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
416 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
417#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
418 VM_MAYWRITE | VM_MAYEXEC)
419#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
420 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
421
422#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
423#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
424#endif
425
1da177e4
LT
426#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
427#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
428#endif
429
0266e7c5
RE
430#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
431
1da177e4 432#ifdef CONFIG_STACK_GROWSUP
30bdbb78 433#define VM_STACK VM_GROWSUP
f66066bc 434#define VM_STACK_EARLY VM_GROWSDOWN
1da177e4 435#else
30bdbb78 436#define VM_STACK VM_GROWSDOWN
f66066bc 437#define VM_STACK_EARLY 0
1da177e4
LT
438#endif
439
30bdbb78
KK
440#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
441
6cb4d9a2
AK
442/* VMA basic access permission flags */
443#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
444
445
b291f000 446/*
78f11a25 447 * Special vmas that are non-mergable, non-mlock()able.
b291f000 448 */
9050d7eb 449#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 450
b4443772
AK
451/* This mask prevents VMA from being scanned with khugepaged */
452#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
453
a0715cc2
AT
454/* This mask defines which mm->def_flags a process can inherit its parent */
455#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
456
e430a95a
SB
457/* This mask represents all the VMA flag bits used by mlock */
458#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
de60f5f1 459
2c2d57b5
KA
460/* Arch-specific flags to clear when updating VM flags on protection change */
461#ifndef VM_ARCH_CLEAR
462# define VM_ARCH_CLEAR VM_NONE
463#endif
464#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
465
1da177e4
LT
466/*
467 * mapping from the currently active vm_flags protection bits (the
468 * low four bits) to a page protection mask..
469 */
1da177e4 470
dde16072
PX
471/*
472 * The default fault flags that should be used by most of the
473 * arch-specific page fault handlers.
474 */
475#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
476 FAULT_FLAG_KILLABLE | \
477 FAULT_FLAG_INTERRUPTIBLE)
dde16072 478
4064b982
PX
479/**
480 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 481 * @flags: Fault flags.
4064b982
PX
482 *
483 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 484 * the mmap_lock for too long a time when waiting for another condition
4064b982 485 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
486 * mmap_lock in the first round to avoid potential starvation of other
487 * processes that would also want the mmap_lock.
4064b982
PX
488 *
489 * Return: true if the page fault allows retry and this is the first
490 * attempt of the fault handling; false otherwise.
491 */
da2f5eb3 492static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
493{
494 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
495 (!(flags & FAULT_FLAG_TRIED));
496}
497
282a8e03
RZ
498#define FAULT_FLAG_TRACE \
499 { FAULT_FLAG_WRITE, "WRITE" }, \
500 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
501 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
502 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
503 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
504 { FAULT_FLAG_TRIED, "TRIED" }, \
505 { FAULT_FLAG_USER, "USER" }, \
506 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee 507 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
55324e46
SB
508 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
509 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
282a8e03 510
54cb8821 511/*
11192337 512 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
513 * ->fault function. The vma's ->fault is responsible for returning a bitmask
514 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 515 *
c20cd45e
MH
516 * MM layer fills up gfp_mask for page allocations but fault handler might
517 * alter it if its implementation requires a different allocation context.
518 *
9b4bdd2f 519 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 520 */
d0217ac0 521struct vm_fault {
5857c920 522 const struct {
742d3372
WD
523 struct vm_area_struct *vma; /* Target VMA */
524 gfp_t gfp_mask; /* gfp mask to be used for allocations */
525 pgoff_t pgoff; /* Logical page offset based on vma */
824ddc60
NA
526 unsigned long address; /* Faulting virtual address - masked */
527 unsigned long real_address; /* Faulting virtual address - unmasked */
742d3372 528 };
da2f5eb3 529 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 530 * XXX: should really be 'const' */
82b0f8c3 531 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 532 * the 'address' */
a2d58167
DJ
533 pud_t *pud; /* Pointer to pud entry matching
534 * the 'address'
535 */
5db4f15c
YS
536 union {
537 pte_t orig_pte; /* Value of PTE at the time of fault */
538 pmd_t orig_pmd; /* Value of PMD at the time of fault,
539 * used by PMD fault only.
540 */
541 };
d0217ac0 542
3917048d 543 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 544 struct page *page; /* ->fault handlers should return a
83c54070 545 * page here, unless VM_FAULT_NOPAGE
d0217ac0 546 * is set (which is also implied by
83c54070 547 * VM_FAULT_ERROR).
d0217ac0 548 */
82b0f8c3 549 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
550 pte_t *pte; /* Pointer to pte entry matching
551 * the 'address'. NULL if the page
552 * table hasn't been allocated.
553 */
554 spinlock_t *ptl; /* Page table lock.
555 * Protects pte page table if 'pte'
556 * is not NULL, otherwise pmd.
557 */
7267ec00 558 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
559 * vm_ops->map_pages() sets up a page
560 * table from atomic context.
7267ec00
KS
561 * do_fault_around() pre-allocates
562 * page table to avoid allocation from
563 * atomic context.
564 */
54cb8821 565};
1da177e4
LT
566
567/*
568 * These are the virtual MM functions - opening of an area, closing and
569 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 570 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
571 */
572struct vm_operations_struct {
573 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
574 /**
575 * @close: Called when the VMA is being removed from the MM.
576 * Context: User context. May sleep. Caller holds mmap_lock.
577 */
1da177e4 578 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
579 /* Called any time before splitting to check if it's allowed */
580 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 581 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
582 /*
583 * Called by mprotect() to make driver-specific permission
584 * checks before mprotect() is finalised. The VMA must not
3e0ee843 585 * be modified. Returns 0 if mprotect() can proceed.
95bb7c42
SC
586 */
587 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
588 unsigned long end, unsigned long newflags);
1c8f4220 589 vm_fault_t (*fault)(struct vm_fault *vmf);
1d024e7a 590 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
f9ce0be7 591 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 592 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 593 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
594
595 /* notification that a previously read-only page is about to become
596 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 597 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 598
dd906184 599 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 600 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 601
28b2ee20 602 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
603 * for use by special VMAs. See also generic_access_phys() for a generic
604 * implementation useful for any iomem mapping.
28b2ee20
RR
605 */
606 int (*access)(struct vm_area_struct *vma, unsigned long addr,
607 void *buf, int len, int write);
78d683e8
AL
608
609 /* Called by the /proc/PID/maps code to ask the vma whether it
610 * has a special name. Returning non-NULL will also cause this
611 * vma to be dumped unconditionally. */
612 const char *(*name)(struct vm_area_struct *vma);
613
1da177e4 614#ifdef CONFIG_NUMA
a6020ed7
LS
615 /*
616 * set_policy() op must add a reference to any non-NULL @new mempolicy
617 * to hold the policy upon return. Caller should pass NULL @new to
618 * remove a policy and fall back to surrounding context--i.e. do not
619 * install a MPOL_DEFAULT policy, nor the task or system default
620 * mempolicy.
621 */
1da177e4 622 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
623
624 /*
625 * get_policy() op must add reference [mpol_get()] to any policy at
626 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
627 * in mm/mempolicy.c will do this automatically.
628 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 629 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
630 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
631 * must return NULL--i.e., do not "fallback" to task or system default
632 * policy.
633 */
1da177e4 634 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
ddc1a5cb 635 unsigned long addr, pgoff_t *ilx);
1da177e4 636#endif
667a0a06
DV
637 /*
638 * Called by vm_normal_page() for special PTEs to find the
639 * page for @addr. This is useful if the default behavior
640 * (using pte_page()) would not find the correct page.
641 */
642 struct page *(*find_special_page)(struct vm_area_struct *vma,
643 unsigned long addr);
1da177e4
LT
644};
645
ef6a22b7
MG
646#ifdef CONFIG_NUMA_BALANCING
647static inline void vma_numab_state_init(struct vm_area_struct *vma)
648{
649 vma->numab_state = NULL;
650}
651static inline void vma_numab_state_free(struct vm_area_struct *vma)
652{
653 kfree(vma->numab_state);
654}
655#else
656static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
657static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
658#endif /* CONFIG_NUMA_BALANCING */
659
5e31275c 660#ifdef CONFIG_PER_VMA_LOCK
5e31275c
SB
661/*
662 * Try to read-lock a vma. The function is allowed to occasionally yield false
663 * locked result to avoid performance overhead, in which case we fall back to
664 * using mmap_lock. The function should never yield false unlocked result.
665 */
666static inline bool vma_start_read(struct vm_area_struct *vma)
667{
b1f02b95
JH
668 /*
669 * Check before locking. A race might cause false locked result.
670 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
671 * ACQUIRE semantics, because this is just a lockless check whose result
672 * we don't rely on for anything - the mm_lock_seq read against which we
673 * need ordering is below.
674 */
675 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
5e31275c
SB
676 return false;
677
c7f8f31c 678 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
5e31275c
SB
679 return false;
680
681 /*
682 * Overflow might produce false locked result.
683 * False unlocked result is impossible because we modify and check
c7f8f31c 684 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
5e31275c 685 * modification invalidates all existing locks.
b1f02b95
JH
686 *
687 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
688 * racing with vma_end_write_all(), we only start reading from the VMA
689 * after it has been unlocked.
690 * This pairs with RELEASE semantics in vma_end_write_all().
5e31275c 691 */
b1f02b95 692 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
c7f8f31c 693 up_read(&vma->vm_lock->lock);
5e31275c
SB
694 return false;
695 }
696 return true;
697}
698
699static inline void vma_end_read(struct vm_area_struct *vma)
700{
701 rcu_read_lock(); /* keeps vma alive till the end of up_read */
c7f8f31c 702 up_read(&vma->vm_lock->lock);
5e31275c
SB
703 rcu_read_unlock();
704}
705
29a22b9e 706/* WARNING! Can only be used if mmap_lock is expected to be write-locked */
55fd6fcc 707static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
5e31275c 708{
5e31275c
SB
709 mmap_assert_write_locked(vma->vm_mm);
710
711 /*
712 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
713 * mm->mm_lock_seq can't be concurrently modified.
714 */
b1f02b95 715 *mm_lock_seq = vma->vm_mm->mm_lock_seq;
55fd6fcc
SB
716 return (vma->vm_lock_seq == *mm_lock_seq);
717}
718
90717566
JH
719/*
720 * Begin writing to a VMA.
721 * Exclude concurrent readers under the per-VMA lock until the currently
722 * write-locked mmap_lock is dropped or downgraded.
723 */
55fd6fcc
SB
724static inline void vma_start_write(struct vm_area_struct *vma)
725{
726 int mm_lock_seq;
727
728 if (__is_vma_write_locked(vma, &mm_lock_seq))
5e31275c
SB
729 return;
730
c7f8f31c 731 down_write(&vma->vm_lock->lock);
b1f02b95
JH
732 /*
733 * We should use WRITE_ONCE() here because we can have concurrent reads
734 * from the early lockless pessimistic check in vma_start_read().
735 * We don't really care about the correctness of that early check, but
736 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
737 */
738 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
c7f8f31c 739 up_write(&vma->vm_lock->lock);
5e31275c
SB
740}
741
742static inline void vma_assert_write_locked(struct vm_area_struct *vma)
743{
55fd6fcc
SB
744 int mm_lock_seq;
745
746 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
5e31275c
SB
747}
748
29a22b9e
SB
749static inline void vma_assert_locked(struct vm_area_struct *vma)
750{
751 if (!rwsem_is_locked(&vma->vm_lock->lock))
752 vma_assert_write_locked(vma);
753}
754
457f67be
SB
755static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
756{
757 /* When detaching vma should be write-locked */
758 if (detached)
759 vma_assert_write_locked(vma);
760 vma->detached = detached;
761}
762
1235ccd0
SB
763static inline void release_fault_lock(struct vm_fault *vmf)
764{
765 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
766 vma_end_read(vmf->vma);
767 else
768 mmap_read_unlock(vmf->vma->vm_mm);
769}
770
29a22b9e
SB
771static inline void assert_fault_locked(struct vm_fault *vmf)
772{
773 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
774 vma_assert_locked(vmf->vma);
775 else
776 mmap_assert_locked(vmf->vma->vm_mm);
777}
778
50ee3253
SB
779struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
780 unsigned long address);
781
5e31275c
SB
782#else /* CONFIG_PER_VMA_LOCK */
783
5e31275c
SB
784static inline bool vma_start_read(struct vm_area_struct *vma)
785 { return false; }
786static inline void vma_end_read(struct vm_area_struct *vma) {}
787static inline void vma_start_write(struct vm_area_struct *vma) {}
ce2fc5ff
SB
788static inline void vma_assert_write_locked(struct vm_area_struct *vma)
789 { mmap_assert_write_locked(vma->vm_mm); }
457f67be
SB
790static inline void vma_mark_detached(struct vm_area_struct *vma,
791 bool detached) {}
5e31275c 792
284e0592
MWO
793static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
794 unsigned long address)
795{
796 return NULL;
797}
798
32af81af
LG
799static inline void vma_assert_locked(struct vm_area_struct *vma)
800{
801 mmap_assert_locked(vma->vm_mm);
802}
803
1235ccd0
SB
804static inline void release_fault_lock(struct vm_fault *vmf)
805{
806 mmap_read_unlock(vmf->vma->vm_mm);
807}
808
29a22b9e
SB
809static inline void assert_fault_locked(struct vm_fault *vmf)
810{
811 mmap_assert_locked(vmf->vma->vm_mm);
812}
813
5e31275c
SB
814#endif /* CONFIG_PER_VMA_LOCK */
815
9a9d0b82
MG
816extern const struct vm_operations_struct vma_dummy_vm_ops;
817
c7f8f31c
SB
818/*
819 * WARNING: vma_init does not initialize vma->vm_lock.
820 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
821 */
027232da
KS
822static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
823{
a670468f 824 memset(vma, 0, sizeof(*vma));
027232da 825 vma->vm_mm = mm;
9a9d0b82 826 vma->vm_ops = &vma_dummy_vm_ops;
027232da 827 INIT_LIST_HEAD(&vma->anon_vma_chain);
457f67be 828 vma_mark_detached(vma, false);
ef6a22b7 829 vma_numab_state_init(vma);
027232da
KS
830}
831
bc292ab0
SB
832/* Use when VMA is not part of the VMA tree and needs no locking */
833static inline void vm_flags_init(struct vm_area_struct *vma,
834 vm_flags_t flags)
835{
836 ACCESS_PRIVATE(vma, __vm_flags) = flags;
837}
838
60081bf1
SB
839/*
840 * Use when VMA is part of the VMA tree and modifications need coordination
841 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
842 * it should be locked explicitly beforehand.
843 */
bc292ab0
SB
844static inline void vm_flags_reset(struct vm_area_struct *vma,
845 vm_flags_t flags)
846{
60081bf1 847 vma_assert_write_locked(vma);
bc292ab0
SB
848 vm_flags_init(vma, flags);
849}
850
601c3c29
SB
851static inline void vm_flags_reset_once(struct vm_area_struct *vma,
852 vm_flags_t flags)
853{
60081bf1 854 vma_assert_write_locked(vma);
601c3c29
SB
855 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
856}
857
bc292ab0
SB
858static inline void vm_flags_set(struct vm_area_struct *vma,
859 vm_flags_t flags)
860{
c7322933 861 vma_start_write(vma);
bc292ab0
SB
862 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
863}
864
865static inline void vm_flags_clear(struct vm_area_struct *vma,
866 vm_flags_t flags)
867{
c7322933 868 vma_start_write(vma);
bc292ab0
SB
869 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
870}
871
68f48381
SB
872/*
873 * Use only if VMA is not part of the VMA tree or has no other users and
874 * therefore needs no locking.
875 */
876static inline void __vm_flags_mod(struct vm_area_struct *vma,
877 vm_flags_t set, vm_flags_t clear)
878{
879 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
880}
881
bc292ab0
SB
882/*
883 * Use only when the order of set/clear operations is unimportant, otherwise
884 * use vm_flags_{set|clear} explicitly.
885 */
886static inline void vm_flags_mod(struct vm_area_struct *vma,
887 vm_flags_t set, vm_flags_t clear)
888{
c7322933 889 vma_start_write(vma);
68f48381 890 __vm_flags_mod(vma, set, clear);
bc292ab0
SB
891}
892
bfd40eaf
KS
893static inline void vma_set_anonymous(struct vm_area_struct *vma)
894{
895 vma->vm_ops = NULL;
896}
897
43675e6f
YS
898static inline bool vma_is_anonymous(struct vm_area_struct *vma)
899{
900 return !vma->vm_ops;
901}
902
11250fd1
KW
903/*
904 * Indicate if the VMA is a heap for the given task; for
905 * /proc/PID/maps that is the heap of the main task.
906 */
907static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
908{
d3bb89ea
KW
909 return vma->vm_start < vma->vm_mm->brk &&
910 vma->vm_end > vma->vm_mm->start_brk;
11250fd1
KW
911}
912
913/*
914 * Indicate if the VMA is a stack for the given task; for
915 * /proc/PID/maps that is the stack of the main task.
916 */
917static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
918{
919 /*
920 * We make no effort to guess what a given thread considers to be
921 * its "stack". It's not even well-defined for programs written
922 * languages like Go.
923 */
d3bb89ea
KW
924 return vma->vm_start <= vma->vm_mm->start_stack &&
925 vma->vm_end >= vma->vm_mm->start_stack;
11250fd1
KW
926}
927
222100ee
AK
928static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
929{
930 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
931
932 if (!maybe_stack)
933 return false;
934
935 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
936 VM_STACK_INCOMPLETE_SETUP)
937 return true;
938
939 return false;
940}
941
7969f226
AK
942static inline bool vma_is_foreign(struct vm_area_struct *vma)
943{
944 if (!current->mm)
945 return true;
946
947 if (current->mm != vma->vm_mm)
948 return true;
949
950 return false;
951}
3122e80e
AK
952
953static inline bool vma_is_accessible(struct vm_area_struct *vma)
954{
6cb4d9a2 955 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
956}
957
e8e17ee9
LS
958static inline bool is_shared_maywrite(vm_flags_t vm_flags)
959{
960 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
961 (VM_SHARED | VM_MAYWRITE);
962}
963
964static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
965{
966 return is_shared_maywrite(vma->vm_flags);
967}
968
f39af059
MWO
969static inline
970struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
971{
b62b633e 972 return mas_find(&vmi->mas, max - 1);
f39af059
MWO
973}
974
975static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
976{
977 /*
b62b633e 978 * Uses mas_find() to get the first VMA when the iterator starts.
f39af059
MWO
979 * Calling mas_next() could skip the first entry.
980 */
b62b633e 981 return mas_find(&vmi->mas, ULONG_MAX);
f39af059
MWO
982}
983
bb5dbd22
LH
984static inline
985struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
986{
987 return mas_next_range(&vmi->mas, ULONG_MAX);
988}
989
990
f39af059
MWO
991static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
992{
993 return mas_prev(&vmi->mas, 0);
994}
995
bb5dbd22
LH
996static inline
997struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
998{
999 return mas_prev_range(&vmi->mas, 0);
1000}
1001
f39af059
MWO
1002static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
1003{
1004 return vmi->mas.index;
1005}
1006
b62b633e
LH
1007static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
1008{
1009 return vmi->mas.last + 1;
1010}
1011static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
1012 unsigned long count)
1013{
1014 return mas_expected_entries(&vmi->mas, count);
1015}
1016
d2406291
PZ
1017static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1018 unsigned long start, unsigned long end, gfp_t gfp)
1019{
1020 __mas_set_range(&vmi->mas, start, end - 1);
1021 mas_store_gfp(&vmi->mas, NULL, gfp);
1022 if (unlikely(mas_is_err(&vmi->mas)))
1023 return -ENOMEM;
1024
1025 return 0;
1026}
1027
b62b633e
LH
1028/* Free any unused preallocations */
1029static inline void vma_iter_free(struct vma_iterator *vmi)
1030{
1031 mas_destroy(&vmi->mas);
1032}
1033
1034static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1035 struct vm_area_struct *vma)
1036{
1037 vmi->mas.index = vma->vm_start;
1038 vmi->mas.last = vma->vm_end - 1;
1039 mas_store(&vmi->mas, vma);
1040 if (unlikely(mas_is_err(&vmi->mas)))
1041 return -ENOMEM;
1042
1043 return 0;
1044}
1045
1046static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1047{
1048 mas_pause(&vmi->mas);
1049}
1050
1051static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1052{
1053 mas_set(&vmi->mas, addr);
1054}
1055
f39af059
MWO
1056#define for_each_vma(__vmi, __vma) \
1057 while (((__vma) = vma_next(&(__vmi))) != NULL)
1058
1059/* The MM code likes to work with exclusive end addresses */
1060#define for_each_vma_range(__vmi, __vma, __end) \
b62b633e 1061 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
f39af059 1062
43675e6f
YS
1063#ifdef CONFIG_SHMEM
1064/*
1065 * The vma_is_shmem is not inline because it is used only by slow
1066 * paths in userfault.
1067 */
1068bool vma_is_shmem(struct vm_area_struct *vma);
d09e8ca6 1069bool vma_is_anon_shmem(struct vm_area_struct *vma);
43675e6f
YS
1070#else
1071static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
d09e8ca6 1072static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
43675e6f
YS
1073#endif
1074
1075int vma_is_stack_for_current(struct vm_area_struct *vma);
1076
8b11ec1b
LT
1077/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1078#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1079
1da177e4
LT
1080struct mmu_gather;
1081struct inode;
1082
5eb5cea1
MWO
1083/*
1084 * compound_order() can be called without holding a reference, which means
1085 * that niceties like page_folio() don't work. These callers should be
1086 * prepared to handle wild return values. For example, PG_head may be
ebc1baf5 1087 * set before the order is initialised, or this may be a tail page.
5eb5cea1
MWO
1088 * See compaction.c for some good examples.
1089 */
5bf34d7c
MWO
1090static inline unsigned int compound_order(struct page *page)
1091{
5eb5cea1
MWO
1092 struct folio *folio = (struct folio *)page;
1093
1094 if (!test_bit(PG_head, &folio->flags))
5bf34d7c 1095 return 0;
ebc1baf5 1096 return folio->_flags_1 & 0xff;
5bf34d7c
MWO
1097}
1098
1099/**
1100 * folio_order - The allocation order of a folio.
1101 * @folio: The folio.
1102 *
1103 * A folio is composed of 2^order pages. See get_order() for the definition
1104 * of order.
1105 *
1106 * Return: The order of the folio.
1107 */
1108static inline unsigned int folio_order(struct folio *folio)
1109{
c3a15bff
MWO
1110 if (!folio_test_large(folio))
1111 return 0;
ebc1baf5 1112 return folio->_flags_1 & 0xff;
5bf34d7c
MWO
1113}
1114
71e3aac0 1115#include <linux/huge_mm.h>
1da177e4
LT
1116
1117/*
1118 * Methods to modify the page usage count.
1119 *
1120 * What counts for a page usage:
1121 * - cache mapping (page->mapping)
1122 * - private data (page->private)
1123 * - page mapped in a task's page tables, each mapping
1124 * is counted separately
1125 *
1126 * Also, many kernel routines increase the page count before a critical
1127 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
1128 */
1129
1130/*
da6052f7 1131 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 1132 */
7c8ee9a8
NP
1133static inline int put_page_testzero(struct page *page)
1134{
fe896d18
JK
1135 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1136 return page_ref_dec_and_test(page);
7c8ee9a8 1137}
1da177e4 1138
b620f633
MWO
1139static inline int folio_put_testzero(struct folio *folio)
1140{
1141 return put_page_testzero(&folio->page);
1142}
1143
1da177e4 1144/*
7c8ee9a8
NP
1145 * Try to grab a ref unless the page has a refcount of zero, return false if
1146 * that is the case.
8e0861fa
AK
1147 * This can be called when MMU is off so it must not access
1148 * any of the virtual mappings.
1da177e4 1149 */
c2530328 1150static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 1151{
fe896d18 1152 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 1153}
1da177e4 1154
3c1ea2c7
VMO
1155static inline struct folio *folio_get_nontail_page(struct page *page)
1156{
1157 if (unlikely(!get_page_unless_zero(page)))
1158 return NULL;
1159 return (struct folio *)page;
1160}
1161
53df8fdc 1162extern int page_is_ram(unsigned long pfn);
124fe20d
DW
1163
1164enum {
1165 REGION_INTERSECTS,
1166 REGION_DISJOINT,
1167 REGION_MIXED,
1168};
1169
1c29f25b
TK
1170int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1171 unsigned long desc);
53df8fdc 1172
48667e7a 1173/* Support for virtually mapped pages */
b3bdda02
CL
1174struct page *vmalloc_to_page(const void *addr);
1175unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 1176
0738c4bb
PM
1177/*
1178 * Determine if an address is within the vmalloc range
1179 *
1180 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1181 * is no special casing required.
1182 */
81ac3ad9 1183#ifdef CONFIG_MMU
186525bd 1184extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
1185extern int is_vmalloc_or_module_addr(const void *x);
1186#else
186525bd
IM
1187static inline bool is_vmalloc_addr(const void *x)
1188{
1189 return false;
1190}
934831d0 1191static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
1192{
1193 return 0;
1194}
1195#endif
9e2779fa 1196
74e8ee47
MWO
1197/*
1198 * How many times the entire folio is mapped as a single unit (eg by a
1199 * PMD or PUD entry). This is probably not what you want, except for
cb67f428 1200 * debugging purposes - it does not include PTE-mapped sub-pages; look
5ce1f484 1201 * at folio_mapcount() or page_mapcount() instead.
74e8ee47 1202 */
b84fd283 1203static inline int folio_entire_mapcount(const struct folio *folio)
6dc5ea16 1204{
74e8ee47 1205 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1aa4d03b 1206 return atomic_read(&folio->_entire_mapcount) + 1;
53f9263b
KS
1207}
1208
70b50f94
AA
1209/*
1210 * The atomic page->_mapcount, starts from -1: so that transitions
1211 * both from it and to it can be tracked, using atomic_inc_and_test
1212 * and atomic_add_negative(-1).
1213 */
22b751c3 1214static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
1215{
1216 atomic_set(&(page)->_mapcount, -1);
1217}
1218
c97eeb8f
MWO
1219/**
1220 * page_mapcount() - Number of times this precise page is mapped.
1221 * @page: The page.
1222 *
1223 * The number of times this page is mapped. If this page is part of
1224 * a large folio, it includes the number of times this page is mapped
1225 * as part of that folio.
6988f31d 1226 *
fd1a745c
MWO
1227 * Will report 0 for pages which cannot be mapped into userspace, eg
1228 * slab, page tables and similar.
6988f31d 1229 */
70b50f94
AA
1230static inline int page_mapcount(struct page *page)
1231{
cb67f428 1232 int mapcount = atomic_read(&page->_mapcount) + 1;
b20ce5e0 1233
fd1a745c
MWO
1234 /* Handle page_has_type() pages */
1235 if (mapcount < 0)
1236 mapcount = 0;
c97eeb8f
MWO
1237 if (unlikely(PageCompound(page)))
1238 mapcount += folio_entire_mapcount(page_folio(page));
1239
1240 return mapcount;
b20ce5e0
KS
1241}
1242
b84fd283 1243int folio_total_mapcount(const struct folio *folio);
4ba1119c 1244
cb67f428
HD
1245/**
1246 * folio_mapcount() - Calculate the number of mappings of this folio.
1247 * @folio: The folio.
1248 *
1249 * A large folio tracks both how many times the entire folio is mapped,
1250 * and how many times each individual page in the folio is mapped.
1251 * This function calculates the total number of times the folio is
1252 * mapped.
1253 *
1254 * Return: The number of times this folio is mapped.
1255 */
b84fd283 1256static inline int folio_mapcount(const struct folio *folio)
4ba1119c 1257{
cb67f428
HD
1258 if (likely(!folio_test_large(folio)))
1259 return atomic_read(&folio->_mapcount) + 1;
b14224fb 1260 return folio_total_mapcount(folio);
4ba1119c
MWO
1261}
1262
b84fd283 1263static inline bool folio_large_is_mapped(const struct folio *folio)
be5ef2d9 1264{
4b51634c 1265 /*
1aa4d03b 1266 * Reading _entire_mapcount below could be omitted if hugetlb
eec20426 1267 * participated in incrementing nr_pages_mapped when compound mapped.
4b51634c 1268 */
eec20426 1269 return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1aa4d03b 1270 atomic_read(&folio->_entire_mapcount) >= 0;
cb67f428
HD
1271}
1272
1273/**
1274 * folio_mapped - Is this folio mapped into userspace?
1275 * @folio: The folio.
1276 *
1277 * Return: True if any page in this folio is referenced by user page tables.
1278 */
1279static inline bool folio_mapped(struct folio *folio)
1280{
be5ef2d9
HD
1281 if (likely(!folio_test_large(folio)))
1282 return atomic_read(&folio->_mapcount) >= 0;
1283 return folio_large_is_mapped(folio);
1284}
1285
1286/*
1287 * Return true if this page is mapped into pagetables.
1288 * For compound page it returns true if any sub-page of compound page is mapped,
1289 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1290 */
b84fd283 1291static inline bool page_mapped(const struct page *page)
be5ef2d9
HD
1292{
1293 if (likely(!PageCompound(page)))
1294 return atomic_read(&page->_mapcount) >= 0;
1295 return folio_large_is_mapped(page_folio(page));
70b50f94
AA
1296}
1297
b49af68f
CL
1298static inline struct page *virt_to_head_page(const void *x)
1299{
1300 struct page *page = virt_to_page(x);
ccaafd7f 1301
1d798ca3 1302 return compound_head(page);
b49af68f
CL
1303}
1304
7d4203c1
VB
1305static inline struct folio *virt_to_folio(const void *x)
1306{
1307 struct page *page = virt_to_page(x);
1308
1309 return page_folio(page);
1310}
1311
8d29c703 1312void __folio_put(struct folio *folio);
ddc58f27 1313
1d7ea732 1314void put_pages_list(struct list_head *pages);
1da177e4 1315
8dfcc9ba 1316void split_page(struct page *page, unsigned int order);
715cbfd6 1317void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 1318
a1554c00
ML
1319unsigned long nr_free_buffer_pages(void);
1320
5375336c 1321void destroy_large_folio(struct folio *folio);
33f2ef89 1322
a50b854e
MWO
1323/* Returns the number of bytes in this potentially compound page. */
1324static inline unsigned long page_size(struct page *page)
1325{
1326 return PAGE_SIZE << compound_order(page);
1327}
1328
94ad9338
MWO
1329/* Returns the number of bits needed for the number of bytes in a page */
1330static inline unsigned int page_shift(struct page *page)
1331{
1332 return PAGE_SHIFT + compound_order(page);
1333}
1334
18788cfa
MWO
1335/**
1336 * thp_order - Order of a transparent huge page.
1337 * @page: Head page of a transparent huge page.
1338 */
1339static inline unsigned int thp_order(struct page *page)
1340{
1341 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1342 return compound_order(page);
1343}
1344
18788cfa
MWO
1345/**
1346 * thp_size - Size of a transparent huge page.
1347 * @page: Head page of a transparent huge page.
1348 *
1349 * Return: Number of bytes in this page.
1350 */
1351static inline unsigned long thp_size(struct page *page)
1352{
1353 return PAGE_SIZE << thp_order(page);
1354}
1355
3dece370 1356#ifdef CONFIG_MMU
14fd403f
AA
1357/*
1358 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1359 * servicing faults for write access. In the normal case, do always want
1360 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1361 * that do not have writing enabled, when used by access_process_vm.
1362 */
1363static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1364{
1365 if (likely(vma->vm_flags & VM_WRITE))
161e393c 1366 pte = pte_mkwrite(pte, vma);
14fd403f
AA
1367 return pte;
1368}
8c6e50b0 1369
f9ce0be7 1370vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
3bd786f7
YF
1371void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1372 struct page *page, unsigned int nr, unsigned long addr);
f9ce0be7 1373
2b740303 1374vm_fault_t finish_fault(struct vm_fault *vmf);
3dece370 1375#endif
14fd403f 1376
1da177e4
LT
1377/*
1378 * Multiple processes may "see" the same page. E.g. for untouched
1379 * mappings of /dev/null, all processes see the same page full of
1380 * zeroes, and text pages of executables and shared libraries have
1381 * only one copy in memory, at most, normally.
1382 *
1383 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1384 * page_count() == 0 means the page is free. page->lru is then used for
1385 * freelist management in the buddy allocator.
da6052f7 1386 * page_count() > 0 means the page has been allocated.
1da177e4 1387 *
da6052f7
NP
1388 * Pages are allocated by the slab allocator in order to provide memory
1389 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1390 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1391 * unless a particular usage is carefully commented. (the responsibility of
1392 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1393 *
da6052f7
NP
1394 * A page may be used by anyone else who does a __get_free_page().
1395 * In this case, page_count still tracks the references, and should only
1396 * be used through the normal accessor functions. The top bits of page->flags
1397 * and page->virtual store page management information, but all other fields
1398 * are unused and could be used privately, carefully. The management of this
1399 * page is the responsibility of the one who allocated it, and those who have
1400 * subsequently been given references to it.
1401 *
1402 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1403 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1404 * The following discussion applies only to them.
1405 *
da6052f7
NP
1406 * A pagecache page contains an opaque `private' member, which belongs to the
1407 * page's address_space. Usually, this is the address of a circular list of
1408 * the page's disk buffers. PG_private must be set to tell the VM to call
1409 * into the filesystem to release these pages.
1da177e4 1410 *
da6052f7
NP
1411 * A page may belong to an inode's memory mapping. In this case, page->mapping
1412 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1413 * in units of PAGE_SIZE.
1da177e4 1414 *
da6052f7
NP
1415 * If pagecache pages are not associated with an inode, they are said to be
1416 * anonymous pages. These may become associated with the swapcache, and in that
1417 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1418 *
da6052f7
NP
1419 * In either case (swapcache or inode backed), the pagecache itself holds one
1420 * reference to the page. Setting PG_private should also increment the
1421 * refcount. The each user mapping also has a reference to the page.
1da177e4 1422 *
da6052f7 1423 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1424 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1425 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1426 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1427 *
da6052f7 1428 * All pagecache pages may be subject to I/O:
1da177e4
LT
1429 * - inode pages may need to be read from disk,
1430 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1431 * to be written back to the inode on disk,
1432 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1433 * modified may need to be swapped out to swap space and (later) to be read
1434 * back into memory.
1da177e4
LT
1435 */
1436
27674ef6 1437#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1438DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1439
f4f451a1
MS
1440bool __put_devmap_managed_page_refs(struct page *page, int refs);
1441static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1442{
1443 if (!static_branch_unlikely(&devmap_managed_key))
1444 return false;
1445 if (!is_zone_device_page(page))
1446 return false;
f4f451a1 1447 return __put_devmap_managed_page_refs(page, refs);
e7638488 1448}
27674ef6 1449#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
f4f451a1 1450static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1451{
1452 return false;
1453}
27674ef6 1454#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
7b2d55d2 1455
f4f451a1
MS
1456static inline bool put_devmap_managed_page(struct page *page)
1457{
1458 return put_devmap_managed_page_refs(page, 1);
1459}
1460
f958d7b5 1461/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1462#define folio_ref_zero_or_close_to_overflow(folio) \
1463 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1464
1465/**
1466 * folio_get - Increment the reference count on a folio.
1467 * @folio: The folio.
1468 *
1469 * Context: May be called in any context, as long as you know that
1470 * you have a refcount on the folio. If you do not already have one,
1471 * folio_try_get() may be the right interface for you to use.
1472 */
1473static inline void folio_get(struct folio *folio)
1474{
1475 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1476 folio_ref_inc(folio);
1477}
f958d7b5 1478
3565fce3
DW
1479static inline void get_page(struct page *page)
1480{
86d234cb 1481 folio_get(page_folio(page));
3565fce3
DW
1482}
1483
cd1adf1b
LT
1484static inline __must_check bool try_get_page(struct page *page)
1485{
1486 page = compound_head(page);
1487 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1488 return false;
1489 page_ref_inc(page);
1490 return true;
1491}
3565fce3 1492
b620f633
MWO
1493/**
1494 * folio_put - Decrement the reference count on a folio.
1495 * @folio: The folio.
1496 *
1497 * If the folio's reference count reaches zero, the memory will be
1498 * released back to the page allocator and may be used by another
1499 * allocation immediately. Do not access the memory or the struct folio
1500 * after calling folio_put() unless you can be sure that it wasn't the
1501 * last reference.
1502 *
1503 * Context: May be called in process or interrupt context, but not in NMI
1504 * context. May be called while holding a spinlock.
1505 */
1506static inline void folio_put(struct folio *folio)
1507{
1508 if (folio_put_testzero(folio))
8d29c703 1509 __folio_put(folio);
b620f633
MWO
1510}
1511
3fe7fa58
MWO
1512/**
1513 * folio_put_refs - Reduce the reference count on a folio.
1514 * @folio: The folio.
1515 * @refs: The amount to subtract from the folio's reference count.
1516 *
1517 * If the folio's reference count reaches zero, the memory will be
1518 * released back to the page allocator and may be used by another
1519 * allocation immediately. Do not access the memory or the struct folio
1520 * after calling folio_put_refs() unless you can be sure that these weren't
1521 * the last references.
1522 *
1523 * Context: May be called in process or interrupt context, but not in NMI
1524 * context. May be called while holding a spinlock.
1525 */
1526static inline void folio_put_refs(struct folio *folio, int refs)
1527{
1528 if (folio_ref_sub_and_test(folio, refs))
8d29c703 1529 __folio_put(folio);
3fe7fa58
MWO
1530}
1531
99fbb6bf
MWO
1532void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1533
0411d6ee
SP
1534/*
1535 * union release_pages_arg - an array of pages or folios
449c7967 1536 *
0411d6ee 1537 * release_pages() releases a simple array of multiple pages, and
449c7967
LT
1538 * accepts various different forms of said page array: either
1539 * a regular old boring array of pages, an array of folios, or
1540 * an array of encoded page pointers.
1541 *
1542 * The transparent union syntax for this kind of "any of these
1543 * argument types" is all kinds of ugly, so look away.
1544 */
1545typedef union {
1546 struct page **pages;
1547 struct folio **folios;
1548 struct encoded_page **encoded_pages;
1549} release_pages_arg __attribute__ ((__transparent_union__));
1550
1551void release_pages(release_pages_arg, int nr);
e3c4cebf
MWO
1552
1553/**
1554 * folios_put - Decrement the reference count on an array of folios.
1555 * @folios: The folios.
e3c4cebf 1556 *
99fbb6bf
MWO
1557 * Like folio_put(), but for a batch of folios. This is more efficient
1558 * than writing the loop yourself as it will optimise the locks which need
1559 * to be taken if the folios are freed. The folios batch is returned
1560 * empty and ready to be reused for another batch; there is no need to
1561 * reinitialise it.
e3c4cebf
MWO
1562 *
1563 * Context: May be called in process or interrupt context, but not in NMI
1564 * context. May be called while holding a spinlock.
1565 */
99fbb6bf 1566static inline void folios_put(struct folio_batch *folios)
e3c4cebf 1567{
99fbb6bf 1568 folios_put_refs(folios, NULL);
3fe7fa58
MWO
1569}
1570
3565fce3
DW
1571static inline void put_page(struct page *page)
1572{
b620f633 1573 struct folio *folio = page_folio(page);
3565fce3 1574
7b2d55d2 1575 /*
89574945
CH
1576 * For some devmap managed pages we need to catch refcount transition
1577 * from 2 to 1:
7b2d55d2 1578 */
89574945 1579 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1580 return;
b620f633 1581 folio_put(folio);
3565fce3
DW
1582}
1583
3faa52c0
JH
1584/*
1585 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1586 * the page's refcount so that two separate items are tracked: the original page
1587 * reference count, and also a new count of how many pin_user_pages() calls were
1588 * made against the page. ("gup-pinned" is another term for the latter).
1589 *
1590 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1591 * distinct from normal pages. As such, the unpin_user_page() call (and its
1592 * variants) must be used in order to release gup-pinned pages.
1593 *
1594 * Choice of value:
1595 *
1596 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1597 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1598 * simpler, due to the fact that adding an even power of two to the page
1599 * refcount has the effect of using only the upper N bits, for the code that
1600 * counts up using the bias value. This means that the lower bits are left for
1601 * the exclusive use of the original code that increments and decrements by one
1602 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1603 *
3faa52c0
JH
1604 * Of course, once the lower bits overflow into the upper bits (and this is
1605 * OK, because subtraction recovers the original values), then visual inspection
1606 * no longer suffices to directly view the separate counts. However, for normal
1607 * applications that don't have huge page reference counts, this won't be an
1608 * issue.
fc1d8e7c 1609 *
40fcc7fc
MWO
1610 * Locking: the lockless algorithm described in folio_try_get_rcu()
1611 * provides safe operation for get_user_pages(), page_mkclean() and
1612 * other calls that race to set up page table entries.
fc1d8e7c 1613 */
3faa52c0 1614#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1615
3faa52c0 1616void unpin_user_page(struct page *page);
f1f6a7dd
JH
1617void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1618 bool make_dirty);
458a4f78
JM
1619void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1620 bool make_dirty);
f1f6a7dd 1621void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1622
97a7e473
PX
1623static inline bool is_cow_mapping(vm_flags_t flags)
1624{
1625 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1626}
1627
fc4f4be9
DH
1628#ifndef CONFIG_MMU
1629static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1630{
1631 /*
1632 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1633 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1634 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1635 * underlying memory if ptrace is active, so this is only possible if
1636 * ptrace does not apply. Note that there is no mprotect() to upgrade
1637 * write permissions later.
1638 */
b6b7a8fa 1639 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
fc4f4be9
DH
1640}
1641#endif
1642
9127ab4f
CS
1643#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1644#define SECTION_IN_PAGE_FLAGS
1645#endif
1646
89689ae7 1647/*
7a8010cd
VB
1648 * The identification function is mainly used by the buddy allocator for
1649 * determining if two pages could be buddies. We are not really identifying
1650 * the zone since we could be using the section number id if we do not have
1651 * node id available in page flags.
1652 * We only guarantee that it will return the same value for two combinable
1653 * pages in a zone.
89689ae7 1654 */
cb2b95e1
AW
1655static inline int page_zone_id(struct page *page)
1656{
89689ae7 1657 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1658}
1659
89689ae7 1660#ifdef NODE_NOT_IN_PAGE_FLAGS
9164448d 1661int page_to_nid(const struct page *page);
89689ae7 1662#else
33dd4e0e 1663static inline int page_to_nid(const struct page *page)
d41dee36 1664{
9164448d 1665 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1666}
89689ae7
CL
1667#endif
1668
874fd90c
MWO
1669static inline int folio_nid(const struct folio *folio)
1670{
1671 return page_to_nid(&folio->page);
1672}
1673
57e0a030 1674#ifdef CONFIG_NUMA_BALANCING
33024536
HY
1675/* page access time bits needs to hold at least 4 seconds */
1676#define PAGE_ACCESS_TIME_MIN_BITS 12
1677#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1678#define PAGE_ACCESS_TIME_BUCKETS \
1679 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1680#else
1681#define PAGE_ACCESS_TIME_BUCKETS 0
1682#endif
1683
1684#define PAGE_ACCESS_TIME_MASK \
1685 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1686
90572890 1687static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1688{
90572890 1689 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1690}
1691
90572890 1692static inline int cpupid_to_pid(int cpupid)
57e0a030 1693{
90572890 1694 return cpupid & LAST__PID_MASK;
57e0a030 1695}
b795854b 1696
90572890 1697static inline int cpupid_to_cpu(int cpupid)
b795854b 1698{
90572890 1699 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1700}
1701
90572890 1702static inline int cpupid_to_nid(int cpupid)
b795854b 1703{
90572890 1704 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1705}
1706
90572890 1707static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1708{
90572890 1709 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1710}
1711
90572890 1712static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1713{
90572890 1714 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1715}
1716
8c8a743c
PZ
1717static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1718{
1719 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1720}
1721
1722#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890 1723#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
8f0f4788 1724static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
b795854b 1725{
8f0f4788 1726 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1727}
90572890 1728
f39eac30 1729static inline int folio_last_cpupid(struct folio *folio)
90572890 1730{
f39eac30 1731 return folio->_last_cpupid;
90572890
PZ
1732}
1733static inline void page_cpupid_reset_last(struct page *page)
b795854b 1734{
1ae71d03 1735 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1736}
1737#else
f39eac30 1738static inline int folio_last_cpupid(struct folio *folio)
75980e97 1739{
f39eac30 1740 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1741}
1742
8f0f4788 1743int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
75980e97 1744
90572890 1745static inline void page_cpupid_reset_last(struct page *page)
75980e97 1746{
09940a4f 1747 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1748}
90572890 1749#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
33024536 1750
f3930843 1751static inline int folio_xchg_access_time(struct folio *folio, int time)
33024536
HY
1752{
1753 int last_time;
1754
8f0f4788
KW
1755 last_time = folio_xchg_last_cpupid(folio,
1756 time >> PAGE_ACCESS_TIME_BUCKETS);
33024536
HY
1757 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1758}
fc137c0d
R
1759
1760static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1761{
1762 unsigned int pid_bit;
1763
d46031f4 1764 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
f3a6c979
MG
1765 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1766 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
fc137c0d
R
1767 }
1768}
90572890 1769#else /* !CONFIG_NUMA_BALANCING */
8f0f4788 1770static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
57e0a030 1771{
8f0f4788 1772 return folio_nid(folio); /* XXX */
57e0a030
MG
1773}
1774
f3930843 1775static inline int folio_xchg_access_time(struct folio *folio, int time)
33024536
HY
1776{
1777 return 0;
1778}
1779
f39eac30 1780static inline int folio_last_cpupid(struct folio *folio)
57e0a030 1781{
f39eac30 1782 return folio_nid(folio); /* XXX */
57e0a030
MG
1783}
1784
90572890 1785static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1786{
1787 return -1;
1788}
1789
90572890 1790static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1791{
1792 return -1;
1793}
1794
90572890 1795static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1796{
1797 return -1;
1798}
1799
90572890
PZ
1800static inline int cpu_pid_to_cpupid(int nid, int pid)
1801{
1802 return -1;
1803}
1804
1805static inline bool cpupid_pid_unset(int cpupid)
b795854b 1806{
2b787449 1807 return true;
b795854b
MG
1808}
1809
90572890 1810static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1811{
1812}
8c8a743c
PZ
1813
1814static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1815{
1816 return false;
1817}
fc137c0d
R
1818
1819static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1820{
1821}
90572890 1822#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1823
2e903b91 1824#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1825
cf10bd4c
AK
1826/*
1827 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1828 * setting tags for all pages to native kernel tag value 0xff, as the default
1829 * value 0x00 maps to 0xff.
1830 */
1831
2813b9c0
AK
1832static inline u8 page_kasan_tag(const struct page *page)
1833{
5cb6674b 1834 u8 tag = KASAN_TAG_KERNEL;
cf10bd4c
AK
1835
1836 if (kasan_enabled()) {
1837 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1838 tag ^= 0xff;
1839 }
1840
1841 return tag;
2813b9c0
AK
1842}
1843
1844static inline void page_kasan_tag_set(struct page *page, u8 tag)
1845{
27fe7339
PC
1846 unsigned long old_flags, flags;
1847
1848 if (!kasan_enabled())
1849 return;
1850
1851 tag ^= 0xff;
1852 old_flags = READ_ONCE(page->flags);
1853 do {
1854 flags = old_flags;
1855 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1856 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1857 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1858}
1859
1860static inline void page_kasan_tag_reset(struct page *page)
1861{
34303244 1862 if (kasan_enabled())
5cb6674b 1863 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
2813b9c0 1864}
34303244
AK
1865
1866#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1867
2813b9c0
AK
1868static inline u8 page_kasan_tag(const struct page *page)
1869{
1870 return 0xff;
1871}
1872
1873static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1874static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1875
1876#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1877
33dd4e0e 1878static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1879{
1880 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1881}
1882
75ef7184
MG
1883static inline pg_data_t *page_pgdat(const struct page *page)
1884{
1885 return NODE_DATA(page_to_nid(page));
1886}
1887
32b8fc48
MWO
1888static inline struct zone *folio_zone(const struct folio *folio)
1889{
1890 return page_zone(&folio->page);
1891}
1892
1893static inline pg_data_t *folio_pgdat(const struct folio *folio)
1894{
1895 return page_pgdat(&folio->page);
1896}
1897
9127ab4f 1898#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1899static inline void set_page_section(struct page *page, unsigned long section)
1900{
1901 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1902 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1903}
1904
aa462abe 1905static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1906{
1907 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1908}
308c05e3 1909#endif
d41dee36 1910
bf6bd276
MWO
1911/**
1912 * folio_pfn - Return the Page Frame Number of a folio.
1913 * @folio: The folio.
1914 *
1915 * A folio may contain multiple pages. The pages have consecutive
1916 * Page Frame Numbers.
1917 *
1918 * Return: The Page Frame Number of the first page in the folio.
1919 */
1920static inline unsigned long folio_pfn(struct folio *folio)
1921{
1922 return page_to_pfn(&folio->page);
1923}
1924
018ee47f
YZ
1925static inline struct folio *pfn_folio(unsigned long pfn)
1926{
1927 return page_folio(pfn_to_page(pfn));
1928}
1929
0b90ddae
MWO
1930/**
1931 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1932 * @folio: The folio.
1933 *
1934 * This function checks if a folio has been pinned via a call to
1935 * a function in the pin_user_pages() family.
1936 *
1937 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1938 * because it means "definitely not pinned for DMA", but true means "probably
1939 * pinned for DMA, but possibly a false positive due to having at least
1940 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1941 *
1942 * False positives are OK, because: a) it's unlikely for a folio to
1943 * get that many refcounts, and b) all the callers of this routine are
1944 * expected to be able to deal gracefully with a false positive.
1945 *
1946 * For large folios, the result will be exactly correct. That's because
94688e8e 1947 * we have more tracking data available: the _pincount field is used
0b90ddae
MWO
1948 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1949 *
1950 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1951 *
1952 * Return: True, if it is likely that the page has been "dma-pinned".
1953 * False, if the page is definitely not dma-pinned.
1954 */
1955static inline bool folio_maybe_dma_pinned(struct folio *folio)
1956{
1957 if (folio_test_large(folio))
94688e8e 1958 return atomic_read(&folio->_pincount) > 0;
0b90ddae
MWO
1959
1960 /*
1961 * folio_ref_count() is signed. If that refcount overflows, then
1962 * folio_ref_count() returns a negative value, and callers will avoid
1963 * further incrementing the refcount.
1964 *
1965 * Here, for that overflow case, use the sign bit to count a little
1966 * bit higher via unsigned math, and thus still get an accurate result.
1967 */
1968 return ((unsigned int)folio_ref_count(folio)) >=
1969 GUP_PIN_COUNTING_BIAS;
1970}
1971
1972static inline bool page_maybe_dma_pinned(struct page *page)
1973{
1974 return folio_maybe_dma_pinned(page_folio(page));
1975}
1976
1977/*
1978 * This should most likely only be called during fork() to see whether we
fb3d824d 1979 * should break the cow immediately for an anon page on the src mm.
623a1ddf
DH
1980 *
1981 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
0b90ddae 1982 */
ebe2e35e
DH
1983static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1984 struct folio *folio)
0b90ddae 1985{
623a1ddf 1986 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
0b90ddae
MWO
1987
1988 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1989 return false;
1990
ebe2e35e
DH
1991 return folio_maybe_dma_pinned(folio);
1992}
1993
c8070b78
DH
1994/**
1995 * is_zero_page - Query if a page is a zero page
1996 * @page: The page to query
1997 *
1998 * This returns true if @page is one of the permanent zero pages.
1999 */
2000static inline bool is_zero_page(const struct page *page)
2001{
2002 return is_zero_pfn(page_to_pfn(page));
2003}
2004
2005/**
2006 * is_zero_folio - Query if a folio is a zero page
2007 * @folio: The folio to query
2008 *
2009 * This returns true if @folio is one of the permanent zero pages.
2010 */
2011static inline bool is_zero_folio(const struct folio *folio)
2012{
2013 return is_zero_page(&folio->page);
2014}
2015
5d949953 2016/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
8e3560d9 2017#ifdef CONFIG_MIGRATION
5d949953 2018static inline bool folio_is_longterm_pinnable(struct folio *folio)
8e3560d9 2019{
1c563432 2020#ifdef CONFIG_CMA
5d949953 2021 int mt = folio_migratetype(folio);
1c563432
MK
2022
2023 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2024 return false;
2025#endif
c8070b78 2026 /* The zero page can be "pinned" but gets special handling. */
6e17c6de 2027 if (is_zero_folio(folio))
fcab34b4
AW
2028 return true;
2029
2030 /* Coherent device memory must always allow eviction. */
5d949953 2031 if (folio_is_device_coherent(folio))
fcab34b4
AW
2032 return false;
2033
5d949953
VMO
2034 /* Otherwise, non-movable zone folios can be pinned. */
2035 return !folio_is_zone_movable(folio);
2036
8e3560d9
PT
2037}
2038#else
5d949953 2039static inline bool folio_is_longterm_pinnable(struct folio *folio)
8e3560d9
PT
2040{
2041 return true;
2042}
2043#endif
2044
2f1b6248 2045static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
2046{
2047 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2048 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2049}
2f1b6248 2050
348f8b6c
DH
2051static inline void set_page_node(struct page *page, unsigned long node)
2052{
2053 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2054 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 2055}
89689ae7 2056
2f1b6248 2057static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 2058 unsigned long node, unsigned long pfn)
1da177e4 2059{
348f8b6c
DH
2060 set_page_zone(page, zone);
2061 set_page_node(page, node);
9127ab4f 2062#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 2063 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 2064#endif
1da177e4
LT
2065}
2066
7b230db3
MWO
2067/**
2068 * folio_nr_pages - The number of pages in the folio.
2069 * @folio: The folio.
2070 *
2071 * Return: A positive power of two.
2072 */
b84fd283 2073static inline long folio_nr_pages(const struct folio *folio)
7b230db3 2074{
c3a15bff
MWO
2075 if (!folio_test_large(folio))
2076 return 1;
2077#ifdef CONFIG_64BIT
2078 return folio->_folio_nr_pages;
2079#else
ebc1baf5 2080 return 1L << (folio->_flags_1 & 0xff);
c3a15bff 2081#endif
7b230db3
MWO
2082}
2083
fae7d834
MWO
2084/* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2085#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2086#define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
2087#else
2088#define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
2089#endif
2090
21a000fe
MWO
2091/*
2092 * compound_nr() returns the number of pages in this potentially compound
2093 * page. compound_nr() can be called on a tail page, and is defined to
2094 * return 1 in that case.
2095 */
2096static inline unsigned long compound_nr(struct page *page)
2097{
2098 struct folio *folio = (struct folio *)page;
2099
2100 if (!test_bit(PG_head, &folio->flags))
2101 return 1;
2102#ifdef CONFIG_64BIT
2103 return folio->_folio_nr_pages;
2104#else
ebc1baf5 2105 return 1L << (folio->_flags_1 & 0xff);
21a000fe
MWO
2106#endif
2107}
2108
2109/**
2110 * thp_nr_pages - The number of regular pages in this huge page.
2111 * @page: The head page of a huge page.
2112 */
2113static inline int thp_nr_pages(struct page *page)
2114{
2115 return folio_nr_pages((struct folio *)page);
2116}
2117
7b230db3
MWO
2118/**
2119 * folio_next - Move to the next physical folio.
2120 * @folio: The folio we're currently operating on.
2121 *
2122 * If you have physically contiguous memory which may span more than
2123 * one folio (eg a &struct bio_vec), use this function to move from one
2124 * folio to the next. Do not use it if the memory is only virtually
2125 * contiguous as the folios are almost certainly not adjacent to each
2126 * other. This is the folio equivalent to writing ``page++``.
2127 *
2128 * Context: We assume that the folios are refcounted and/or locked at a
2129 * higher level and do not adjust the reference counts.
2130 * Return: The next struct folio.
2131 */
2132static inline struct folio *folio_next(struct folio *folio)
2133{
2134 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2135}
2136
2137/**
2138 * folio_shift - The size of the memory described by this folio.
2139 * @folio: The folio.
2140 *
2141 * A folio represents a number of bytes which is a power-of-two in size.
2142 * This function tells you which power-of-two the folio is. See also
2143 * folio_size() and folio_order().
2144 *
2145 * Context: The caller should have a reference on the folio to prevent
2146 * it from being split. It is not necessary for the folio to be locked.
2147 * Return: The base-2 logarithm of the size of this folio.
2148 */
2149static inline unsigned int folio_shift(struct folio *folio)
2150{
2151 return PAGE_SHIFT + folio_order(folio);
2152}
2153
2154/**
2155 * folio_size - The number of bytes in a folio.
2156 * @folio: The folio.
2157 *
2158 * Context: The caller should have a reference on the folio to prevent
2159 * it from being split. It is not necessary for the folio to be locked.
2160 * Return: The number of bytes in this folio.
2161 */
2162static inline size_t folio_size(struct folio *folio)
2163{
2164 return PAGE_SIZE << folio_order(folio);
2165}
2166
fa4e3f5f 2167/**
ebb34f78
DH
2168 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2169 * tables of more than one MM
fa4e3f5f
VMO
2170 * @folio: The folio.
2171 *
ebb34f78
DH
2172 * This function checks if the folio is currently mapped into more than one
2173 * MM ("mapped shared"), or if the folio is only mapped into a single MM
2174 * ("mapped exclusively").
fa4e3f5f 2175 *
ebb34f78
DH
2176 * As precise information is not easily available for all folios, this function
2177 * estimates the number of MMs ("sharers") that are currently mapping a folio
2178 * using the number of times the first page of the folio is currently mapped
2179 * into page tables.
2180 *
2181 * For small anonymous folios (except KSM folios) and anonymous hugetlb folios,
2182 * the return value will be exactly correct, because they can only be mapped
2183 * at most once into an MM, and they cannot be partially mapped.
2184 *
2185 * For other folios, the result can be fuzzy:
2186 * #. For partially-mappable large folios (THP), the return value can wrongly
2187 * indicate "mapped exclusively" (false negative) when the folio is
2188 * only partially mapped into at least one MM.
2189 * #. For pagecache folios (including hugetlb), the return value can wrongly
2190 * indicate "mapped shared" (false positive) when two VMAs in the same MM
2191 * cover the same file range.
2192 * #. For (small) KSM folios, the return value can wrongly indicate "mapped
2193 * shared" (false negative), when the folio is mapped multiple times into
2194 * the same MM.
2195 *
2196 * Further, this function only considers current page table mappings that
2197 * are tracked using the folio mapcount(s).
2198 *
2199 * This function does not consider:
2200 * #. If the folio might get mapped in the (near) future (e.g., swapcache,
2201 * pagecache, temporary unmapping for migration).
2202 * #. If the folio is mapped differently (VM_PFNMAP).
2203 * #. If hugetlb page table sharing applies. Callers might want to check
2204 * hugetlb_pmd_shared().
2205 *
2206 * Return: Whether the folio is estimated to be mapped into more than one MM.
fa4e3f5f 2207 */
ebb34f78 2208static inline bool folio_likely_mapped_shared(struct folio *folio)
fa4e3f5f 2209{
ebb34f78 2210 return page_mapcount(folio_page(folio, 0)) > 1;
fa4e3f5f
VMO
2211}
2212
b424de33
MWO
2213#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2214static inline int arch_make_page_accessible(struct page *page)
2215{
2216 return 0;
2217}
2218#endif
2219
2220#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2221static inline int arch_make_folio_accessible(struct folio *folio)
2222{
2223 int ret;
2224 long i, nr = folio_nr_pages(folio);
2225
2226 for (i = 0; i < nr; i++) {
2227 ret = arch_make_page_accessible(folio_page(folio, i));
2228 if (ret)
2229 break;
2230 }
2231
2232 return ret;
2233}
2234#endif
2235
f6ac2354
CL
2236/*
2237 * Some inline functions in vmstat.h depend on page_zone()
2238 */
2239#include <linux/vmstat.h>
2240
1da177e4
LT
2241#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2242#define HASHED_PAGE_VIRTUAL
2243#endif
2244
2245#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
2246static inline void *page_address(const struct page *page)
2247{
2248 return page->virtual;
2249}
2250static inline void set_page_address(struct page *page, void *address)
2251{
2252 page->virtual = address;
2253}
1da177e4
LT
2254#define page_address_init() do { } while(0)
2255#endif
2256
2257#if defined(HASHED_PAGE_VIRTUAL)
f9918794 2258void *page_address(const struct page *page);
1da177e4
LT
2259void set_page_address(struct page *page, void *virtual);
2260void page_address_init(void);
2261#endif
2262
0871bc01
HC
2263static __always_inline void *lowmem_page_address(const struct page *page)
2264{
2265 return page_to_virt(page);
2266}
2267
1da177e4
LT
2268#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2269#define page_address(page) lowmem_page_address(page)
2270#define set_page_address(page, address) do { } while(0)
2271#define page_address_init() do { } while(0)
2272#endif
2273
7d4203c1
VB
2274static inline void *folio_address(const struct folio *folio)
2275{
2276 return page_address(&folio->page);
2277}
2278
f6ab1f7f
HY
2279extern pgoff_t __page_file_index(struct page *page);
2280
1da177e4
LT
2281/*
2282 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 2283 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
2284 */
2285static inline pgoff_t page_index(struct page *page)
2286{
2287 if (unlikely(PageSwapCache(page)))
f6ab1f7f 2288 return __page_file_index(page);
1da177e4
LT
2289 return page->index;
2290}
2291
2f064f34
MH
2292/*
2293 * Return true only if the page has been allocated with
2294 * ALLOC_NO_WATERMARKS and the low watermark was not
2295 * met implying that the system is under some pressure.
2296 */
1d7bab6a 2297static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
2298{
2299 /*
c07aea3e
MC
2300 * lru.next has bit 1 set if the page is allocated from the
2301 * pfmemalloc reserves. Callers may simply overwrite it if
2302 * they do not need to preserve that information.
2f064f34 2303 */
c07aea3e 2304 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
2305}
2306
02d65d6f
SK
2307/*
2308 * Return true only if the folio has been allocated with
2309 * ALLOC_NO_WATERMARKS and the low watermark was not
2310 * met implying that the system is under some pressure.
2311 */
2312static inline bool folio_is_pfmemalloc(const struct folio *folio)
2313{
2314 /*
2315 * lru.next has bit 1 set if the page is allocated from the
2316 * pfmemalloc reserves. Callers may simply overwrite it if
2317 * they do not need to preserve that information.
2318 */
2319 return (uintptr_t)folio->lru.next & BIT(1);
2320}
2321
2f064f34
MH
2322/*
2323 * Only to be called by the page allocator on a freshly allocated
2324 * page.
2325 */
2326static inline void set_page_pfmemalloc(struct page *page)
2327{
c07aea3e 2328 page->lru.next = (void *)BIT(1);
2f064f34
MH
2329}
2330
2331static inline void clear_page_pfmemalloc(struct page *page)
2332{
c07aea3e 2333 page->lru.next = NULL;
2f064f34
MH
2334}
2335
1c0fe6e3
NP
2336/*
2337 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2338 */
2339extern void pagefault_out_of_memory(void);
2340
1da177e4 2341#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 2342#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 2343#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 2344
21b85b09
MK
2345/*
2346 * Parameter block passed down to zap_pte_range in exceptional cases.
2347 */
2348struct zap_details {
2349 struct folio *single_folio; /* Locked folio to be unmapped */
2350 bool even_cows; /* Zap COWed private pages too? */
2351 zap_flags_t zap_flags; /* Extra flags for zapping */
2352};
2353
2354/*
2355 * Whether to drop the pte markers, for example, the uffd-wp information for
2356 * file-backed memory. This should only be specified when we will completely
2357 * drop the page in the mm, either by truncation or unmapping of the vma. By
2358 * default, the flag is not set.
2359 */
2360#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
04ada095
MK
2361/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2362#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
21b85b09 2363
af7f588d
MD
2364#ifdef CONFIG_SCHED_MM_CID
2365void sched_mm_cid_before_execve(struct task_struct *t);
2366void sched_mm_cid_after_execve(struct task_struct *t);
2367void sched_mm_cid_fork(struct task_struct *t);
2368void sched_mm_cid_exit_signals(struct task_struct *t);
2369static inline int task_mm_cid(struct task_struct *t)
2370{
2371 return t->mm_cid;
2372}
2373#else
2374static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2375static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2376static inline void sched_mm_cid_fork(struct task_struct *t) { }
2377static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2378static inline int task_mm_cid(struct task_struct *t)
2379{
2380 /*
2381 * Use the processor id as a fall-back when the mm cid feature is
2382 * disabled. This provides functional per-cpu data structure accesses
2383 * in user-space, althrough it won't provide the memory usage benefits.
2384 */
2385 return raw_smp_processor_id();
2386}
2387#endif
2388
710ec38b 2389#ifdef CONFIG_MMU
7f43add4 2390extern bool can_do_mlock(void);
710ec38b
AB
2391#else
2392static inline bool can_do_mlock(void) { return false; }
2393#endif
d7c9e99a
AG
2394extern int user_shm_lock(size_t, struct ucounts *);
2395extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 2396
318e9342
VMO
2397struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2398 pte_t pte);
25b2995a
CH
2399struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2400 pte_t pte);
65610453
KW
2401struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2402 unsigned long addr, pmd_t pmd);
28093f9f
GS
2403struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2404 pmd_t pmd);
7e675137 2405
27d036e3
LR
2406void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2407 unsigned long size);
21b85b09
MK
2408void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2409 unsigned long size, struct zap_details *details);
e9adcfec
MK
2410static inline void zap_vma_pages(struct vm_area_struct *vma)
2411{
2412 zap_page_range_single(vma, vma->vm_start,
2413 vma->vm_end - vma->vm_start, NULL);
2414}
fd892593 2415void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
763ecb03 2416 struct vm_area_struct *start_vma, unsigned long start,
fd892593 2417 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
e6473092 2418
ac46d4f3
JG
2419struct mmu_notifier_range;
2420
42b77728 2421void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 2422 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
2423int
2424copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed 2425int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 2426 pte_t **ptepp, spinlock_t **ptlp);
28b2ee20
RR
2427int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2428 void *buf, int len, int write);
1da177e4 2429
7caef267 2430extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 2431extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 2432void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 2433void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
af7628d6
MWO
2434int generic_error_remove_folio(struct address_space *mapping,
2435 struct folio *folio);
83f78668 2436
d85a143b
LT
2437struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2438 unsigned long address, struct pt_regs *regs);
2439
7ee1dd3f 2440#ifdef CONFIG_MMU
2b740303 2441extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2442 unsigned long address, unsigned int flags,
2443 struct pt_regs *regs);
64019a2e 2444extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
2445 unsigned long address, unsigned int fault_flags,
2446 bool *unlocked);
977fbdcd
MW
2447void unmap_mapping_pages(struct address_space *mapping,
2448 pgoff_t start, pgoff_t nr, bool even_cows);
2449void unmap_mapping_range(struct address_space *mapping,
2450 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 2451#else
2b740303 2452static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2453 unsigned long address, unsigned int flags,
2454 struct pt_regs *regs)
7ee1dd3f
DH
2455{
2456 /* should never happen if there's no MMU */
2457 BUG();
2458 return VM_FAULT_SIGBUS;
2459}
64019a2e 2460static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 2461 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
2462{
2463 /* should never happen if there's no MMU */
2464 BUG();
2465 return -EFAULT;
2466}
977fbdcd
MW
2467static inline void unmap_mapping_pages(struct address_space *mapping,
2468 pgoff_t start, pgoff_t nr, bool even_cows) { }
2469static inline void unmap_mapping_range(struct address_space *mapping,
2470 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 2471#endif
f33ea7f4 2472
977fbdcd
MW
2473static inline void unmap_shared_mapping_range(struct address_space *mapping,
2474 loff_t const holebegin, loff_t const holelen)
2475{
2476 unmap_mapping_range(mapping, holebegin, holelen, 0);
2477}
2478
ca5e8632
LS
2479static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2480 unsigned long addr);
2481
977fbdcd
MW
2482extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2483 void *buf, int len, unsigned int gup_flags);
5ddd36b9 2484extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 2485 void *buf, int len, unsigned int gup_flags);
1da177e4 2486
64019a2e 2487long get_user_pages_remote(struct mm_struct *mm,
ca5e8632
LS
2488 unsigned long start, unsigned long nr_pages,
2489 unsigned int gup_flags, struct page **pages,
2490 int *locked);
64019a2e 2491long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2492 unsigned long start, unsigned long nr_pages,
2493 unsigned int gup_flags, struct page **pages,
0b295316 2494 int *locked);
ca5e8632 2495
6a1960b8
LS
2496/*
2497 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2498 */
ca5e8632
LS
2499static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2500 unsigned long addr,
2501 int gup_flags,
2502 struct vm_area_struct **vmap)
2503{
2504 struct page *page;
2505 struct vm_area_struct *vma;
6a1960b8
LS
2506 int got;
2507
2508 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2509 return ERR_PTR(-EINVAL);
2510
2511 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
ca5e8632
LS
2512
2513 if (got < 0)
2514 return ERR_PTR(got);
ca5e8632
LS
2515
2516 vma = vma_lookup(mm, addr);
2517 if (WARN_ON_ONCE(!vma)) {
2518 put_page(page);
2519 return ERR_PTR(-EINVAL);
2520 }
2521
2522 *vmap = vma;
2523 return page;
2524}
2525
c12d2da5 2526long get_user_pages(unsigned long start, unsigned long nr_pages,
54d02069 2527 unsigned int gup_flags, struct page **pages);
eddb1c22 2528long pin_user_pages(unsigned long start, unsigned long nr_pages,
4c630f30 2529 unsigned int gup_flags, struct page **pages);
c12d2da5 2530long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 2531 struct page **pages, unsigned int gup_flags);
91429023
JH
2532long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2533 struct page **pages, unsigned int gup_flags);
9a4e9f3b 2534
73b0140b
IW
2535int get_user_pages_fast(unsigned long start, int nr_pages,
2536 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
2537int pin_user_pages_fast(unsigned long start, int nr_pages,
2538 unsigned int gup_flags, struct page **pages);
1101fb8f 2539void folio_add_pin(struct folio *folio);
8025e5dd 2540
79eb597c
DJ
2541int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2542int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2543 struct task_struct *task, bool bypass_rlim);
2544
18022c5d 2545struct kvec;
f3e8fccd 2546struct page *get_dump_page(unsigned long addr);
1da177e4 2547
b5e84594
MWO
2548bool folio_mark_dirty(struct folio *folio);
2549bool set_page_dirty(struct page *page);
1da177e4 2550int set_page_dirty_lock(struct page *page);
b9ea2515 2551
a9090253 2552int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 2553
b6a2fea3
OW
2554extern unsigned long move_page_tables(struct vm_area_struct *vma,
2555 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013 2556 unsigned long new_addr, unsigned long len,
b1e5a3de 2557 bool need_rmap_locks, bool for_stack);
58705444
PX
2558
2559/*
2560 * Flags used by change_protection(). For now we make it a bitmap so
2561 * that we can pass in multiple flags just like parameters. However
2562 * for now all the callers are only use one of the flags at the same
2563 * time.
2564 */
64fe24a3
DH
2565/*
2566 * Whether we should manually check if we can map individual PTEs writable,
2567 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2568 * PTEs automatically in a writable mapping.
2569 */
2570#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
58705444
PX
2571/* Whether this protection change is for NUMA hints */
2572#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
2573/* Whether this change is for write protecting */
2574#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2575#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2576#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2577 MM_CP_UFFD_WP_RESOLVE)
58705444 2578
54cbbbf3 2579bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
eb309ec8
DH
2580int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2581static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2582{
2583 /*
2584 * We want to check manually if we can change individual PTEs writable
2585 * if we can't do that automatically for all PTEs in a mapping. For
2586 * private mappings, that's always the case when we have write
2587 * permissions as we properly have to handle COW.
2588 */
2589 if (vma->vm_flags & VM_SHARED)
2590 return vma_wants_writenotify(vma, vma->vm_page_prot);
2591 return !!(vma->vm_flags & VM_WRITE);
2592
2593}
6a56ccbc
DH
2594bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2595 pte_t pte);
a79390f5 2596extern long change_protection(struct mmu_gather *tlb,
4a18419f 2597 struct vm_area_struct *vma, unsigned long start,
1ef488ed 2598 unsigned long end, unsigned long cp_flags);
2286a691
LH
2599extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2600 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2601 unsigned long start, unsigned long end, unsigned long newflags);
1da177e4 2602
465a454f
PZ
2603/*
2604 * doesn't attempt to fault and will return short.
2605 */
dadbb612
SJ
2606int get_user_pages_fast_only(unsigned long start, int nr_pages,
2607 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
2608
2609static inline bool get_user_page_fast_only(unsigned long addr,
2610 unsigned int gup_flags, struct page **pagep)
2611{
2612 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2613}
d559db08
KH
2614/*
2615 * per-process(per-mm_struct) statistics.
2616 */
d559db08
KH
2617static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2618{
f1a79412 2619 return percpu_counter_read_positive(&mm->rss_stat[member]);
69c97823 2620}
d559db08 2621
f1a79412 2622void mm_trace_rss_stat(struct mm_struct *mm, int member);
b3d1411b 2623
d559db08
KH
2624static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2625{
f1a79412 2626 percpu_counter_add(&mm->rss_stat[member], value);
b3d1411b 2627
f1a79412 2628 mm_trace_rss_stat(mm, member);
d559db08
KH
2629}
2630
2631static inline void inc_mm_counter(struct mm_struct *mm, int member)
2632{
f1a79412 2633 percpu_counter_inc(&mm->rss_stat[member]);
b3d1411b 2634
f1a79412 2635 mm_trace_rss_stat(mm, member);
d559db08
KH
2636}
2637
2638static inline void dec_mm_counter(struct mm_struct *mm, int member)
2639{
f1a79412 2640 percpu_counter_dec(&mm->rss_stat[member]);
b3d1411b 2641
f1a79412 2642 mm_trace_rss_stat(mm, member);
d559db08
KH
2643}
2644
6b27cc6c
KW
2645/* Optimized variant when folio is already known not to be anon */
2646static inline int mm_counter_file(struct folio *folio)
eca56ff9 2647{
6b27cc6c 2648 if (folio_test_swapbacked(folio))
eca56ff9
JM
2649 return MM_SHMEMPAGES;
2650 return MM_FILEPAGES;
2651}
2652
a23f517b 2653static inline int mm_counter(struct folio *folio)
eca56ff9 2654{
a23f517b 2655 if (folio_test_anon(folio))
eca56ff9 2656 return MM_ANONPAGES;
6b27cc6c 2657 return mm_counter_file(folio);
eca56ff9
JM
2658}
2659
d559db08
KH
2660static inline unsigned long get_mm_rss(struct mm_struct *mm)
2661{
2662 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2663 get_mm_counter(mm, MM_ANONPAGES) +
2664 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2665}
2666
2667static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2668{
2669 return max(mm->hiwater_rss, get_mm_rss(mm));
2670}
2671
2672static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2673{
2674 return max(mm->hiwater_vm, mm->total_vm);
2675}
2676
2677static inline void update_hiwater_rss(struct mm_struct *mm)
2678{
2679 unsigned long _rss = get_mm_rss(mm);
2680
2681 if ((mm)->hiwater_rss < _rss)
2682 (mm)->hiwater_rss = _rss;
2683}
2684
2685static inline void update_hiwater_vm(struct mm_struct *mm)
2686{
2687 if (mm->hiwater_vm < mm->total_vm)
2688 mm->hiwater_vm = mm->total_vm;
2689}
2690
695f0559
PC
2691static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2692{
2693 mm->hiwater_rss = get_mm_rss(mm);
2694}
2695
d559db08
KH
2696static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2697 struct mm_struct *mm)
2698{
2699 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2700
2701 if (*maxrss < hiwater_rss)
2702 *maxrss = hiwater_rss;
2703}
2704
78e7c5af
AK
2705#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2706static inline int pte_special(pte_t pte)
2707{
2708 return 0;
2709}
2710
2711static inline pte_t pte_mkspecial(pte_t pte)
2712{
2713 return pte;
2714}
2715#endif
2716
17596731 2717#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2718static inline int pte_devmap(pte_t pte)
2719{
2720 return 0;
2721}
2722#endif
2723
25ca1d6c
NK
2724extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2725 spinlock_t **ptl);
2726static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2727 spinlock_t **ptl)
2728{
2729 pte_t *ptep;
2730 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2731 return ptep;
2732}
c9cfcddf 2733
c2febafc
KS
2734#ifdef __PAGETABLE_P4D_FOLDED
2735static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2736 unsigned long address)
2737{
2738 return 0;
2739}
2740#else
2741int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2742#endif
2743
b4e98d9a 2744#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2745static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2746 unsigned long address)
2747{
2748 return 0;
2749}
b4e98d9a
KS
2750static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2751static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2752
5f22df00 2753#else
c2febafc 2754int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2755
b4e98d9a
KS
2756static inline void mm_inc_nr_puds(struct mm_struct *mm)
2757{
6d212db1
MS
2758 if (mm_pud_folded(mm))
2759 return;
af5b0f6a 2760 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2761}
2762
2763static inline void mm_dec_nr_puds(struct mm_struct *mm)
2764{
6d212db1
MS
2765 if (mm_pud_folded(mm))
2766 return;
af5b0f6a 2767 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2768}
5f22df00
NP
2769#endif
2770
2d2f5119 2771#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2772static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2773 unsigned long address)
2774{
2775 return 0;
2776}
dc6c9a35 2777
dc6c9a35
KS
2778static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2779static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2780
5f22df00 2781#else
1bb3630e 2782int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2783
dc6c9a35
KS
2784static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2785{
6d212db1
MS
2786 if (mm_pmd_folded(mm))
2787 return;
af5b0f6a 2788 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2789}
2790
2791static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2792{
6d212db1
MS
2793 if (mm_pmd_folded(mm))
2794 return;
af5b0f6a 2795 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2796}
5f22df00
NP
2797#endif
2798
c4812909 2799#ifdef CONFIG_MMU
af5b0f6a 2800static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2801{
af5b0f6a 2802 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2803}
2804
af5b0f6a 2805static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2806{
af5b0f6a 2807 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2808}
2809
2810static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2811{
af5b0f6a 2812 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2813}
2814
2815static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2816{
af5b0f6a 2817 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2818}
2819#else
c4812909 2820
af5b0f6a
KS
2821static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2822static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2823{
2824 return 0;
2825}
2826
2827static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2828static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2829#endif
2830
4cf58924
JFG
2831int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2832int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2833
f949286c
MR
2834#if defined(CONFIG_MMU)
2835
c2febafc
KS
2836static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2837 unsigned long address)
2838{
2839 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2840 NULL : p4d_offset(pgd, address);
2841}
2842
2843static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2844 unsigned long address)
1da177e4 2845{
c2febafc
KS
2846 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2847 NULL : pud_offset(p4d, address);
1da177e4 2848}
d8626138 2849
1da177e4
LT
2850static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2851{
1bb3630e
HD
2852 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2853 NULL: pmd_offset(pud, address);
1da177e4 2854}
f949286c 2855#endif /* CONFIG_MMU */
1bb3630e 2856
bf2d4334
VMO
2857static inline struct ptdesc *virt_to_ptdesc(const void *x)
2858{
2859 return page_ptdesc(virt_to_page(x));
2860}
2861
2862static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2863{
2864 return page_to_virt(ptdesc_page(pt));
2865}
2866
2867static inline void *ptdesc_address(const struct ptdesc *pt)
2868{
2869 return folio_address(ptdesc_folio(pt));
2870}
2871
2872static inline bool pagetable_is_reserved(struct ptdesc *pt)
2873{
2874 return folio_test_reserved(ptdesc_folio(pt));
2875}
2876
2877/**
2878 * pagetable_alloc - Allocate pagetables
2879 * @gfp: GFP flags
2880 * @order: desired pagetable order
2881 *
2882 * pagetable_alloc allocates memory for page tables as well as a page table
2883 * descriptor to describe that memory.
2884 *
2885 * Return: The ptdesc describing the allocated page tables.
2886 */
2c321f3f 2887static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
bf2d4334 2888{
2c321f3f 2889 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
bf2d4334
VMO
2890
2891 return page_ptdesc(page);
2892}
2c321f3f 2893#define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
bf2d4334
VMO
2894
2895/**
2896 * pagetable_free - Free pagetables
2897 * @pt: The page table descriptor
2898 *
2899 * pagetable_free frees the memory of all page tables described by a page
2900 * table descriptor and the memory for the descriptor itself.
2901 */
2902static inline void pagetable_free(struct ptdesc *pt)
2903{
2904 struct page *page = ptdesc_page(pt);
2905
2906 __free_pages(page, compound_order(page));
2907}
2908
57c1ffce 2909#if USE_SPLIT_PTE_PTLOCKS
597d795a 2910#if ALLOC_SPLIT_PTLOCKS
b35f1819 2911void __init ptlock_cache_init(void);
f5ecca06 2912bool ptlock_alloc(struct ptdesc *ptdesc);
6ed1b8a0 2913void ptlock_free(struct ptdesc *ptdesc);
539edb58 2914
1865484a 2915static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
539edb58 2916{
1865484a 2917 return ptdesc->ptl;
539edb58 2918}
597d795a 2919#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2920static inline void ptlock_cache_init(void)
2921{
2922}
2923
f5ecca06 2924static inline bool ptlock_alloc(struct ptdesc *ptdesc)
49076ec2 2925{
49076ec2
KS
2926 return true;
2927}
539edb58 2928
6ed1b8a0 2929static inline void ptlock_free(struct ptdesc *ptdesc)
49076ec2 2930{
49076ec2
KS
2931}
2932
1865484a 2933static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
49076ec2 2934{
1865484a 2935 return &ptdesc->ptl;
49076ec2 2936}
597d795a 2937#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2938
2939static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2940{
1865484a 2941 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
49076ec2
KS
2942}
2943
75b25d49 2944static inline bool ptlock_init(struct ptdesc *ptdesc)
49076ec2
KS
2945{
2946 /*
2947 * prep_new_page() initialize page->private (and therefore page->ptl)
2948 * with 0. Make sure nobody took it in use in between.
2949 *
2950 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2951 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2952 */
75b25d49
VMO
2953 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2954 if (!ptlock_alloc(ptdesc))
49076ec2 2955 return false;
75b25d49 2956 spin_lock_init(ptlock_ptr(ptdesc));
49076ec2
KS
2957 return true;
2958}
2959
57c1ffce 2960#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2961/*
2962 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2963 */
49076ec2
KS
2964static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2965{
2966 return &mm->page_table_lock;
2967}
b35f1819 2968static inline void ptlock_cache_init(void) {}
75b25d49 2969static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
6ed1b8a0 2970static inline void ptlock_free(struct ptdesc *ptdesc) {}
57c1ffce 2971#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2972
7e11dca1 2973static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2f569afd 2974{
7e11dca1
VMO
2975 struct folio *folio = ptdesc_folio(ptdesc);
2976
2977 if (!ptlock_init(ptdesc))
706874e9 2978 return false;
7e11dca1
VMO
2979 __folio_set_pgtable(folio);
2980 lruvec_stat_add_folio(folio, NR_PAGETABLE);
706874e9 2981 return true;
2f569afd
MS
2982}
2983
7e11dca1
VMO
2984static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2985{
2986 struct folio *folio = ptdesc_folio(ptdesc);
2987
2988 ptlock_free(ptdesc);
2989 __folio_clear_pgtable(folio);
2990 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2991}
2992
0d940a9b
HD
2993pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2994static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2995{
2996 return __pte_offset_map(pmd, addr, NULL);
2997}
2998
2999pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3000 unsigned long addr, spinlock_t **ptlp);
3001static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3002 unsigned long addr, spinlock_t **ptlp)
3003{
3004 pte_t *pte;
3005
3006 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
3007 return pte;
3008}
3009
3010pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
3011 unsigned long addr, spinlock_t **ptlp);
c74df32c
HD
3012
3013#define pte_unmap_unlock(pte, ptl) do { \
3014 spin_unlock(ptl); \
3015 pte_unmap(pte); \
3016} while (0)
3017
4cf58924 3018#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
3019
3020#define pte_alloc_map(mm, pmd, address) \
4cf58924 3021 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 3022
c74df32c 3023#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 3024 (pte_alloc(mm, pmd) ? \
3ed3a4f0 3025 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 3026
1bb3630e 3027#define pte_alloc_kernel(pmd, address) \
4cf58924 3028 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 3029 NULL: pte_offset_kernel(pmd, address))
1da177e4 3030
e009bb30
KS
3031#if USE_SPLIT_PMD_PTLOCKS
3032
7e25de77 3033static inline struct page *pmd_pgtable_page(pmd_t *pmd)
634391ac
MS
3034{
3035 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3036 return virt_to_page((void *)((unsigned long) pmd & mask));
3037}
3038
bf2d4334
VMO
3039static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3040{
3041 return page_ptdesc(pmd_pgtable_page(pmd));
3042}
3043
e009bb30
KS
3044static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3045{
1865484a 3046 return ptlock_ptr(pmd_ptdesc(pmd));
e009bb30
KS
3047}
3048
edbaefe5 3049static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
e009bb30 3050{
e009bb30 3051#ifdef CONFIG_TRANSPARENT_HUGEPAGE
edbaefe5 3052 ptdesc->pmd_huge_pte = NULL;
e009bb30 3053#endif
75b25d49 3054 return ptlock_init(ptdesc);
e009bb30
KS
3055}
3056
7e5f42ae 3057static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
e009bb30
KS
3058{
3059#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7e5f42ae 3060 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
e009bb30 3061#endif
6ed1b8a0 3062 ptlock_free(ptdesc);
e009bb30
KS
3063}
3064
f8546d84 3065#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
e009bb30
KS
3066
3067#else
3068
9a86cb7b
KS
3069static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3070{
3071 return &mm->page_table_lock;
3072}
3073
edbaefe5 3074static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
7e5f42ae 3075static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
e009bb30 3076
c389a250 3077#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 3078
e009bb30
KS
3079#endif
3080
9a86cb7b
KS
3081static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3082{
3083 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3084 spin_lock(ptl);
3085 return ptl;
3086}
3087
7e11dca1 3088static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
b2b29d6d 3089{
7e11dca1
VMO
3090 struct folio *folio = ptdesc_folio(ptdesc);
3091
3092 if (!pmd_ptlock_init(ptdesc))
b2b29d6d 3093 return false;
7e11dca1
VMO
3094 __folio_set_pgtable(folio);
3095 lruvec_stat_add_folio(folio, NR_PAGETABLE);
b2b29d6d
MW
3096 return true;
3097}
3098
7e11dca1
VMO
3099static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3100{
3101 struct folio *folio = ptdesc_folio(ptdesc);
3102
3103 pmd_ptlock_free(ptdesc);
3104 __folio_clear_pgtable(folio);
3105 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3106}
3107
a00cc7d9
MW
3108/*
3109 * No scalability reason to split PUD locks yet, but follow the same pattern
3110 * as the PMD locks to make it easier if we decide to. The VM should not be
3111 * considered ready to switch to split PUD locks yet; there may be places
3112 * which need to be converted from page_table_lock.
3113 */
3114static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3115{
3116 return &mm->page_table_lock;
3117}
3118
3119static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3120{
3121 spinlock_t *ptl = pud_lockptr(mm, pud);
3122
3123 spin_lock(ptl);
3124 return ptl;
3125}
62906027 3126
55d2a0bd
BW
3127static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3128{
3129 struct folio *folio = ptdesc_folio(ptdesc);
3130
3131 __folio_set_pgtable(folio);
3132 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3133}
3134
3135static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3136{
3137 struct folio *folio = ptdesc_folio(ptdesc);
3138
3139 __folio_clear_pgtable(folio);
3140 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3141}
3142
a00cc7d9 3143extern void __init pagecache_init(void);
49a7f04a
DH
3144extern void free_initmem(void);
3145
69afade7
JL
3146/*
3147 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3148 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 3149 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
3150 * Return pages freed into the buddy system.
3151 */
11199692 3152extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 3153 int poison, const char *s);
c3d5f5f0 3154
c3d5f5f0 3155extern void adjust_managed_page_count(struct page *page, long count);
69afade7 3156
61167ad5
YD
3157extern void reserve_bootmem_region(phys_addr_t start,
3158 phys_addr_t end, int nid);
92923ca3 3159
69afade7 3160/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 3161static inline void free_reserved_page(struct page *page)
69afade7 3162{
d224eb02
SB
3163 if (mem_alloc_profiling_enabled()) {
3164 union codetag_ref *ref = get_page_tag_ref(page);
3165
3166 if (ref) {
3167 set_codetag_empty(ref);
3168 put_page_tag_ref(ref);
3169 }
3170 }
69afade7
JL
3171 ClearPageReserved(page);
3172 init_page_count(page);
3173 __free_page(page);
69afade7
JL
3174 adjust_managed_page_count(page, 1);
3175}
a0cd7a7c 3176#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
3177
3178static inline void mark_page_reserved(struct page *page)
3179{
3180 SetPageReserved(page);
3181 adjust_managed_page_count(page, -1);
3182}
3183
bf2d4334
VMO
3184static inline void free_reserved_ptdesc(struct ptdesc *pt)
3185{
3186 free_reserved_page(ptdesc_page(pt));
3187}
3188
69afade7
JL
3189/*
3190 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
3191 * The freed pages will be poisoned with pattern "poison" if it's within
3192 * range [0, UCHAR_MAX].
3193 * Return pages freed into the buddy system.
69afade7
JL
3194 */
3195static inline unsigned long free_initmem_default(int poison)
3196{
3197 extern char __init_begin[], __init_end[];
3198
11199692 3199 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 3200 poison, "unused kernel image (initmem)");
69afade7
JL
3201}
3202
7ee3d4e8
JL
3203static inline unsigned long get_num_physpages(void)
3204{
3205 int nid;
3206 unsigned long phys_pages = 0;
3207
3208 for_each_online_node(nid)
3209 phys_pages += node_present_pages(nid);
3210
3211 return phys_pages;
3212}
3213
c713216d 3214/*
3f08a302 3215 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
3216 * zones, allocate the backing mem_map and account for memory holes in an
3217 * architecture independent manner.
c713216d
MG
3218 *
3219 * An architecture is expected to register range of page frames backed by
0ee332c1 3220 * physical memory with memblock_add[_node]() before calling
9691a071 3221 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
3222 * usage, an architecture is expected to do something like
3223 *
3224 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3225 * max_highmem_pfn};
3226 * for_each_valid_physical_page_range()
952eea9b 3227 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 3228 * free_area_init(max_zone_pfns);
c713216d 3229 */
9691a071 3230void free_area_init(unsigned long *max_zone_pfn);
1e01979c 3231unsigned long node_map_pfn_alignment(void);
c713216d
MG
3232extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3233 unsigned long end_pfn);
3234extern void get_pfn_range_for_nid(unsigned int nid,
3235 unsigned long *start_pfn, unsigned long *end_pfn);
f2dbcfa7 3236
a9ee6cf5 3237#ifndef CONFIG_NUMA
6f24fbd3 3238static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
3239{
3240 return 0;
3241}
3242#else
3243/* please see mm/page_alloc.c */
3244extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
3245#endif
3246
1da177e4 3247extern void mem_init(void);
8feae131 3248extern void __init mmap_init(void);
974f4367
MH
3249
3250extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
527ed4f7 3251static inline void show_mem(void)
974f4367 3252{
527ed4f7 3253 __show_mem(0, NULL, MAX_NR_ZONES - 1);
974f4367 3254}
d02bd27b 3255extern long si_mem_available(void);
1da177e4
LT
3256extern void si_meminfo(struct sysinfo * val);
3257extern void si_meminfo_node(struct sysinfo *val, int nid);
3258
a8e99259
MH
3259extern __printf(3, 4)
3260void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 3261
e7c8d5c9 3262extern void setup_per_cpu_pageset(void);
e7c8d5c9 3263
8feae131 3264/* nommu.c */
33e5d769 3265extern atomic_long_t mmap_pages_allocated;
7e660872 3266extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 3267
6b2dbba8 3268/* interval_tree.c */
6b2dbba8 3269void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 3270 struct rb_root_cached *root);
9826a516
ML
3271void vma_interval_tree_insert_after(struct vm_area_struct *node,
3272 struct vm_area_struct *prev,
f808c13f 3273 struct rb_root_cached *root);
6b2dbba8 3274void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
3275 struct rb_root_cached *root);
3276struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
3277 unsigned long start, unsigned long last);
3278struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3279 unsigned long start, unsigned long last);
3280
3281#define vma_interval_tree_foreach(vma, root, start, last) \
3282 for (vma = vma_interval_tree_iter_first(root, start, last); \
3283 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 3284
bf181b9f 3285void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 3286 struct rb_root_cached *root);
bf181b9f 3287void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
3288 struct rb_root_cached *root);
3289struct anon_vma_chain *
3290anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3291 unsigned long start, unsigned long last);
bf181b9f
ML
3292struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3293 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
3294#ifdef CONFIG_DEBUG_VM_RB
3295void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3296#endif
bf181b9f
ML
3297
3298#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3299 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3300 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3301
1da177e4 3302/* mmap.c */
34b4e4aa 3303extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
7c9813e8
LH
3304extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3305 unsigned long start, unsigned long end, pgoff_t pgoff,
3306 struct vm_area_struct *next);
cf51e86d
LH
3307extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3308 unsigned long start, unsigned long end, pgoff_t pgoff);
1da177e4 3309extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1da177e4 3310extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
a8fb5618 3311extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 3312extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
3313 unsigned long addr, unsigned long len, pgoff_t pgoff,
3314 bool *need_rmap_locks);
1da177e4 3315extern void exit_mmap(struct mm_struct *);
94d7d923
LS
3316struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
3317 struct vm_area_struct *prev,
3318 struct vm_area_struct *vma,
3319 unsigned long start, unsigned long end,
3320 unsigned long vm_flags,
3321 struct mempolicy *policy,
3322 struct vm_userfaultfd_ctx uffd_ctx,
3323 struct anon_vma_name *anon_name);
3324
3325/* We are about to modify the VMA's flags. */
3326static inline struct vm_area_struct
3327*vma_modify_flags(struct vma_iterator *vmi,
3328 struct vm_area_struct *prev,
3329 struct vm_area_struct *vma,
3330 unsigned long start, unsigned long end,
3331 unsigned long new_flags)
3332{
3333 return vma_modify(vmi, prev, vma, start, end, new_flags,
3334 vma_policy(vma), vma->vm_userfaultfd_ctx,
3335 anon_vma_name(vma));
3336}
3337
3338/* We are about to modify the VMA's flags and/or anon_name. */
3339static inline struct vm_area_struct
3340*vma_modify_flags_name(struct vma_iterator *vmi,
3341 struct vm_area_struct *prev,
3342 struct vm_area_struct *vma,
3343 unsigned long start,
3344 unsigned long end,
3345 unsigned long new_flags,
3346 struct anon_vma_name *new_name)
3347{
3348 return vma_modify(vmi, prev, vma, start, end, new_flags,
3349 vma_policy(vma), vma->vm_userfaultfd_ctx, new_name);
3350}
3351
3352/* We are about to modify the VMA's memory policy. */
3353static inline struct vm_area_struct
3354*vma_modify_policy(struct vma_iterator *vmi,
3355 struct vm_area_struct *prev,
3356 struct vm_area_struct *vma,
3357 unsigned long start, unsigned long end,
3358 struct mempolicy *new_pol)
3359{
3360 return vma_modify(vmi, prev, vma, start, end, vma->vm_flags,
3361 new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3362}
3363
3364/* We are about to modify the VMA's flags and/or uffd context. */
3365static inline struct vm_area_struct
3366*vma_modify_flags_uffd(struct vma_iterator *vmi,
3367 struct vm_area_struct *prev,
3368 struct vm_area_struct *vma,
3369 unsigned long start, unsigned long end,
3370 unsigned long new_flags,
3371 struct vm_userfaultfd_ctx new_ctx)
3372{
3373 return vma_modify(vmi, prev, vma, start, end, new_flags,
3374 vma_policy(vma), new_ctx, anon_vma_name(vma));
3375}
925d1c40 3376
9c599024
CG
3377static inline int check_data_rlimit(unsigned long rlim,
3378 unsigned long new,
3379 unsigned long start,
3380 unsigned long end_data,
3381 unsigned long start_data)
3382{
3383 if (rlim < RLIM_INFINITY) {
3384 if (((new - start) + (end_data - start_data)) > rlim)
3385 return -ENOSPC;
3386 }
3387
3388 return 0;
3389}
3390
7906d00c
AA
3391extern int mm_take_all_locks(struct mm_struct *mm);
3392extern void mm_drop_all_locks(struct mm_struct *mm);
3393
fe69d560 3394extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 3395extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 3396extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 3397extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 3398
84638335
KK
3399extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3400extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3401
2eefd878
DS
3402extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3403 const struct vm_special_mapping *sm);
3935ed6a
SS
3404extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3405 unsigned long addr, unsigned long len,
a62c34bd
AL
3406 unsigned long flags,
3407 const struct vm_special_mapping *spec);
3408/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
3409extern int install_special_mapping(struct mm_struct *mm,
3410 unsigned long addr, unsigned long len,
3411 unsigned long flags, struct page **pages);
1da177e4 3412
649775be 3413unsigned long randomize_stack_top(unsigned long stack_top);
5ad7dd88 3414unsigned long randomize_page(unsigned long start, unsigned long range);
649775be 3415
8a0fe564
RE
3416unsigned long
3417__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3418 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3419
3420static inline unsigned long
3421get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3422 unsigned long pgoff, unsigned long flags)
3423{
3424 return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3425}
1da177e4 3426
0165ab44 3427extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
3428 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3429 struct list_head *uf);
1fcfd8db 3430extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 3431 unsigned long len, unsigned long prot, unsigned long flags,
592b5fad
YY
3432 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3433 struct list_head *uf);
183654ce 3434extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
11f9a21a 3435 unsigned long start, size_t len, struct list_head *uf,
408579cd 3436 bool unlock);
897ab3e0
MR
3437extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3438 struct list_head *uf);
0726b01e 3439extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 3440
bebeb3d6 3441#ifdef CONFIG_MMU
27b26701
LH
3442extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3443 unsigned long start, unsigned long end,
408579cd 3444 struct list_head *uf, bool unlock);
bebeb3d6
ML
3445extern int __mm_populate(unsigned long addr, unsigned long len,
3446 int ignore_errors);
3447static inline void mm_populate(unsigned long addr, unsigned long len)
3448{
3449 /* Ignore errors */
3450 (void) __mm_populate(addr, len, 1);
3451}
3452#else
3453static inline void mm_populate(unsigned long addr, unsigned long len) {}
3454#endif
3455
2632bb84 3456/* This takes the mm semaphore itself */
16e72e9b 3457extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 3458extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 3459extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
3460 unsigned long, unsigned long,
3461 unsigned long, unsigned long);
1da177e4 3462
db4fbfb9
ML
3463struct vm_unmapped_area_info {
3464#define VM_UNMAPPED_AREA_TOPDOWN 1
3465 unsigned long flags;
3466 unsigned long length;
3467 unsigned long low_limit;
3468 unsigned long high_limit;
3469 unsigned long align_mask;
3470 unsigned long align_offset;
3471};
3472
baceaf1c 3473extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 3474
85821aab 3475/* truncate.c */
1da177e4 3476extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
3477extern void truncate_inode_pages_range(struct address_space *,
3478 loff_t lstart, loff_t lend);
91b0abe3 3479extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
3480
3481/* generic vm_area_ops exported for stackable file systems */
2bcd6454 3482extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 3483extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 3484 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 3485extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 3486
1be7107f 3487extern unsigned long stack_guard_gap;
d05f3169 3488/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
8d7071af
LT
3489int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3490struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
d05f3169 3491
11192337 3492/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
8d7071af 3493int expand_downwards(struct vm_area_struct *vma, unsigned long address);
1da177e4
LT
3494
3495/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3496extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3497extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3498 struct vm_area_struct **pprev);
3499
abdba2dd
LH
3500/*
3501 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3502 * NULL if none. Assume start_addr < end_addr.
ce6d42f2 3503 */
ce6d42f2 3504struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
abdba2dd 3505 unsigned long start_addr, unsigned long end_addr);
1da177e4 3506
ce6d42f2
LH
3507/**
3508 * vma_lookup() - Find a VMA at a specific address
3509 * @mm: The process address space.
3510 * @addr: The user address.
3511 *
3512 * Return: The vm_area_struct at the given address, %NULL otherwise.
3513 */
3514static inline
3515struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3516{
d7c62295 3517 return mtree_load(&mm->mm_mt, addr);
ce6d42f2
LH
3518}
3519
0266e7c5
RE
3520static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3521{
3522 if (vma->vm_flags & VM_GROWSDOWN)
3523 return stack_guard_gap;
3524
3525 /* See reasoning around the VM_SHADOW_STACK definition */
3526 if (vma->vm_flags & VM_SHADOW_STACK)
3527 return PAGE_SIZE;
3528
3529 return 0;
3530}
3531
1be7107f
HD
3532static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3533{
0266e7c5 3534 unsigned long gap = stack_guard_start_gap(vma);
1be7107f
HD
3535 unsigned long vm_start = vma->vm_start;
3536
0266e7c5
RE
3537 vm_start -= gap;
3538 if (vm_start > vma->vm_start)
3539 vm_start = 0;
1be7107f
HD
3540 return vm_start;
3541}
3542
3543static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3544{
3545 unsigned long vm_end = vma->vm_end;
3546
3547 if (vma->vm_flags & VM_GROWSUP) {
3548 vm_end += stack_guard_gap;
3549 if (vm_end < vma->vm_end)
3550 vm_end = -PAGE_SIZE;
3551 }
3552 return vm_end;
3553}
3554
1da177e4
LT
3555static inline unsigned long vma_pages(struct vm_area_struct *vma)
3556{
3557 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3558}
3559
640708a2
PE
3560/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3561static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3562 unsigned long vm_start, unsigned long vm_end)
3563{
dc8635b2 3564 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
640708a2
PE
3565
3566 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3567 vma = NULL;
3568
3569 return vma;
3570}
3571
017b1660
MK
3572static inline bool range_in_vma(struct vm_area_struct *vma,
3573 unsigned long start, unsigned long end)
3574{
3575 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3576}
3577
bad849b3 3578#ifdef CONFIG_MMU
804af2cf 3579pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 3580void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
3581#else
3582static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3583{
3584 return __pgprot(0);
3585}
64e45507
PF
3586static inline void vma_set_page_prot(struct vm_area_struct *vma)
3587{
3588 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3589}
bad849b3
DH
3590#endif
3591
295992fb
CK
3592void vma_set_file(struct vm_area_struct *vma, struct file *file);
3593
5877231f 3594#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 3595unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
3596 unsigned long start, unsigned long end);
3597#endif
3598
f440fa1a 3599struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
8d7071af 3600 unsigned long addr);
deceb6cd
HD
3601int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3602 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
3603int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3604 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 3605int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
3606int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3607 struct page **pages, unsigned long *num);
a667d745
SJ
3608int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3609 unsigned long num);
3610int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3611 unsigned long num);
ae2b01f3 3612vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 3613 unsigned long pfn);
f5e6d1d5
MW
3614vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3615 unsigned long pfn, pgprot_t pgprot);
5d747637 3616vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 3617 pfn_t pfn);
ab77dab4
SJ
3618vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3619 unsigned long addr, pfn_t pfn);
b4cbb197
LT
3620int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3621
1c8f4220
SJ
3622static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3623 unsigned long addr, struct page *page)
3624{
3625 int err = vm_insert_page(vma, addr, page);
3626
3627 if (err == -ENOMEM)
3628 return VM_FAULT_OOM;
3629 if (err < 0 && err != -EBUSY)
3630 return VM_FAULT_SIGBUS;
3631
3632 return VM_FAULT_NOPAGE;
3633}
3634
f8f6ae5d
JG
3635#ifndef io_remap_pfn_range
3636static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3637 unsigned long addr, unsigned long pfn,
3638 unsigned long size, pgprot_t prot)
3639{
3640 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3641}
3642#endif
3643
d97baf94
SJ
3644static inline vm_fault_t vmf_error(int err)
3645{
3646 if (err == -ENOMEM)
3647 return VM_FAULT_OOM;
1ea7ca1b
JC
3648 else if (err == -EHWPOISON)
3649 return VM_FAULT_HWPOISON;
d97baf94
SJ
3650 return VM_FAULT_SIGBUS;
3651}
3652
2ba39cc4
CH
3653/*
3654 * Convert errno to return value for ->page_mkwrite() calls.
3655 *
3656 * This should eventually be merged with vmf_error() above, but will need a
3657 * careful audit of all vmf_error() callers.
3658 */
3659static inline vm_fault_t vmf_fs_error(int err)
3660{
3661 if (err == 0)
3662 return VM_FAULT_LOCKED;
3663 if (err == -EFAULT || err == -EAGAIN)
3664 return VM_FAULT_NOPAGE;
3665 if (err == -ENOMEM)
3666 return VM_FAULT_OOM;
3667 /* -ENOSPC, -EDQUOT, -EIO ... */
3668 return VM_FAULT_SIGBUS;
3669}
3670
df06b37f
KB
3671struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3672 unsigned int foll_flags);
240aadee 3673
2b740303 3674static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3675{
3676 if (vm_fault & VM_FAULT_OOM)
3677 return -ENOMEM;
3678 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3679 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3680 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3681 return -EFAULT;
3682 return 0;
3683}
3684
474098ed
DH
3685/*
3686 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3687 * a (NUMA hinting) fault is required.
3688 */
d74943a2
DH
3689static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3690 unsigned int flags)
474098ed
DH
3691{
3692 /*
d74943a2
DH
3693 * If callers don't want to honor NUMA hinting faults, no need to
3694 * determine if we would actually have to trigger a NUMA hinting fault.
474098ed 3695 */
d74943a2
DH
3696 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3697 return true;
3698
3699 /*
3700 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3701 *
3702 * Requiring a fault here even for inaccessible VMAs would mean that
3703 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3704 * refuses to process NUMA hinting faults in inaccessible VMAs.
3705 */
3706 return !vma_is_accessible(vma);
474098ed
DH
3707}
3708
8b1e0f81 3709typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3710extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3711 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3712extern int apply_to_existing_page_range(struct mm_struct *mm,
3713 unsigned long address, unsigned long size,
3714 pte_fn_t fn, void *data);
aee16b3c 3715
8823b1db 3716#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3717extern void __kernel_poison_pages(struct page *page, int numpages);
3718extern void __kernel_unpoison_pages(struct page *page, int numpages);
3719extern bool _page_poisoning_enabled_early;
3720DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3721static inline bool page_poisoning_enabled(void)
3722{
3723 return _page_poisoning_enabled_early;
3724}
3725/*
3726 * For use in fast paths after init_mem_debugging() has run, or when a
3727 * false negative result is not harmful when called too early.
3728 */
3729static inline bool page_poisoning_enabled_static(void)
3730{
3731 return static_branch_unlikely(&_page_poisoning_enabled);
3732}
3733static inline void kernel_poison_pages(struct page *page, int numpages)
3734{
3735 if (page_poisoning_enabled_static())
3736 __kernel_poison_pages(page, numpages);
3737}
3738static inline void kernel_unpoison_pages(struct page *page, int numpages)
3739{
3740 if (page_poisoning_enabled_static())
3741 __kernel_unpoison_pages(page, numpages);
3742}
8823b1db
LA
3743#else
3744static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3745static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3746static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3747static inline void kernel_poison_pages(struct page *page, int numpages) { }
3748static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3749#endif
3750
51cba1eb 3751DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3752static inline bool want_init_on_alloc(gfp_t flags)
3753{
51cba1eb
KC
3754 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3755 &init_on_alloc))
6471384a
AP
3756 return true;
3757 return flags & __GFP_ZERO;
3758}
3759
51cba1eb 3760DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3761static inline bool want_init_on_free(void)
3762{
51cba1eb
KC
3763 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3764 &init_on_free);
6471384a
AP
3765}
3766
8e57f8ac
VB
3767extern bool _debug_pagealloc_enabled_early;
3768DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3769
3770static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3771{
3772 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3773 _debug_pagealloc_enabled_early;
3774}
3775
3776/*
ea09800b
ML
3777 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3778 * or when a false negative result is not harmful when called too early.
8e57f8ac
VB
3779 */
3780static inline bool debug_pagealloc_enabled_static(void)
031bc574 3781{
96a2b03f
VB
3782 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3783 return false;
3784
3785 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3786}
3787
c87cbc1f 3788/*
5d6ad668
MR
3789 * To support DEBUG_PAGEALLOC architecture must ensure that
3790 * __kernel_map_pages() never fails
c87cbc1f 3791 */
d6332692 3792extern void __kernel_map_pages(struct page *page, int numpages, int enable);
8f14a963 3793#ifdef CONFIG_DEBUG_PAGEALLOC
77bc7fd6
MR
3794static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3795{
3796 if (debug_pagealloc_enabled_static())
3797 __kernel_map_pages(page, numpages, 1);
3798}
3799
3800static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3801{
3802 if (debug_pagealloc_enabled_static())
3803 __kernel_map_pages(page, numpages, 0);
3804}
884c175f
KW
3805
3806extern unsigned int _debug_guardpage_minorder;
3807DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3808
3809static inline unsigned int debug_guardpage_minorder(void)
3810{
3811 return _debug_guardpage_minorder;
3812}
3813
3814static inline bool debug_guardpage_enabled(void)
3815{
3816 return static_branch_unlikely(&_debug_guardpage_enabled);
3817}
3818
3819static inline bool page_is_guard(struct page *page)
3820{
3821 if (!debug_guardpage_enabled())
3822 return false;
3823
3824 return PageGuard(page);
3825}
3826
e0932b6c 3827bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
884c175f 3828static inline bool set_page_guard(struct zone *zone, struct page *page,
e0932b6c 3829 unsigned int order)
884c175f
KW
3830{
3831 if (!debug_guardpage_enabled())
3832 return false;
e0932b6c 3833 return __set_page_guard(zone, page, order);
884c175f
KW
3834}
3835
e0932b6c 3836void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
884c175f 3837static inline void clear_page_guard(struct zone *zone, struct page *page,
e0932b6c 3838 unsigned int order)
884c175f
KW
3839{
3840 if (!debug_guardpage_enabled())
3841 return;
e0932b6c 3842 __clear_page_guard(zone, page, order);
884c175f
KW
3843}
3844
5d6ad668 3845#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3846static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3847static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
884c175f
KW
3848static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3849static inline bool debug_guardpage_enabled(void) { return false; }
3850static inline bool page_is_guard(struct page *page) { return false; }
3851static inline bool set_page_guard(struct zone *zone, struct page *page,
e0932b6c 3852 unsigned int order) { return false; }
884c175f 3853static inline void clear_page_guard(struct zone *zone, struct page *page,
e0932b6c 3854 unsigned int order) {}
5d6ad668 3855#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3856
a6c19dfe 3857#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3858extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3859extern int in_gate_area_no_mm(unsigned long addr);
3860extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3861#else
a6c19dfe
AL
3862static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3863{
3864 return NULL;
3865}
3866static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3867static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3868{
3869 return 0;
3870}
1da177e4
LT
3871#endif /* __HAVE_ARCH_GATE_AREA */
3872
44a70ade
MH
3873extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3874
146732ce
JT
3875#ifdef CONFIG_SYSCTL
3876extern int sysctl_drop_caches;
32927393
CH
3877int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3878 loff_t *);
146732ce
JT
3879#endif
3880
cb731d6c 3881void drop_slab(void);
9d0243bc 3882
7a9166e3
LY
3883#ifndef CONFIG_MMU
3884#define randomize_va_space 0
3885#else
a62eaf15 3886extern int randomize_va_space;
7a9166e3 3887#endif
a62eaf15 3888
045e72ac 3889const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3890#ifdef CONFIG_MMU
03252919 3891void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3892#else
3893static inline void print_vma_addr(char *prefix, unsigned long rip)
3894{
3895}
3896#endif
e6e5494c 3897
35fd1eb1 3898void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0 3899struct page * __populate_section_memmap(unsigned long pfn,
e3246d8f
JM
3900 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3901 struct dev_pagemap *pgmap);
7b09f5af
FC
3902void pmd_init(void *addr);
3903void pud_init(void *addr);
29c71111 3904pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3905p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3906pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3907pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7 3908pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4917f55b 3909 struct vmem_altmap *altmap, struct page *reuse);
8f6aac41 3910void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3911struct vmem_altmap;
56993b4e
AK
3912void *vmemmap_alloc_block_buf(unsigned long size, int node,
3913 struct vmem_altmap *altmap);
8f6aac41 3914void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2045a3b8
FC
3915void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3916 unsigned long addr, unsigned long next);
3917int vmemmap_check_pmd(pmd_t *pmd, int node,
3918 unsigned long addr, unsigned long next);
0aad818b 3919int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3920 int node, struct vmem_altmap *altmap);
2045a3b8
FC
3921int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3922 int node, struct vmem_altmap *altmap);
7b73d978
CH
3923int vmemmap_populate(unsigned long start, unsigned long end, int node,
3924 struct vmem_altmap *altmap);
c2b91e2e 3925void vmemmap_populate_print_last(void);
0197518c 3926#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3927void vmemmap_free(unsigned long start, unsigned long end,
3928 struct vmem_altmap *altmap);
0197518c 3929#endif
87a7ae75 3930
95a2ac93
SK
3931#ifdef CONFIG_SPARSEMEM_VMEMMAP
3932static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3933{
3934 /* number of pfns from base where pfn_to_page() is valid */
3935 if (altmap)
3936 return altmap->reserve + altmap->free;
3937 return 0;
3938}
3939
3940static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3941 unsigned long nr_pfns)
3942{
3943 altmap->alloc -= nr_pfns;
3944}
3945#else
3946static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3947{
3948 return 0;
3949}
3950
3951static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3952 unsigned long nr_pfns)
3953{
3954}
3955#endif
3956
c1a6c536 3957#define VMEMMAP_RESERVE_NR 2
0b6f1582 3958#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
c1a6c536
AK
3959static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3960 struct dev_pagemap *pgmap)
87a7ae75 3961{
c1a6c536
AK
3962 unsigned long nr_pages;
3963 unsigned long nr_vmemmap_pages;
3964
3965 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3966 return false;
3967
3968 nr_pages = pgmap_vmemmap_nr(pgmap);
3969 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3970 /*
3971 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3972 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3973 */
3974 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
87a7ae75 3975}
c1a6c536
AK
3976/*
3977 * If we don't have an architecture override, use the generic rule
3978 */
3979#ifndef vmemmap_can_optimize
3980#define vmemmap_can_optimize __vmemmap_can_optimize
3981#endif
3982
87a7ae75
AK
3983#else
3984static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3985 struct dev_pagemap *pgmap)
3986{
3987 return false;
3988}
3989#endif
3990
46723bfa 3991void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3992 unsigned long nr_pages);
6a46079c 3993
82ba011b
AK
3994enum mf_flags {
3995 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3996 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3997 MF_MUST_KILL = 1 << 2,
cf870c70 3998 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3999 MF_UNPOISON = 1 << 4,
67f22ba7 4000 MF_SW_SIMULATED = 1 << 5,
38f6d293 4001 MF_NO_RETRY = 1 << 6,
fa422b35 4002 MF_MEM_PRE_REMOVE = 1 << 7,
82ba011b 4003};
c36e2024
SR
4004int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
4005 unsigned long count, int mf_flags);
83b57531 4006extern int memory_failure(unsigned long pfn, int flags);
06202231 4007extern void memory_failure_queue_kick(int cpu);
847ce401 4008extern int unpoison_memory(unsigned long pfn);
d0505e9f 4009extern void shake_page(struct page *p);
5844a486 4010extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 4011extern int soft_offline_page(unsigned long pfn, int flags);
405ce051 4012#ifdef CONFIG_MEMORY_FAILURE
870388db
KW
4013/*
4014 * Sysfs entries for memory failure handling statistics.
4015 */
4016extern const struct attribute_group memory_failure_attr_group;
d302c239 4017extern void memory_failure_queue(unsigned long pfn, int flags);
e591ef7d
NH
4018extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4019 bool *migratable_cleared);
5033091d
NH
4020void num_poisoned_pages_inc(unsigned long pfn);
4021void num_poisoned_pages_sub(unsigned long pfn, long i);
4248d008 4022struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
405ce051 4023#else
d302c239
TL
4024static inline void memory_failure_queue(unsigned long pfn, int flags)
4025{
4026}
4027
e591ef7d
NH
4028static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4029 bool *migratable_cleared)
405ce051
NH
4030{
4031 return 0;
4032}
d027122d 4033
a46c9304 4034static inline void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
4035{
4036}
5033091d
NH
4037
4038static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4039{
4040}
4041#endif
4042
4248d008
LX
4043#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
4044void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
4045 struct vm_area_struct *vma, struct list_head *to_kill,
4046 unsigned long ksm_addr);
4047#endif
4048
5033091d
NH
4049#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4050extern void memblk_nr_poison_inc(unsigned long pfn);
4051extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4052#else
4053static inline void memblk_nr_poison_inc(unsigned long pfn)
4054{
4055}
4056
4057static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4058{
4059}
405ce051 4060#endif
6a46079c 4061
03b122da
TL
4062#ifndef arch_memory_failure
4063static inline int arch_memory_failure(unsigned long pfn, int flags)
4064{
4065 return -ENXIO;
4066}
4067#endif
4068
4069#ifndef arch_is_platform_page
4070static inline bool arch_is_platform_page(u64 paddr)
4071{
4072 return false;
4073}
4074#endif
cc637b17
XX
4075
4076/*
4077 * Error handlers for various types of pages.
4078 */
cc3e2af4 4079enum mf_result {
cc637b17
XX
4080 MF_IGNORED, /* Error: cannot be handled */
4081 MF_FAILED, /* Error: handling failed */
4082 MF_DELAYED, /* Will be handled later */
4083 MF_RECOVERED, /* Successfully recovered */
4084};
4085
4086enum mf_action_page_type {
4087 MF_MSG_KERNEL,
4088 MF_MSG_KERNEL_HIGH_ORDER,
4089 MF_MSG_SLAB,
4090 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
4091 MF_MSG_HUGE,
4092 MF_MSG_FREE_HUGE,
4093 MF_MSG_UNMAP_FAILED,
4094 MF_MSG_DIRTY_SWAPCACHE,
4095 MF_MSG_CLEAN_SWAPCACHE,
4096 MF_MSG_DIRTY_MLOCKED_LRU,
4097 MF_MSG_CLEAN_MLOCKED_LRU,
4098 MF_MSG_DIRTY_UNEVICTABLE_LRU,
4099 MF_MSG_CLEAN_UNEVICTABLE_LRU,
4100 MF_MSG_DIRTY_LRU,
4101 MF_MSG_CLEAN_LRU,
4102 MF_MSG_TRUNCATED_LRU,
4103 MF_MSG_BUDDY,
6100e34b 4104 MF_MSG_DAX,
5d1fd5dc 4105 MF_MSG_UNSPLIT_THP,
cc637b17
XX
4106 MF_MSG_UNKNOWN,
4107};
4108
47ad8475
AA
4109#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4110extern void clear_huge_page(struct page *page,
c79b57e4 4111 unsigned long addr_hint,
47ad8475 4112 unsigned int pages_per_huge_page);
1cb9dc4b
LS
4113int copy_user_large_folio(struct folio *dst, struct folio *src,
4114 unsigned long addr_hint,
4115 struct vm_area_struct *vma);
e87340ca
Z
4116long copy_folio_from_user(struct folio *dst_folio,
4117 const void __user *usr_src,
4118 bool allow_pagefault);
2484ca9b
THV
4119
4120/**
4121 * vma_is_special_huge - Are transhuge page-table entries considered special?
4122 * @vma: Pointer to the struct vm_area_struct to consider
4123 *
4124 * Whether transhuge page-table entries are considered "special" following
4125 * the definition in vm_normal_page().
4126 *
4127 * Return: true if transhuge page-table entries should be considered special,
4128 * false otherwise.
4129 */
4130static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4131{
4132 return vma_is_dax(vma) || (vma->vm_file &&
4133 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4134}
4135
47ad8475
AA
4136#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4137
f9872caf
CS
4138#if MAX_NUMNODES > 1
4139void __init setup_nr_node_ids(void);
4140#else
4141static inline void setup_nr_node_ids(void) {}
4142#endif
4143
010c164a
SL
4144extern int memcmp_pages(struct page *page1, struct page *page2);
4145
4146static inline int pages_identical(struct page *page1, struct page *page2)
4147{
4148 return !memcmp_pages(page1, page2);
4149}
4150
c5acad84
TH
4151#ifdef CONFIG_MAPPING_DIRTY_HELPERS
4152unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4153 pgoff_t first_index, pgoff_t nr,
4154 pgoff_t bitmap_pgoff,
4155 unsigned long *bitmap,
4156 pgoff_t *start,
4157 pgoff_t *end);
4158
4159unsigned long wp_shared_mapping_range(struct address_space *mapping,
4160 pgoff_t first_index, pgoff_t nr);
4161#endif
4162
2374c09b
CH
4163extern int sysctl_nr_trim_pages;
4164
5bb1bb35 4165#ifdef CONFIG_PRINTK
8e7f37f2 4166void mem_dump_obj(void *object);
5bb1bb35
PM
4167#else
4168static inline void mem_dump_obj(void *object) {}
4169#endif
8e7f37f2 4170
22247efd 4171/**
28464bbb
LS
4172 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4173 * handle them.
22247efd
PX
4174 * @seals: the seals to check
4175 * @vma: the vma to operate on
4176 *
28464bbb
LS
4177 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4178 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors.
22247efd 4179 */
28464bbb 4180static inline int seal_check_write(int seals, struct vm_area_struct *vma)
22247efd 4181{
28464bbb 4182 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
22247efd
PX
4183 /*
4184 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
28464bbb 4185 * write seals are active.
22247efd
PX
4186 */
4187 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4188 return -EPERM;
4189
4190 /*
28464bbb 4191 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
22247efd
PX
4192 * MAP_SHARED and read-only, take care to not allow mprotect to
4193 * revert protections on such mappings. Do this only for shared
4194 * mappings. For private mappings, don't need to mask
4195 * VM_MAYWRITE as we still want them to be COW-writable.
4196 */
4197 if (vma->vm_flags & VM_SHARED)
1c71222e 4198 vm_flags_clear(vma, VM_MAYWRITE);
22247efd
PX
4199 }
4200
4201 return 0;
4202}
4203
9a10064f
CC
4204#ifdef CONFIG_ANON_VMA_NAME
4205int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac
SB
4206 unsigned long len_in,
4207 struct anon_vma_name *anon_name);
9a10064f
CC
4208#else
4209static inline int
4210madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac 4211 unsigned long len_in, struct anon_vma_name *anon_name) {
9a10064f
CC
4212 return 0;
4213}
4214#endif
4215
dcdfdd40
KS
4216#ifdef CONFIG_UNACCEPTED_MEMORY
4217
4218bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4219void accept_memory(phys_addr_t start, phys_addr_t end);
4220
4221#else
4222
4223static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4224 phys_addr_t end)
4225{
4226 return false;
4227}
4228
4229static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4230{
4231}
4232
4233#endif
4234
7cd34dd3
AH
4235static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4236{
4237 phys_addr_t paddr = pfn << PAGE_SHIFT;
4238
4239 return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE);
4240}
4241
239e9a90
PX
4242void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4243void vma_pgtable_walk_end(struct vm_area_struct *vma);
4244
1da177e4 4245#endif /* _LINUX_MM_H */