Merge tag 'tag-sh-for-4.6' of git://git.libc.org/linux-sh
[linux-2.6-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
3565fce3 19#include <linux/percpu-refcount.h>
e9da73d6 20#include <linux/bit_spinlock.h>
b0d40c92 21#include <linux/shrinker.h>
9c599024 22#include <linux/resource.h>
e30825f1 23#include <linux/page_ext.h>
8025e5dd 24#include <linux/err.h>
fe896d18 25#include <linux/page_ref.h>
1da177e4
LT
26
27struct mempolicy;
28struct anon_vma;
bf181b9f 29struct anon_vma_chain;
4e950f6f 30struct file_ra_state;
e8edc6e0 31struct user_struct;
4e950f6f 32struct writeback_control;
682aa8e1 33struct bdi_writeback;
1da177e4 34
fccc9987 35#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 36extern unsigned long max_mapnr;
fccc9987
JL
37
38static inline void set_max_mapnr(unsigned long limit)
39{
40 max_mapnr = limit;
41}
42#else
43static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
44#endif
45
4481374c 46extern unsigned long totalram_pages;
1da177e4 47extern void * high_memory;
1da177e4
LT
48extern int page_cluster;
49
50#ifdef CONFIG_SYSCTL
51extern int sysctl_legacy_va_layout;
52#else
53#define sysctl_legacy_va_layout 0
54#endif
55
d07e2259
DC
56#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57extern const int mmap_rnd_bits_min;
58extern const int mmap_rnd_bits_max;
59extern int mmap_rnd_bits __read_mostly;
60#endif
61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62extern const int mmap_rnd_compat_bits_min;
63extern const int mmap_rnd_compat_bits_max;
64extern int mmap_rnd_compat_bits __read_mostly;
65#endif
66
1da177e4
LT
67#include <asm/page.h>
68#include <asm/pgtable.h>
69#include <asm/processor.h>
1da177e4 70
79442ed1
TC
71#ifndef __pa_symbol
72#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
73#endif
74
593befa6
DD
75/*
76 * To prevent common memory management code establishing
77 * a zero page mapping on a read fault.
78 * This macro should be defined within <asm/pgtable.h>.
79 * s390 does this to prevent multiplexing of hardware bits
80 * related to the physical page in case of virtualization.
81 */
82#ifndef mm_forbids_zeropage
83#define mm_forbids_zeropage(X) (0)
84#endif
85
ea606cf5
AR
86/*
87 * Default maximum number of active map areas, this limits the number of vmas
88 * per mm struct. Users can overwrite this number by sysctl but there is a
89 * problem.
90 *
91 * When a program's coredump is generated as ELF format, a section is created
92 * per a vma. In ELF, the number of sections is represented in unsigned short.
93 * This means the number of sections should be smaller than 65535 at coredump.
94 * Because the kernel adds some informative sections to a image of program at
95 * generating coredump, we need some margin. The number of extra sections is
96 * 1-3 now and depends on arch. We use "5" as safe margin, here.
97 *
98 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
99 * not a hard limit any more. Although some userspace tools can be surprised by
100 * that.
101 */
102#define MAPCOUNT_ELF_CORE_MARGIN (5)
103#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
104
105extern int sysctl_max_map_count;
106
c9b1d098 107extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 108extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 109
49f0ce5f
JM
110extern int sysctl_overcommit_memory;
111extern int sysctl_overcommit_ratio;
112extern unsigned long sysctl_overcommit_kbytes;
113
114extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
115 size_t *, loff_t *);
116extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
117 size_t *, loff_t *);
118
1da177e4
LT
119#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
120
27ac792c
AR
121/* to align the pointer to the (next) page boundary */
122#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
123
0fa73b86
AM
124/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
125#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
126
1da177e4
LT
127/*
128 * Linux kernel virtual memory manager primitives.
129 * The idea being to have a "virtual" mm in the same way
130 * we have a virtual fs - giving a cleaner interface to the
131 * mm details, and allowing different kinds of memory mappings
132 * (from shared memory to executable loading to arbitrary
133 * mmap() functions).
134 */
135
c43692e8
CL
136extern struct kmem_cache *vm_area_cachep;
137
1da177e4 138#ifndef CONFIG_MMU
8feae131
DH
139extern struct rb_root nommu_region_tree;
140extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
141
142extern unsigned int kobjsize(const void *objp);
143#endif
144
145/*
605d9288 146 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 147 * When changing, update also include/trace/events/mmflags.h
1da177e4 148 */
cc2383ec
KK
149#define VM_NONE 0x00000000
150
1da177e4
LT
151#define VM_READ 0x00000001 /* currently active flags */
152#define VM_WRITE 0x00000002
153#define VM_EXEC 0x00000004
154#define VM_SHARED 0x00000008
155
7e2cff42 156/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
157#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
158#define VM_MAYWRITE 0x00000020
159#define VM_MAYEXEC 0x00000040
160#define VM_MAYSHARE 0x00000080
161
162#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 163#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 164#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 165#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 166#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 167
1da177e4
LT
168#define VM_LOCKED 0x00002000
169#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
170
171 /* Used by sys_madvise() */
172#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
173#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
174
175#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
176#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 177#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 178#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 179#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 180#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 181#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 182#define VM_ARCH_2 0x02000000
0103bd16 183#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 184
d9104d1c
CG
185#ifdef CONFIG_MEM_SOFT_DIRTY
186# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
187#else
188# define VM_SOFTDIRTY 0
189#endif
190
b379d790 191#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
192#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
193#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 194#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 195
cc2383ec
KK
196#if defined(CONFIG_X86)
197# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
198#elif defined(CONFIG_PPC)
199# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
200#elif defined(CONFIG_PARISC)
201# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
202#elif defined(CONFIG_METAG)
203# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
204#elif defined(CONFIG_IA64)
205# define VM_GROWSUP VM_ARCH_1
206#elif !defined(CONFIG_MMU)
207# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
208#endif
209
4aae7e43
QR
210#if defined(CONFIG_X86)
211/* MPX specific bounds table or bounds directory */
212# define VM_MPX VM_ARCH_2
213#endif
214
cc2383ec
KK
215#ifndef VM_GROWSUP
216# define VM_GROWSUP VM_NONE
217#endif
218
a8bef8ff
MG
219/* Bits set in the VMA until the stack is in its final location */
220#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
221
1da177e4
LT
222#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
223#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
224#endif
225
226#ifdef CONFIG_STACK_GROWSUP
30bdbb78 227#define VM_STACK VM_GROWSUP
1da177e4 228#else
30bdbb78 229#define VM_STACK VM_GROWSDOWN
1da177e4
LT
230#endif
231
30bdbb78
KK
232#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
233
b291f000 234/*
78f11a25
AA
235 * Special vmas that are non-mergable, non-mlock()able.
236 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 237 */
9050d7eb 238#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 239
a0715cc2
AT
240/* This mask defines which mm->def_flags a process can inherit its parent */
241#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
242
de60f5f1
EM
243/* This mask is used to clear all the VMA flags used by mlock */
244#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
245
1da177e4
LT
246/*
247 * mapping from the currently active vm_flags protection bits (the
248 * low four bits) to a page protection mask..
249 */
250extern pgprot_t protection_map[16];
251
d0217ac0 252#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
253#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
254#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
255#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
256#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
257#define FAULT_FLAG_TRIED 0x20 /* Second try */
258#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
d0217ac0 259
54cb8821 260/*
d0217ac0 261 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
262 * ->fault function. The vma's ->fault is responsible for returning a bitmask
263 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 264 *
c20cd45e
MH
265 * MM layer fills up gfp_mask for page allocations but fault handler might
266 * alter it if its implementation requires a different allocation context.
267 *
9b4bdd2f 268 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 269 */
d0217ac0
NP
270struct vm_fault {
271 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 272 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0
NP
273 pgoff_t pgoff; /* Logical page offset based on vma */
274 void __user *virtual_address; /* Faulting virtual address */
275
2e4cdab0 276 struct page *cow_page; /* Handler may choose to COW */
d0217ac0 277 struct page *page; /* ->fault handlers should return a
83c54070 278 * page here, unless VM_FAULT_NOPAGE
d0217ac0 279 * is set (which is also implied by
83c54070 280 * VM_FAULT_ERROR).
d0217ac0 281 */
8c6e50b0
KS
282 /* for ->map_pages() only */
283 pgoff_t max_pgoff; /* map pages for offset from pgoff till
284 * max_pgoff inclusive */
285 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 286};
1da177e4
LT
287
288/*
289 * These are the virtual MM functions - opening of an area, closing and
290 * unmapping it (needed to keep files on disk up-to-date etc), pointer
291 * to the functions called when a no-page or a wp-page exception occurs.
292 */
293struct vm_operations_struct {
294 void (*open)(struct vm_area_struct * area);
295 void (*close)(struct vm_area_struct * area);
5477e70a 296 int (*mremap)(struct vm_area_struct * area);
d0217ac0 297 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
b96375f7
MW
298 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
299 pmd_t *, unsigned int flags);
8c6e50b0 300 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
301
302 /* notification that a previously read-only page is about to become
303 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 304 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 305
dd906184
BH
306 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
307 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
308
28b2ee20
RR
309 /* called by access_process_vm when get_user_pages() fails, typically
310 * for use by special VMAs that can switch between memory and hardware
311 */
312 int (*access)(struct vm_area_struct *vma, unsigned long addr,
313 void *buf, int len, int write);
78d683e8
AL
314
315 /* Called by the /proc/PID/maps code to ask the vma whether it
316 * has a special name. Returning non-NULL will also cause this
317 * vma to be dumped unconditionally. */
318 const char *(*name)(struct vm_area_struct *vma);
319
1da177e4 320#ifdef CONFIG_NUMA
a6020ed7
LS
321 /*
322 * set_policy() op must add a reference to any non-NULL @new mempolicy
323 * to hold the policy upon return. Caller should pass NULL @new to
324 * remove a policy and fall back to surrounding context--i.e. do not
325 * install a MPOL_DEFAULT policy, nor the task or system default
326 * mempolicy.
327 */
1da177e4 328 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
329
330 /*
331 * get_policy() op must add reference [mpol_get()] to any policy at
332 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
333 * in mm/mempolicy.c will do this automatically.
334 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
335 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
336 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
337 * must return NULL--i.e., do not "fallback" to task or system default
338 * policy.
339 */
1da177e4
LT
340 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
341 unsigned long addr);
342#endif
667a0a06
DV
343 /*
344 * Called by vm_normal_page() for special PTEs to find the
345 * page for @addr. This is useful if the default behavior
346 * (using pte_page()) would not find the correct page.
347 */
348 struct page *(*find_special_page)(struct vm_area_struct *vma,
349 unsigned long addr);
1da177e4
LT
350};
351
352struct mmu_gather;
353struct inode;
354
349aef0b
AM
355#define page_private(page) ((page)->private)
356#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 357
5c7fb56e
DW
358#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
359static inline int pmd_devmap(pmd_t pmd)
360{
361 return 0;
362}
363#endif
364
1da177e4
LT
365/*
366 * FIXME: take this include out, include page-flags.h in
367 * files which need it (119 of them)
368 */
369#include <linux/page-flags.h>
71e3aac0 370#include <linux/huge_mm.h>
1da177e4
LT
371
372/*
373 * Methods to modify the page usage count.
374 *
375 * What counts for a page usage:
376 * - cache mapping (page->mapping)
377 * - private data (page->private)
378 * - page mapped in a task's page tables, each mapping
379 * is counted separately
380 *
381 * Also, many kernel routines increase the page count before a critical
382 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
383 */
384
385/*
da6052f7 386 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 387 */
7c8ee9a8
NP
388static inline int put_page_testzero(struct page *page)
389{
fe896d18
JK
390 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
391 return page_ref_dec_and_test(page);
7c8ee9a8 392}
1da177e4
LT
393
394/*
7c8ee9a8
NP
395 * Try to grab a ref unless the page has a refcount of zero, return false if
396 * that is the case.
8e0861fa
AK
397 * This can be called when MMU is off so it must not access
398 * any of the virtual mappings.
1da177e4 399 */
7c8ee9a8
NP
400static inline int get_page_unless_zero(struct page *page)
401{
fe896d18 402 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 403}
1da177e4 404
53df8fdc 405extern int page_is_ram(unsigned long pfn);
124fe20d
DW
406
407enum {
408 REGION_INTERSECTS,
409 REGION_DISJOINT,
410 REGION_MIXED,
411};
412
1c29f25b
TK
413int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
414 unsigned long desc);
53df8fdc 415
48667e7a 416/* Support for virtually mapped pages */
b3bdda02
CL
417struct page *vmalloc_to_page(const void *addr);
418unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 419
0738c4bb
PM
420/*
421 * Determine if an address is within the vmalloc range
422 *
423 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
424 * is no special casing required.
425 */
9e2779fa
CL
426static inline int is_vmalloc_addr(const void *x)
427{
0738c4bb 428#ifdef CONFIG_MMU
9e2779fa
CL
429 unsigned long addr = (unsigned long)x;
430
431 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
432#else
433 return 0;
8ca3ed87 434#endif
0738c4bb 435}
81ac3ad9
KH
436#ifdef CONFIG_MMU
437extern int is_vmalloc_or_module_addr(const void *x);
438#else
934831d0 439static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
440{
441 return 0;
442}
443#endif
9e2779fa 444
39f1f78d
AV
445extern void kvfree(const void *addr);
446
53f9263b
KS
447static inline atomic_t *compound_mapcount_ptr(struct page *page)
448{
449 return &page[1].compound_mapcount;
450}
451
452static inline int compound_mapcount(struct page *page)
453{
454 if (!PageCompound(page))
455 return 0;
456 page = compound_head(page);
457 return atomic_read(compound_mapcount_ptr(page)) + 1;
458}
459
70b50f94
AA
460/*
461 * The atomic page->_mapcount, starts from -1: so that transitions
462 * both from it and to it can be tracked, using atomic_inc_and_test
463 * and atomic_add_negative(-1).
464 */
22b751c3 465static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
466{
467 atomic_set(&(page)->_mapcount, -1);
468}
469
b20ce5e0
KS
470int __page_mapcount(struct page *page);
471
70b50f94
AA
472static inline int page_mapcount(struct page *page)
473{
1d148e21 474 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 475
b20ce5e0
KS
476 if (unlikely(PageCompound(page)))
477 return __page_mapcount(page);
478 return atomic_read(&page->_mapcount) + 1;
479}
480
481#ifdef CONFIG_TRANSPARENT_HUGEPAGE
482int total_mapcount(struct page *page);
483#else
484static inline int total_mapcount(struct page *page)
485{
486 return page_mapcount(page);
70b50f94 487}
b20ce5e0 488#endif
70b50f94 489
b49af68f
CL
490static inline struct page *virt_to_head_page(const void *x)
491{
492 struct page *page = virt_to_page(x);
ccaafd7f 493
1d798ca3 494 return compound_head(page);
b49af68f
CL
495}
496
ddc58f27
KS
497void __put_page(struct page *page);
498
1d7ea732 499void put_pages_list(struct list_head *pages);
1da177e4 500
8dfcc9ba 501void split_page(struct page *page, unsigned int order);
748446bb 502int split_free_page(struct page *page);
8dfcc9ba 503
33f2ef89
AW
504/*
505 * Compound pages have a destructor function. Provide a
506 * prototype for that function and accessor functions.
f1e61557 507 * These are _only_ valid on the head of a compound page.
33f2ef89 508 */
f1e61557
KS
509typedef void compound_page_dtor(struct page *);
510
511/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
512enum compound_dtor_id {
513 NULL_COMPOUND_DTOR,
514 COMPOUND_PAGE_DTOR,
515#ifdef CONFIG_HUGETLB_PAGE
516 HUGETLB_PAGE_DTOR,
9a982250
KS
517#endif
518#ifdef CONFIG_TRANSPARENT_HUGEPAGE
519 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
520#endif
521 NR_COMPOUND_DTORS,
522};
523extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
524
525static inline void set_compound_page_dtor(struct page *page,
f1e61557 526 enum compound_dtor_id compound_dtor)
33f2ef89 527{
f1e61557
KS
528 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
529 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
530}
531
532static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
533{
f1e61557
KS
534 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
535 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
536}
537
d00181b9 538static inline unsigned int compound_order(struct page *page)
d85f3385 539{
6d777953 540 if (!PageHead(page))
d85f3385 541 return 0;
e4b294c2 542 return page[1].compound_order;
d85f3385
CL
543}
544
f1e61557 545static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 546{
e4b294c2 547 page[1].compound_order = order;
d85f3385
CL
548}
549
9a982250
KS
550void free_compound_page(struct page *page);
551
3dece370 552#ifdef CONFIG_MMU
14fd403f
AA
553/*
554 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
555 * servicing faults for write access. In the normal case, do always want
556 * pte_mkwrite. But get_user_pages can cause write faults for mappings
557 * that do not have writing enabled, when used by access_process_vm.
558 */
559static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
560{
561 if (likely(vma->vm_flags & VM_WRITE))
562 pte = pte_mkwrite(pte);
563 return pte;
564}
8c6e50b0
KS
565
566void do_set_pte(struct vm_area_struct *vma, unsigned long address,
567 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 568#endif
14fd403f 569
1da177e4
LT
570/*
571 * Multiple processes may "see" the same page. E.g. for untouched
572 * mappings of /dev/null, all processes see the same page full of
573 * zeroes, and text pages of executables and shared libraries have
574 * only one copy in memory, at most, normally.
575 *
576 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
577 * page_count() == 0 means the page is free. page->lru is then used for
578 * freelist management in the buddy allocator.
da6052f7 579 * page_count() > 0 means the page has been allocated.
1da177e4 580 *
da6052f7
NP
581 * Pages are allocated by the slab allocator in order to provide memory
582 * to kmalloc and kmem_cache_alloc. In this case, the management of the
583 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
584 * unless a particular usage is carefully commented. (the responsibility of
585 * freeing the kmalloc memory is the caller's, of course).
1da177e4 586 *
da6052f7
NP
587 * A page may be used by anyone else who does a __get_free_page().
588 * In this case, page_count still tracks the references, and should only
589 * be used through the normal accessor functions. The top bits of page->flags
590 * and page->virtual store page management information, but all other fields
591 * are unused and could be used privately, carefully. The management of this
592 * page is the responsibility of the one who allocated it, and those who have
593 * subsequently been given references to it.
594 *
595 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
596 * managed by the Linux memory manager: I/O, buffers, swapping etc.
597 * The following discussion applies only to them.
598 *
da6052f7
NP
599 * A pagecache page contains an opaque `private' member, which belongs to the
600 * page's address_space. Usually, this is the address of a circular list of
601 * the page's disk buffers. PG_private must be set to tell the VM to call
602 * into the filesystem to release these pages.
1da177e4 603 *
da6052f7
NP
604 * A page may belong to an inode's memory mapping. In this case, page->mapping
605 * is the pointer to the inode, and page->index is the file offset of the page,
606 * in units of PAGE_CACHE_SIZE.
1da177e4 607 *
da6052f7
NP
608 * If pagecache pages are not associated with an inode, they are said to be
609 * anonymous pages. These may become associated with the swapcache, and in that
610 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 611 *
da6052f7
NP
612 * In either case (swapcache or inode backed), the pagecache itself holds one
613 * reference to the page. Setting PG_private should also increment the
614 * refcount. The each user mapping also has a reference to the page.
1da177e4 615 *
da6052f7
NP
616 * The pagecache pages are stored in a per-mapping radix tree, which is
617 * rooted at mapping->page_tree, and indexed by offset.
618 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
619 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 620 *
da6052f7 621 * All pagecache pages may be subject to I/O:
1da177e4
LT
622 * - inode pages may need to be read from disk,
623 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
624 * to be written back to the inode on disk,
625 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
626 * modified may need to be swapped out to swap space and (later) to be read
627 * back into memory.
1da177e4
LT
628 */
629
630/*
631 * The zone field is never updated after free_area_init_core()
632 * sets it, so none of the operations on it need to be atomic.
1da177e4 633 */
348f8b6c 634
90572890 635/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 636#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
637#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
638#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 639#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 640
348f8b6c 641/*
25985edc 642 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
643 * sections we define the shift as 0; that plus a 0 mask ensures
644 * the compiler will optimise away reference to them.
645 */
d41dee36
AW
646#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
647#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
648#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 649#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 650
bce54bbf
WD
651/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
652#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 653#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
654#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
655 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 656#else
89689ae7 657#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
658#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
659 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
660#endif
661
bd8029b6 662#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 663
9223b419
CL
664#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
665#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
666#endif
667
d41dee36
AW
668#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
669#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
670#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 671#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 672#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 673
33dd4e0e 674static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 675{
348f8b6c 676 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 677}
1da177e4 678
260ae3f7 679#ifdef CONFIG_ZONE_DEVICE
3565fce3
DW
680void get_zone_device_page(struct page *page);
681void put_zone_device_page(struct page *page);
260ae3f7
DW
682static inline bool is_zone_device_page(const struct page *page)
683{
684 return page_zonenum(page) == ZONE_DEVICE;
685}
686#else
3565fce3
DW
687static inline void get_zone_device_page(struct page *page)
688{
689}
690static inline void put_zone_device_page(struct page *page)
691{
692}
260ae3f7
DW
693static inline bool is_zone_device_page(const struct page *page)
694{
695 return false;
696}
697#endif
698
3565fce3
DW
699static inline void get_page(struct page *page)
700{
701 page = compound_head(page);
702 /*
703 * Getting a normal page or the head of a compound page
704 * requires to already have an elevated page->_count.
705 */
fe896d18
JK
706 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
707 page_ref_inc(page);
3565fce3
DW
708
709 if (unlikely(is_zone_device_page(page)))
710 get_zone_device_page(page);
711}
712
713static inline void put_page(struct page *page)
714{
715 page = compound_head(page);
716
717 if (put_page_testzero(page))
718 __put_page(page);
719
720 if (unlikely(is_zone_device_page(page)))
721 put_zone_device_page(page);
722}
723
9127ab4f
CS
724#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
725#define SECTION_IN_PAGE_FLAGS
726#endif
727
89689ae7 728/*
7a8010cd
VB
729 * The identification function is mainly used by the buddy allocator for
730 * determining if two pages could be buddies. We are not really identifying
731 * the zone since we could be using the section number id if we do not have
732 * node id available in page flags.
733 * We only guarantee that it will return the same value for two combinable
734 * pages in a zone.
89689ae7 735 */
cb2b95e1
AW
736static inline int page_zone_id(struct page *page)
737{
89689ae7 738 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
739}
740
25ba77c1 741static inline int zone_to_nid(struct zone *zone)
89fa3024 742{
d5f541ed
CL
743#ifdef CONFIG_NUMA
744 return zone->node;
745#else
746 return 0;
747#endif
89fa3024
CL
748}
749
89689ae7 750#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 751extern int page_to_nid(const struct page *page);
89689ae7 752#else
33dd4e0e 753static inline int page_to_nid(const struct page *page)
d41dee36 754{
89689ae7 755 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 756}
89689ae7
CL
757#endif
758
57e0a030 759#ifdef CONFIG_NUMA_BALANCING
90572890 760static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 761{
90572890 762 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
763}
764
90572890 765static inline int cpupid_to_pid(int cpupid)
57e0a030 766{
90572890 767 return cpupid & LAST__PID_MASK;
57e0a030 768}
b795854b 769
90572890 770static inline int cpupid_to_cpu(int cpupid)
b795854b 771{
90572890 772 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
773}
774
90572890 775static inline int cpupid_to_nid(int cpupid)
b795854b 776{
90572890 777 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
778}
779
90572890 780static inline bool cpupid_pid_unset(int cpupid)
57e0a030 781{
90572890 782 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
783}
784
90572890 785static inline bool cpupid_cpu_unset(int cpupid)
b795854b 786{
90572890 787 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
788}
789
8c8a743c
PZ
790static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
791{
792 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
793}
794
795#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
796#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
797static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 798{
1ae71d03 799 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 800}
90572890
PZ
801
802static inline int page_cpupid_last(struct page *page)
803{
804 return page->_last_cpupid;
805}
806static inline void page_cpupid_reset_last(struct page *page)
b795854b 807{
1ae71d03 808 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
809}
810#else
90572890 811static inline int page_cpupid_last(struct page *page)
75980e97 812{
90572890 813 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
814}
815
90572890 816extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 817
90572890 818static inline void page_cpupid_reset_last(struct page *page)
75980e97 819{
90572890 820 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 821
90572890
PZ
822 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
823 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 824}
90572890
PZ
825#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
826#else /* !CONFIG_NUMA_BALANCING */
827static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 828{
90572890 829 return page_to_nid(page); /* XXX */
57e0a030
MG
830}
831
90572890 832static inline int page_cpupid_last(struct page *page)
57e0a030 833{
90572890 834 return page_to_nid(page); /* XXX */
57e0a030
MG
835}
836
90572890 837static inline int cpupid_to_nid(int cpupid)
b795854b
MG
838{
839 return -1;
840}
841
90572890 842static inline int cpupid_to_pid(int cpupid)
b795854b
MG
843{
844 return -1;
845}
846
90572890 847static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
848{
849 return -1;
850}
851
90572890
PZ
852static inline int cpu_pid_to_cpupid(int nid, int pid)
853{
854 return -1;
855}
856
857static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
858{
859 return 1;
860}
861
90572890 862static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
863{
864}
8c8a743c
PZ
865
866static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
867{
868 return false;
869}
90572890 870#endif /* CONFIG_NUMA_BALANCING */
57e0a030 871
33dd4e0e 872static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
873{
874 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
875}
876
9127ab4f 877#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
878static inline void set_page_section(struct page *page, unsigned long section)
879{
880 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
881 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
882}
883
aa462abe 884static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
885{
886 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
887}
308c05e3 888#endif
d41dee36 889
2f1b6248 890static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
891{
892 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
893 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
894}
2f1b6248 895
348f8b6c
DH
896static inline void set_page_node(struct page *page, unsigned long node)
897{
898 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
899 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 900}
89689ae7 901
2f1b6248 902static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 903 unsigned long node, unsigned long pfn)
1da177e4 904{
348f8b6c
DH
905 set_page_zone(page, zone);
906 set_page_node(page, node);
9127ab4f 907#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 908 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 909#endif
1da177e4
LT
910}
911
0610c25d
GT
912#ifdef CONFIG_MEMCG
913static inline struct mem_cgroup *page_memcg(struct page *page)
914{
915 return page->mem_cgroup;
916}
0610c25d
GT
917#else
918static inline struct mem_cgroup *page_memcg(struct page *page)
919{
920 return NULL;
921}
0610c25d
GT
922#endif
923
f6ac2354
CL
924/*
925 * Some inline functions in vmstat.h depend on page_zone()
926 */
927#include <linux/vmstat.h>
928
33dd4e0e 929static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 930{
aa462abe 931 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
932}
933
934#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
935#define HASHED_PAGE_VIRTUAL
936#endif
937
938#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
939static inline void *page_address(const struct page *page)
940{
941 return page->virtual;
942}
943static inline void set_page_address(struct page *page, void *address)
944{
945 page->virtual = address;
946}
1da177e4
LT
947#define page_address_init() do { } while(0)
948#endif
949
950#if defined(HASHED_PAGE_VIRTUAL)
f9918794 951void *page_address(const struct page *page);
1da177e4
LT
952void set_page_address(struct page *page, void *virtual);
953void page_address_init(void);
954#endif
955
956#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
957#define page_address(page) lowmem_page_address(page)
958#define set_page_address(page, address) do { } while(0)
959#define page_address_init() do { } while(0)
960#endif
961
e39155ea
KS
962extern void *page_rmapping(struct page *page);
963extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 964extern struct address_space *page_mapping(struct page *page);
1da177e4 965
f981c595
MG
966extern struct address_space *__page_file_mapping(struct page *);
967
968static inline
969struct address_space *page_file_mapping(struct page *page)
970{
971 if (unlikely(PageSwapCache(page)))
972 return __page_file_mapping(page);
973
974 return page->mapping;
975}
976
1da177e4
LT
977/*
978 * Return the pagecache index of the passed page. Regular pagecache pages
979 * use ->index whereas swapcache pages use ->private
980 */
981static inline pgoff_t page_index(struct page *page)
982{
983 if (unlikely(PageSwapCache(page)))
4c21e2f2 984 return page_private(page);
1da177e4
LT
985 return page->index;
986}
987
f981c595
MG
988extern pgoff_t __page_file_index(struct page *page);
989
990/*
991 * Return the file index of the page. Regular pagecache pages use ->index
992 * whereas swapcache pages use swp_offset(->private)
993 */
994static inline pgoff_t page_file_index(struct page *page)
995{
996 if (unlikely(PageSwapCache(page)))
997 return __page_file_index(page);
998
999 return page->index;
1000}
1001
1da177e4
LT
1002/*
1003 * Return true if this page is mapped into pagetables.
e1534ae9 1004 * For compound page it returns true if any subpage of compound page is mapped.
1da177e4 1005 */
e1534ae9 1006static inline bool page_mapped(struct page *page)
1da177e4 1007{
e1534ae9
KS
1008 int i;
1009 if (likely(!PageCompound(page)))
1010 return atomic_read(&page->_mapcount) >= 0;
1011 page = compound_head(page);
1012 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
1013 return true;
1014 for (i = 0; i < hpage_nr_pages(page); i++) {
1015 if (atomic_read(&page[i]._mapcount) >= 0)
1016 return true;
1017 }
1018 return false;
1da177e4
LT
1019}
1020
2f064f34
MH
1021/*
1022 * Return true only if the page has been allocated with
1023 * ALLOC_NO_WATERMARKS and the low watermark was not
1024 * met implying that the system is under some pressure.
1025 */
1026static inline bool page_is_pfmemalloc(struct page *page)
1027{
1028 /*
1029 * Page index cannot be this large so this must be
1030 * a pfmemalloc page.
1031 */
1032 return page->index == -1UL;
1033}
1034
1035/*
1036 * Only to be called by the page allocator on a freshly allocated
1037 * page.
1038 */
1039static inline void set_page_pfmemalloc(struct page *page)
1040{
1041 page->index = -1UL;
1042}
1043
1044static inline void clear_page_pfmemalloc(struct page *page)
1045{
1046 page->index = 0;
1047}
1048
1da177e4
LT
1049/*
1050 * Different kinds of faults, as returned by handle_mm_fault().
1051 * Used to decide whether a process gets delivered SIGBUS or
1052 * just gets major/minor fault counters bumped up.
1053 */
d0217ac0 1054
83c54070
NP
1055#define VM_FAULT_OOM 0x0001
1056#define VM_FAULT_SIGBUS 0x0002
1057#define VM_FAULT_MAJOR 0x0004
1058#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1059#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1060#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1061#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1062
83c54070
NP
1063#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1064#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1065#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1066#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1067
aa50d3a7
AK
1068#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1069
33692f27
LT
1070#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1071 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1072 VM_FAULT_FALLBACK)
aa50d3a7
AK
1073
1074/* Encode hstate index for a hwpoisoned large page */
1075#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1076#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1077
1c0fe6e3
NP
1078/*
1079 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1080 */
1081extern void pagefault_out_of_memory(void);
1082
1da177e4
LT
1083#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1084
ddd588b5 1085/*
7bf02ea2 1086 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1087 * various contexts.
1088 */
4b59e6c4 1089#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1090
7bf02ea2
DR
1091extern void show_free_areas(unsigned int flags);
1092extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1093
1da177e4 1094int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1095#ifdef CONFIG_SHMEM
1096bool shmem_mapping(struct address_space *mapping);
1097#else
1098static inline bool shmem_mapping(struct address_space *mapping)
1099{
1100 return false;
1101}
1102#endif
1da177e4 1103
7f43add4 1104extern bool can_do_mlock(void);
1da177e4
LT
1105extern int user_shm_lock(size_t, struct user_struct *);
1106extern void user_shm_unlock(size_t, struct user_struct *);
1107
1108/*
1109 * Parameter block passed down to zap_pte_range in exceptional cases.
1110 */
1111struct zap_details {
1da177e4
LT
1112 struct address_space *check_mapping; /* Check page->mapping if set */
1113 pgoff_t first_index; /* Lowest page->index to unmap */
1114 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1115};
1116
7e675137
NP
1117struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1118 pte_t pte);
1119
c627f9cc
JS
1120int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1121 unsigned long size);
14f5ff5d 1122void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1123 unsigned long size, struct zap_details *);
4f74d2c8
LT
1124void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1125 unsigned long start, unsigned long end);
e6473092
MM
1126
1127/**
1128 * mm_walk - callbacks for walk_page_range
e6473092 1129 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1130 * this handler is required to be able to handle
1131 * pmd_trans_huge() pmds. They may simply choose to
1132 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1133 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1134 * @pte_hole: if set, called for each hole at all levels
5dc37642 1135 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426
NH
1136 * @test_walk: caller specific callback function to determine whether
1137 * we walk over the current vma or not. A positive returned
1138 * value means "do page table walk over the current vma,"
1139 * and a negative one means "abort current page table walk
1140 * right now." 0 means "skip the current vma."
1141 * @mm: mm_struct representing the target process of page table walk
1142 * @vma: vma currently walked (NULL if walking outside vmas)
1143 * @private: private data for callbacks' usage
e6473092 1144 *
fafaa426 1145 * (see the comment on walk_page_range() for more details)
e6473092
MM
1146 */
1147struct mm_walk {
0f157a5b
AM
1148 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1149 unsigned long next, struct mm_walk *walk);
1150 int (*pte_entry)(pte_t *pte, unsigned long addr,
1151 unsigned long next, struct mm_walk *walk);
1152 int (*pte_hole)(unsigned long addr, unsigned long next,
1153 struct mm_walk *walk);
1154 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1155 unsigned long addr, unsigned long next,
1156 struct mm_walk *walk);
fafaa426
NH
1157 int (*test_walk)(unsigned long addr, unsigned long next,
1158 struct mm_walk *walk);
2165009b 1159 struct mm_struct *mm;
fafaa426 1160 struct vm_area_struct *vma;
2165009b 1161 void *private;
e6473092
MM
1162};
1163
2165009b
DH
1164int walk_page_range(unsigned long addr, unsigned long end,
1165 struct mm_walk *walk);
900fc5f1 1166int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1167void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1168 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1169int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1170 struct vm_area_struct *vma);
1da177e4
LT
1171void unmap_mapping_range(struct address_space *mapping,
1172 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1173int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1174 unsigned long *pfn);
d87fe660 1175int follow_phys(struct vm_area_struct *vma, unsigned long address,
1176 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1177int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1178 void *buf, int len, int write);
1da177e4
LT
1179
1180static inline void unmap_shared_mapping_range(struct address_space *mapping,
1181 loff_t const holebegin, loff_t const holelen)
1182{
1183 unmap_mapping_range(mapping, holebegin, holelen, 0);
1184}
1185
7caef267 1186extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1187extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1188void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1189void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1190int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1191int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1192int invalidate_inode_page(struct page *page);
1193
7ee1dd3f 1194#ifdef CONFIG_MMU
83c54070 1195extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1196 unsigned long address, unsigned int flags);
5c723ba5 1197extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1198 unsigned long address, unsigned int fault_flags,
1199 bool *unlocked);
7ee1dd3f
DH
1200#else
1201static inline int handle_mm_fault(struct mm_struct *mm,
1202 struct vm_area_struct *vma, unsigned long address,
d06063cc 1203 unsigned int flags)
7ee1dd3f
DH
1204{
1205 /* should never happen if there's no MMU */
1206 BUG();
1207 return VM_FAULT_SIGBUS;
1208}
5c723ba5
PZ
1209static inline int fixup_user_fault(struct task_struct *tsk,
1210 struct mm_struct *mm, unsigned long address,
4a9e1cda 1211 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1212{
1213 /* should never happen if there's no MMU */
1214 BUG();
1215 return -EFAULT;
1216}
7ee1dd3f 1217#endif
f33ea7f4 1218
1da177e4 1219extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1220extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1221 void *buf, int len, int write);
1da177e4 1222
28a35716
ML
1223long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1224 unsigned long start, unsigned long nr_pages,
1225 unsigned int foll_flags, struct page **pages,
1226 struct vm_area_struct **vmas, int *nonblocking);
1227long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1228 unsigned long start, unsigned long nr_pages,
1229 int write, int force, struct page **pages,
1230 struct vm_area_struct **vmas);
f0818f47
AA
1231long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1232 unsigned long start, unsigned long nr_pages,
1233 int write, int force, struct page **pages,
1234 int *locked);
0fd71a56
AA
1235long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1236 unsigned long start, unsigned long nr_pages,
1237 int write, int force, struct page **pages,
1238 unsigned int gup_flags);
f0818f47
AA
1239long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1240 unsigned long start, unsigned long nr_pages,
1241 int write, int force, struct page **pages);
d2bf6be8
NP
1242int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1243 struct page **pages);
8025e5dd
JK
1244
1245/* Container for pinned pfns / pages */
1246struct frame_vector {
1247 unsigned int nr_allocated; /* Number of frames we have space for */
1248 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1249 bool got_ref; /* Did we pin pages by getting page ref? */
1250 bool is_pfns; /* Does array contain pages or pfns? */
1251 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1252 * pfns_vector_pages() or pfns_vector_pfns()
1253 * for access */
1254};
1255
1256struct frame_vector *frame_vector_create(unsigned int nr_frames);
1257void frame_vector_destroy(struct frame_vector *vec);
1258int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1259 bool write, bool force, struct frame_vector *vec);
1260void put_vaddr_frames(struct frame_vector *vec);
1261int frame_vector_to_pages(struct frame_vector *vec);
1262void frame_vector_to_pfns(struct frame_vector *vec);
1263
1264static inline unsigned int frame_vector_count(struct frame_vector *vec)
1265{
1266 return vec->nr_frames;
1267}
1268
1269static inline struct page **frame_vector_pages(struct frame_vector *vec)
1270{
1271 if (vec->is_pfns) {
1272 int err = frame_vector_to_pages(vec);
1273
1274 if (err)
1275 return ERR_PTR(err);
1276 }
1277 return (struct page **)(vec->ptrs);
1278}
1279
1280static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1281{
1282 if (!vec->is_pfns)
1283 frame_vector_to_pfns(vec);
1284 return (unsigned long *)(vec->ptrs);
1285}
1286
18022c5d
MG
1287struct kvec;
1288int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1289 struct page **pages);
1290int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1291struct page *get_dump_page(unsigned long addr);
1da177e4 1292
cf9a2ae8 1293extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1294extern void do_invalidatepage(struct page *page, unsigned int offset,
1295 unsigned int length);
cf9a2ae8 1296
1da177e4 1297int __set_page_dirty_nobuffers(struct page *page);
76719325 1298int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1299int redirty_page_for_writepage(struct writeback_control *wbc,
1300 struct page *page);
62cccb8c 1301void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1302void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1303 struct bdi_writeback *wb);
b3c97528 1304int set_page_dirty(struct page *page);
1da177e4 1305int set_page_dirty_lock(struct page *page);
11f81bec 1306void cancel_dirty_page(struct page *page);
1da177e4 1307int clear_page_dirty_for_io(struct page *page);
b9ea2515 1308
a9090253 1309int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1310
39aa3cb3 1311/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1312static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1313{
1314 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1315}
1316
b5330628
ON
1317static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1318{
1319 return !vma->vm_ops;
1320}
1321
a09a79f6
MP
1322static inline int stack_guard_page_start(struct vm_area_struct *vma,
1323 unsigned long addr)
1324{
1325 return (vma->vm_flags & VM_GROWSDOWN) &&
1326 (vma->vm_start == addr) &&
1327 !vma_growsdown(vma->vm_prev, addr);
1328}
1329
1330/* Is the vma a continuation of the stack vma below it? */
1331static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1332{
1333 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1334}
1335
1336static inline int stack_guard_page_end(struct vm_area_struct *vma,
1337 unsigned long addr)
1338{
1339 return (vma->vm_flags & VM_GROWSUP) &&
1340 (vma->vm_end == addr) &&
1341 !vma_growsup(vma->vm_next, addr);
1342}
1343
65376df5 1344int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
b7643757 1345
b6a2fea3
OW
1346extern unsigned long move_page_tables(struct vm_area_struct *vma,
1347 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1348 unsigned long new_addr, unsigned long len,
1349 bool need_rmap_locks);
7da4d641
PZ
1350extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1351 unsigned long end, pgprot_t newprot,
4b10e7d5 1352 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1353extern int mprotect_fixup(struct vm_area_struct *vma,
1354 struct vm_area_struct **pprev, unsigned long start,
1355 unsigned long end, unsigned long newflags);
1da177e4 1356
465a454f
PZ
1357/*
1358 * doesn't attempt to fault and will return short.
1359 */
1360int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1361 struct page **pages);
d559db08
KH
1362/*
1363 * per-process(per-mm_struct) statistics.
1364 */
d559db08
KH
1365static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1366{
69c97823
KK
1367 long val = atomic_long_read(&mm->rss_stat.count[member]);
1368
1369#ifdef SPLIT_RSS_COUNTING
1370 /*
1371 * counter is updated in asynchronous manner and may go to minus.
1372 * But it's never be expected number for users.
1373 */
1374 if (val < 0)
1375 val = 0;
172703b0 1376#endif
69c97823
KK
1377 return (unsigned long)val;
1378}
d559db08
KH
1379
1380static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1381{
172703b0 1382 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1383}
1384
1385static inline void inc_mm_counter(struct mm_struct *mm, int member)
1386{
172703b0 1387 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1388}
1389
1390static inline void dec_mm_counter(struct mm_struct *mm, int member)
1391{
172703b0 1392 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1393}
1394
eca56ff9
JM
1395/* Optimized variant when page is already known not to be PageAnon */
1396static inline int mm_counter_file(struct page *page)
1397{
1398 if (PageSwapBacked(page))
1399 return MM_SHMEMPAGES;
1400 return MM_FILEPAGES;
1401}
1402
1403static inline int mm_counter(struct page *page)
1404{
1405 if (PageAnon(page))
1406 return MM_ANONPAGES;
1407 return mm_counter_file(page);
1408}
1409
d559db08
KH
1410static inline unsigned long get_mm_rss(struct mm_struct *mm)
1411{
1412 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1413 get_mm_counter(mm, MM_ANONPAGES) +
1414 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1415}
1416
1417static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1418{
1419 return max(mm->hiwater_rss, get_mm_rss(mm));
1420}
1421
1422static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1423{
1424 return max(mm->hiwater_vm, mm->total_vm);
1425}
1426
1427static inline void update_hiwater_rss(struct mm_struct *mm)
1428{
1429 unsigned long _rss = get_mm_rss(mm);
1430
1431 if ((mm)->hiwater_rss < _rss)
1432 (mm)->hiwater_rss = _rss;
1433}
1434
1435static inline void update_hiwater_vm(struct mm_struct *mm)
1436{
1437 if (mm->hiwater_vm < mm->total_vm)
1438 mm->hiwater_vm = mm->total_vm;
1439}
1440
695f0559
PC
1441static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1442{
1443 mm->hiwater_rss = get_mm_rss(mm);
1444}
1445
d559db08
KH
1446static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1447 struct mm_struct *mm)
1448{
1449 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1450
1451 if (*maxrss < hiwater_rss)
1452 *maxrss = hiwater_rss;
1453}
1454
53bddb4e 1455#if defined(SPLIT_RSS_COUNTING)
05af2e10 1456void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1457#else
05af2e10 1458static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1459{
1460}
1461#endif
465a454f 1462
3565fce3
DW
1463#ifndef __HAVE_ARCH_PTE_DEVMAP
1464static inline int pte_devmap(pte_t pte)
1465{
1466 return 0;
1467}
1468#endif
1469
4e950f6f 1470int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1471
25ca1d6c
NK
1472extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1473 spinlock_t **ptl);
1474static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1475 spinlock_t **ptl)
1476{
1477 pte_t *ptep;
1478 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1479 return ptep;
1480}
c9cfcddf 1481
5f22df00
NP
1482#ifdef __PAGETABLE_PUD_FOLDED
1483static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1484 unsigned long address)
1485{
1486 return 0;
1487}
1488#else
1bb3630e 1489int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1490#endif
1491
2d2f5119 1492#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1493static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1494 unsigned long address)
1495{
1496 return 0;
1497}
dc6c9a35 1498
2d2f5119
KS
1499static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1500
dc6c9a35
KS
1501static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1502{
1503 return 0;
1504}
1505
1506static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1507static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1508
5f22df00 1509#else
1bb3630e 1510int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1511
2d2f5119
KS
1512static inline void mm_nr_pmds_init(struct mm_struct *mm)
1513{
1514 atomic_long_set(&mm->nr_pmds, 0);
1515}
1516
dc6c9a35
KS
1517static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1518{
1519 return atomic_long_read(&mm->nr_pmds);
1520}
1521
1522static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1523{
1524 atomic_long_inc(&mm->nr_pmds);
1525}
1526
1527static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1528{
1529 atomic_long_dec(&mm->nr_pmds);
1530}
5f22df00
NP
1531#endif
1532
3ed3a4f0 1533int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1534int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1535
1da177e4
LT
1536/*
1537 * The following ifdef needed to get the 4level-fixup.h header to work.
1538 * Remove it when 4level-fixup.h has been removed.
1539 */
1bb3630e 1540#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1541static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1542{
1bb3630e
HD
1543 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1544 NULL: pud_offset(pgd, address);
1da177e4
LT
1545}
1546
1547static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1548{
1bb3630e
HD
1549 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1550 NULL: pmd_offset(pud, address);
1da177e4 1551}
1bb3630e
HD
1552#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1553
57c1ffce 1554#if USE_SPLIT_PTE_PTLOCKS
597d795a 1555#if ALLOC_SPLIT_PTLOCKS
b35f1819 1556void __init ptlock_cache_init(void);
539edb58
PZ
1557extern bool ptlock_alloc(struct page *page);
1558extern void ptlock_free(struct page *page);
1559
1560static inline spinlock_t *ptlock_ptr(struct page *page)
1561{
1562 return page->ptl;
1563}
597d795a 1564#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1565static inline void ptlock_cache_init(void)
1566{
1567}
1568
49076ec2
KS
1569static inline bool ptlock_alloc(struct page *page)
1570{
49076ec2
KS
1571 return true;
1572}
539edb58 1573
49076ec2
KS
1574static inline void ptlock_free(struct page *page)
1575{
49076ec2
KS
1576}
1577
1578static inline spinlock_t *ptlock_ptr(struct page *page)
1579{
539edb58 1580 return &page->ptl;
49076ec2 1581}
597d795a 1582#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1583
1584static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1585{
1586 return ptlock_ptr(pmd_page(*pmd));
1587}
1588
1589static inline bool ptlock_init(struct page *page)
1590{
1591 /*
1592 * prep_new_page() initialize page->private (and therefore page->ptl)
1593 * with 0. Make sure nobody took it in use in between.
1594 *
1595 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1596 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1597 */
309381fe 1598 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1599 if (!ptlock_alloc(page))
1600 return false;
1601 spin_lock_init(ptlock_ptr(page));
1602 return true;
1603}
1604
1605/* Reset page->mapping so free_pages_check won't complain. */
1606static inline void pte_lock_deinit(struct page *page)
1607{
1608 page->mapping = NULL;
1609 ptlock_free(page);
1610}
1611
57c1ffce 1612#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1613/*
1614 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1615 */
49076ec2
KS
1616static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1617{
1618 return &mm->page_table_lock;
1619}
b35f1819 1620static inline void ptlock_cache_init(void) {}
49076ec2
KS
1621static inline bool ptlock_init(struct page *page) { return true; }
1622static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1623#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1624
b35f1819
KS
1625static inline void pgtable_init(void)
1626{
1627 ptlock_cache_init();
1628 pgtable_cache_init();
1629}
1630
390f44e2 1631static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1632{
706874e9
VD
1633 if (!ptlock_init(page))
1634 return false;
2f569afd 1635 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1636 return true;
2f569afd
MS
1637}
1638
1639static inline void pgtable_page_dtor(struct page *page)
1640{
1641 pte_lock_deinit(page);
1642 dec_zone_page_state(page, NR_PAGETABLE);
1643}
1644
c74df32c
HD
1645#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1646({ \
4c21e2f2 1647 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1648 pte_t *__pte = pte_offset_map(pmd, address); \
1649 *(ptlp) = __ptl; \
1650 spin_lock(__ptl); \
1651 __pte; \
1652})
1653
1654#define pte_unmap_unlock(pte, ptl) do { \
1655 spin_unlock(ptl); \
1656 pte_unmap(pte); \
1657} while (0)
1658
3ed3a4f0
KS
1659#define pte_alloc(mm, pmd, address) \
1660 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1661
1662#define pte_alloc_map(mm, pmd, address) \
1663 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1664
c74df32c 1665#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1666 (pte_alloc(mm, pmd, address) ? \
1667 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1668
1bb3630e 1669#define pte_alloc_kernel(pmd, address) \
8ac1f832 1670 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1671 NULL: pte_offset_kernel(pmd, address))
1da177e4 1672
e009bb30
KS
1673#if USE_SPLIT_PMD_PTLOCKS
1674
634391ac
MS
1675static struct page *pmd_to_page(pmd_t *pmd)
1676{
1677 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1678 return virt_to_page((void *)((unsigned long) pmd & mask));
1679}
1680
e009bb30
KS
1681static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1682{
634391ac 1683 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1684}
1685
1686static inline bool pgtable_pmd_page_ctor(struct page *page)
1687{
e009bb30
KS
1688#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1689 page->pmd_huge_pte = NULL;
1690#endif
49076ec2 1691 return ptlock_init(page);
e009bb30
KS
1692}
1693
1694static inline void pgtable_pmd_page_dtor(struct page *page)
1695{
1696#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1697 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1698#endif
49076ec2 1699 ptlock_free(page);
e009bb30
KS
1700}
1701
634391ac 1702#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1703
1704#else
1705
9a86cb7b
KS
1706static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1707{
1708 return &mm->page_table_lock;
1709}
1710
e009bb30
KS
1711static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1712static inline void pgtable_pmd_page_dtor(struct page *page) {}
1713
c389a250 1714#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1715
e009bb30
KS
1716#endif
1717
9a86cb7b
KS
1718static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1719{
1720 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1721 spin_lock(ptl);
1722 return ptl;
1723}
1724
1da177e4 1725extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1726extern void free_area_init_node(int nid, unsigned long * zones_size,
1727 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1728extern void free_initmem(void);
1729
69afade7
JL
1730/*
1731 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1732 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1733 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1734 * Return pages freed into the buddy system.
1735 */
11199692 1736extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1737 int poison, char *s);
c3d5f5f0 1738
cfa11e08
JL
1739#ifdef CONFIG_HIGHMEM
1740/*
1741 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1742 * and totalram_pages.
1743 */
1744extern void free_highmem_page(struct page *page);
1745#endif
69afade7 1746
c3d5f5f0 1747extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1748extern void mem_init_print_info(const char *str);
69afade7 1749
92923ca3
NZ
1750extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1751
69afade7
JL
1752/* Free the reserved page into the buddy system, so it gets managed. */
1753static inline void __free_reserved_page(struct page *page)
1754{
1755 ClearPageReserved(page);
1756 init_page_count(page);
1757 __free_page(page);
1758}
1759
1760static inline void free_reserved_page(struct page *page)
1761{
1762 __free_reserved_page(page);
1763 adjust_managed_page_count(page, 1);
1764}
1765
1766static inline void mark_page_reserved(struct page *page)
1767{
1768 SetPageReserved(page);
1769 adjust_managed_page_count(page, -1);
1770}
1771
1772/*
1773 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1774 * The freed pages will be poisoned with pattern "poison" if it's within
1775 * range [0, UCHAR_MAX].
1776 * Return pages freed into the buddy system.
69afade7
JL
1777 */
1778static inline unsigned long free_initmem_default(int poison)
1779{
1780 extern char __init_begin[], __init_end[];
1781
11199692 1782 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1783 poison, "unused kernel");
1784}
1785
7ee3d4e8
JL
1786static inline unsigned long get_num_physpages(void)
1787{
1788 int nid;
1789 unsigned long phys_pages = 0;
1790
1791 for_each_online_node(nid)
1792 phys_pages += node_present_pages(nid);
1793
1794 return phys_pages;
1795}
1796
0ee332c1 1797#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1798/*
0ee332c1 1799 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1800 * zones, allocate the backing mem_map and account for memory holes in a more
1801 * architecture independent manner. This is a substitute for creating the
1802 * zone_sizes[] and zholes_size[] arrays and passing them to
1803 * free_area_init_node()
1804 *
1805 * An architecture is expected to register range of page frames backed by
0ee332c1 1806 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1807 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1808 * usage, an architecture is expected to do something like
1809 *
1810 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1811 * max_highmem_pfn};
1812 * for_each_valid_physical_page_range()
0ee332c1 1813 * memblock_add_node(base, size, nid)
c713216d
MG
1814 * free_area_init_nodes(max_zone_pfns);
1815 *
0ee332c1
TH
1816 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1817 * registered physical page range. Similarly
1818 * sparse_memory_present_with_active_regions() calls memory_present() for
1819 * each range when SPARSEMEM is enabled.
c713216d
MG
1820 *
1821 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1822 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1823 */
1824extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1825unsigned long node_map_pfn_alignment(void);
32996250
YL
1826unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1827 unsigned long end_pfn);
c713216d
MG
1828extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1829 unsigned long end_pfn);
1830extern void get_pfn_range_for_nid(unsigned int nid,
1831 unsigned long *start_pfn, unsigned long *end_pfn);
1832extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1833extern void free_bootmem_with_active_regions(int nid,
1834 unsigned long max_low_pfn);
1835extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1836
0ee332c1 1837#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1838
0ee332c1 1839#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1840 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1841static inline int __early_pfn_to_nid(unsigned long pfn,
1842 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1843{
1844 return 0;
1845}
1846#else
1847/* please see mm/page_alloc.c */
1848extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1849/* there is a per-arch backend function. */
8a942fde
MG
1850extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1851 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1852#endif
1853
0e0b864e 1854extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1855extern void memmap_init_zone(unsigned long, int, unsigned long,
1856 unsigned long, enum memmap_context);
bc75d33f 1857extern void setup_per_zone_wmarks(void);
1b79acc9 1858extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1859extern void mem_init(void);
8feae131 1860extern void __init mmap_init(void);
b2b755b5 1861extern void show_mem(unsigned int flags);
d02bd27b 1862extern long si_mem_available(void);
1da177e4
LT
1863extern void si_meminfo(struct sysinfo * val);
1864extern void si_meminfo_node(struct sysinfo *val, int nid);
1865
3ee9a4f0 1866extern __printf(3, 4)
d00181b9
KS
1867void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1868 const char *fmt, ...);
a238ab5b 1869
e7c8d5c9 1870extern void setup_per_cpu_pageset(void);
e7c8d5c9 1871
112067f0 1872extern void zone_pcp_update(struct zone *zone);
340175b7 1873extern void zone_pcp_reset(struct zone *zone);
112067f0 1874
75f7ad8e
PS
1875/* page_alloc.c */
1876extern int min_free_kbytes;
795ae7a0 1877extern int watermark_scale_factor;
75f7ad8e 1878
8feae131 1879/* nommu.c */
33e5d769 1880extern atomic_long_t mmap_pages_allocated;
7e660872 1881extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1882
6b2dbba8 1883/* interval_tree.c */
6b2dbba8
ML
1884void vma_interval_tree_insert(struct vm_area_struct *node,
1885 struct rb_root *root);
9826a516
ML
1886void vma_interval_tree_insert_after(struct vm_area_struct *node,
1887 struct vm_area_struct *prev,
1888 struct rb_root *root);
6b2dbba8
ML
1889void vma_interval_tree_remove(struct vm_area_struct *node,
1890 struct rb_root *root);
1891struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1892 unsigned long start, unsigned long last);
1893struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1894 unsigned long start, unsigned long last);
1895
1896#define vma_interval_tree_foreach(vma, root, start, last) \
1897 for (vma = vma_interval_tree_iter_first(root, start, last); \
1898 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1899
bf181b9f
ML
1900void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1901 struct rb_root *root);
1902void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1903 struct rb_root *root);
1904struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1905 struct rb_root *root, unsigned long start, unsigned long last);
1906struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1907 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1908#ifdef CONFIG_DEBUG_VM_RB
1909void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1910#endif
bf181b9f
ML
1911
1912#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1913 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1914 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1915
1da177e4 1916/* mmap.c */
34b4e4aa 1917extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1918extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1919 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1920extern struct vm_area_struct *vma_merge(struct mm_struct *,
1921 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1922 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 1923 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
1924extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1925extern int split_vma(struct mm_struct *,
1926 struct vm_area_struct *, unsigned long addr, int new_below);
1927extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1928extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1929 struct rb_node **, struct rb_node *);
a8fb5618 1930extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1931extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1932 unsigned long addr, unsigned long len, pgoff_t pgoff,
1933 bool *need_rmap_locks);
1da177e4 1934extern void exit_mmap(struct mm_struct *);
925d1c40 1935
9c599024
CG
1936static inline int check_data_rlimit(unsigned long rlim,
1937 unsigned long new,
1938 unsigned long start,
1939 unsigned long end_data,
1940 unsigned long start_data)
1941{
1942 if (rlim < RLIM_INFINITY) {
1943 if (((new - start) + (end_data - start_data)) > rlim)
1944 return -ENOSPC;
1945 }
1946
1947 return 0;
1948}
1949
7906d00c
AA
1950extern int mm_take_all_locks(struct mm_struct *mm);
1951extern void mm_drop_all_locks(struct mm_struct *mm);
1952
38646013
JS
1953extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1954extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1955
84638335
KK
1956extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1957extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1958
3935ed6a
SS
1959extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1960 unsigned long addr, unsigned long len,
a62c34bd
AL
1961 unsigned long flags,
1962 const struct vm_special_mapping *spec);
1963/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1964extern int install_special_mapping(struct mm_struct *mm,
1965 unsigned long addr, unsigned long len,
1966 unsigned long flags, struct page **pages);
1da177e4
LT
1967
1968extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1969
0165ab44 1970extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1971 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1fcfd8db 1972extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 1973 unsigned long len, unsigned long prot, unsigned long flags,
1fcfd8db 1974 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1975extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1976
1fcfd8db
ON
1977static inline unsigned long
1978do_mmap_pgoff(struct file *file, unsigned long addr,
1979 unsigned long len, unsigned long prot, unsigned long flags,
1980 unsigned long pgoff, unsigned long *populate)
1981{
1982 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1983}
1984
bebeb3d6
ML
1985#ifdef CONFIG_MMU
1986extern int __mm_populate(unsigned long addr, unsigned long len,
1987 int ignore_errors);
1988static inline void mm_populate(unsigned long addr, unsigned long len)
1989{
1990 /* Ignore errors */
1991 (void) __mm_populate(addr, len, 1);
1992}
1993#else
1994static inline void mm_populate(unsigned long addr, unsigned long len) {}
1995#endif
1996
e4eb1ff6
LT
1997/* These take the mm semaphore themselves */
1998extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1999extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
2000extern unsigned long vm_mmap(struct file *, unsigned long,
2001 unsigned long, unsigned long,
2002 unsigned long, unsigned long);
1da177e4 2003
db4fbfb9
ML
2004struct vm_unmapped_area_info {
2005#define VM_UNMAPPED_AREA_TOPDOWN 1
2006 unsigned long flags;
2007 unsigned long length;
2008 unsigned long low_limit;
2009 unsigned long high_limit;
2010 unsigned long align_mask;
2011 unsigned long align_offset;
2012};
2013
2014extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2015extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2016
2017/*
2018 * Search for an unmapped address range.
2019 *
2020 * We are looking for a range that:
2021 * - does not intersect with any VMA;
2022 * - is contained within the [low_limit, high_limit) interval;
2023 * - is at least the desired size.
2024 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2025 */
2026static inline unsigned long
2027vm_unmapped_area(struct vm_unmapped_area_info *info)
2028{
cdd7875e 2029 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2030 return unmapped_area_topdown(info);
cdd7875e
BP
2031 else
2032 return unmapped_area(info);
db4fbfb9
ML
2033}
2034
85821aab 2035/* truncate.c */
1da177e4 2036extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2037extern void truncate_inode_pages_range(struct address_space *,
2038 loff_t lstart, loff_t lend);
91b0abe3 2039extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2040
2041/* generic vm_area_ops exported for stackable file systems */
d0217ac0 2042extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 2043extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 2044extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
2045
2046/* mm/page-writeback.c */
2047int write_one_page(struct page *page, int wait);
1cf6e7d8 2048void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2049
2050/* readahead.c */
2051#define VM_MAX_READAHEAD 128 /* kbytes */
2052#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2053
1da177e4 2054int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2055 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2056
2057void page_cache_sync_readahead(struct address_space *mapping,
2058 struct file_ra_state *ra,
2059 struct file *filp,
2060 pgoff_t offset,
2061 unsigned long size);
2062
2063void page_cache_async_readahead(struct address_space *mapping,
2064 struct file_ra_state *ra,
2065 struct file *filp,
2066 struct page *pg,
2067 pgoff_t offset,
2068 unsigned long size);
2069
d05f3169 2070/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2071extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2072
2073/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2074extern int expand_downwards(struct vm_area_struct *vma,
2075 unsigned long address);
8ca3eb08 2076#if VM_GROWSUP
46dea3d0 2077extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2078#else
fee7e49d 2079 #define expand_upwards(vma, address) (0)
9ab88515 2080#endif
1da177e4
LT
2081
2082/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2083extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2084extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2085 struct vm_area_struct **pprev);
2086
2087/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2088 NULL if none. Assume start_addr < end_addr. */
2089static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2090{
2091 struct vm_area_struct * vma = find_vma(mm,start_addr);
2092
2093 if (vma && end_addr <= vma->vm_start)
2094 vma = NULL;
2095 return vma;
2096}
2097
2098static inline unsigned long vma_pages(struct vm_area_struct *vma)
2099{
2100 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2101}
2102
640708a2
PE
2103/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2104static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2105 unsigned long vm_start, unsigned long vm_end)
2106{
2107 struct vm_area_struct *vma = find_vma(mm, vm_start);
2108
2109 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2110 vma = NULL;
2111
2112 return vma;
2113}
2114
bad849b3 2115#ifdef CONFIG_MMU
804af2cf 2116pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2117void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2118#else
2119static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2120{
2121 return __pgprot(0);
2122}
64e45507
PF
2123static inline void vma_set_page_prot(struct vm_area_struct *vma)
2124{
2125 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2126}
bad849b3
DH
2127#endif
2128
5877231f 2129#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2130unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2131 unsigned long start, unsigned long end);
2132#endif
2133
deceb6cd 2134struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2135int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2136 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2137int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2138int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2139 unsigned long pfn);
1745cbc5
AL
2140int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2141 unsigned long pfn, pgprot_t pgprot);
423bad60 2142int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2143 pfn_t pfn);
b4cbb197
LT
2144int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2145
deceb6cd 2146
240aadee
ML
2147struct page *follow_page_mask(struct vm_area_struct *vma,
2148 unsigned long address, unsigned int foll_flags,
2149 unsigned int *page_mask);
2150
2151static inline struct page *follow_page(struct vm_area_struct *vma,
2152 unsigned long address, unsigned int foll_flags)
2153{
2154 unsigned int unused_page_mask;
2155 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2156}
2157
deceb6cd
HD
2158#define FOLL_WRITE 0x01 /* check pte is writable */
2159#define FOLL_TOUCH 0x02 /* mark page accessed */
2160#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2161#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2162#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2163#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2164 * and return without waiting upon it */
84d33df2 2165#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2166#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2167#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2168#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2169#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2170#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2171#define FOLL_MLOCK 0x1000 /* lock present pages */
1da177e4 2172
2f569afd 2173typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2174 void *data);
2175extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2176 unsigned long size, pte_fn_t fn, void *data);
2177
1da177e4 2178
8823b1db
LA
2179#ifdef CONFIG_PAGE_POISONING
2180extern bool page_poisoning_enabled(void);
2181extern void kernel_poison_pages(struct page *page, int numpages, int enable);
1414c7f4 2182extern bool page_is_poisoned(struct page *page);
8823b1db
LA
2183#else
2184static inline bool page_poisoning_enabled(void) { return false; }
2185static inline void kernel_poison_pages(struct page *page, int numpages,
2186 int enable) { }
1414c7f4 2187static inline bool page_is_poisoned(struct page *page) { return false; }
8823b1db
LA
2188#endif
2189
12d6f21e 2190#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2191extern bool _debug_pagealloc_enabled;
2192extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2193
2194static inline bool debug_pagealloc_enabled(void)
2195{
2196 return _debug_pagealloc_enabled;
2197}
2198
2199static inline void
2200kernel_map_pages(struct page *page, int numpages, int enable)
2201{
2202 if (!debug_pagealloc_enabled())
2203 return;
2204
2205 __kernel_map_pages(page, numpages, enable);
2206}
8a235efa
RW
2207#ifdef CONFIG_HIBERNATION
2208extern bool kernel_page_present(struct page *page);
40b44137
JK
2209#endif /* CONFIG_HIBERNATION */
2210#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2211static inline void
9858db50 2212kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2213#ifdef CONFIG_HIBERNATION
2214static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2215#endif /* CONFIG_HIBERNATION */
2216static inline bool debug_pagealloc_enabled(void)
2217{
2218 return false;
2219}
2220#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2221
a6c19dfe 2222#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2223extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2224extern int in_gate_area_no_mm(unsigned long addr);
2225extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2226#else
a6c19dfe
AL
2227static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2228{
2229 return NULL;
2230}
2231static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2232static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2233{
2234 return 0;
2235}
1da177e4
LT
2236#endif /* __HAVE_ARCH_GATE_AREA */
2237
146732ce
JT
2238#ifdef CONFIG_SYSCTL
2239extern int sysctl_drop_caches;
8d65af78 2240int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2241 void __user *, size_t *, loff_t *);
146732ce
JT
2242#endif
2243
cb731d6c
VD
2244void drop_slab(void);
2245void drop_slab_node(int nid);
9d0243bc 2246
7a9166e3
LY
2247#ifndef CONFIG_MMU
2248#define randomize_va_space 0
2249#else
a62eaf15 2250extern int randomize_va_space;
7a9166e3 2251#endif
a62eaf15 2252
045e72ac 2253const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2254void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2255
9bdac914
YL
2256void sparse_mem_maps_populate_node(struct page **map_map,
2257 unsigned long pnum_begin,
2258 unsigned long pnum_end,
2259 unsigned long map_count,
2260 int nodeid);
2261
98f3cfc1 2262struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2263pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2264pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2265pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2266pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2267void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2268struct vmem_altmap;
2269void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2270 struct vmem_altmap *altmap);
2271static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2272{
2273 return __vmemmap_alloc_block_buf(size, node, NULL);
2274}
2275
8f6aac41 2276void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2277int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2278 int node);
2279int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2280void vmemmap_populate_print_last(void);
0197518c 2281#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2282void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2283#endif
46723bfa
YI
2284void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2285 unsigned long size);
6a46079c 2286
82ba011b
AK
2287enum mf_flags {
2288 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2289 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2290 MF_MUST_KILL = 1 << 2,
cf870c70 2291 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2292};
cd42f4a3 2293extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2294extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2295extern int unpoison_memory(unsigned long pfn);
ead07f6a 2296extern int get_hwpoison_page(struct page *page);
4e41a30c 2297#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2298extern int sysctl_memory_failure_early_kill;
2299extern int sysctl_memory_failure_recovery;
facb6011 2300extern void shake_page(struct page *p, int access);
293c07e3 2301extern atomic_long_t num_poisoned_pages;
facb6011 2302extern int soft_offline_page(struct page *page, int flags);
6a46079c 2303
cc637b17
XX
2304
2305/*
2306 * Error handlers for various types of pages.
2307 */
cc3e2af4 2308enum mf_result {
cc637b17
XX
2309 MF_IGNORED, /* Error: cannot be handled */
2310 MF_FAILED, /* Error: handling failed */
2311 MF_DELAYED, /* Will be handled later */
2312 MF_RECOVERED, /* Successfully recovered */
2313};
2314
2315enum mf_action_page_type {
2316 MF_MSG_KERNEL,
2317 MF_MSG_KERNEL_HIGH_ORDER,
2318 MF_MSG_SLAB,
2319 MF_MSG_DIFFERENT_COMPOUND,
2320 MF_MSG_POISONED_HUGE,
2321 MF_MSG_HUGE,
2322 MF_MSG_FREE_HUGE,
2323 MF_MSG_UNMAP_FAILED,
2324 MF_MSG_DIRTY_SWAPCACHE,
2325 MF_MSG_CLEAN_SWAPCACHE,
2326 MF_MSG_DIRTY_MLOCKED_LRU,
2327 MF_MSG_CLEAN_MLOCKED_LRU,
2328 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2329 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2330 MF_MSG_DIRTY_LRU,
2331 MF_MSG_CLEAN_LRU,
2332 MF_MSG_TRUNCATED_LRU,
2333 MF_MSG_BUDDY,
2334 MF_MSG_BUDDY_2ND,
2335 MF_MSG_UNKNOWN,
2336};
2337
47ad8475
AA
2338#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2339extern void clear_huge_page(struct page *page,
2340 unsigned long addr,
2341 unsigned int pages_per_huge_page);
2342extern void copy_user_huge_page(struct page *dst, struct page *src,
2343 unsigned long addr, struct vm_area_struct *vma,
2344 unsigned int pages_per_huge_page);
2345#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2346
e30825f1
JK
2347extern struct page_ext_operations debug_guardpage_ops;
2348extern struct page_ext_operations page_poisoning_ops;
2349
c0a32fc5
SG
2350#ifdef CONFIG_DEBUG_PAGEALLOC
2351extern unsigned int _debug_guardpage_minorder;
e30825f1 2352extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2353
2354static inline unsigned int debug_guardpage_minorder(void)
2355{
2356 return _debug_guardpage_minorder;
2357}
2358
e30825f1
JK
2359static inline bool debug_guardpage_enabled(void)
2360{
2361 return _debug_guardpage_enabled;
2362}
2363
c0a32fc5
SG
2364static inline bool page_is_guard(struct page *page)
2365{
e30825f1
JK
2366 struct page_ext *page_ext;
2367
2368 if (!debug_guardpage_enabled())
2369 return false;
2370
2371 page_ext = lookup_page_ext(page);
2372 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2373}
2374#else
2375static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2376static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2377static inline bool page_is_guard(struct page *page) { return false; }
2378#endif /* CONFIG_DEBUG_PAGEALLOC */
2379
f9872caf
CS
2380#if MAX_NUMNODES > 1
2381void __init setup_nr_node_ids(void);
2382#else
2383static inline void setup_nr_node_ids(void) {}
2384#endif
2385
1da177e4
LT
2386#endif /* __KERNEL__ */
2387#endif /* _LINUX_MM_H */