mm: multi-gen LRU: simplify lru_gen_look_around()
[linux-2.6-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
f25cbb7a 31#include <linux/memremap.h>
1da177e4
LT
32
33struct mempolicy;
34struct anon_vma;
bf181b9f 35struct anon_vma_chain;
e8edc6e0 36struct user_struct;
bce617ed 37struct pt_regs;
1da177e4 38
5ef64cc8
LT
39extern int sysctl_page_lock_unfairness;
40
597b7305
MH
41void init_mm_internals(void);
42
a9ee6cf5 43#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 44extern unsigned long max_mapnr;
fccc9987
JL
45
46static inline void set_max_mapnr(unsigned long limit)
47{
48 max_mapnr = limit;
49}
50#else
51static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
52#endif
53
ca79b0c2
AK
54extern atomic_long_t _totalram_pages;
55static inline unsigned long totalram_pages(void)
56{
57 return (unsigned long)atomic_long_read(&_totalram_pages);
58}
59
60static inline void totalram_pages_inc(void)
61{
62 atomic_long_inc(&_totalram_pages);
63}
64
65static inline void totalram_pages_dec(void)
66{
67 atomic_long_dec(&_totalram_pages);
68}
69
70static inline void totalram_pages_add(long count)
71{
72 atomic_long_add(count, &_totalram_pages);
73}
74
1da177e4 75extern void * high_memory;
1da177e4 76extern int page_cluster;
ea0ffd0c 77extern const int page_cluster_max;
1da177e4
LT
78
79#ifdef CONFIG_SYSCTL
80extern int sysctl_legacy_va_layout;
81#else
82#define sysctl_legacy_va_layout 0
83#endif
84
d07e2259
DC
85#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
86extern const int mmap_rnd_bits_min;
87extern const int mmap_rnd_bits_max;
88extern int mmap_rnd_bits __read_mostly;
89#endif
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
91extern const int mmap_rnd_compat_bits_min;
92extern const int mmap_rnd_compat_bits_max;
93extern int mmap_rnd_compat_bits __read_mostly;
94#endif
95
1da177e4 96#include <asm/page.h>
1da177e4 97#include <asm/processor.h>
1da177e4 98
d9344522
AK
99/*
100 * Architectures that support memory tagging (assigning tags to memory regions,
101 * embedding these tags into addresses that point to these memory regions, and
102 * checking that the memory and the pointer tags match on memory accesses)
103 * redefine this macro to strip tags from pointers.
f0953a1b 104 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
105 */
106#ifndef untagged_addr
107#define untagged_addr(addr) (addr)
108#endif
109
79442ed1
TC
110#ifndef __pa_symbol
111#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
112#endif
113
1dff8083
AB
114#ifndef page_to_virt
115#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
116#endif
117
568c5fe5
LA
118#ifndef lm_alias
119#define lm_alias(x) __va(__pa_symbol(x))
120#endif
121
593befa6
DD
122/*
123 * To prevent common memory management code establishing
124 * a zero page mapping on a read fault.
125 * This macro should be defined within <asm/pgtable.h>.
126 * s390 does this to prevent multiplexing of hardware bits
127 * related to the physical page in case of virtualization.
128 */
129#ifndef mm_forbids_zeropage
130#define mm_forbids_zeropage(X) (0)
131#endif
132
a4a3ede2
PT
133/*
134 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
135 * If an architecture decides to implement their own version of
136 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
137 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 138 */
5470dea4
AD
139#if BITS_PER_LONG == 64
140/* This function must be updated when the size of struct page grows above 80
141 * or reduces below 56. The idea that compiler optimizes out switch()
142 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 143 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
144 * this can result in several of the writes here being dropped.
145 */
146#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
147static inline void __mm_zero_struct_page(struct page *page)
148{
149 unsigned long *_pp = (void *)page;
150
151 /* Check that struct page is either 56, 64, 72, or 80 bytes */
152 BUILD_BUG_ON(sizeof(struct page) & 7);
153 BUILD_BUG_ON(sizeof(struct page) < 56);
154 BUILD_BUG_ON(sizeof(struct page) > 80);
155
156 switch (sizeof(struct page)) {
157 case 80:
df561f66
GS
158 _pp[9] = 0;
159 fallthrough;
5470dea4 160 case 72:
df561f66
GS
161 _pp[8] = 0;
162 fallthrough;
5470dea4 163 case 64:
df561f66
GS
164 _pp[7] = 0;
165 fallthrough;
5470dea4
AD
166 case 56:
167 _pp[6] = 0;
168 _pp[5] = 0;
169 _pp[4] = 0;
170 _pp[3] = 0;
171 _pp[2] = 0;
172 _pp[1] = 0;
173 _pp[0] = 0;
174 }
175}
176#else
a4a3ede2
PT
177#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
178#endif
179
ea606cf5
AR
180/*
181 * Default maximum number of active map areas, this limits the number of vmas
182 * per mm struct. Users can overwrite this number by sysctl but there is a
183 * problem.
184 *
185 * When a program's coredump is generated as ELF format, a section is created
186 * per a vma. In ELF, the number of sections is represented in unsigned short.
187 * This means the number of sections should be smaller than 65535 at coredump.
188 * Because the kernel adds some informative sections to a image of program at
189 * generating coredump, we need some margin. The number of extra sections is
190 * 1-3 now and depends on arch. We use "5" as safe margin, here.
191 *
192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193 * not a hard limit any more. Although some userspace tools can be surprised by
194 * that.
195 */
196#define MAPCOUNT_ELF_CORE_MARGIN (5)
197#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198
199extern int sysctl_max_map_count;
200
c9b1d098 201extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 202extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 203
49f0ce5f
JM
204extern int sysctl_overcommit_memory;
205extern int sysctl_overcommit_ratio;
206extern unsigned long sysctl_overcommit_kbytes;
207
32927393
CH
208int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
209 loff_t *);
210int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
211 loff_t *);
56f3547b
FT
212int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
213 loff_t *);
49f0ce5f 214
1cfcee72 215#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 216#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 217#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
218#else
219#define nth_page(page,n) ((page) + (n))
659508f9 220#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 221#endif
1da177e4 222
27ac792c
AR
223/* to align the pointer to the (next) page boundary */
224#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
225
335e52c2
DG
226/* to align the pointer to the (prev) page boundary */
227#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
228
0fa73b86 229/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 230#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 231
f86196ea 232#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
06d20bdb
MWO
233static inline struct folio *lru_to_folio(struct list_head *head)
234{
235 return list_entry((head)->prev, struct folio, lru);
236}
f86196ea 237
5748fbc5
KW
238void setup_initial_init_mm(void *start_code, void *end_code,
239 void *end_data, void *brk);
240
1da177e4
LT
241/*
242 * Linux kernel virtual memory manager primitives.
243 * The idea being to have a "virtual" mm in the same way
244 * we have a virtual fs - giving a cleaner interface to the
245 * mm details, and allowing different kinds of memory mappings
246 * (from shared memory to executable loading to arbitrary
247 * mmap() functions).
248 */
249
490fc053 250struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
251struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
252void vm_area_free(struct vm_area_struct *);
c43692e8 253
1da177e4 254#ifndef CONFIG_MMU
8feae131
DH
255extern struct rb_root nommu_region_tree;
256extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
257
258extern unsigned int kobjsize(const void *objp);
259#endif
260
261/*
605d9288 262 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 263 * When changing, update also include/trace/events/mmflags.h
1da177e4 264 */
cc2383ec
KK
265#define VM_NONE 0x00000000
266
1da177e4
LT
267#define VM_READ 0x00000001 /* currently active flags */
268#define VM_WRITE 0x00000002
269#define VM_EXEC 0x00000004
270#define VM_SHARED 0x00000008
271
7e2cff42 272/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
273#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
274#define VM_MAYWRITE 0x00000020
275#define VM_MAYEXEC 0x00000040
276#define VM_MAYSHARE 0x00000080
277
278#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
b6b7a8fa 279#ifdef CONFIG_MMU
16ba6f81 280#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
b6b7a8fa
DH
281#else /* CONFIG_MMU */
282#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
283#define VM_UFFD_MISSING 0
284#endif /* CONFIG_MMU */
6aab341e 285#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 286#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 287
1da177e4
LT
288#define VM_LOCKED 0x00002000
289#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
290
291 /* Used by sys_madvise() */
292#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
293#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
294
295#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
296#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 297#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 298#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 299#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 300#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 301#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 302#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 303#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 304#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 305
d9104d1c
CG
306#ifdef CONFIG_MEM_SOFT_DIRTY
307# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
308#else
309# define VM_SOFTDIRTY 0
310#endif
311
b379d790 312#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
313#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
314#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 315#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 316
63c17fb8
DH
317#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
318#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
319#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
320#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
321#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 322#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
323#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
324#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
325#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
326#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 327#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
328#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
329
5212213a 330#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
331# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
332# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 333# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
334# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
335# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
336#ifdef CONFIG_PPC
337# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
338#else
339# define VM_PKEY_BIT4 0
8f62c883 340#endif
5212213a
RP
341#endif /* CONFIG_ARCH_HAS_PKEYS */
342
343#if defined(CONFIG_X86)
344# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
345#elif defined(CONFIG_PPC)
346# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
347#elif defined(CONFIG_PARISC)
348# define VM_GROWSUP VM_ARCH_1
349#elif defined(CONFIG_IA64)
350# define VM_GROWSUP VM_ARCH_1
74a04967
KA
351#elif defined(CONFIG_SPARC64)
352# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
353# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
354#elif defined(CONFIG_ARM64)
355# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
356# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
357#elif !defined(CONFIG_MMU)
358# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
359#endif
360
9f341931
CM
361#if defined(CONFIG_ARM64_MTE)
362# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
363# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
364#else
365# define VM_MTE VM_NONE
366# define VM_MTE_ALLOWED VM_NONE
367#endif
368
cc2383ec
KK
369#ifndef VM_GROWSUP
370# define VM_GROWSUP VM_NONE
371#endif
372
7677f7fd
AR
373#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
374# define VM_UFFD_MINOR_BIT 37
375# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
376#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
377# define VM_UFFD_MINOR VM_NONE
378#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
379
a8bef8ff
MG
380/* Bits set in the VMA until the stack is in its final location */
381#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
382
c62da0c3
AK
383#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
384
385/* Common data flag combinations */
386#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
387 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
388#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
389 VM_MAYWRITE | VM_MAYEXEC)
390#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
391 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
392
393#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
394#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
395#endif
396
1da177e4
LT
397#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
398#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
399#endif
400
401#ifdef CONFIG_STACK_GROWSUP
30bdbb78 402#define VM_STACK VM_GROWSUP
1da177e4 403#else
30bdbb78 404#define VM_STACK VM_GROWSDOWN
1da177e4
LT
405#endif
406
30bdbb78
KK
407#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
408
6cb4d9a2
AK
409/* VMA basic access permission flags */
410#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
411
412
b291f000 413/*
78f11a25 414 * Special vmas that are non-mergable, non-mlock()able.
b291f000 415 */
9050d7eb 416#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 417
b4443772
AK
418/* This mask prevents VMA from being scanned with khugepaged */
419#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
420
a0715cc2
AT
421/* This mask defines which mm->def_flags a process can inherit its parent */
422#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
423
de60f5f1
EM
424/* This mask is used to clear all the VMA flags used by mlock */
425#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
426
2c2d57b5
KA
427/* Arch-specific flags to clear when updating VM flags on protection change */
428#ifndef VM_ARCH_CLEAR
429# define VM_ARCH_CLEAR VM_NONE
430#endif
431#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
432
1da177e4
LT
433/*
434 * mapping from the currently active vm_flags protection bits (the
435 * low four bits) to a page protection mask..
436 */
1da177e4 437
dde16072
PX
438/*
439 * The default fault flags that should be used by most of the
440 * arch-specific page fault handlers.
441 */
442#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
443 FAULT_FLAG_KILLABLE | \
444 FAULT_FLAG_INTERRUPTIBLE)
dde16072 445
4064b982
PX
446/**
447 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 448 * @flags: Fault flags.
4064b982
PX
449 *
450 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 451 * the mmap_lock for too long a time when waiting for another condition
4064b982 452 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
453 * mmap_lock in the first round to avoid potential starvation of other
454 * processes that would also want the mmap_lock.
4064b982
PX
455 *
456 * Return: true if the page fault allows retry and this is the first
457 * attempt of the fault handling; false otherwise.
458 */
da2f5eb3 459static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
460{
461 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
462 (!(flags & FAULT_FLAG_TRIED));
463}
464
282a8e03
RZ
465#define FAULT_FLAG_TRACE \
466 { FAULT_FLAG_WRITE, "WRITE" }, \
467 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
468 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
469 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
470 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
471 { FAULT_FLAG_TRIED, "TRIED" }, \
472 { FAULT_FLAG_USER, "USER" }, \
473 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
474 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
475 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 476
54cb8821 477/*
11192337 478 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
479 * ->fault function. The vma's ->fault is responsible for returning a bitmask
480 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 481 *
c20cd45e
MH
482 * MM layer fills up gfp_mask for page allocations but fault handler might
483 * alter it if its implementation requires a different allocation context.
484 *
9b4bdd2f 485 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 486 */
d0217ac0 487struct vm_fault {
5857c920 488 const struct {
742d3372
WD
489 struct vm_area_struct *vma; /* Target VMA */
490 gfp_t gfp_mask; /* gfp mask to be used for allocations */
491 pgoff_t pgoff; /* Logical page offset based on vma */
824ddc60
NA
492 unsigned long address; /* Faulting virtual address - masked */
493 unsigned long real_address; /* Faulting virtual address - unmasked */
742d3372 494 };
da2f5eb3 495 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 496 * XXX: should really be 'const' */
82b0f8c3 497 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 498 * the 'address' */
a2d58167
DJ
499 pud_t *pud; /* Pointer to pud entry matching
500 * the 'address'
501 */
5db4f15c
YS
502 union {
503 pte_t orig_pte; /* Value of PTE at the time of fault */
504 pmd_t orig_pmd; /* Value of PMD at the time of fault,
505 * used by PMD fault only.
506 */
507 };
d0217ac0 508
3917048d 509 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 510 struct page *page; /* ->fault handlers should return a
83c54070 511 * page here, unless VM_FAULT_NOPAGE
d0217ac0 512 * is set (which is also implied by
83c54070 513 * VM_FAULT_ERROR).
d0217ac0 514 */
82b0f8c3 515 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
516 pte_t *pte; /* Pointer to pte entry matching
517 * the 'address'. NULL if the page
518 * table hasn't been allocated.
519 */
520 spinlock_t *ptl; /* Page table lock.
521 * Protects pte page table if 'pte'
522 * is not NULL, otherwise pmd.
523 */
7267ec00 524 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
525 * vm_ops->map_pages() sets up a page
526 * table from atomic context.
7267ec00
KS
527 * do_fault_around() pre-allocates
528 * page table to avoid allocation from
529 * atomic context.
530 */
54cb8821 531};
1da177e4 532
c791ace1
DJ
533/* page entry size for vm->huge_fault() */
534enum page_entry_size {
535 PE_SIZE_PTE = 0,
536 PE_SIZE_PMD,
537 PE_SIZE_PUD,
538};
539
1da177e4
LT
540/*
541 * These are the virtual MM functions - opening of an area, closing and
542 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 543 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
544 */
545struct vm_operations_struct {
546 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
547 /**
548 * @close: Called when the VMA is being removed from the MM.
549 * Context: User context. May sleep. Caller holds mmap_lock.
550 */
1da177e4 551 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
552 /* Called any time before splitting to check if it's allowed */
553 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 554 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
555 /*
556 * Called by mprotect() to make driver-specific permission
557 * checks before mprotect() is finalised. The VMA must not
3e0ee843 558 * be modified. Returns 0 if mprotect() can proceed.
95bb7c42
SC
559 */
560 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
561 unsigned long end, unsigned long newflags);
1c8f4220
SJ
562 vm_fault_t (*fault)(struct vm_fault *vmf);
563 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
564 enum page_entry_size pe_size);
f9ce0be7 565 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 566 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 567 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
568
569 /* notification that a previously read-only page is about to become
570 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 571 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 572
dd906184 573 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 574 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 575
28b2ee20 576 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
577 * for use by special VMAs. See also generic_access_phys() for a generic
578 * implementation useful for any iomem mapping.
28b2ee20
RR
579 */
580 int (*access)(struct vm_area_struct *vma, unsigned long addr,
581 void *buf, int len, int write);
78d683e8
AL
582
583 /* Called by the /proc/PID/maps code to ask the vma whether it
584 * has a special name. Returning non-NULL will also cause this
585 * vma to be dumped unconditionally. */
586 const char *(*name)(struct vm_area_struct *vma);
587
1da177e4 588#ifdef CONFIG_NUMA
a6020ed7
LS
589 /*
590 * set_policy() op must add a reference to any non-NULL @new mempolicy
591 * to hold the policy upon return. Caller should pass NULL @new to
592 * remove a policy and fall back to surrounding context--i.e. do not
593 * install a MPOL_DEFAULT policy, nor the task or system default
594 * mempolicy.
595 */
1da177e4 596 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
597
598 /*
599 * get_policy() op must add reference [mpol_get()] to any policy at
600 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
601 * in mm/mempolicy.c will do this automatically.
602 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 603 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
604 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
605 * must return NULL--i.e., do not "fallback" to task or system default
606 * policy.
607 */
1da177e4
LT
608 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
609 unsigned long addr);
610#endif
667a0a06
DV
611 /*
612 * Called by vm_normal_page() for special PTEs to find the
613 * page for @addr. This is useful if the default behavior
614 * (using pte_page()) would not find the correct page.
615 */
616 struct page *(*find_special_page)(struct vm_area_struct *vma,
617 unsigned long addr);
1da177e4
LT
618};
619
027232da
KS
620static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
621{
bfd40eaf
KS
622 static const struct vm_operations_struct dummy_vm_ops = {};
623
a670468f 624 memset(vma, 0, sizeof(*vma));
027232da 625 vma->vm_mm = mm;
bfd40eaf 626 vma->vm_ops = &dummy_vm_ops;
027232da
KS
627 INIT_LIST_HEAD(&vma->anon_vma_chain);
628}
629
bfd40eaf
KS
630static inline void vma_set_anonymous(struct vm_area_struct *vma)
631{
632 vma->vm_ops = NULL;
633}
634
43675e6f
YS
635static inline bool vma_is_anonymous(struct vm_area_struct *vma)
636{
637 return !vma->vm_ops;
638}
639
222100ee
AK
640static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
641{
642 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
643
644 if (!maybe_stack)
645 return false;
646
647 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
648 VM_STACK_INCOMPLETE_SETUP)
649 return true;
650
651 return false;
652}
653
7969f226
AK
654static inline bool vma_is_foreign(struct vm_area_struct *vma)
655{
656 if (!current->mm)
657 return true;
658
659 if (current->mm != vma->vm_mm)
660 return true;
661
662 return false;
663}
3122e80e
AK
664
665static inline bool vma_is_accessible(struct vm_area_struct *vma)
666{
6cb4d9a2 667 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
668}
669
f39af059
MWO
670static inline
671struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
672{
673 return mas_find(&vmi->mas, max);
674}
675
676static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
677{
678 /*
679 * Uses vma_find() to get the first VMA when the iterator starts.
680 * Calling mas_next() could skip the first entry.
681 */
682 return vma_find(vmi, ULONG_MAX);
683}
684
685static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
686{
687 return mas_prev(&vmi->mas, 0);
688}
689
690static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
691{
692 return vmi->mas.index;
693}
694
695#define for_each_vma(__vmi, __vma) \
696 while (((__vma) = vma_next(&(__vmi))) != NULL)
697
698/* The MM code likes to work with exclusive end addresses */
699#define for_each_vma_range(__vmi, __vma, __end) \
700 while (((__vma) = vma_find(&(__vmi), (__end) - 1)) != NULL)
701
43675e6f
YS
702#ifdef CONFIG_SHMEM
703/*
704 * The vma_is_shmem is not inline because it is used only by slow
705 * paths in userfault.
706 */
707bool vma_is_shmem(struct vm_area_struct *vma);
d09e8ca6 708bool vma_is_anon_shmem(struct vm_area_struct *vma);
43675e6f
YS
709#else
710static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
d09e8ca6 711static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
43675e6f
YS
712#endif
713
714int vma_is_stack_for_current(struct vm_area_struct *vma);
715
8b11ec1b
LT
716/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
717#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
718
1da177e4
LT
719struct mmu_gather;
720struct inode;
721
5eb5cea1
MWO
722/*
723 * compound_order() can be called without holding a reference, which means
724 * that niceties like page_folio() don't work. These callers should be
725 * prepared to handle wild return values. For example, PG_head may be
726 * set before _folio_order is initialised, or this may be a tail page.
727 * See compaction.c for some good examples.
728 */
5bf34d7c
MWO
729static inline unsigned int compound_order(struct page *page)
730{
5eb5cea1
MWO
731 struct folio *folio = (struct folio *)page;
732
733 if (!test_bit(PG_head, &folio->flags))
5bf34d7c 734 return 0;
5eb5cea1 735 return folio->_folio_order;
5bf34d7c
MWO
736}
737
738/**
739 * folio_order - The allocation order of a folio.
740 * @folio: The folio.
741 *
742 * A folio is composed of 2^order pages. See get_order() for the definition
743 * of order.
744 *
745 * Return: The order of the folio.
746 */
747static inline unsigned int folio_order(struct folio *folio)
748{
c3a15bff
MWO
749 if (!folio_test_large(folio))
750 return 0;
751 return folio->_folio_order;
5bf34d7c
MWO
752}
753
71e3aac0 754#include <linux/huge_mm.h>
1da177e4
LT
755
756/*
757 * Methods to modify the page usage count.
758 *
759 * What counts for a page usage:
760 * - cache mapping (page->mapping)
761 * - private data (page->private)
762 * - page mapped in a task's page tables, each mapping
763 * is counted separately
764 *
765 * Also, many kernel routines increase the page count before a critical
766 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
767 */
768
769/*
da6052f7 770 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 771 */
7c8ee9a8
NP
772static inline int put_page_testzero(struct page *page)
773{
fe896d18
JK
774 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
775 return page_ref_dec_and_test(page);
7c8ee9a8 776}
1da177e4 777
b620f633
MWO
778static inline int folio_put_testzero(struct folio *folio)
779{
780 return put_page_testzero(&folio->page);
781}
782
1da177e4 783/*
7c8ee9a8
NP
784 * Try to grab a ref unless the page has a refcount of zero, return false if
785 * that is the case.
8e0861fa
AK
786 * This can be called when MMU is off so it must not access
787 * any of the virtual mappings.
1da177e4 788 */
c2530328 789static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 790{
fe896d18 791 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 792}
1da177e4 793
53df8fdc 794extern int page_is_ram(unsigned long pfn);
124fe20d
DW
795
796enum {
797 REGION_INTERSECTS,
798 REGION_DISJOINT,
799 REGION_MIXED,
800};
801
1c29f25b
TK
802int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
803 unsigned long desc);
53df8fdc 804
48667e7a 805/* Support for virtually mapped pages */
b3bdda02
CL
806struct page *vmalloc_to_page(const void *addr);
807unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 808
0738c4bb
PM
809/*
810 * Determine if an address is within the vmalloc range
811 *
812 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
813 * is no special casing required.
814 */
9bd3bb67
AK
815
816#ifndef is_ioremap_addr
817#define is_ioremap_addr(x) is_vmalloc_addr(x)
818#endif
819
81ac3ad9 820#ifdef CONFIG_MMU
186525bd 821extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
822extern int is_vmalloc_or_module_addr(const void *x);
823#else
186525bd
IM
824static inline bool is_vmalloc_addr(const void *x)
825{
826 return false;
827}
934831d0 828static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
829{
830 return 0;
831}
832#endif
9e2779fa 833
74e8ee47
MWO
834/*
835 * How many times the entire folio is mapped as a single unit (eg by a
836 * PMD or PUD entry). This is probably not what you want, except for
cb67f428
HD
837 * debugging purposes - it does not include PTE-mapped sub-pages; look
838 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
74e8ee47
MWO
839 */
840static inline int folio_entire_mapcount(struct folio *folio)
6dc5ea16 841{
74e8ee47 842 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1aa4d03b 843 return atomic_read(&folio->_entire_mapcount) + 1;
cb67f428
HD
844}
845
70b50f94
AA
846/*
847 * The atomic page->_mapcount, starts from -1: so that transitions
848 * both from it and to it can be tracked, using atomic_inc_and_test
849 * and atomic_add_negative(-1).
850 */
22b751c3 851static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
852{
853 atomic_set(&(page)->_mapcount, -1);
854}
855
c97eeb8f
MWO
856/**
857 * page_mapcount() - Number of times this precise page is mapped.
858 * @page: The page.
859 *
860 * The number of times this page is mapped. If this page is part of
861 * a large folio, it includes the number of times this page is mapped
862 * as part of that folio.
6988f31d 863 *
c97eeb8f 864 * The result is undefined for pages which cannot be mapped into userspace.
6988f31d 865 * For example SLAB or special types of pages. See function page_has_type().
c97eeb8f 866 * They use this field in struct page differently.
6988f31d 867 */
70b50f94
AA
868static inline int page_mapcount(struct page *page)
869{
cb67f428 870 int mapcount = atomic_read(&page->_mapcount) + 1;
b20ce5e0 871
c97eeb8f
MWO
872 if (unlikely(PageCompound(page)))
873 mapcount += folio_entire_mapcount(page_folio(page));
874
875 return mapcount;
b20ce5e0
KS
876}
877
b14224fb 878int folio_total_mapcount(struct folio *folio);
4ba1119c 879
cb67f428
HD
880/**
881 * folio_mapcount() - Calculate the number of mappings of this folio.
882 * @folio: The folio.
883 *
884 * A large folio tracks both how many times the entire folio is mapped,
885 * and how many times each individual page in the folio is mapped.
886 * This function calculates the total number of times the folio is
887 * mapped.
888 *
889 * Return: The number of times this folio is mapped.
890 */
891static inline int folio_mapcount(struct folio *folio)
4ba1119c 892{
cb67f428
HD
893 if (likely(!folio_test_large(folio)))
894 return atomic_read(&folio->_mapcount) + 1;
b14224fb 895 return folio_total_mapcount(folio);
4ba1119c
MWO
896}
897
b20ce5e0
KS
898static inline int total_mapcount(struct page *page)
899{
be5ef2d9
HD
900 if (likely(!PageCompound(page)))
901 return atomic_read(&page->_mapcount) + 1;
b14224fb 902 return folio_total_mapcount(page_folio(page));
be5ef2d9
HD
903}
904
905static inline bool folio_large_is_mapped(struct folio *folio)
906{
4b51634c 907 /*
1aa4d03b 908 * Reading _entire_mapcount below could be omitted if hugetlb
eec20426 909 * participated in incrementing nr_pages_mapped when compound mapped.
4b51634c 910 */
eec20426 911 return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1aa4d03b 912 atomic_read(&folio->_entire_mapcount) >= 0;
cb67f428
HD
913}
914
915/**
916 * folio_mapped - Is this folio mapped into userspace?
917 * @folio: The folio.
918 *
919 * Return: True if any page in this folio is referenced by user page tables.
920 */
921static inline bool folio_mapped(struct folio *folio)
922{
be5ef2d9
HD
923 if (likely(!folio_test_large(folio)))
924 return atomic_read(&folio->_mapcount) >= 0;
925 return folio_large_is_mapped(folio);
926}
927
928/*
929 * Return true if this page is mapped into pagetables.
930 * For compound page it returns true if any sub-page of compound page is mapped,
931 * even if this particular sub-page is not itself mapped by any PTE or PMD.
932 */
933static inline bool page_mapped(struct page *page)
934{
935 if (likely(!PageCompound(page)))
936 return atomic_read(&page->_mapcount) >= 0;
937 return folio_large_is_mapped(page_folio(page));
70b50f94
AA
938}
939
b49af68f
CL
940static inline struct page *virt_to_head_page(const void *x)
941{
942 struct page *page = virt_to_page(x);
ccaafd7f 943
1d798ca3 944 return compound_head(page);
b49af68f
CL
945}
946
7d4203c1
VB
947static inline struct folio *virt_to_folio(const void *x)
948{
949 struct page *page = virt_to_page(x);
950
951 return page_folio(page);
952}
953
8d29c703 954void __folio_put(struct folio *folio);
ddc58f27 955
1d7ea732 956void put_pages_list(struct list_head *pages);
1da177e4 957
8dfcc9ba 958void split_page(struct page *page, unsigned int order);
715cbfd6 959void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 960
a1554c00
ML
961unsigned long nr_free_buffer_pages(void);
962
33f2ef89
AW
963/*
964 * Compound pages have a destructor function. Provide a
965 * prototype for that function and accessor functions.
f1e61557 966 * These are _only_ valid on the head of a compound page.
33f2ef89 967 */
f1e61557
KS
968typedef void compound_page_dtor(struct page *);
969
970/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
971enum compound_dtor_id {
972 NULL_COMPOUND_DTOR,
973 COMPOUND_PAGE_DTOR,
974#ifdef CONFIG_HUGETLB_PAGE
975 HUGETLB_PAGE_DTOR,
9a982250
KS
976#endif
977#ifdef CONFIG_TRANSPARENT_HUGEPAGE
978 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
979#endif
980 NR_COMPOUND_DTORS,
981};
ae70eddd 982extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
983
984static inline void set_compound_page_dtor(struct page *page,
f1e61557 985 enum compound_dtor_id compound_dtor)
33f2ef89 986{
bad6da64
MWO
987 struct folio *folio = (struct folio *)page;
988
f1e61557 989 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
bad6da64
MWO
990 VM_BUG_ON_PAGE(!PageHead(page), page);
991 folio->_folio_dtor = compound_dtor;
33f2ef89
AW
992}
993
9fd33058
SK
994static inline void folio_set_compound_dtor(struct folio *folio,
995 enum compound_dtor_id compound_dtor)
996{
997 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
998 folio->_folio_dtor = compound_dtor;
999}
1000
5375336c 1001void destroy_large_folio(struct folio *folio);
33f2ef89 1002
f1e61557 1003static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 1004{
bad6da64
MWO
1005 struct folio *folio = (struct folio *)page;
1006
1007 folio->_folio_order = order;
5232c63f 1008#ifdef CONFIG_64BIT
bad6da64 1009 folio->_folio_nr_pages = 1U << order;
5232c63f 1010#endif
d85f3385
CL
1011}
1012
a50b854e
MWO
1013/* Returns the number of bytes in this potentially compound page. */
1014static inline unsigned long page_size(struct page *page)
1015{
1016 return PAGE_SIZE << compound_order(page);
1017}
1018
94ad9338
MWO
1019/* Returns the number of bits needed for the number of bytes in a page */
1020static inline unsigned int page_shift(struct page *page)
1021{
1022 return PAGE_SHIFT + compound_order(page);
1023}
1024
18788cfa
MWO
1025/**
1026 * thp_order - Order of a transparent huge page.
1027 * @page: Head page of a transparent huge page.
1028 */
1029static inline unsigned int thp_order(struct page *page)
1030{
1031 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1032 return compound_order(page);
1033}
1034
18788cfa
MWO
1035/**
1036 * thp_size - Size of a transparent huge page.
1037 * @page: Head page of a transparent huge page.
1038 *
1039 * Return: Number of bytes in this page.
1040 */
1041static inline unsigned long thp_size(struct page *page)
1042{
1043 return PAGE_SIZE << thp_order(page);
1044}
1045
9a982250
KS
1046void free_compound_page(struct page *page);
1047
3dece370 1048#ifdef CONFIG_MMU
14fd403f
AA
1049/*
1050 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1051 * servicing faults for write access. In the normal case, do always want
1052 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1053 * that do not have writing enabled, when used by access_process_vm.
1054 */
1055static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1056{
1057 if (likely(vma->vm_flags & VM_WRITE))
1058 pte = pte_mkwrite(pte);
1059 return pte;
1060}
8c6e50b0 1061
f9ce0be7 1062vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1063void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1064
2b740303
SJ
1065vm_fault_t finish_fault(struct vm_fault *vmf);
1066vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1067#endif
14fd403f 1068
1da177e4
LT
1069/*
1070 * Multiple processes may "see" the same page. E.g. for untouched
1071 * mappings of /dev/null, all processes see the same page full of
1072 * zeroes, and text pages of executables and shared libraries have
1073 * only one copy in memory, at most, normally.
1074 *
1075 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1076 * page_count() == 0 means the page is free. page->lru is then used for
1077 * freelist management in the buddy allocator.
da6052f7 1078 * page_count() > 0 means the page has been allocated.
1da177e4 1079 *
da6052f7
NP
1080 * Pages are allocated by the slab allocator in order to provide memory
1081 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1082 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1083 * unless a particular usage is carefully commented. (the responsibility of
1084 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1085 *
da6052f7
NP
1086 * A page may be used by anyone else who does a __get_free_page().
1087 * In this case, page_count still tracks the references, and should only
1088 * be used through the normal accessor functions. The top bits of page->flags
1089 * and page->virtual store page management information, but all other fields
1090 * are unused and could be used privately, carefully. The management of this
1091 * page is the responsibility of the one who allocated it, and those who have
1092 * subsequently been given references to it.
1093 *
1094 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1095 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1096 * The following discussion applies only to them.
1097 *
da6052f7
NP
1098 * A pagecache page contains an opaque `private' member, which belongs to the
1099 * page's address_space. Usually, this is the address of a circular list of
1100 * the page's disk buffers. PG_private must be set to tell the VM to call
1101 * into the filesystem to release these pages.
1da177e4 1102 *
da6052f7
NP
1103 * A page may belong to an inode's memory mapping. In this case, page->mapping
1104 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1105 * in units of PAGE_SIZE.
1da177e4 1106 *
da6052f7
NP
1107 * If pagecache pages are not associated with an inode, they are said to be
1108 * anonymous pages. These may become associated with the swapcache, and in that
1109 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1110 *
da6052f7
NP
1111 * In either case (swapcache or inode backed), the pagecache itself holds one
1112 * reference to the page. Setting PG_private should also increment the
1113 * refcount. The each user mapping also has a reference to the page.
1da177e4 1114 *
da6052f7 1115 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1116 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1117 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1118 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1119 *
da6052f7 1120 * All pagecache pages may be subject to I/O:
1da177e4
LT
1121 * - inode pages may need to be read from disk,
1122 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1123 * to be written back to the inode on disk,
1124 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1125 * modified may need to be swapped out to swap space and (later) to be read
1126 * back into memory.
1da177e4
LT
1127 */
1128
27674ef6 1129#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1130DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1131
f4f451a1
MS
1132bool __put_devmap_managed_page_refs(struct page *page, int refs);
1133static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1134{
1135 if (!static_branch_unlikely(&devmap_managed_key))
1136 return false;
1137 if (!is_zone_device_page(page))
1138 return false;
f4f451a1 1139 return __put_devmap_managed_page_refs(page, refs);
e7638488 1140}
27674ef6 1141#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
f4f451a1 1142static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1143{
1144 return false;
1145}
27674ef6 1146#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
7b2d55d2 1147
f4f451a1
MS
1148static inline bool put_devmap_managed_page(struct page *page)
1149{
1150 return put_devmap_managed_page_refs(page, 1);
1151}
1152
f958d7b5 1153/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1154#define folio_ref_zero_or_close_to_overflow(folio) \
1155 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1156
1157/**
1158 * folio_get - Increment the reference count on a folio.
1159 * @folio: The folio.
1160 *
1161 * Context: May be called in any context, as long as you know that
1162 * you have a refcount on the folio. If you do not already have one,
1163 * folio_try_get() may be the right interface for you to use.
1164 */
1165static inline void folio_get(struct folio *folio)
1166{
1167 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1168 folio_ref_inc(folio);
1169}
f958d7b5 1170
3565fce3
DW
1171static inline void get_page(struct page *page)
1172{
86d234cb 1173 folio_get(page_folio(page));
3565fce3
DW
1174}
1175
0f089235 1176int __must_check try_grab_page(struct page *page, unsigned int flags);
cd1adf1b
LT
1177
1178static inline __must_check bool try_get_page(struct page *page)
1179{
1180 page = compound_head(page);
1181 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1182 return false;
1183 page_ref_inc(page);
1184 return true;
1185}
3565fce3 1186
b620f633
MWO
1187/**
1188 * folio_put - Decrement the reference count on a folio.
1189 * @folio: The folio.
1190 *
1191 * If the folio's reference count reaches zero, the memory will be
1192 * released back to the page allocator and may be used by another
1193 * allocation immediately. Do not access the memory or the struct folio
1194 * after calling folio_put() unless you can be sure that it wasn't the
1195 * last reference.
1196 *
1197 * Context: May be called in process or interrupt context, but not in NMI
1198 * context. May be called while holding a spinlock.
1199 */
1200static inline void folio_put(struct folio *folio)
1201{
1202 if (folio_put_testzero(folio))
8d29c703 1203 __folio_put(folio);
b620f633
MWO
1204}
1205
3fe7fa58
MWO
1206/**
1207 * folio_put_refs - Reduce the reference count on a folio.
1208 * @folio: The folio.
1209 * @refs: The amount to subtract from the folio's reference count.
1210 *
1211 * If the folio's reference count reaches zero, the memory will be
1212 * released back to the page allocator and may be used by another
1213 * allocation immediately. Do not access the memory or the struct folio
1214 * after calling folio_put_refs() unless you can be sure that these weren't
1215 * the last references.
1216 *
1217 * Context: May be called in process or interrupt context, but not in NMI
1218 * context. May be called while holding a spinlock.
1219 */
1220static inline void folio_put_refs(struct folio *folio, int refs)
1221{
1222 if (folio_ref_sub_and_test(folio, refs))
8d29c703 1223 __folio_put(folio);
3fe7fa58
MWO
1224}
1225
0411d6ee
SP
1226/*
1227 * union release_pages_arg - an array of pages or folios
449c7967 1228 *
0411d6ee 1229 * release_pages() releases a simple array of multiple pages, and
449c7967
LT
1230 * accepts various different forms of said page array: either
1231 * a regular old boring array of pages, an array of folios, or
1232 * an array of encoded page pointers.
1233 *
1234 * The transparent union syntax for this kind of "any of these
1235 * argument types" is all kinds of ugly, so look away.
1236 */
1237typedef union {
1238 struct page **pages;
1239 struct folio **folios;
1240 struct encoded_page **encoded_pages;
1241} release_pages_arg __attribute__ ((__transparent_union__));
1242
1243void release_pages(release_pages_arg, int nr);
e3c4cebf
MWO
1244
1245/**
1246 * folios_put - Decrement the reference count on an array of folios.
1247 * @folios: The folios.
1248 * @nr: How many folios there are.
1249 *
1250 * Like folio_put(), but for an array of folios. This is more efficient
1251 * than writing the loop yourself as it will optimise the locks which
1252 * need to be taken if the folios are freed.
1253 *
1254 * Context: May be called in process or interrupt context, but not in NMI
1255 * context. May be called while holding a spinlock.
1256 */
1257static inline void folios_put(struct folio **folios, unsigned int nr)
1258{
449c7967 1259 release_pages(folios, nr);
3fe7fa58
MWO
1260}
1261
3565fce3
DW
1262static inline void put_page(struct page *page)
1263{
b620f633 1264 struct folio *folio = page_folio(page);
3565fce3 1265
7b2d55d2 1266 /*
89574945
CH
1267 * For some devmap managed pages we need to catch refcount transition
1268 * from 2 to 1:
7b2d55d2 1269 */
89574945 1270 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1271 return;
b620f633 1272 folio_put(folio);
3565fce3
DW
1273}
1274
3faa52c0
JH
1275/*
1276 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1277 * the page's refcount so that two separate items are tracked: the original page
1278 * reference count, and also a new count of how many pin_user_pages() calls were
1279 * made against the page. ("gup-pinned" is another term for the latter).
1280 *
1281 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1282 * distinct from normal pages. As such, the unpin_user_page() call (and its
1283 * variants) must be used in order to release gup-pinned pages.
1284 *
1285 * Choice of value:
1286 *
1287 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1288 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1289 * simpler, due to the fact that adding an even power of two to the page
1290 * refcount has the effect of using only the upper N bits, for the code that
1291 * counts up using the bias value. This means that the lower bits are left for
1292 * the exclusive use of the original code that increments and decrements by one
1293 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1294 *
3faa52c0
JH
1295 * Of course, once the lower bits overflow into the upper bits (and this is
1296 * OK, because subtraction recovers the original values), then visual inspection
1297 * no longer suffices to directly view the separate counts. However, for normal
1298 * applications that don't have huge page reference counts, this won't be an
1299 * issue.
fc1d8e7c 1300 *
40fcc7fc
MWO
1301 * Locking: the lockless algorithm described in folio_try_get_rcu()
1302 * provides safe operation for get_user_pages(), page_mkclean() and
1303 * other calls that race to set up page table entries.
fc1d8e7c 1304 */
3faa52c0 1305#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1306
3faa52c0 1307void unpin_user_page(struct page *page);
f1f6a7dd
JH
1308void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1309 bool make_dirty);
458a4f78
JM
1310void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1311 bool make_dirty);
f1f6a7dd 1312void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1313
97a7e473
PX
1314static inline bool is_cow_mapping(vm_flags_t flags)
1315{
1316 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1317}
1318
fc4f4be9
DH
1319#ifndef CONFIG_MMU
1320static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1321{
1322 /*
1323 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1324 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1325 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1326 * underlying memory if ptrace is active, so this is only possible if
1327 * ptrace does not apply. Note that there is no mprotect() to upgrade
1328 * write permissions later.
1329 */
b6b7a8fa 1330 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
fc4f4be9
DH
1331}
1332#endif
1333
9127ab4f
CS
1334#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1335#define SECTION_IN_PAGE_FLAGS
1336#endif
1337
89689ae7 1338/*
7a8010cd
VB
1339 * The identification function is mainly used by the buddy allocator for
1340 * determining if two pages could be buddies. We are not really identifying
1341 * the zone since we could be using the section number id if we do not have
1342 * node id available in page flags.
1343 * We only guarantee that it will return the same value for two combinable
1344 * pages in a zone.
89689ae7 1345 */
cb2b95e1
AW
1346static inline int page_zone_id(struct page *page)
1347{
89689ae7 1348 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1349}
1350
89689ae7 1351#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1352extern int page_to_nid(const struct page *page);
89689ae7 1353#else
33dd4e0e 1354static inline int page_to_nid(const struct page *page)
d41dee36 1355{
f165b378
PT
1356 struct page *p = (struct page *)page;
1357
1358 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1359}
89689ae7
CL
1360#endif
1361
874fd90c
MWO
1362static inline int folio_nid(const struct folio *folio)
1363{
1364 return page_to_nid(&folio->page);
1365}
1366
57e0a030 1367#ifdef CONFIG_NUMA_BALANCING
33024536
HY
1368/* page access time bits needs to hold at least 4 seconds */
1369#define PAGE_ACCESS_TIME_MIN_BITS 12
1370#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1371#define PAGE_ACCESS_TIME_BUCKETS \
1372 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1373#else
1374#define PAGE_ACCESS_TIME_BUCKETS 0
1375#endif
1376
1377#define PAGE_ACCESS_TIME_MASK \
1378 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1379
90572890 1380static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1381{
90572890 1382 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1383}
1384
90572890 1385static inline int cpupid_to_pid(int cpupid)
57e0a030 1386{
90572890 1387 return cpupid & LAST__PID_MASK;
57e0a030 1388}
b795854b 1389
90572890 1390static inline int cpupid_to_cpu(int cpupid)
b795854b 1391{
90572890 1392 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1393}
1394
90572890 1395static inline int cpupid_to_nid(int cpupid)
b795854b 1396{
90572890 1397 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1398}
1399
90572890 1400static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1401{
90572890 1402 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1403}
1404
90572890 1405static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1406{
90572890 1407 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1408}
1409
8c8a743c
PZ
1410static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1411{
1412 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1413}
1414
1415#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1416#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1417static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1418{
1ae71d03 1419 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1420}
90572890
PZ
1421
1422static inline int page_cpupid_last(struct page *page)
1423{
1424 return page->_last_cpupid;
1425}
1426static inline void page_cpupid_reset_last(struct page *page)
b795854b 1427{
1ae71d03 1428 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1429}
1430#else
90572890 1431static inline int page_cpupid_last(struct page *page)
75980e97 1432{
90572890 1433 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1434}
1435
90572890 1436extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1437
90572890 1438static inline void page_cpupid_reset_last(struct page *page)
75980e97 1439{
09940a4f 1440 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1441}
90572890 1442#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
33024536
HY
1443
1444static inline int xchg_page_access_time(struct page *page, int time)
1445{
1446 int last_time;
1447
1448 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1449 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1450}
90572890
PZ
1451#else /* !CONFIG_NUMA_BALANCING */
1452static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1453{
90572890 1454 return page_to_nid(page); /* XXX */
57e0a030
MG
1455}
1456
33024536
HY
1457static inline int xchg_page_access_time(struct page *page, int time)
1458{
1459 return 0;
1460}
1461
90572890 1462static inline int page_cpupid_last(struct page *page)
57e0a030 1463{
90572890 1464 return page_to_nid(page); /* XXX */
57e0a030
MG
1465}
1466
90572890 1467static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1468{
1469 return -1;
1470}
1471
90572890 1472static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1473{
1474 return -1;
1475}
1476
90572890 1477static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1478{
1479 return -1;
1480}
1481
90572890
PZ
1482static inline int cpu_pid_to_cpupid(int nid, int pid)
1483{
1484 return -1;
1485}
1486
1487static inline bool cpupid_pid_unset(int cpupid)
b795854b 1488{
2b787449 1489 return true;
b795854b
MG
1490}
1491
90572890 1492static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1493{
1494}
8c8a743c
PZ
1495
1496static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1497{
1498 return false;
1499}
90572890 1500#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1501
2e903b91 1502#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1503
cf10bd4c
AK
1504/*
1505 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1506 * setting tags for all pages to native kernel tag value 0xff, as the default
1507 * value 0x00 maps to 0xff.
1508 */
1509
2813b9c0
AK
1510static inline u8 page_kasan_tag(const struct page *page)
1511{
cf10bd4c
AK
1512 u8 tag = 0xff;
1513
1514 if (kasan_enabled()) {
1515 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1516 tag ^= 0xff;
1517 }
1518
1519 return tag;
2813b9c0
AK
1520}
1521
1522static inline void page_kasan_tag_set(struct page *page, u8 tag)
1523{
27fe7339
PC
1524 unsigned long old_flags, flags;
1525
1526 if (!kasan_enabled())
1527 return;
1528
1529 tag ^= 0xff;
1530 old_flags = READ_ONCE(page->flags);
1531 do {
1532 flags = old_flags;
1533 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1534 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1535 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1536}
1537
1538static inline void page_kasan_tag_reset(struct page *page)
1539{
34303244
AK
1540 if (kasan_enabled())
1541 page_kasan_tag_set(page, 0xff);
2813b9c0 1542}
34303244
AK
1543
1544#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1545
2813b9c0
AK
1546static inline u8 page_kasan_tag(const struct page *page)
1547{
1548 return 0xff;
1549}
1550
1551static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1552static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1553
1554#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1555
33dd4e0e 1556static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1557{
1558 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1559}
1560
75ef7184
MG
1561static inline pg_data_t *page_pgdat(const struct page *page)
1562{
1563 return NODE_DATA(page_to_nid(page));
1564}
1565
32b8fc48
MWO
1566static inline struct zone *folio_zone(const struct folio *folio)
1567{
1568 return page_zone(&folio->page);
1569}
1570
1571static inline pg_data_t *folio_pgdat(const struct folio *folio)
1572{
1573 return page_pgdat(&folio->page);
1574}
1575
9127ab4f 1576#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1577static inline void set_page_section(struct page *page, unsigned long section)
1578{
1579 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1580 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1581}
1582
aa462abe 1583static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1584{
1585 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1586}
308c05e3 1587#endif
d41dee36 1588
bf6bd276
MWO
1589/**
1590 * folio_pfn - Return the Page Frame Number of a folio.
1591 * @folio: The folio.
1592 *
1593 * A folio may contain multiple pages. The pages have consecutive
1594 * Page Frame Numbers.
1595 *
1596 * Return: The Page Frame Number of the first page in the folio.
1597 */
1598static inline unsigned long folio_pfn(struct folio *folio)
1599{
1600 return page_to_pfn(&folio->page);
1601}
1602
018ee47f
YZ
1603static inline struct folio *pfn_folio(unsigned long pfn)
1604{
1605 return page_folio(pfn_to_page(pfn));
1606}
1607
0b90ddae
MWO
1608/**
1609 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1610 * @folio: The folio.
1611 *
1612 * This function checks if a folio has been pinned via a call to
1613 * a function in the pin_user_pages() family.
1614 *
1615 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1616 * because it means "definitely not pinned for DMA", but true means "probably
1617 * pinned for DMA, but possibly a false positive due to having at least
1618 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1619 *
1620 * False positives are OK, because: a) it's unlikely for a folio to
1621 * get that many refcounts, and b) all the callers of this routine are
1622 * expected to be able to deal gracefully with a false positive.
1623 *
1624 * For large folios, the result will be exactly correct. That's because
94688e8e 1625 * we have more tracking data available: the _pincount field is used
0b90ddae
MWO
1626 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1627 *
1628 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1629 *
1630 * Return: True, if it is likely that the page has been "dma-pinned".
1631 * False, if the page is definitely not dma-pinned.
1632 */
1633static inline bool folio_maybe_dma_pinned(struct folio *folio)
1634{
1635 if (folio_test_large(folio))
94688e8e 1636 return atomic_read(&folio->_pincount) > 0;
0b90ddae
MWO
1637
1638 /*
1639 * folio_ref_count() is signed. If that refcount overflows, then
1640 * folio_ref_count() returns a negative value, and callers will avoid
1641 * further incrementing the refcount.
1642 *
1643 * Here, for that overflow case, use the sign bit to count a little
1644 * bit higher via unsigned math, and thus still get an accurate result.
1645 */
1646 return ((unsigned int)folio_ref_count(folio)) >=
1647 GUP_PIN_COUNTING_BIAS;
1648}
1649
1650static inline bool page_maybe_dma_pinned(struct page *page)
1651{
1652 return folio_maybe_dma_pinned(page_folio(page));
1653}
1654
1655/*
1656 * This should most likely only be called during fork() to see whether we
fb3d824d 1657 * should break the cow immediately for an anon page on the src mm.
623a1ddf
DH
1658 *
1659 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
0b90ddae
MWO
1660 */
1661static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1662 struct page *page)
1663{
623a1ddf 1664 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
0b90ddae
MWO
1665
1666 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1667 return false;
1668
1669 return page_maybe_dma_pinned(page);
1670}
1671
8e3560d9
PT
1672/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1673#ifdef CONFIG_MIGRATION
6077c943 1674static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9 1675{
1c563432
MK
1676#ifdef CONFIG_CMA
1677 int mt = get_pageblock_migratetype(page);
1678
1679 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1680 return false;
1681#endif
fcab34b4
AW
1682 /* The zero page may always be pinned */
1683 if (is_zero_pfn(page_to_pfn(page)))
1684 return true;
1685
1686 /* Coherent device memory must always allow eviction. */
1687 if (is_device_coherent_page(page))
1688 return false;
1689
1690 /* Otherwise, non-movable zone pages can be pinned. */
1691 return !is_zone_movable_page(page);
8e3560d9
PT
1692}
1693#else
6077c943 1694static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9
PT
1695{
1696 return true;
1697}
1698#endif
1699
6077c943 1700static inline bool folio_is_longterm_pinnable(struct folio *folio)
536939ff 1701{
6077c943 1702 return is_longterm_pinnable_page(&folio->page);
536939ff
MWO
1703}
1704
2f1b6248 1705static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1706{
1707 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1708 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1709}
2f1b6248 1710
348f8b6c
DH
1711static inline void set_page_node(struct page *page, unsigned long node)
1712{
1713 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1714 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1715}
89689ae7 1716
2f1b6248 1717static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1718 unsigned long node, unsigned long pfn)
1da177e4 1719{
348f8b6c
DH
1720 set_page_zone(page, zone);
1721 set_page_node(page, node);
9127ab4f 1722#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1723 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1724#endif
1da177e4
LT
1725}
1726
7b230db3
MWO
1727/**
1728 * folio_nr_pages - The number of pages in the folio.
1729 * @folio: The folio.
1730 *
1731 * Return: A positive power of two.
1732 */
1733static inline long folio_nr_pages(struct folio *folio)
1734{
c3a15bff
MWO
1735 if (!folio_test_large(folio))
1736 return 1;
1737#ifdef CONFIG_64BIT
1738 return folio->_folio_nr_pages;
1739#else
1740 return 1L << folio->_folio_order;
1741#endif
7b230db3
MWO
1742}
1743
21a000fe
MWO
1744/*
1745 * compound_nr() returns the number of pages in this potentially compound
1746 * page. compound_nr() can be called on a tail page, and is defined to
1747 * return 1 in that case.
1748 */
1749static inline unsigned long compound_nr(struct page *page)
1750{
1751 struct folio *folio = (struct folio *)page;
1752
1753 if (!test_bit(PG_head, &folio->flags))
1754 return 1;
1755#ifdef CONFIG_64BIT
1756 return folio->_folio_nr_pages;
1757#else
1758 return 1L << folio->_folio_order;
1759#endif
1760}
1761
1762/**
1763 * thp_nr_pages - The number of regular pages in this huge page.
1764 * @page: The head page of a huge page.
1765 */
1766static inline int thp_nr_pages(struct page *page)
1767{
1768 return folio_nr_pages((struct folio *)page);
1769}
1770
7b230db3
MWO
1771/**
1772 * folio_next - Move to the next physical folio.
1773 * @folio: The folio we're currently operating on.
1774 *
1775 * If you have physically contiguous memory which may span more than
1776 * one folio (eg a &struct bio_vec), use this function to move from one
1777 * folio to the next. Do not use it if the memory is only virtually
1778 * contiguous as the folios are almost certainly not adjacent to each
1779 * other. This is the folio equivalent to writing ``page++``.
1780 *
1781 * Context: We assume that the folios are refcounted and/or locked at a
1782 * higher level and do not adjust the reference counts.
1783 * Return: The next struct folio.
1784 */
1785static inline struct folio *folio_next(struct folio *folio)
1786{
1787 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1788}
1789
1790/**
1791 * folio_shift - The size of the memory described by this folio.
1792 * @folio: The folio.
1793 *
1794 * A folio represents a number of bytes which is a power-of-two in size.
1795 * This function tells you which power-of-two the folio is. See also
1796 * folio_size() and folio_order().
1797 *
1798 * Context: The caller should have a reference on the folio to prevent
1799 * it from being split. It is not necessary for the folio to be locked.
1800 * Return: The base-2 logarithm of the size of this folio.
1801 */
1802static inline unsigned int folio_shift(struct folio *folio)
1803{
1804 return PAGE_SHIFT + folio_order(folio);
1805}
1806
1807/**
1808 * folio_size - The number of bytes in a folio.
1809 * @folio: The folio.
1810 *
1811 * Context: The caller should have a reference on the folio to prevent
1812 * it from being split. It is not necessary for the folio to be locked.
1813 * Return: The number of bytes in this folio.
1814 */
1815static inline size_t folio_size(struct folio *folio)
1816{
1817 return PAGE_SIZE << folio_order(folio);
1818}
1819
b424de33
MWO
1820#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1821static inline int arch_make_page_accessible(struct page *page)
1822{
1823 return 0;
1824}
1825#endif
1826
1827#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1828static inline int arch_make_folio_accessible(struct folio *folio)
1829{
1830 int ret;
1831 long i, nr = folio_nr_pages(folio);
1832
1833 for (i = 0; i < nr; i++) {
1834 ret = arch_make_page_accessible(folio_page(folio, i));
1835 if (ret)
1836 break;
1837 }
1838
1839 return ret;
1840}
1841#endif
1842
f6ac2354
CL
1843/*
1844 * Some inline functions in vmstat.h depend on page_zone()
1845 */
1846#include <linux/vmstat.h>
1847
33dd4e0e 1848static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1849{
1dff8083 1850 return page_to_virt(page);
1da177e4
LT
1851}
1852
1853#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1854#define HASHED_PAGE_VIRTUAL
1855#endif
1856
1857#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1858static inline void *page_address(const struct page *page)
1859{
1860 return page->virtual;
1861}
1862static inline void set_page_address(struct page *page, void *address)
1863{
1864 page->virtual = address;
1865}
1da177e4
LT
1866#define page_address_init() do { } while(0)
1867#endif
1868
1869#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1870void *page_address(const struct page *page);
1da177e4
LT
1871void set_page_address(struct page *page, void *virtual);
1872void page_address_init(void);
1873#endif
1874
1875#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1876#define page_address(page) lowmem_page_address(page)
1877#define set_page_address(page, address) do { } while(0)
1878#define page_address_init() do { } while(0)
1879#endif
1880
7d4203c1
VB
1881static inline void *folio_address(const struct folio *folio)
1882{
1883 return page_address(&folio->page);
1884}
1885
e39155ea 1886extern void *page_rmapping(struct page *page);
f6ab1f7f
HY
1887extern pgoff_t __page_file_index(struct page *page);
1888
1da177e4
LT
1889/*
1890 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1891 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1892 */
1893static inline pgoff_t page_index(struct page *page)
1894{
1895 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1896 return __page_file_index(page);
1da177e4
LT
1897 return page->index;
1898}
1899
2f064f34
MH
1900/*
1901 * Return true only if the page has been allocated with
1902 * ALLOC_NO_WATERMARKS and the low watermark was not
1903 * met implying that the system is under some pressure.
1904 */
1d7bab6a 1905static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1906{
1907 /*
c07aea3e
MC
1908 * lru.next has bit 1 set if the page is allocated from the
1909 * pfmemalloc reserves. Callers may simply overwrite it if
1910 * they do not need to preserve that information.
2f064f34 1911 */
c07aea3e 1912 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
1913}
1914
02d65d6f
SK
1915/*
1916 * Return true only if the folio has been allocated with
1917 * ALLOC_NO_WATERMARKS and the low watermark was not
1918 * met implying that the system is under some pressure.
1919 */
1920static inline bool folio_is_pfmemalloc(const struct folio *folio)
1921{
1922 /*
1923 * lru.next has bit 1 set if the page is allocated from the
1924 * pfmemalloc reserves. Callers may simply overwrite it if
1925 * they do not need to preserve that information.
1926 */
1927 return (uintptr_t)folio->lru.next & BIT(1);
1928}
1929
2f064f34
MH
1930/*
1931 * Only to be called by the page allocator on a freshly allocated
1932 * page.
1933 */
1934static inline void set_page_pfmemalloc(struct page *page)
1935{
c07aea3e 1936 page->lru.next = (void *)BIT(1);
2f064f34
MH
1937}
1938
1939static inline void clear_page_pfmemalloc(struct page *page)
1940{
c07aea3e 1941 page->lru.next = NULL;
2f064f34
MH
1942}
1943
1c0fe6e3
NP
1944/*
1945 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1946 */
1947extern void pagefault_out_of_memory(void);
1948
1da177e4 1949#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1950#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 1951#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 1952
ddd588b5 1953/*
7bf02ea2 1954 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1955 * various contexts.
1956 */
4b59e6c4 1957#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1958
974f4367
MH
1959extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
1960static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
1961{
1962 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
1963}
1da177e4 1964
21b85b09
MK
1965/*
1966 * Parameter block passed down to zap_pte_range in exceptional cases.
1967 */
1968struct zap_details {
1969 struct folio *single_folio; /* Locked folio to be unmapped */
1970 bool even_cows; /* Zap COWed private pages too? */
1971 zap_flags_t zap_flags; /* Extra flags for zapping */
1972};
1973
1974/*
1975 * Whether to drop the pte markers, for example, the uffd-wp information for
1976 * file-backed memory. This should only be specified when we will completely
1977 * drop the page in the mm, either by truncation or unmapping of the vma. By
1978 * default, the flag is not set.
1979 */
1980#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
04ada095
MK
1981/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
1982#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
21b85b09 1983
710ec38b 1984#ifdef CONFIG_MMU
7f43add4 1985extern bool can_do_mlock(void);
710ec38b
AB
1986#else
1987static inline bool can_do_mlock(void) { return false; }
1988#endif
d7c9e99a
AG
1989extern int user_shm_lock(size_t, struct ucounts *);
1990extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 1991
318e9342
VMO
1992struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
1993 pte_t pte);
25b2995a
CH
1994struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1995 pte_t pte);
28093f9f
GS
1996struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1997 pmd_t pmd);
7e675137 1998
27d036e3
LR
1999void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2000 unsigned long size);
21b85b09
MK
2001void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2002 unsigned long size, struct zap_details *details);
e9adcfec
MK
2003static inline void zap_vma_pages(struct vm_area_struct *vma)
2004{
2005 zap_page_range_single(vma, vma->vm_start,
2006 vma->vm_end - vma->vm_start, NULL);
2007}
763ecb03
LH
2008void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2009 struct vm_area_struct *start_vma, unsigned long start,
2010 unsigned long end);
e6473092 2011
ac46d4f3
JG
2012struct mmu_notifier_range;
2013
42b77728 2014void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 2015 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
2016int
2017copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed 2018int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 2019 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
2020int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2021 unsigned long *pfn);
d87fe660 2022int follow_phys(struct vm_area_struct *vma, unsigned long address,
2023 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
2024int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2025 void *buf, int len, int write);
1da177e4 2026
7caef267 2027extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 2028extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 2029void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 2030void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 2031int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668 2032
7ee1dd3f 2033#ifdef CONFIG_MMU
2b740303 2034extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2035 unsigned long address, unsigned int flags,
2036 struct pt_regs *regs);
64019a2e 2037extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
2038 unsigned long address, unsigned int fault_flags,
2039 bool *unlocked);
977fbdcd
MW
2040void unmap_mapping_pages(struct address_space *mapping,
2041 pgoff_t start, pgoff_t nr, bool even_cows);
2042void unmap_mapping_range(struct address_space *mapping,
2043 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 2044#else
2b740303 2045static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2046 unsigned long address, unsigned int flags,
2047 struct pt_regs *regs)
7ee1dd3f
DH
2048{
2049 /* should never happen if there's no MMU */
2050 BUG();
2051 return VM_FAULT_SIGBUS;
2052}
64019a2e 2053static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 2054 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
2055{
2056 /* should never happen if there's no MMU */
2057 BUG();
2058 return -EFAULT;
2059}
977fbdcd
MW
2060static inline void unmap_mapping_pages(struct address_space *mapping,
2061 pgoff_t start, pgoff_t nr, bool even_cows) { }
2062static inline void unmap_mapping_range(struct address_space *mapping,
2063 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 2064#endif
f33ea7f4 2065
977fbdcd
MW
2066static inline void unmap_shared_mapping_range(struct address_space *mapping,
2067 loff_t const holebegin, loff_t const holelen)
2068{
2069 unmap_mapping_range(mapping, holebegin, holelen, 0);
2070}
2071
2072extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2073 void *buf, int len, unsigned int gup_flags);
5ddd36b9 2074extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 2075 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
2076extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2077 void *buf, int len, unsigned int gup_flags);
1da177e4 2078
64019a2e 2079long get_user_pages_remote(struct mm_struct *mm,
1e987790 2080 unsigned long start, unsigned long nr_pages,
9beae1ea 2081 unsigned int gup_flags, struct page **pages,
5b56d49f 2082 struct vm_area_struct **vmas, int *locked);
64019a2e 2083long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2084 unsigned long start, unsigned long nr_pages,
2085 unsigned int gup_flags, struct page **pages,
2086 struct vm_area_struct **vmas, int *locked);
c12d2da5 2087long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 2088 unsigned int gup_flags, struct page **pages,
cde70140 2089 struct vm_area_struct **vmas);
eddb1c22
JH
2090long pin_user_pages(unsigned long start, unsigned long nr_pages,
2091 unsigned int gup_flags, struct page **pages,
2092 struct vm_area_struct **vmas);
c12d2da5 2093long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 2094 struct page **pages, unsigned int gup_flags);
91429023
JH
2095long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2096 struct page **pages, unsigned int gup_flags);
9a4e9f3b 2097
73b0140b
IW
2098int get_user_pages_fast(unsigned long start, int nr_pages,
2099 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
2100int pin_user_pages_fast(unsigned long start, int nr_pages,
2101 unsigned int gup_flags, struct page **pages);
8025e5dd 2102
79eb597c
DJ
2103int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2104int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2105 struct task_struct *task, bool bypass_rlim);
2106
18022c5d
MG
2107struct kvec;
2108int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
2109 struct page **pages);
f3e8fccd 2110struct page *get_dump_page(unsigned long addr);
1da177e4 2111
b5e84594
MWO
2112bool folio_mark_dirty(struct folio *folio);
2113bool set_page_dirty(struct page *page);
1da177e4 2114int set_page_dirty_lock(struct page *page);
b9ea2515 2115
a9090253 2116int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 2117
b6a2fea3
OW
2118extern unsigned long move_page_tables(struct vm_area_struct *vma,
2119 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
2120 unsigned long new_addr, unsigned long len,
2121 bool need_rmap_locks);
58705444
PX
2122
2123/*
2124 * Flags used by change_protection(). For now we make it a bitmap so
2125 * that we can pass in multiple flags just like parameters. However
2126 * for now all the callers are only use one of the flags at the same
2127 * time.
2128 */
64fe24a3
DH
2129/*
2130 * Whether we should manually check if we can map individual PTEs writable,
2131 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2132 * PTEs automatically in a writable mapping.
2133 */
2134#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
58705444
PX
2135/* Whether this protection change is for NUMA hints */
2136#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
2137/* Whether this change is for write protecting */
2138#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2139#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2140#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2141 MM_CP_UFFD_WP_RESOLVE)
58705444 2142
eb309ec8
DH
2143int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2144static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2145{
2146 /*
2147 * We want to check manually if we can change individual PTEs writable
2148 * if we can't do that automatically for all PTEs in a mapping. For
2149 * private mappings, that's always the case when we have write
2150 * permissions as we properly have to handle COW.
2151 */
2152 if (vma->vm_flags & VM_SHARED)
2153 return vma_wants_writenotify(vma, vma->vm_page_prot);
2154 return !!(vma->vm_flags & VM_WRITE);
2155
2156}
6a56ccbc
DH
2157bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2158 pte_t pte);
a79390f5 2159extern long change_protection(struct mmu_gather *tlb,
4a18419f 2160 struct vm_area_struct *vma, unsigned long start,
1ef488ed 2161 unsigned long end, unsigned long cp_flags);
4a18419f 2162extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
b6a2fea3
OW
2163 struct vm_area_struct **pprev, unsigned long start,
2164 unsigned long end, unsigned long newflags);
1da177e4 2165
465a454f
PZ
2166/*
2167 * doesn't attempt to fault and will return short.
2168 */
dadbb612
SJ
2169int get_user_pages_fast_only(unsigned long start, int nr_pages,
2170 unsigned int gup_flags, struct page **pages);
104acc32
JH
2171int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2172 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
2173
2174static inline bool get_user_page_fast_only(unsigned long addr,
2175 unsigned int gup_flags, struct page **pagep)
2176{
2177 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2178}
d559db08
KH
2179/*
2180 * per-process(per-mm_struct) statistics.
2181 */
d559db08
KH
2182static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2183{
f1a79412 2184 return percpu_counter_read_positive(&mm->rss_stat[member]);
69c97823 2185}
d559db08 2186
f1a79412 2187void mm_trace_rss_stat(struct mm_struct *mm, int member);
b3d1411b 2188
d559db08
KH
2189static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2190{
f1a79412 2191 percpu_counter_add(&mm->rss_stat[member], value);
b3d1411b 2192
f1a79412 2193 mm_trace_rss_stat(mm, member);
d559db08
KH
2194}
2195
2196static inline void inc_mm_counter(struct mm_struct *mm, int member)
2197{
f1a79412 2198 percpu_counter_inc(&mm->rss_stat[member]);
b3d1411b 2199
f1a79412 2200 mm_trace_rss_stat(mm, member);
d559db08
KH
2201}
2202
2203static inline void dec_mm_counter(struct mm_struct *mm, int member)
2204{
f1a79412 2205 percpu_counter_dec(&mm->rss_stat[member]);
b3d1411b 2206
f1a79412 2207 mm_trace_rss_stat(mm, member);
d559db08
KH
2208}
2209
eca56ff9
JM
2210/* Optimized variant when page is already known not to be PageAnon */
2211static inline int mm_counter_file(struct page *page)
2212{
2213 if (PageSwapBacked(page))
2214 return MM_SHMEMPAGES;
2215 return MM_FILEPAGES;
2216}
2217
2218static inline int mm_counter(struct page *page)
2219{
2220 if (PageAnon(page))
2221 return MM_ANONPAGES;
2222 return mm_counter_file(page);
2223}
2224
d559db08
KH
2225static inline unsigned long get_mm_rss(struct mm_struct *mm)
2226{
2227 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2228 get_mm_counter(mm, MM_ANONPAGES) +
2229 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2230}
2231
2232static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2233{
2234 return max(mm->hiwater_rss, get_mm_rss(mm));
2235}
2236
2237static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2238{
2239 return max(mm->hiwater_vm, mm->total_vm);
2240}
2241
2242static inline void update_hiwater_rss(struct mm_struct *mm)
2243{
2244 unsigned long _rss = get_mm_rss(mm);
2245
2246 if ((mm)->hiwater_rss < _rss)
2247 (mm)->hiwater_rss = _rss;
2248}
2249
2250static inline void update_hiwater_vm(struct mm_struct *mm)
2251{
2252 if (mm->hiwater_vm < mm->total_vm)
2253 mm->hiwater_vm = mm->total_vm;
2254}
2255
695f0559
PC
2256static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2257{
2258 mm->hiwater_rss = get_mm_rss(mm);
2259}
2260
d559db08
KH
2261static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2262 struct mm_struct *mm)
2263{
2264 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2265
2266 if (*maxrss < hiwater_rss)
2267 *maxrss = hiwater_rss;
2268}
2269
53bddb4e 2270#if defined(SPLIT_RSS_COUNTING)
05af2e10 2271void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2272#else
05af2e10 2273static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2274{
2275}
2276#endif
465a454f 2277
78e7c5af
AK
2278#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2279static inline int pte_special(pte_t pte)
2280{
2281 return 0;
2282}
2283
2284static inline pte_t pte_mkspecial(pte_t pte)
2285{
2286 return pte;
2287}
2288#endif
2289
17596731 2290#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2291static inline int pte_devmap(pte_t pte)
2292{
2293 return 0;
2294}
2295#endif
2296
25ca1d6c
NK
2297extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2298 spinlock_t **ptl);
2299static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2300 spinlock_t **ptl)
2301{
2302 pte_t *ptep;
2303 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2304 return ptep;
2305}
c9cfcddf 2306
c2febafc
KS
2307#ifdef __PAGETABLE_P4D_FOLDED
2308static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2309 unsigned long address)
2310{
2311 return 0;
2312}
2313#else
2314int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2315#endif
2316
b4e98d9a 2317#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2318static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2319 unsigned long address)
2320{
2321 return 0;
2322}
b4e98d9a
KS
2323static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2324static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2325
5f22df00 2326#else
c2febafc 2327int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2328
b4e98d9a
KS
2329static inline void mm_inc_nr_puds(struct mm_struct *mm)
2330{
6d212db1
MS
2331 if (mm_pud_folded(mm))
2332 return;
af5b0f6a 2333 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2334}
2335
2336static inline void mm_dec_nr_puds(struct mm_struct *mm)
2337{
6d212db1
MS
2338 if (mm_pud_folded(mm))
2339 return;
af5b0f6a 2340 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2341}
5f22df00
NP
2342#endif
2343
2d2f5119 2344#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2345static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2346 unsigned long address)
2347{
2348 return 0;
2349}
dc6c9a35 2350
dc6c9a35
KS
2351static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2352static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2353
5f22df00 2354#else
1bb3630e 2355int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2356
dc6c9a35
KS
2357static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2358{
6d212db1
MS
2359 if (mm_pmd_folded(mm))
2360 return;
af5b0f6a 2361 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2362}
2363
2364static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2365{
6d212db1
MS
2366 if (mm_pmd_folded(mm))
2367 return;
af5b0f6a 2368 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2369}
5f22df00
NP
2370#endif
2371
c4812909 2372#ifdef CONFIG_MMU
af5b0f6a 2373static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2374{
af5b0f6a 2375 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2376}
2377
af5b0f6a 2378static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2379{
af5b0f6a 2380 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2381}
2382
2383static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2384{
af5b0f6a 2385 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2386}
2387
2388static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2389{
af5b0f6a 2390 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2391}
2392#else
c4812909 2393
af5b0f6a
KS
2394static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2395static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2396{
2397 return 0;
2398}
2399
2400static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2401static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2402#endif
2403
4cf58924
JFG
2404int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2405int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2406
f949286c
MR
2407#if defined(CONFIG_MMU)
2408
c2febafc
KS
2409static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2410 unsigned long address)
2411{
2412 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2413 NULL : p4d_offset(pgd, address);
2414}
2415
2416static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2417 unsigned long address)
1da177e4 2418{
c2febafc
KS
2419 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2420 NULL : pud_offset(p4d, address);
1da177e4 2421}
d8626138 2422
1da177e4
LT
2423static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2424{
1bb3630e
HD
2425 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2426 NULL: pmd_offset(pud, address);
1da177e4 2427}
f949286c 2428#endif /* CONFIG_MMU */
1bb3630e 2429
57c1ffce 2430#if USE_SPLIT_PTE_PTLOCKS
597d795a 2431#if ALLOC_SPLIT_PTLOCKS
b35f1819 2432void __init ptlock_cache_init(void);
539edb58
PZ
2433extern bool ptlock_alloc(struct page *page);
2434extern void ptlock_free(struct page *page);
2435
2436static inline spinlock_t *ptlock_ptr(struct page *page)
2437{
2438 return page->ptl;
2439}
597d795a 2440#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2441static inline void ptlock_cache_init(void)
2442{
2443}
2444
49076ec2
KS
2445static inline bool ptlock_alloc(struct page *page)
2446{
49076ec2
KS
2447 return true;
2448}
539edb58 2449
49076ec2
KS
2450static inline void ptlock_free(struct page *page)
2451{
49076ec2
KS
2452}
2453
2454static inline spinlock_t *ptlock_ptr(struct page *page)
2455{
539edb58 2456 return &page->ptl;
49076ec2 2457}
597d795a 2458#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2459
2460static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2461{
2462 return ptlock_ptr(pmd_page(*pmd));
2463}
2464
2465static inline bool ptlock_init(struct page *page)
2466{
2467 /*
2468 * prep_new_page() initialize page->private (and therefore page->ptl)
2469 * with 0. Make sure nobody took it in use in between.
2470 *
2471 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2472 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2473 */
309381fe 2474 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2475 if (!ptlock_alloc(page))
2476 return false;
2477 spin_lock_init(ptlock_ptr(page));
2478 return true;
2479}
2480
57c1ffce 2481#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2482/*
2483 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2484 */
49076ec2
KS
2485static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2486{
2487 return &mm->page_table_lock;
2488}
b35f1819 2489static inline void ptlock_cache_init(void) {}
49076ec2 2490static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2491static inline void ptlock_free(struct page *page) {}
57c1ffce 2492#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2493
b35f1819
KS
2494static inline void pgtable_init(void)
2495{
2496 ptlock_cache_init();
2497 pgtable_cache_init();
2498}
2499
b4ed71f5 2500static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2501{
706874e9
VD
2502 if (!ptlock_init(page))
2503 return false;
1d40a5ea 2504 __SetPageTable(page);
f0c0c115 2505 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2506 return true;
2f569afd
MS
2507}
2508
b4ed71f5 2509static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2510{
9e247bab 2511 ptlock_free(page);
1d40a5ea 2512 __ClearPageTable(page);
f0c0c115 2513 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2514}
2515
c74df32c
HD
2516#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2517({ \
4c21e2f2 2518 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2519 pte_t *__pte = pte_offset_map(pmd, address); \
2520 *(ptlp) = __ptl; \
2521 spin_lock(__ptl); \
2522 __pte; \
2523})
2524
2525#define pte_unmap_unlock(pte, ptl) do { \
2526 spin_unlock(ptl); \
2527 pte_unmap(pte); \
2528} while (0)
2529
4cf58924 2530#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2531
2532#define pte_alloc_map(mm, pmd, address) \
4cf58924 2533 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2534
c74df32c 2535#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2536 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2537 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2538
1bb3630e 2539#define pte_alloc_kernel(pmd, address) \
4cf58924 2540 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2541 NULL: pte_offset_kernel(pmd, address))
1da177e4 2542
e009bb30
KS
2543#if USE_SPLIT_PMD_PTLOCKS
2544
7e25de77 2545static inline struct page *pmd_pgtable_page(pmd_t *pmd)
634391ac
MS
2546{
2547 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2548 return virt_to_page((void *)((unsigned long) pmd & mask));
2549}
2550
e009bb30
KS
2551static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2552{
373dfda2 2553 return ptlock_ptr(pmd_pgtable_page(pmd));
e009bb30
KS
2554}
2555
b2b29d6d 2556static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2557{
e009bb30
KS
2558#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2559 page->pmd_huge_pte = NULL;
2560#endif
49076ec2 2561 return ptlock_init(page);
e009bb30
KS
2562}
2563
b2b29d6d 2564static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2565{
2566#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2567 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2568#endif
49076ec2 2569 ptlock_free(page);
e009bb30
KS
2570}
2571
373dfda2 2572#define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
e009bb30
KS
2573
2574#else
2575
9a86cb7b
KS
2576static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2577{
2578 return &mm->page_table_lock;
2579}
2580
b2b29d6d
MW
2581static inline bool pmd_ptlock_init(struct page *page) { return true; }
2582static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2583
c389a250 2584#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2585
e009bb30
KS
2586#endif
2587
9a86cb7b
KS
2588static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2589{
2590 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2591 spin_lock(ptl);
2592 return ptl;
2593}
2594
b2b29d6d
MW
2595static inline bool pgtable_pmd_page_ctor(struct page *page)
2596{
2597 if (!pmd_ptlock_init(page))
2598 return false;
2599 __SetPageTable(page);
f0c0c115 2600 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2601 return true;
2602}
2603
2604static inline void pgtable_pmd_page_dtor(struct page *page)
2605{
2606 pmd_ptlock_free(page);
2607 __ClearPageTable(page);
f0c0c115 2608 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2609}
2610
a00cc7d9
MW
2611/*
2612 * No scalability reason to split PUD locks yet, but follow the same pattern
2613 * as the PMD locks to make it easier if we decide to. The VM should not be
2614 * considered ready to switch to split PUD locks yet; there may be places
2615 * which need to be converted from page_table_lock.
2616 */
2617static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2618{
2619 return &mm->page_table_lock;
2620}
2621
2622static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2623{
2624 spinlock_t *ptl = pud_lockptr(mm, pud);
2625
2626 spin_lock(ptl);
2627 return ptl;
2628}
62906027 2629
a00cc7d9 2630extern void __init pagecache_init(void);
49a7f04a
DH
2631extern void free_initmem(void);
2632
69afade7
JL
2633/*
2634 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2635 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2636 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2637 * Return pages freed into the buddy system.
2638 */
11199692 2639extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2640 int poison, const char *s);
c3d5f5f0 2641
c3d5f5f0 2642extern void adjust_managed_page_count(struct page *page, long count);
1f9d03c5 2643extern void mem_init_print_info(void);
69afade7 2644
4b50bcc7 2645extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2646
69afade7 2647/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2648static inline void free_reserved_page(struct page *page)
69afade7
JL
2649{
2650 ClearPageReserved(page);
2651 init_page_count(page);
2652 __free_page(page);
69afade7
JL
2653 adjust_managed_page_count(page, 1);
2654}
a0cd7a7c 2655#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2656
2657static inline void mark_page_reserved(struct page *page)
2658{
2659 SetPageReserved(page);
2660 adjust_managed_page_count(page, -1);
2661}
2662
2663/*
2664 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2665 * The freed pages will be poisoned with pattern "poison" if it's within
2666 * range [0, UCHAR_MAX].
2667 * Return pages freed into the buddy system.
69afade7
JL
2668 */
2669static inline unsigned long free_initmem_default(int poison)
2670{
2671 extern char __init_begin[], __init_end[];
2672
11199692 2673 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2674 poison, "unused kernel image (initmem)");
69afade7
JL
2675}
2676
7ee3d4e8
JL
2677static inline unsigned long get_num_physpages(void)
2678{
2679 int nid;
2680 unsigned long phys_pages = 0;
2681
2682 for_each_online_node(nid)
2683 phys_pages += node_present_pages(nid);
2684
2685 return phys_pages;
2686}
2687
c713216d 2688/*
3f08a302 2689 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2690 * zones, allocate the backing mem_map and account for memory holes in an
2691 * architecture independent manner.
c713216d
MG
2692 *
2693 * An architecture is expected to register range of page frames backed by
0ee332c1 2694 * physical memory with memblock_add[_node]() before calling
9691a071 2695 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2696 * usage, an architecture is expected to do something like
2697 *
2698 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2699 * max_highmem_pfn};
2700 * for_each_valid_physical_page_range()
952eea9b 2701 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 2702 * free_area_init(max_zone_pfns);
c713216d 2703 */
9691a071 2704void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2705unsigned long node_map_pfn_alignment(void);
32996250
YL
2706unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2707 unsigned long end_pfn);
c713216d
MG
2708extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2709 unsigned long end_pfn);
2710extern void get_pfn_range_for_nid(unsigned int nid,
2711 unsigned long *start_pfn, unsigned long *end_pfn);
f2dbcfa7 2712
a9ee6cf5 2713#ifndef CONFIG_NUMA
6f24fbd3 2714static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2715{
2716 return 0;
2717}
2718#else
2719/* please see mm/page_alloc.c */
2720extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2721#endif
2722
0e0b864e 2723extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2724extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2725 unsigned long, unsigned long, enum meminit_context,
2726 struct vmem_altmap *, int migratetype);
bc75d33f 2727extern void setup_per_zone_wmarks(void);
bd3400ea 2728extern void calculate_min_free_kbytes(void);
1b79acc9 2729extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2730extern void mem_init(void);
8feae131 2731extern void __init mmap_init(void);
974f4367
MH
2732
2733extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2734static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
2735{
2736 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
2737}
d02bd27b 2738extern long si_mem_available(void);
1da177e4
LT
2739extern void si_meminfo(struct sysinfo * val);
2740extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2741#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2742extern unsigned long arch_reserved_kernel_pages(void);
2743#endif
1da177e4 2744
a8e99259
MH
2745extern __printf(3, 4)
2746void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2747
e7c8d5c9 2748extern void setup_per_cpu_pageset(void);
e7c8d5c9 2749
75f7ad8e
PS
2750/* page_alloc.c */
2751extern int min_free_kbytes;
1c30844d 2752extern int watermark_boost_factor;
795ae7a0 2753extern int watermark_scale_factor;
51930df5 2754extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2755
8feae131 2756/* nommu.c */
33e5d769 2757extern atomic_long_t mmap_pages_allocated;
7e660872 2758extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2759
6b2dbba8 2760/* interval_tree.c */
6b2dbba8 2761void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2762 struct rb_root_cached *root);
9826a516
ML
2763void vma_interval_tree_insert_after(struct vm_area_struct *node,
2764 struct vm_area_struct *prev,
f808c13f 2765 struct rb_root_cached *root);
6b2dbba8 2766void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2767 struct rb_root_cached *root);
2768struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2769 unsigned long start, unsigned long last);
2770struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2771 unsigned long start, unsigned long last);
2772
2773#define vma_interval_tree_foreach(vma, root, start, last) \
2774 for (vma = vma_interval_tree_iter_first(root, start, last); \
2775 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2776
bf181b9f 2777void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2778 struct rb_root_cached *root);
bf181b9f 2779void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2780 struct rb_root_cached *root);
2781struct anon_vma_chain *
2782anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2783 unsigned long start, unsigned long last);
bf181b9f
ML
2784struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2785 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2786#ifdef CONFIG_DEBUG_VM_RB
2787void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2788#endif
bf181b9f
ML
2789
2790#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2791 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2792 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2793
1da177e4 2794/* mmap.c */
34b4e4aa 2795extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2796extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2797 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2798 struct vm_area_struct *expand);
2799static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2800 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2801{
2802 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2803}
1da177e4
LT
2804extern struct vm_area_struct *vma_merge(struct mm_struct *,
2805 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2806 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
5c26f6ac 2807 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
1da177e4 2808extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2809extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2810 unsigned long addr, int new_below);
2811extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2812 unsigned long addr, int new_below);
1da177e4 2813extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
a8fb5618 2814extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2815extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2816 unsigned long addr, unsigned long len, pgoff_t pgoff,
2817 bool *need_rmap_locks);
1da177e4 2818extern void exit_mmap(struct mm_struct *);
925d1c40 2819
d4af56c5
LH
2820void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas);
2821void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas);
2822
9c599024
CG
2823static inline int check_data_rlimit(unsigned long rlim,
2824 unsigned long new,
2825 unsigned long start,
2826 unsigned long end_data,
2827 unsigned long start_data)
2828{
2829 if (rlim < RLIM_INFINITY) {
2830 if (((new - start) + (end_data - start_data)) > rlim)
2831 return -ENOSPC;
2832 }
2833
2834 return 0;
2835}
2836
7906d00c
AA
2837extern int mm_take_all_locks(struct mm_struct *mm);
2838extern void mm_drop_all_locks(struct mm_struct *mm);
2839
fe69d560 2840extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 2841extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 2842extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2843extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2844
84638335
KK
2845extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2846extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2847
2eefd878
DS
2848extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2849 const struct vm_special_mapping *sm);
3935ed6a
SS
2850extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2851 unsigned long addr, unsigned long len,
a62c34bd
AL
2852 unsigned long flags,
2853 const struct vm_special_mapping *spec);
2854/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2855extern int install_special_mapping(struct mm_struct *mm,
2856 unsigned long addr, unsigned long len,
2857 unsigned long flags, struct page **pages);
1da177e4 2858
649775be 2859unsigned long randomize_stack_top(unsigned long stack_top);
5ad7dd88 2860unsigned long randomize_page(unsigned long start, unsigned long range);
649775be 2861
1da177e4
LT
2862extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2863
0165ab44 2864extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2865 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2866 struct list_head *uf);
1fcfd8db 2867extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2868 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2869 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
11f9a21a
LH
2870extern int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm,
2871 unsigned long start, size_t len, struct list_head *uf,
2872 bool downgrade);
897ab3e0
MR
2873extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2874 struct list_head *uf);
0726b01e 2875extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2876
bebeb3d6
ML
2877#ifdef CONFIG_MMU
2878extern int __mm_populate(unsigned long addr, unsigned long len,
2879 int ignore_errors);
2880static inline void mm_populate(unsigned long addr, unsigned long len)
2881{
2882 /* Ignore errors */
2883 (void) __mm_populate(addr, len, 1);
2884}
2885#else
2886static inline void mm_populate(unsigned long addr, unsigned long len) {}
2887#endif
2888
e4eb1ff6 2889/* These take the mm semaphore themselves */
5d22fc25 2890extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2891extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2892extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2893extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2894 unsigned long, unsigned long,
2895 unsigned long, unsigned long);
1da177e4 2896
db4fbfb9
ML
2897struct vm_unmapped_area_info {
2898#define VM_UNMAPPED_AREA_TOPDOWN 1
2899 unsigned long flags;
2900 unsigned long length;
2901 unsigned long low_limit;
2902 unsigned long high_limit;
2903 unsigned long align_mask;
2904 unsigned long align_offset;
2905};
2906
baceaf1c 2907extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2908
85821aab 2909/* truncate.c */
1da177e4 2910extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2911extern void truncate_inode_pages_range(struct address_space *,
2912 loff_t lstart, loff_t lend);
91b0abe3 2913extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2914
2915/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2916extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2917extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2918 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2919extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 2920
1be7107f 2921extern unsigned long stack_guard_gap;
d05f3169 2922/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2923extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2924
11192337 2925/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2926extern int expand_downwards(struct vm_area_struct *vma,
2927 unsigned long address);
8ca3eb08 2928#if VM_GROWSUP
46dea3d0 2929extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2930#else
fee7e49d 2931 #define expand_upwards(vma, address) (0)
9ab88515 2932#endif
1da177e4
LT
2933
2934/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2935extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2936extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2937 struct vm_area_struct **pprev);
2938
abdba2dd
LH
2939/*
2940 * Look up the first VMA which intersects the interval [start_addr, end_addr)
2941 * NULL if none. Assume start_addr < end_addr.
ce6d42f2 2942 */
ce6d42f2 2943struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
abdba2dd 2944 unsigned long start_addr, unsigned long end_addr);
1da177e4 2945
ce6d42f2
LH
2946/**
2947 * vma_lookup() - Find a VMA at a specific address
2948 * @mm: The process address space.
2949 * @addr: The user address.
2950 *
2951 * Return: The vm_area_struct at the given address, %NULL otherwise.
2952 */
2953static inline
2954struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2955{
d7c62295 2956 return mtree_load(&mm->mm_mt, addr);
ce6d42f2
LH
2957}
2958
1be7107f
HD
2959static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2960{
2961 unsigned long vm_start = vma->vm_start;
2962
2963 if (vma->vm_flags & VM_GROWSDOWN) {
2964 vm_start -= stack_guard_gap;
2965 if (vm_start > vma->vm_start)
2966 vm_start = 0;
2967 }
2968 return vm_start;
2969}
2970
2971static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2972{
2973 unsigned long vm_end = vma->vm_end;
2974
2975 if (vma->vm_flags & VM_GROWSUP) {
2976 vm_end += stack_guard_gap;
2977 if (vm_end < vma->vm_end)
2978 vm_end = -PAGE_SIZE;
2979 }
2980 return vm_end;
2981}
2982
1da177e4
LT
2983static inline unsigned long vma_pages(struct vm_area_struct *vma)
2984{
2985 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2986}
2987
640708a2
PE
2988/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2989static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2990 unsigned long vm_start, unsigned long vm_end)
2991{
dc8635b2 2992 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
640708a2
PE
2993
2994 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2995 vma = NULL;
2996
2997 return vma;
2998}
2999
017b1660
MK
3000static inline bool range_in_vma(struct vm_area_struct *vma,
3001 unsigned long start, unsigned long end)
3002{
3003 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3004}
3005
bad849b3 3006#ifdef CONFIG_MMU
804af2cf 3007pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 3008void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
3009#else
3010static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3011{
3012 return __pgprot(0);
3013}
64e45507
PF
3014static inline void vma_set_page_prot(struct vm_area_struct *vma)
3015{
3016 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3017}
bad849b3
DH
3018#endif
3019
295992fb
CK
3020void vma_set_file(struct vm_area_struct *vma, struct file *file);
3021
5877231f 3022#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 3023unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
3024 unsigned long start, unsigned long end);
3025#endif
3026
deceb6cd 3027struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
3028int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3029 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
3030int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3031 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 3032int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
3033int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3034 struct page **pages, unsigned long *num);
a667d745
SJ
3035int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3036 unsigned long num);
3037int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3038 unsigned long num);
ae2b01f3 3039vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 3040 unsigned long pfn);
f5e6d1d5
MW
3041vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3042 unsigned long pfn, pgprot_t pgprot);
5d747637 3043vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 3044 pfn_t pfn);
574c5b3d
TH
3045vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
3046 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
3047vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3048 unsigned long addr, pfn_t pfn);
b4cbb197
LT
3049int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3050
1c8f4220
SJ
3051static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3052 unsigned long addr, struct page *page)
3053{
3054 int err = vm_insert_page(vma, addr, page);
3055
3056 if (err == -ENOMEM)
3057 return VM_FAULT_OOM;
3058 if (err < 0 && err != -EBUSY)
3059 return VM_FAULT_SIGBUS;
3060
3061 return VM_FAULT_NOPAGE;
3062}
3063
f8f6ae5d
JG
3064#ifndef io_remap_pfn_range
3065static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3066 unsigned long addr, unsigned long pfn,
3067 unsigned long size, pgprot_t prot)
3068{
3069 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3070}
3071#endif
3072
d97baf94
SJ
3073static inline vm_fault_t vmf_error(int err)
3074{
3075 if (err == -ENOMEM)
3076 return VM_FAULT_OOM;
3077 return VM_FAULT_SIGBUS;
3078}
3079
df06b37f
KB
3080struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3081 unsigned int foll_flags);
240aadee 3082
2b740303 3083static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3084{
3085 if (vm_fault & VM_FAULT_OOM)
3086 return -ENOMEM;
3087 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3088 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3089 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3090 return -EFAULT;
3091 return 0;
3092}
3093
a7f22660
DH
3094/*
3095 * Indicates for which pages that are write-protected in the page table,
3096 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
3097 * GUP pin will remain consistent with the pages mapped into the page tables
3098 * of the MM.
3099 *
3100 * Temporary unmapping of PageAnonExclusive() pages or clearing of
3101 * PageAnonExclusive() has to protect against concurrent GUP:
3102 * * Ordinary GUP: Using the PT lock
3103 * * GUP-fast and fork(): mm->write_protect_seq
088b8aa5
DH
3104 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
3105 * page_try_share_anon_rmap()
a7f22660
DH
3106 *
3107 * Must be called with the (sub)page that's actually referenced via the
3108 * page table entry, which might not necessarily be the head page for a
3109 * PTE-mapped THP.
84209e87
DH
3110 *
3111 * If the vma is NULL, we're coming from the GUP-fast path and might have
3112 * to fallback to the slow path just to lookup the vma.
a7f22660 3113 */
84209e87
DH
3114static inline bool gup_must_unshare(struct vm_area_struct *vma,
3115 unsigned int flags, struct page *page)
a7f22660
DH
3116{
3117 /*
3118 * FOLL_WRITE is implicitly handled correctly as the page table entry
3119 * has to be writable -- and if it references (part of) an anonymous
3120 * folio, that part is required to be marked exclusive.
3121 */
3122 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
3123 return false;
3124 /*
3125 * Note: PageAnon(page) is stable until the page is actually getting
3126 * freed.
3127 */
84209e87
DH
3128 if (!PageAnon(page)) {
3129 /*
3130 * We only care about R/O long-term pining: R/O short-term
3131 * pinning does not have the semantics to observe successive
3132 * changes through the process page tables.
3133 */
3134 if (!(flags & FOLL_LONGTERM))
3135 return false;
3136
3137 /* We really need the vma ... */
3138 if (!vma)
3139 return true;
3140
3141 /*
3142 * ... because we only care about writable private ("COW")
3143 * mappings where we have to break COW early.
3144 */
3145 return is_cow_mapping(vma->vm_flags);
3146 }
088b8aa5
DH
3147
3148 /* Paired with a memory barrier in page_try_share_anon_rmap(). */
3149 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
3150 smp_rmb();
3151
a7f22660
DH
3152 /*
3153 * Note that PageKsm() pages cannot be exclusive, and consequently,
3154 * cannot get pinned.
3155 */
3156 return !PageAnonExclusive(page);
3157}
3158
474098ed
DH
3159/*
3160 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3161 * a (NUMA hinting) fault is required.
3162 */
3163static inline bool gup_can_follow_protnone(unsigned int flags)
3164{
3165 /*
3166 * FOLL_FORCE has to be able to make progress even if the VMA is
3167 * inaccessible. Further, FOLL_FORCE access usually does not represent
3168 * application behaviour and we should avoid triggering NUMA hinting
3169 * faults.
3170 */
3171 return flags & FOLL_FORCE;
3172}
3173
8b1e0f81 3174typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3175extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3176 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3177extern int apply_to_existing_page_range(struct mm_struct *mm,
3178 unsigned long address, unsigned long size,
3179 pte_fn_t fn, void *data);
aee16b3c 3180
5749fcc5 3181extern void __init init_mem_debugging_and_hardening(void);
8823b1db 3182#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3183extern void __kernel_poison_pages(struct page *page, int numpages);
3184extern void __kernel_unpoison_pages(struct page *page, int numpages);
3185extern bool _page_poisoning_enabled_early;
3186DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3187static inline bool page_poisoning_enabled(void)
3188{
3189 return _page_poisoning_enabled_early;
3190}
3191/*
3192 * For use in fast paths after init_mem_debugging() has run, or when a
3193 * false negative result is not harmful when called too early.
3194 */
3195static inline bool page_poisoning_enabled_static(void)
3196{
3197 return static_branch_unlikely(&_page_poisoning_enabled);
3198}
3199static inline void kernel_poison_pages(struct page *page, int numpages)
3200{
3201 if (page_poisoning_enabled_static())
3202 __kernel_poison_pages(page, numpages);
3203}
3204static inline void kernel_unpoison_pages(struct page *page, int numpages)
3205{
3206 if (page_poisoning_enabled_static())
3207 __kernel_unpoison_pages(page, numpages);
3208}
8823b1db
LA
3209#else
3210static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3211static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3212static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3213static inline void kernel_poison_pages(struct page *page, int numpages) { }
3214static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3215#endif
3216
51cba1eb 3217DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3218static inline bool want_init_on_alloc(gfp_t flags)
3219{
51cba1eb
KC
3220 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3221 &init_on_alloc))
6471384a
AP
3222 return true;
3223 return flags & __GFP_ZERO;
3224}
3225
51cba1eb 3226DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3227static inline bool want_init_on_free(void)
3228{
51cba1eb
KC
3229 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3230 &init_on_free);
6471384a
AP
3231}
3232
8e57f8ac
VB
3233extern bool _debug_pagealloc_enabled_early;
3234DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3235
3236static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3237{
3238 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3239 _debug_pagealloc_enabled_early;
3240}
3241
3242/*
3243 * For use in fast paths after init_debug_pagealloc() has run, or when a
3244 * false negative result is not harmful when called too early.
3245 */
3246static inline bool debug_pagealloc_enabled_static(void)
031bc574 3247{
96a2b03f
VB
3248 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3249 return false;
3250
3251 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3252}
3253
5d6ad668 3254#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3255/*
5d6ad668
MR
3256 * To support DEBUG_PAGEALLOC architecture must ensure that
3257 * __kernel_map_pages() never fails
c87cbc1f 3258 */
d6332692
RE
3259extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3260
77bc7fd6
MR
3261static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3262{
3263 if (debug_pagealloc_enabled_static())
3264 __kernel_map_pages(page, numpages, 1);
3265}
3266
3267static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3268{
3269 if (debug_pagealloc_enabled_static())
3270 __kernel_map_pages(page, numpages, 0);
3271}
5d6ad668 3272#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3273static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3274static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3275#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3276
a6c19dfe 3277#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3278extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3279extern int in_gate_area_no_mm(unsigned long addr);
3280extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3281#else
a6c19dfe
AL
3282static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3283{
3284 return NULL;
3285}
3286static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3287static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3288{
3289 return 0;
3290}
1da177e4
LT
3291#endif /* __HAVE_ARCH_GATE_AREA */
3292
44a70ade
MH
3293extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3294
146732ce
JT
3295#ifdef CONFIG_SYSCTL
3296extern int sysctl_drop_caches;
32927393
CH
3297int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3298 loff_t *);
146732ce
JT
3299#endif
3300
cb731d6c 3301void drop_slab(void);
9d0243bc 3302
7a9166e3
LY
3303#ifndef CONFIG_MMU
3304#define randomize_va_space 0
3305#else
a62eaf15 3306extern int randomize_va_space;
7a9166e3 3307#endif
a62eaf15 3308
045e72ac 3309const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3310#ifdef CONFIG_MMU
03252919 3311void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3312#else
3313static inline void print_vma_addr(char *prefix, unsigned long rip)
3314{
3315}
3316#endif
e6e5494c 3317
35fd1eb1 3318void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0 3319struct page * __populate_section_memmap(unsigned long pfn,
e3246d8f
JM
3320 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3321 struct dev_pagemap *pgmap);
7b09f5af
FC
3322void pmd_init(void *addr);
3323void pud_init(void *addr);
29c71111 3324pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3325p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3326pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3327pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7 3328pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4917f55b 3329 struct vmem_altmap *altmap, struct page *reuse);
8f6aac41 3330void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3331struct vmem_altmap;
56993b4e
AK
3332void *vmemmap_alloc_block_buf(unsigned long size, int node,
3333 struct vmem_altmap *altmap);
8f6aac41 3334void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2045a3b8
FC
3335void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3336 unsigned long addr, unsigned long next);
3337int vmemmap_check_pmd(pmd_t *pmd, int node,
3338 unsigned long addr, unsigned long next);
0aad818b 3339int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3340 int node, struct vmem_altmap *altmap);
2045a3b8
FC
3341int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3342 int node, struct vmem_altmap *altmap);
7b73d978
CH
3343int vmemmap_populate(unsigned long start, unsigned long end, int node,
3344 struct vmem_altmap *altmap);
c2b91e2e 3345void vmemmap_populate_print_last(void);
0197518c 3346#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3347void vmemmap_free(unsigned long start, unsigned long end,
3348 struct vmem_altmap *altmap);
0197518c 3349#endif
46723bfa 3350void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3351 unsigned long nr_pages);
6a46079c 3352
82ba011b
AK
3353enum mf_flags {
3354 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3355 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3356 MF_MUST_KILL = 1 << 2,
cf870c70 3357 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3358 MF_UNPOISON = 1 << 4,
67f22ba7 3359 MF_SW_SIMULATED = 1 << 5,
38f6d293 3360 MF_NO_RETRY = 1 << 6,
82ba011b 3361};
c36e2024
SR
3362int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3363 unsigned long count, int mf_flags);
83b57531 3364extern int memory_failure(unsigned long pfn, int flags);
06202231 3365extern void memory_failure_queue_kick(int cpu);
847ce401 3366extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3367extern int sysctl_memory_failure_early_kill;
3368extern int sysctl_memory_failure_recovery;
d0505e9f 3369extern void shake_page(struct page *p);
5844a486 3370extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3371extern int soft_offline_page(unsigned long pfn, int flags);
405ce051 3372#ifdef CONFIG_MEMORY_FAILURE
d302c239 3373extern void memory_failure_queue(unsigned long pfn, int flags);
e591ef7d
NH
3374extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3375 bool *migratable_cleared);
5033091d
NH
3376void num_poisoned_pages_inc(unsigned long pfn);
3377void num_poisoned_pages_sub(unsigned long pfn, long i);
405ce051 3378#else
d302c239
TL
3379static inline void memory_failure_queue(unsigned long pfn, int flags)
3380{
3381}
3382
e591ef7d
NH
3383static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3384 bool *migratable_cleared)
405ce051
NH
3385{
3386 return 0;
3387}
d027122d 3388
a46c9304 3389static inline void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
3390{
3391}
5033091d
NH
3392
3393static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3394{
3395}
3396#endif
3397
3398#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3399extern void memblk_nr_poison_inc(unsigned long pfn);
3400extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3401#else
3402static inline void memblk_nr_poison_inc(unsigned long pfn)
3403{
3404}
3405
3406static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3407{
3408}
405ce051 3409#endif
6a46079c 3410
03b122da
TL
3411#ifndef arch_memory_failure
3412static inline int arch_memory_failure(unsigned long pfn, int flags)
3413{
3414 return -ENXIO;
3415}
3416#endif
3417
3418#ifndef arch_is_platform_page
3419static inline bool arch_is_platform_page(u64 paddr)
3420{
3421 return false;
3422}
3423#endif
cc637b17
XX
3424
3425/*
3426 * Error handlers for various types of pages.
3427 */
cc3e2af4 3428enum mf_result {
cc637b17
XX
3429 MF_IGNORED, /* Error: cannot be handled */
3430 MF_FAILED, /* Error: handling failed */
3431 MF_DELAYED, /* Will be handled later */
3432 MF_RECOVERED, /* Successfully recovered */
3433};
3434
3435enum mf_action_page_type {
3436 MF_MSG_KERNEL,
3437 MF_MSG_KERNEL_HIGH_ORDER,
3438 MF_MSG_SLAB,
3439 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3440 MF_MSG_HUGE,
3441 MF_MSG_FREE_HUGE,
3442 MF_MSG_UNMAP_FAILED,
3443 MF_MSG_DIRTY_SWAPCACHE,
3444 MF_MSG_CLEAN_SWAPCACHE,
3445 MF_MSG_DIRTY_MLOCKED_LRU,
3446 MF_MSG_CLEAN_MLOCKED_LRU,
3447 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3448 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3449 MF_MSG_DIRTY_LRU,
3450 MF_MSG_CLEAN_LRU,
3451 MF_MSG_TRUNCATED_LRU,
3452 MF_MSG_BUDDY,
6100e34b 3453 MF_MSG_DAX,
5d1fd5dc 3454 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3455 MF_MSG_UNKNOWN,
3456};
3457
47ad8475
AA
3458#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3459extern void clear_huge_page(struct page *page,
c79b57e4 3460 unsigned long addr_hint,
47ad8475
AA
3461 unsigned int pages_per_huge_page);
3462extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3463 unsigned long addr_hint,
3464 struct vm_area_struct *vma,
47ad8475 3465 unsigned int pages_per_huge_page);
fa4d75c1
MK
3466extern long copy_huge_page_from_user(struct page *dst_page,
3467 const void __user *usr_src,
810a56b9
MK
3468 unsigned int pages_per_huge_page,
3469 bool allow_pagefault);
2484ca9b
THV
3470
3471/**
3472 * vma_is_special_huge - Are transhuge page-table entries considered special?
3473 * @vma: Pointer to the struct vm_area_struct to consider
3474 *
3475 * Whether transhuge page-table entries are considered "special" following
3476 * the definition in vm_normal_page().
3477 *
3478 * Return: true if transhuge page-table entries should be considered special,
3479 * false otherwise.
3480 */
3481static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3482{
3483 return vma_is_dax(vma) || (vma->vm_file &&
3484 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3485}
3486
47ad8475
AA
3487#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3488
c0a32fc5
SG
3489#ifdef CONFIG_DEBUG_PAGEALLOC
3490extern unsigned int _debug_guardpage_minorder;
96a2b03f 3491DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3492
3493static inline unsigned int debug_guardpage_minorder(void)
3494{
3495 return _debug_guardpage_minorder;
3496}
3497
e30825f1
JK
3498static inline bool debug_guardpage_enabled(void)
3499{
96a2b03f 3500 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3501}
3502
c0a32fc5
SG
3503static inline bool page_is_guard(struct page *page)
3504{
e30825f1
JK
3505 if (!debug_guardpage_enabled())
3506 return false;
3507
3972f6bb 3508 return PageGuard(page);
c0a32fc5
SG
3509}
3510#else
3511static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3512static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3513static inline bool page_is_guard(struct page *page) { return false; }
3514#endif /* CONFIG_DEBUG_PAGEALLOC */
3515
f9872caf
CS
3516#if MAX_NUMNODES > 1
3517void __init setup_nr_node_ids(void);
3518#else
3519static inline void setup_nr_node_ids(void) {}
3520#endif
3521
010c164a
SL
3522extern int memcmp_pages(struct page *page1, struct page *page2);
3523
3524static inline int pages_identical(struct page *page1, struct page *page2)
3525{
3526 return !memcmp_pages(page1, page2);
3527}
3528
c5acad84
TH
3529#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3530unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3531 pgoff_t first_index, pgoff_t nr,
3532 pgoff_t bitmap_pgoff,
3533 unsigned long *bitmap,
3534 pgoff_t *start,
3535 pgoff_t *end);
3536
3537unsigned long wp_shared_mapping_range(struct address_space *mapping,
3538 pgoff_t first_index, pgoff_t nr);
3539#endif
3540
2374c09b
CH
3541extern int sysctl_nr_trim_pages;
3542
5bb1bb35 3543#ifdef CONFIG_PRINTK
8e7f37f2 3544void mem_dump_obj(void *object);
5bb1bb35
PM
3545#else
3546static inline void mem_dump_obj(void *object) {}
3547#endif
8e7f37f2 3548
22247efd
PX
3549/**
3550 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3551 * @seals: the seals to check
3552 * @vma: the vma to operate on
3553 *
3554 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3555 * the vma flags. Return 0 if check pass, or <0 for errors.
3556 */
3557static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3558{
3559 if (seals & F_SEAL_FUTURE_WRITE) {
3560 /*
3561 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3562 * "future write" seal active.
3563 */
3564 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3565 return -EPERM;
3566
3567 /*
3568 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3569 * MAP_SHARED and read-only, take care to not allow mprotect to
3570 * revert protections on such mappings. Do this only for shared
3571 * mappings. For private mappings, don't need to mask
3572 * VM_MAYWRITE as we still want them to be COW-writable.
3573 */
3574 if (vma->vm_flags & VM_SHARED)
3575 vma->vm_flags &= ~(VM_MAYWRITE);
3576 }
3577
3578 return 0;
3579}
3580
9a10064f
CC
3581#ifdef CONFIG_ANON_VMA_NAME
3582int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac
SB
3583 unsigned long len_in,
3584 struct anon_vma_name *anon_name);
9a10064f
CC
3585#else
3586static inline int
3587madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac 3588 unsigned long len_in, struct anon_vma_name *anon_name) {
9a10064f
CC
3589 return 0;
3590}
3591#endif
3592
1da177e4 3593#endif /* _LINUX_MM_H */