arm: define __PAGETABLE_PMD_FOLDED for !LPAE
[linux-2.6-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
1da177e4
LT
23
24struct mempolicy;
25struct anon_vma;
bf181b9f 26struct anon_vma_chain;
4e950f6f 27struct file_ra_state;
e8edc6e0 28struct user_struct;
4e950f6f 29struct writeback_control;
1da177e4 30
fccc9987 31#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 32extern unsigned long max_mapnr;
fccc9987
JL
33
34static inline void set_max_mapnr(unsigned long limit)
35{
36 max_mapnr = limit;
37}
38#else
39static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
40#endif
41
4481374c 42extern unsigned long totalram_pages;
1da177e4 43extern void * high_memory;
1da177e4
LT
44extern int page_cluster;
45
46#ifdef CONFIG_SYSCTL
47extern int sysctl_legacy_va_layout;
48#else
49#define sysctl_legacy_va_layout 0
50#endif
51
52#include <asm/page.h>
53#include <asm/pgtable.h>
54#include <asm/processor.h>
1da177e4 55
79442ed1
TC
56#ifndef __pa_symbol
57#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
58#endif
59
593befa6
DD
60/*
61 * To prevent common memory management code establishing
62 * a zero page mapping on a read fault.
63 * This macro should be defined within <asm/pgtable.h>.
64 * s390 does this to prevent multiplexing of hardware bits
65 * related to the physical page in case of virtualization.
66 */
67#ifndef mm_forbids_zeropage
68#define mm_forbids_zeropage(X) (0)
69#endif
70
c9b1d098 71extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 72extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 73
49f0ce5f
JM
74extern int sysctl_overcommit_memory;
75extern int sysctl_overcommit_ratio;
76extern unsigned long sysctl_overcommit_kbytes;
77
78extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
79 size_t *, loff_t *);
80extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
81 size_t *, loff_t *);
82
1da177e4
LT
83#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
84
27ac792c
AR
85/* to align the pointer to the (next) page boundary */
86#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
87
0fa73b86
AM
88/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
89#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
90
1da177e4
LT
91/*
92 * Linux kernel virtual memory manager primitives.
93 * The idea being to have a "virtual" mm in the same way
94 * we have a virtual fs - giving a cleaner interface to the
95 * mm details, and allowing different kinds of memory mappings
96 * (from shared memory to executable loading to arbitrary
97 * mmap() functions).
98 */
99
c43692e8
CL
100extern struct kmem_cache *vm_area_cachep;
101
1da177e4 102#ifndef CONFIG_MMU
8feae131
DH
103extern struct rb_root nommu_region_tree;
104extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
105
106extern unsigned int kobjsize(const void *objp);
107#endif
108
109/*
605d9288 110 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 111 */
cc2383ec
KK
112#define VM_NONE 0x00000000
113
1da177e4
LT
114#define VM_READ 0x00000001 /* currently active flags */
115#define VM_WRITE 0x00000002
116#define VM_EXEC 0x00000004
117#define VM_SHARED 0x00000008
118
7e2cff42 119/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
120#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
121#define VM_MAYWRITE 0x00000020
122#define VM_MAYEXEC 0x00000040
123#define VM_MAYSHARE 0x00000080
124
125#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 126#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
127#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
128
1da177e4
LT
129#define VM_LOCKED 0x00002000
130#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
131
132 /* Used by sys_madvise() */
133#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
134#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
135
136#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
137#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 138#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 139#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 140#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 141#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 142#define VM_ARCH_2 0x02000000
0103bd16 143#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 144
d9104d1c
CG
145#ifdef CONFIG_MEM_SOFT_DIRTY
146# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
147#else
148# define VM_SOFTDIRTY 0
149#endif
150
b379d790 151#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
152#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
153#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 154#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 155
cc2383ec
KK
156#if defined(CONFIG_X86)
157# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
158#elif defined(CONFIG_PPC)
159# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
160#elif defined(CONFIG_PARISC)
161# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
162#elif defined(CONFIG_METAG)
163# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
164#elif defined(CONFIG_IA64)
165# define VM_GROWSUP VM_ARCH_1
166#elif !defined(CONFIG_MMU)
167# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
168#endif
169
4aae7e43
QR
170#if defined(CONFIG_X86)
171/* MPX specific bounds table or bounds directory */
172# define VM_MPX VM_ARCH_2
173#endif
174
cc2383ec
KK
175#ifndef VM_GROWSUP
176# define VM_GROWSUP VM_NONE
177#endif
178
a8bef8ff
MG
179/* Bits set in the VMA until the stack is in its final location */
180#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
181
1da177e4
LT
182#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
183#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
184#endif
185
186#ifdef CONFIG_STACK_GROWSUP
187#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
188#else
189#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
190#endif
191
b291f000 192/*
78f11a25
AA
193 * Special vmas that are non-mergable, non-mlock()able.
194 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 195 */
9050d7eb 196#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 197
a0715cc2
AT
198/* This mask defines which mm->def_flags a process can inherit its parent */
199#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
200
1da177e4
LT
201/*
202 * mapping from the currently active vm_flags protection bits (the
203 * low four bits) to a page protection mask..
204 */
205extern pgprot_t protection_map[16];
206
d0217ac0 207#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
208#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
209#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
210#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
211#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
212#define FAULT_FLAG_TRIED 0x20 /* Second try */
213#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
d0217ac0 214
54cb8821 215/*
d0217ac0 216 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
217 * ->fault function. The vma's ->fault is responsible for returning a bitmask
218 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 219 *
9b4bdd2f 220 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 221 */
d0217ac0
NP
222struct vm_fault {
223 unsigned int flags; /* FAULT_FLAG_xxx flags */
224 pgoff_t pgoff; /* Logical page offset based on vma */
225 void __user *virtual_address; /* Faulting virtual address */
226
227 struct page *page; /* ->fault handlers should return a
83c54070 228 * page here, unless VM_FAULT_NOPAGE
d0217ac0 229 * is set (which is also implied by
83c54070 230 * VM_FAULT_ERROR).
d0217ac0 231 */
8c6e50b0
KS
232 /* for ->map_pages() only */
233 pgoff_t max_pgoff; /* map pages for offset from pgoff till
234 * max_pgoff inclusive */
235 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 236};
1da177e4
LT
237
238/*
239 * These are the virtual MM functions - opening of an area, closing and
240 * unmapping it (needed to keep files on disk up-to-date etc), pointer
241 * to the functions called when a no-page or a wp-page exception occurs.
242 */
243struct vm_operations_struct {
244 void (*open)(struct vm_area_struct * area);
245 void (*close)(struct vm_area_struct * area);
d0217ac0 246 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
8c6e50b0 247 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
248
249 /* notification that a previously read-only page is about to become
250 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 251 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
252
253 /* called by access_process_vm when get_user_pages() fails, typically
254 * for use by special VMAs that can switch between memory and hardware
255 */
256 int (*access)(struct vm_area_struct *vma, unsigned long addr,
257 void *buf, int len, int write);
78d683e8
AL
258
259 /* Called by the /proc/PID/maps code to ask the vma whether it
260 * has a special name. Returning non-NULL will also cause this
261 * vma to be dumped unconditionally. */
262 const char *(*name)(struct vm_area_struct *vma);
263
1da177e4 264#ifdef CONFIG_NUMA
a6020ed7
LS
265 /*
266 * set_policy() op must add a reference to any non-NULL @new mempolicy
267 * to hold the policy upon return. Caller should pass NULL @new to
268 * remove a policy and fall back to surrounding context--i.e. do not
269 * install a MPOL_DEFAULT policy, nor the task or system default
270 * mempolicy.
271 */
1da177e4 272 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
273
274 /*
275 * get_policy() op must add reference [mpol_get()] to any policy at
276 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
277 * in mm/mempolicy.c will do this automatically.
278 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
279 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
280 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
281 * must return NULL--i.e., do not "fallback" to task or system default
282 * policy.
283 */
1da177e4
LT
284 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
285 unsigned long addr);
286#endif
667a0a06
DV
287 /*
288 * Called by vm_normal_page() for special PTEs to find the
289 * page for @addr. This is useful if the default behavior
290 * (using pte_page()) would not find the correct page.
291 */
292 struct page *(*find_special_page)(struct vm_area_struct *vma,
293 unsigned long addr);
1da177e4
LT
294};
295
296struct mmu_gather;
297struct inode;
298
349aef0b
AM
299#define page_private(page) ((page)->private)
300#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 301
b12c4ad1
MK
302/* It's valid only if the page is free path or free_list */
303static inline void set_freepage_migratetype(struct page *page, int migratetype)
304{
95e34412 305 page->index = migratetype;
b12c4ad1
MK
306}
307
308/* It's valid only if the page is free path or free_list */
309static inline int get_freepage_migratetype(struct page *page)
310{
95e34412 311 return page->index;
b12c4ad1
MK
312}
313
1da177e4
LT
314/*
315 * FIXME: take this include out, include page-flags.h in
316 * files which need it (119 of them)
317 */
318#include <linux/page-flags.h>
71e3aac0 319#include <linux/huge_mm.h>
1da177e4
LT
320
321/*
322 * Methods to modify the page usage count.
323 *
324 * What counts for a page usage:
325 * - cache mapping (page->mapping)
326 * - private data (page->private)
327 * - page mapped in a task's page tables, each mapping
328 * is counted separately
329 *
330 * Also, many kernel routines increase the page count before a critical
331 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
332 */
333
334/*
da6052f7 335 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 336 */
7c8ee9a8
NP
337static inline int put_page_testzero(struct page *page)
338{
309381fe 339 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 340 return atomic_dec_and_test(&page->_count);
7c8ee9a8 341}
1da177e4
LT
342
343/*
7c8ee9a8
NP
344 * Try to grab a ref unless the page has a refcount of zero, return false if
345 * that is the case.
8e0861fa
AK
346 * This can be called when MMU is off so it must not access
347 * any of the virtual mappings.
1da177e4 348 */
7c8ee9a8
NP
349static inline int get_page_unless_zero(struct page *page)
350{
8dc04efb 351 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 352}
1da177e4 353
8e0861fa
AK
354/*
355 * Try to drop a ref unless the page has a refcount of one, return false if
356 * that is the case.
357 * This is to make sure that the refcount won't become zero after this drop.
358 * This can be called when MMU is off so it must not access
359 * any of the virtual mappings.
360 */
361static inline int put_page_unless_one(struct page *page)
362{
363 return atomic_add_unless(&page->_count, -1, 1);
364}
365
53df8fdc 366extern int page_is_ram(unsigned long pfn);
67cf13ce 367extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
53df8fdc 368
48667e7a 369/* Support for virtually mapped pages */
b3bdda02
CL
370struct page *vmalloc_to_page(const void *addr);
371unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 372
0738c4bb
PM
373/*
374 * Determine if an address is within the vmalloc range
375 *
376 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
377 * is no special casing required.
378 */
9e2779fa
CL
379static inline int is_vmalloc_addr(const void *x)
380{
0738c4bb 381#ifdef CONFIG_MMU
9e2779fa
CL
382 unsigned long addr = (unsigned long)x;
383
384 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
385#else
386 return 0;
8ca3ed87 387#endif
0738c4bb 388}
81ac3ad9
KH
389#ifdef CONFIG_MMU
390extern int is_vmalloc_or_module_addr(const void *x);
391#else
934831d0 392static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
393{
394 return 0;
395}
396#endif
9e2779fa 397
39f1f78d
AV
398extern void kvfree(const void *addr);
399
e9da73d6
AA
400static inline void compound_lock(struct page *page)
401{
402#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 403 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
404 bit_spin_lock(PG_compound_lock, &page->flags);
405#endif
406}
407
408static inline void compound_unlock(struct page *page)
409{
410#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 411 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
412 bit_spin_unlock(PG_compound_lock, &page->flags);
413#endif
414}
415
416static inline unsigned long compound_lock_irqsave(struct page *page)
417{
418 unsigned long uninitialized_var(flags);
419#ifdef CONFIG_TRANSPARENT_HUGEPAGE
420 local_irq_save(flags);
421 compound_lock(page);
422#endif
423 return flags;
424}
425
426static inline void compound_unlock_irqrestore(struct page *page,
427 unsigned long flags)
428{
429#ifdef CONFIG_TRANSPARENT_HUGEPAGE
430 compound_unlock(page);
431 local_irq_restore(flags);
432#endif
433}
434
d2ee40ea
JZ
435static inline struct page *compound_head_by_tail(struct page *tail)
436{
437 struct page *head = tail->first_page;
438
439 /*
440 * page->first_page may be a dangling pointer to an old
441 * compound page, so recheck that it is still a tail
442 * page before returning.
443 */
444 smp_rmb();
445 if (likely(PageTail(tail)))
446 return head;
447 return tail;
448}
449
ccaafd7f
JK
450/*
451 * Since either compound page could be dismantled asynchronously in THP
452 * or we access asynchronously arbitrary positioned struct page, there
453 * would be tail flag race. To handle this race, we should call
454 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
455 */
d85f3385
CL
456static inline struct page *compound_head(struct page *page)
457{
d2ee40ea
JZ
458 if (unlikely(PageTail(page)))
459 return compound_head_by_tail(page);
d85f3385
CL
460 return page;
461}
462
ccaafd7f
JK
463/*
464 * If we access compound page synchronously such as access to
465 * allocated page, there is no need to handle tail flag race, so we can
466 * check tail flag directly without any synchronization primitive.
467 */
468static inline struct page *compound_head_fast(struct page *page)
469{
470 if (unlikely(PageTail(page)))
471 return page->first_page;
472 return page;
473}
474
70b50f94
AA
475/*
476 * The atomic page->_mapcount, starts from -1: so that transitions
477 * both from it and to it can be tracked, using atomic_inc_and_test
478 * and atomic_add_negative(-1).
479 */
22b751c3 480static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
481{
482 atomic_set(&(page)->_mapcount, -1);
483}
484
485static inline int page_mapcount(struct page *page)
486{
1d148e21
WY
487 VM_BUG_ON_PAGE(PageSlab(page), page);
488 return atomic_read(&page->_mapcount) + 1;
70b50f94
AA
489}
490
4c21e2f2 491static inline int page_count(struct page *page)
1da177e4 492{
d85f3385 493 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
494}
495
44518d2b
AA
496#ifdef CONFIG_HUGETLB_PAGE
497extern int PageHeadHuge(struct page *page_head);
498#else /* CONFIG_HUGETLB_PAGE */
499static inline int PageHeadHuge(struct page *page_head)
500{
501 return 0;
502}
503#endif /* CONFIG_HUGETLB_PAGE */
504
505static inline bool __compound_tail_refcounted(struct page *page)
506{
507 return !PageSlab(page) && !PageHeadHuge(page);
508}
509
510/*
511 * This takes a head page as parameter and tells if the
512 * tail page reference counting can be skipped.
513 *
514 * For this to be safe, PageSlab and PageHeadHuge must remain true on
515 * any given page where they return true here, until all tail pins
516 * have been released.
517 */
518static inline bool compound_tail_refcounted(struct page *page)
519{
309381fe 520 VM_BUG_ON_PAGE(!PageHead(page), page);
44518d2b
AA
521 return __compound_tail_refcounted(page);
522}
523
b35a35b5
AA
524static inline void get_huge_page_tail(struct page *page)
525{
526 /*
5eaf1a9e 527 * __split_huge_page_refcount() cannot run from under us.
b35a35b5 528 */
309381fe
SL
529 VM_BUG_ON_PAGE(!PageTail(page), page);
530 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
531 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
5eaf1a9e 532 if (compound_tail_refcounted(page->first_page))
44518d2b 533 atomic_inc(&page->_mapcount);
b35a35b5
AA
534}
535
70b50f94
AA
536extern bool __get_page_tail(struct page *page);
537
1da177e4
LT
538static inline void get_page(struct page *page)
539{
70b50f94
AA
540 if (unlikely(PageTail(page)))
541 if (likely(__get_page_tail(page)))
542 return;
91807063
AA
543 /*
544 * Getting a normal page or the head of a compound page
70b50f94 545 * requires to already have an elevated page->_count.
91807063 546 */
309381fe 547 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
548 atomic_inc(&page->_count);
549}
550
b49af68f
CL
551static inline struct page *virt_to_head_page(const void *x)
552{
553 struct page *page = virt_to_page(x);
ccaafd7f
JK
554
555 /*
556 * We don't need to worry about synchronization of tail flag
557 * when we call virt_to_head_page() since it is only called for
558 * already allocated page and this page won't be freed until
559 * this virt_to_head_page() is finished. So use _fast variant.
560 */
561 return compound_head_fast(page);
b49af68f
CL
562}
563
7835e98b
NP
564/*
565 * Setup the page count before being freed into the page allocator for
566 * the first time (boot or memory hotplug)
567 */
568static inline void init_page_count(struct page *page)
569{
570 atomic_set(&page->_count, 1);
571}
572
5f24ce5f
AA
573/*
574 * PageBuddy() indicate that the page is free and in the buddy system
575 * (see mm/page_alloc.c).
ef2b4b95
AA
576 *
577 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
578 * -2 so that an underflow of the page_mapcount() won't be mistaken
579 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
580 * efficiently by most CPU architectures.
5f24ce5f 581 */
ef2b4b95
AA
582#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
583
5f24ce5f
AA
584static inline int PageBuddy(struct page *page)
585{
ef2b4b95 586 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
587}
588
589static inline void __SetPageBuddy(struct page *page)
590{
309381fe 591 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
ef2b4b95 592 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
593}
594
595static inline void __ClearPageBuddy(struct page *page)
596{
309381fe 597 VM_BUG_ON_PAGE(!PageBuddy(page), page);
5f24ce5f
AA
598 atomic_set(&page->_mapcount, -1);
599}
600
d6d86c0a
KK
601#define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
602
603static inline int PageBalloon(struct page *page)
604{
605 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
606}
607
608static inline void __SetPageBalloon(struct page *page)
609{
610 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
611 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
612}
613
614static inline void __ClearPageBalloon(struct page *page)
615{
616 VM_BUG_ON_PAGE(!PageBalloon(page), page);
617 atomic_set(&page->_mapcount, -1);
618}
619
1da177e4 620void put_page(struct page *page);
1d7ea732 621void put_pages_list(struct list_head *pages);
1da177e4 622
8dfcc9ba 623void split_page(struct page *page, unsigned int order);
748446bb 624int split_free_page(struct page *page);
8dfcc9ba 625
33f2ef89
AW
626/*
627 * Compound pages have a destructor function. Provide a
628 * prototype for that function and accessor functions.
629 * These are _only_ valid on the head of a PG_compound page.
630 */
33f2ef89
AW
631
632static inline void set_compound_page_dtor(struct page *page,
633 compound_page_dtor *dtor)
634{
e4b294c2 635 page[1].compound_dtor = dtor;
33f2ef89
AW
636}
637
638static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
639{
e4b294c2 640 return page[1].compound_dtor;
33f2ef89
AW
641}
642
d85f3385
CL
643static inline int compound_order(struct page *page)
644{
6d777953 645 if (!PageHead(page))
d85f3385 646 return 0;
e4b294c2 647 return page[1].compound_order;
d85f3385
CL
648}
649
650static inline void set_compound_order(struct page *page, unsigned long order)
651{
e4b294c2 652 page[1].compound_order = order;
d85f3385
CL
653}
654
3dece370 655#ifdef CONFIG_MMU
14fd403f
AA
656/*
657 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
658 * servicing faults for write access. In the normal case, do always want
659 * pte_mkwrite. But get_user_pages can cause write faults for mappings
660 * that do not have writing enabled, when used by access_process_vm.
661 */
662static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
663{
664 if (likely(vma->vm_flags & VM_WRITE))
665 pte = pte_mkwrite(pte);
666 return pte;
667}
8c6e50b0
KS
668
669void do_set_pte(struct vm_area_struct *vma, unsigned long address,
670 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 671#endif
14fd403f 672
1da177e4
LT
673/*
674 * Multiple processes may "see" the same page. E.g. for untouched
675 * mappings of /dev/null, all processes see the same page full of
676 * zeroes, and text pages of executables and shared libraries have
677 * only one copy in memory, at most, normally.
678 *
679 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
680 * page_count() == 0 means the page is free. page->lru is then used for
681 * freelist management in the buddy allocator.
da6052f7 682 * page_count() > 0 means the page has been allocated.
1da177e4 683 *
da6052f7
NP
684 * Pages are allocated by the slab allocator in order to provide memory
685 * to kmalloc and kmem_cache_alloc. In this case, the management of the
686 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
687 * unless a particular usage is carefully commented. (the responsibility of
688 * freeing the kmalloc memory is the caller's, of course).
1da177e4 689 *
da6052f7
NP
690 * A page may be used by anyone else who does a __get_free_page().
691 * In this case, page_count still tracks the references, and should only
692 * be used through the normal accessor functions. The top bits of page->flags
693 * and page->virtual store page management information, but all other fields
694 * are unused and could be used privately, carefully. The management of this
695 * page is the responsibility of the one who allocated it, and those who have
696 * subsequently been given references to it.
697 *
698 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
699 * managed by the Linux memory manager: I/O, buffers, swapping etc.
700 * The following discussion applies only to them.
701 *
da6052f7
NP
702 * A pagecache page contains an opaque `private' member, which belongs to the
703 * page's address_space. Usually, this is the address of a circular list of
704 * the page's disk buffers. PG_private must be set to tell the VM to call
705 * into the filesystem to release these pages.
1da177e4 706 *
da6052f7
NP
707 * A page may belong to an inode's memory mapping. In this case, page->mapping
708 * is the pointer to the inode, and page->index is the file offset of the page,
709 * in units of PAGE_CACHE_SIZE.
1da177e4 710 *
da6052f7
NP
711 * If pagecache pages are not associated with an inode, they are said to be
712 * anonymous pages. These may become associated with the swapcache, and in that
713 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 714 *
da6052f7
NP
715 * In either case (swapcache or inode backed), the pagecache itself holds one
716 * reference to the page. Setting PG_private should also increment the
717 * refcount. The each user mapping also has a reference to the page.
1da177e4 718 *
da6052f7
NP
719 * The pagecache pages are stored in a per-mapping radix tree, which is
720 * rooted at mapping->page_tree, and indexed by offset.
721 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
722 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 723 *
da6052f7 724 * All pagecache pages may be subject to I/O:
1da177e4
LT
725 * - inode pages may need to be read from disk,
726 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
727 * to be written back to the inode on disk,
728 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
729 * modified may need to be swapped out to swap space and (later) to be read
730 * back into memory.
1da177e4
LT
731 */
732
733/*
734 * The zone field is never updated after free_area_init_core()
735 * sets it, so none of the operations on it need to be atomic.
1da177e4 736 */
348f8b6c 737
90572890 738/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 739#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
740#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
741#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 742#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 743
348f8b6c 744/*
25985edc 745 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
746 * sections we define the shift as 0; that plus a 0 mask ensures
747 * the compiler will optimise away reference to them.
748 */
d41dee36
AW
749#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
750#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
751#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 752#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 753
bce54bbf
WD
754/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
755#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 756#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
757#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
758 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 759#else
89689ae7 760#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
761#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
762 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
763#endif
764
bd8029b6 765#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 766
9223b419
CL
767#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
768#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
769#endif
770
d41dee36
AW
771#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
772#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
773#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 774#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 775#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 776
33dd4e0e 777static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 778{
348f8b6c 779 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 780}
1da177e4 781
9127ab4f
CS
782#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
783#define SECTION_IN_PAGE_FLAGS
784#endif
785
89689ae7 786/*
7a8010cd
VB
787 * The identification function is mainly used by the buddy allocator for
788 * determining if two pages could be buddies. We are not really identifying
789 * the zone since we could be using the section number id if we do not have
790 * node id available in page flags.
791 * We only guarantee that it will return the same value for two combinable
792 * pages in a zone.
89689ae7 793 */
cb2b95e1
AW
794static inline int page_zone_id(struct page *page)
795{
89689ae7 796 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
797}
798
25ba77c1 799static inline int zone_to_nid(struct zone *zone)
89fa3024 800{
d5f541ed
CL
801#ifdef CONFIG_NUMA
802 return zone->node;
803#else
804 return 0;
805#endif
89fa3024
CL
806}
807
89689ae7 808#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 809extern int page_to_nid(const struct page *page);
89689ae7 810#else
33dd4e0e 811static inline int page_to_nid(const struct page *page)
d41dee36 812{
89689ae7 813 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 814}
89689ae7
CL
815#endif
816
57e0a030 817#ifdef CONFIG_NUMA_BALANCING
90572890 818static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 819{
90572890 820 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
821}
822
90572890 823static inline int cpupid_to_pid(int cpupid)
57e0a030 824{
90572890 825 return cpupid & LAST__PID_MASK;
57e0a030 826}
b795854b 827
90572890 828static inline int cpupid_to_cpu(int cpupid)
b795854b 829{
90572890 830 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
831}
832
90572890 833static inline int cpupid_to_nid(int cpupid)
b795854b 834{
90572890 835 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
836}
837
90572890 838static inline bool cpupid_pid_unset(int cpupid)
57e0a030 839{
90572890 840 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
841}
842
90572890 843static inline bool cpupid_cpu_unset(int cpupid)
b795854b 844{
90572890 845 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
846}
847
8c8a743c
PZ
848static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
849{
850 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
851}
852
853#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
854#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
855static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 856{
1ae71d03 857 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 858}
90572890
PZ
859
860static inline int page_cpupid_last(struct page *page)
861{
862 return page->_last_cpupid;
863}
864static inline void page_cpupid_reset_last(struct page *page)
b795854b 865{
1ae71d03 866 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
867}
868#else
90572890 869static inline int page_cpupid_last(struct page *page)
75980e97 870{
90572890 871 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
872}
873
90572890 874extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 875
90572890 876static inline void page_cpupid_reset_last(struct page *page)
75980e97 877{
90572890 878 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 879
90572890
PZ
880 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
881 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 882}
90572890
PZ
883#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
884#else /* !CONFIG_NUMA_BALANCING */
885static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 886{
90572890 887 return page_to_nid(page); /* XXX */
57e0a030
MG
888}
889
90572890 890static inline int page_cpupid_last(struct page *page)
57e0a030 891{
90572890 892 return page_to_nid(page); /* XXX */
57e0a030
MG
893}
894
90572890 895static inline int cpupid_to_nid(int cpupid)
b795854b
MG
896{
897 return -1;
898}
899
90572890 900static inline int cpupid_to_pid(int cpupid)
b795854b
MG
901{
902 return -1;
903}
904
90572890 905static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
906{
907 return -1;
908}
909
90572890
PZ
910static inline int cpu_pid_to_cpupid(int nid, int pid)
911{
912 return -1;
913}
914
915static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
916{
917 return 1;
918}
919
90572890 920static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
921{
922}
8c8a743c
PZ
923
924static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
925{
926 return false;
927}
90572890 928#endif /* CONFIG_NUMA_BALANCING */
57e0a030 929
33dd4e0e 930static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
931{
932 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
933}
934
9127ab4f 935#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
936static inline void set_page_section(struct page *page, unsigned long section)
937{
938 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
939 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
940}
941
aa462abe 942static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
943{
944 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
945}
308c05e3 946#endif
d41dee36 947
2f1b6248 948static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
949{
950 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
951 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
952}
2f1b6248 953
348f8b6c
DH
954static inline void set_page_node(struct page *page, unsigned long node)
955{
956 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
957 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 958}
89689ae7 959
2f1b6248 960static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 961 unsigned long node, unsigned long pfn)
1da177e4 962{
348f8b6c
DH
963 set_page_zone(page, zone);
964 set_page_node(page, node);
9127ab4f 965#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 966 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 967#endif
1da177e4
LT
968}
969
f6ac2354
CL
970/*
971 * Some inline functions in vmstat.h depend on page_zone()
972 */
973#include <linux/vmstat.h>
974
33dd4e0e 975static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 976{
aa462abe 977 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
978}
979
980#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
981#define HASHED_PAGE_VIRTUAL
982#endif
983
984#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
985static inline void *page_address(const struct page *page)
986{
987 return page->virtual;
988}
989static inline void set_page_address(struct page *page, void *address)
990{
991 page->virtual = address;
992}
1da177e4
LT
993#define page_address_init() do { } while(0)
994#endif
995
996#if defined(HASHED_PAGE_VIRTUAL)
f9918794 997void *page_address(const struct page *page);
1da177e4
LT
998void set_page_address(struct page *page, void *virtual);
999void page_address_init(void);
1000#endif
1001
1002#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1003#define page_address(page) lowmem_page_address(page)
1004#define set_page_address(page, address) do { } while(0)
1005#define page_address_init() do { } while(0)
1006#endif
1007
1008/*
1009 * On an anonymous page mapped into a user virtual memory area,
1010 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
1011 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
1012 *
1013 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
1014 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
1015 * and then page->mapping points, not to an anon_vma, but to a private
1016 * structure which KSM associates with that merged page. See ksm.h.
1017 *
1018 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
1019 *
1020 * Please note that, confusingly, "page_mapping" refers to the inode
1021 * address_space which maps the page from disk; whereas "page_mapped"
1022 * refers to user virtual address space into which the page is mapped.
1023 */
1024#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
1025#define PAGE_MAPPING_KSM 2
1026#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4 1027
9800339b 1028extern struct address_space *page_mapping(struct page *page);
1da177e4 1029
3ca7b3c5
HD
1030/* Neutral page->mapping pointer to address_space or anon_vma or other */
1031static inline void *page_rmapping(struct page *page)
1032{
1033 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
1034}
1035
f981c595
MG
1036extern struct address_space *__page_file_mapping(struct page *);
1037
1038static inline
1039struct address_space *page_file_mapping(struct page *page)
1040{
1041 if (unlikely(PageSwapCache(page)))
1042 return __page_file_mapping(page);
1043
1044 return page->mapping;
1045}
1046
1da177e4
LT
1047static inline int PageAnon(struct page *page)
1048{
1049 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
1050}
1051
1052/*
1053 * Return the pagecache index of the passed page. Regular pagecache pages
1054 * use ->index whereas swapcache pages use ->private
1055 */
1056static inline pgoff_t page_index(struct page *page)
1057{
1058 if (unlikely(PageSwapCache(page)))
4c21e2f2 1059 return page_private(page);
1da177e4
LT
1060 return page->index;
1061}
1062
f981c595
MG
1063extern pgoff_t __page_file_index(struct page *page);
1064
1065/*
1066 * Return the file index of the page. Regular pagecache pages use ->index
1067 * whereas swapcache pages use swp_offset(->private)
1068 */
1069static inline pgoff_t page_file_index(struct page *page)
1070{
1071 if (unlikely(PageSwapCache(page)))
1072 return __page_file_index(page);
1073
1074 return page->index;
1075}
1076
1da177e4
LT
1077/*
1078 * Return true if this page is mapped into pagetables.
1079 */
1080static inline int page_mapped(struct page *page)
1081{
1082 return atomic_read(&(page)->_mapcount) >= 0;
1083}
1084
1da177e4
LT
1085/*
1086 * Different kinds of faults, as returned by handle_mm_fault().
1087 * Used to decide whether a process gets delivered SIGBUS or
1088 * just gets major/minor fault counters bumped up.
1089 */
d0217ac0 1090
83c54070 1091#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1092
83c54070
NP
1093#define VM_FAULT_OOM 0x0001
1094#define VM_FAULT_SIGBUS 0x0002
1095#define VM_FAULT_MAJOR 0x0004
1096#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1097#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1098#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1099#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1100
83c54070
NP
1101#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1102#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1103#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1104#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1105
aa50d3a7
AK
1106#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1107
33692f27
LT
1108#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1109 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1110 VM_FAULT_FALLBACK)
aa50d3a7
AK
1111
1112/* Encode hstate index for a hwpoisoned large page */
1113#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1114#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1115
1c0fe6e3
NP
1116/*
1117 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1118 */
1119extern void pagefault_out_of_memory(void);
1120
1da177e4
LT
1121#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1122
ddd588b5 1123/*
7bf02ea2 1124 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1125 * various contexts.
1126 */
4b59e6c4 1127#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1128
7bf02ea2
DR
1129extern void show_free_areas(unsigned int flags);
1130extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1131
1da177e4 1132int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1133#ifdef CONFIG_SHMEM
1134bool shmem_mapping(struct address_space *mapping);
1135#else
1136static inline bool shmem_mapping(struct address_space *mapping)
1137{
1138 return false;
1139}
1140#endif
1da177e4 1141
e8edc6e0 1142extern int can_do_mlock(void);
1da177e4
LT
1143extern int user_shm_lock(size_t, struct user_struct *);
1144extern void user_shm_unlock(size_t, struct user_struct *);
1145
1146/*
1147 * Parameter block passed down to zap_pte_range in exceptional cases.
1148 */
1149struct zap_details {
1da177e4
LT
1150 struct address_space *check_mapping; /* Check page->mapping if set */
1151 pgoff_t first_index; /* Lowest page->index to unmap */
1152 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1153};
1154
7e675137
NP
1155struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1156 pte_t pte);
1157
c627f9cc
JS
1158int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1159 unsigned long size);
14f5ff5d 1160void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1161 unsigned long size, struct zap_details *);
4f74d2c8
LT
1162void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1163 unsigned long start, unsigned long end);
e6473092
MM
1164
1165/**
1166 * mm_walk - callbacks for walk_page_range
1167 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1168 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1169 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1170 * this handler is required to be able to handle
1171 * pmd_trans_huge() pmds. They may simply choose to
1172 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1173 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1174 * @pte_hole: if set, called for each hole at all levels
5dc37642 1175 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
1176 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1177 * is used.
e6473092
MM
1178 *
1179 * (see walk_page_range for more details)
1180 */
1181struct mm_walk {
0f157a5b
AM
1182 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1183 unsigned long next, struct mm_walk *walk);
1184 int (*pud_entry)(pud_t *pud, unsigned long addr,
1185 unsigned long next, struct mm_walk *walk);
1186 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1187 unsigned long next, struct mm_walk *walk);
1188 int (*pte_entry)(pte_t *pte, unsigned long addr,
1189 unsigned long next, struct mm_walk *walk);
1190 int (*pte_hole)(unsigned long addr, unsigned long next,
1191 struct mm_walk *walk);
1192 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1193 unsigned long addr, unsigned long next,
1194 struct mm_walk *walk);
2165009b
DH
1195 struct mm_struct *mm;
1196 void *private;
e6473092
MM
1197};
1198
2165009b
DH
1199int walk_page_range(unsigned long addr, unsigned long end,
1200 struct mm_walk *walk);
42b77728 1201void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1202 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1203int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1204 struct vm_area_struct *vma);
1da177e4
LT
1205void unmap_mapping_range(struct address_space *mapping,
1206 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1207int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1208 unsigned long *pfn);
d87fe660 1209int follow_phys(struct vm_area_struct *vma, unsigned long address,
1210 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1211int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1212 void *buf, int len, int write);
1da177e4
LT
1213
1214static inline void unmap_shared_mapping_range(struct address_space *mapping,
1215 loff_t const holebegin, loff_t const holelen)
1216{
1217 unmap_mapping_range(mapping, holebegin, holelen, 0);
1218}
1219
7caef267 1220extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1221extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1222void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1223void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1224int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1225int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1226int invalidate_inode_page(struct page *page);
1227
7ee1dd3f 1228#ifdef CONFIG_MMU
83c54070 1229extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1230 unsigned long address, unsigned int flags);
5c723ba5
PZ
1231extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1232 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1233#else
1234static inline int handle_mm_fault(struct mm_struct *mm,
1235 struct vm_area_struct *vma, unsigned long address,
d06063cc 1236 unsigned int flags)
7ee1dd3f
DH
1237{
1238 /* should never happen if there's no MMU */
1239 BUG();
1240 return VM_FAULT_SIGBUS;
1241}
5c723ba5
PZ
1242static inline int fixup_user_fault(struct task_struct *tsk,
1243 struct mm_struct *mm, unsigned long address,
1244 unsigned int fault_flags)
1245{
1246 /* should never happen if there's no MMU */
1247 BUG();
1248 return -EFAULT;
1249}
7ee1dd3f 1250#endif
f33ea7f4 1251
1da177e4 1252extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1253extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1254 void *buf, int len, int write);
1da177e4 1255
28a35716
ML
1256long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1257 unsigned long start, unsigned long nr_pages,
1258 unsigned int foll_flags, struct page **pages,
1259 struct vm_area_struct **vmas, int *nonblocking);
1260long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1261 unsigned long start, unsigned long nr_pages,
1262 int write, int force, struct page **pages,
1263 struct vm_area_struct **vmas);
d2bf6be8
NP
1264int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1265 struct page **pages);
18022c5d
MG
1266struct kvec;
1267int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1268 struct page **pages);
1269int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1270struct page *get_dump_page(unsigned long addr);
1da177e4 1271
cf9a2ae8 1272extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1273extern void do_invalidatepage(struct page *page, unsigned int offset,
1274 unsigned int length);
cf9a2ae8 1275
1da177e4 1276int __set_page_dirty_nobuffers(struct page *page);
76719325 1277int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1278int redirty_page_for_writepage(struct writeback_control *wbc,
1279 struct page *page);
e3a7cca1 1280void account_page_dirtied(struct page *page, struct address_space *mapping);
b3c97528 1281int set_page_dirty(struct page *page);
1da177e4
LT
1282int set_page_dirty_lock(struct page *page);
1283int clear_page_dirty_for_io(struct page *page);
a9090253 1284int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1285
39aa3cb3 1286/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1287static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1288{
1289 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1290}
1291
a09a79f6
MP
1292static inline int stack_guard_page_start(struct vm_area_struct *vma,
1293 unsigned long addr)
1294{
1295 return (vma->vm_flags & VM_GROWSDOWN) &&
1296 (vma->vm_start == addr) &&
1297 !vma_growsdown(vma->vm_prev, addr);
1298}
1299
1300/* Is the vma a continuation of the stack vma below it? */
1301static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1302{
1303 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1304}
1305
1306static inline int stack_guard_page_end(struct vm_area_struct *vma,
1307 unsigned long addr)
1308{
1309 return (vma->vm_flags & VM_GROWSUP) &&
1310 (vma->vm_end == addr) &&
1311 !vma_growsup(vma->vm_next, addr);
1312}
1313
58cb6548
ON
1314extern struct task_struct *task_of_stack(struct task_struct *task,
1315 struct vm_area_struct *vma, bool in_group);
b7643757 1316
b6a2fea3
OW
1317extern unsigned long move_page_tables(struct vm_area_struct *vma,
1318 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1319 unsigned long new_addr, unsigned long len,
1320 bool need_rmap_locks);
7da4d641
PZ
1321extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1322 unsigned long end, pgprot_t newprot,
4b10e7d5 1323 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1324extern int mprotect_fixup(struct vm_area_struct *vma,
1325 struct vm_area_struct **pprev, unsigned long start,
1326 unsigned long end, unsigned long newflags);
1da177e4 1327
465a454f
PZ
1328/*
1329 * doesn't attempt to fault and will return short.
1330 */
1331int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1332 struct page **pages);
d559db08
KH
1333/*
1334 * per-process(per-mm_struct) statistics.
1335 */
d559db08
KH
1336static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1337{
69c97823
KK
1338 long val = atomic_long_read(&mm->rss_stat.count[member]);
1339
1340#ifdef SPLIT_RSS_COUNTING
1341 /*
1342 * counter is updated in asynchronous manner and may go to minus.
1343 * But it's never be expected number for users.
1344 */
1345 if (val < 0)
1346 val = 0;
172703b0 1347#endif
69c97823
KK
1348 return (unsigned long)val;
1349}
d559db08
KH
1350
1351static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1352{
172703b0 1353 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1354}
1355
1356static inline void inc_mm_counter(struct mm_struct *mm, int member)
1357{
172703b0 1358 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1359}
1360
1361static inline void dec_mm_counter(struct mm_struct *mm, int member)
1362{
172703b0 1363 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1364}
1365
d559db08
KH
1366static inline unsigned long get_mm_rss(struct mm_struct *mm)
1367{
1368 return get_mm_counter(mm, MM_FILEPAGES) +
1369 get_mm_counter(mm, MM_ANONPAGES);
1370}
1371
1372static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1373{
1374 return max(mm->hiwater_rss, get_mm_rss(mm));
1375}
1376
1377static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1378{
1379 return max(mm->hiwater_vm, mm->total_vm);
1380}
1381
1382static inline void update_hiwater_rss(struct mm_struct *mm)
1383{
1384 unsigned long _rss = get_mm_rss(mm);
1385
1386 if ((mm)->hiwater_rss < _rss)
1387 (mm)->hiwater_rss = _rss;
1388}
1389
1390static inline void update_hiwater_vm(struct mm_struct *mm)
1391{
1392 if (mm->hiwater_vm < mm->total_vm)
1393 mm->hiwater_vm = mm->total_vm;
1394}
1395
1396static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1397 struct mm_struct *mm)
1398{
1399 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1400
1401 if (*maxrss < hiwater_rss)
1402 *maxrss = hiwater_rss;
1403}
1404
53bddb4e 1405#if defined(SPLIT_RSS_COUNTING)
05af2e10 1406void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1407#else
05af2e10 1408static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1409{
1410}
1411#endif
465a454f 1412
4e950f6f 1413int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1414
25ca1d6c
NK
1415extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1416 spinlock_t **ptl);
1417static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1418 spinlock_t **ptl)
1419{
1420 pte_t *ptep;
1421 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1422 return ptep;
1423}
c9cfcddf 1424
5f22df00
NP
1425#ifdef __PAGETABLE_PUD_FOLDED
1426static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1427 unsigned long address)
1428{
1429 return 0;
1430}
1431#else
1bb3630e 1432int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1433#endif
1434
1435#ifdef __PAGETABLE_PMD_FOLDED
1436static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1437 unsigned long address)
1438{
1439 return 0;
1440}
1441#else
1bb3630e 1442int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1443#endif
1444
8ac1f832
AA
1445int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1446 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1447int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1448
1da177e4
LT
1449/*
1450 * The following ifdef needed to get the 4level-fixup.h header to work.
1451 * Remove it when 4level-fixup.h has been removed.
1452 */
1bb3630e 1453#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1454static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1455{
1bb3630e
HD
1456 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1457 NULL: pud_offset(pgd, address);
1da177e4
LT
1458}
1459
1460static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1461{
1bb3630e
HD
1462 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1463 NULL: pmd_offset(pud, address);
1da177e4 1464}
1bb3630e
HD
1465#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1466
57c1ffce 1467#if USE_SPLIT_PTE_PTLOCKS
597d795a 1468#if ALLOC_SPLIT_PTLOCKS
b35f1819 1469void __init ptlock_cache_init(void);
539edb58
PZ
1470extern bool ptlock_alloc(struct page *page);
1471extern void ptlock_free(struct page *page);
1472
1473static inline spinlock_t *ptlock_ptr(struct page *page)
1474{
1475 return page->ptl;
1476}
597d795a 1477#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1478static inline void ptlock_cache_init(void)
1479{
1480}
1481
49076ec2
KS
1482static inline bool ptlock_alloc(struct page *page)
1483{
49076ec2
KS
1484 return true;
1485}
539edb58 1486
49076ec2
KS
1487static inline void ptlock_free(struct page *page)
1488{
49076ec2
KS
1489}
1490
1491static inline spinlock_t *ptlock_ptr(struct page *page)
1492{
539edb58 1493 return &page->ptl;
49076ec2 1494}
597d795a 1495#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1496
1497static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1498{
1499 return ptlock_ptr(pmd_page(*pmd));
1500}
1501
1502static inline bool ptlock_init(struct page *page)
1503{
1504 /*
1505 * prep_new_page() initialize page->private (and therefore page->ptl)
1506 * with 0. Make sure nobody took it in use in between.
1507 *
1508 * It can happen if arch try to use slab for page table allocation:
1509 * slab code uses page->slab_cache and page->first_page (for tail
1510 * pages), which share storage with page->ptl.
1511 */
309381fe 1512 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1513 if (!ptlock_alloc(page))
1514 return false;
1515 spin_lock_init(ptlock_ptr(page));
1516 return true;
1517}
1518
1519/* Reset page->mapping so free_pages_check won't complain. */
1520static inline void pte_lock_deinit(struct page *page)
1521{
1522 page->mapping = NULL;
1523 ptlock_free(page);
1524}
1525
57c1ffce 1526#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1527/*
1528 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1529 */
49076ec2
KS
1530static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1531{
1532 return &mm->page_table_lock;
1533}
b35f1819 1534static inline void ptlock_cache_init(void) {}
49076ec2
KS
1535static inline bool ptlock_init(struct page *page) { return true; }
1536static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1537#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1538
b35f1819
KS
1539static inline void pgtable_init(void)
1540{
1541 ptlock_cache_init();
1542 pgtable_cache_init();
1543}
1544
390f44e2 1545static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1546{
2f569afd 1547 inc_zone_page_state(page, NR_PAGETABLE);
49076ec2 1548 return ptlock_init(page);
2f569afd
MS
1549}
1550
1551static inline void pgtable_page_dtor(struct page *page)
1552{
1553 pte_lock_deinit(page);
1554 dec_zone_page_state(page, NR_PAGETABLE);
1555}
1556
c74df32c
HD
1557#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1558({ \
4c21e2f2 1559 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1560 pte_t *__pte = pte_offset_map(pmd, address); \
1561 *(ptlp) = __ptl; \
1562 spin_lock(__ptl); \
1563 __pte; \
1564})
1565
1566#define pte_unmap_unlock(pte, ptl) do { \
1567 spin_unlock(ptl); \
1568 pte_unmap(pte); \
1569} while (0)
1570
8ac1f832
AA
1571#define pte_alloc_map(mm, vma, pmd, address) \
1572 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1573 pmd, address))? \
1574 NULL: pte_offset_map(pmd, address))
1bb3630e 1575
c74df32c 1576#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1577 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1578 pmd, address))? \
c74df32c
HD
1579 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1580
1bb3630e 1581#define pte_alloc_kernel(pmd, address) \
8ac1f832 1582 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1583 NULL: pte_offset_kernel(pmd, address))
1da177e4 1584
e009bb30
KS
1585#if USE_SPLIT_PMD_PTLOCKS
1586
634391ac
MS
1587static struct page *pmd_to_page(pmd_t *pmd)
1588{
1589 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1590 return virt_to_page((void *)((unsigned long) pmd & mask));
1591}
1592
e009bb30
KS
1593static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1594{
634391ac 1595 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1596}
1597
1598static inline bool pgtable_pmd_page_ctor(struct page *page)
1599{
e009bb30
KS
1600#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1601 page->pmd_huge_pte = NULL;
1602#endif
49076ec2 1603 return ptlock_init(page);
e009bb30
KS
1604}
1605
1606static inline void pgtable_pmd_page_dtor(struct page *page)
1607{
1608#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1609 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1610#endif
49076ec2 1611 ptlock_free(page);
e009bb30
KS
1612}
1613
634391ac 1614#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1615
1616#else
1617
9a86cb7b
KS
1618static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1619{
1620 return &mm->page_table_lock;
1621}
1622
e009bb30
KS
1623static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1624static inline void pgtable_pmd_page_dtor(struct page *page) {}
1625
c389a250 1626#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1627
e009bb30
KS
1628#endif
1629
9a86cb7b
KS
1630static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1631{
1632 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1633 spin_lock(ptl);
1634 return ptl;
1635}
1636
1da177e4 1637extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1638extern void free_area_init_node(int nid, unsigned long * zones_size,
1639 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1640extern void free_initmem(void);
1641
69afade7
JL
1642/*
1643 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1644 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1645 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1646 * Return pages freed into the buddy system.
1647 */
11199692 1648extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1649 int poison, char *s);
c3d5f5f0 1650
cfa11e08
JL
1651#ifdef CONFIG_HIGHMEM
1652/*
1653 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1654 * and totalram_pages.
1655 */
1656extern void free_highmem_page(struct page *page);
1657#endif
69afade7 1658
c3d5f5f0 1659extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1660extern void mem_init_print_info(const char *str);
69afade7
JL
1661
1662/* Free the reserved page into the buddy system, so it gets managed. */
1663static inline void __free_reserved_page(struct page *page)
1664{
1665 ClearPageReserved(page);
1666 init_page_count(page);
1667 __free_page(page);
1668}
1669
1670static inline void free_reserved_page(struct page *page)
1671{
1672 __free_reserved_page(page);
1673 adjust_managed_page_count(page, 1);
1674}
1675
1676static inline void mark_page_reserved(struct page *page)
1677{
1678 SetPageReserved(page);
1679 adjust_managed_page_count(page, -1);
1680}
1681
1682/*
1683 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1684 * The freed pages will be poisoned with pattern "poison" if it's within
1685 * range [0, UCHAR_MAX].
1686 * Return pages freed into the buddy system.
69afade7
JL
1687 */
1688static inline unsigned long free_initmem_default(int poison)
1689{
1690 extern char __init_begin[], __init_end[];
1691
11199692 1692 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1693 poison, "unused kernel");
1694}
1695
7ee3d4e8
JL
1696static inline unsigned long get_num_physpages(void)
1697{
1698 int nid;
1699 unsigned long phys_pages = 0;
1700
1701 for_each_online_node(nid)
1702 phys_pages += node_present_pages(nid);
1703
1704 return phys_pages;
1705}
1706
0ee332c1 1707#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1708/*
0ee332c1 1709 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1710 * zones, allocate the backing mem_map and account for memory holes in a more
1711 * architecture independent manner. This is a substitute for creating the
1712 * zone_sizes[] and zholes_size[] arrays and passing them to
1713 * free_area_init_node()
1714 *
1715 * An architecture is expected to register range of page frames backed by
0ee332c1 1716 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1717 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1718 * usage, an architecture is expected to do something like
1719 *
1720 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1721 * max_highmem_pfn};
1722 * for_each_valid_physical_page_range()
0ee332c1 1723 * memblock_add_node(base, size, nid)
c713216d
MG
1724 * free_area_init_nodes(max_zone_pfns);
1725 *
0ee332c1
TH
1726 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1727 * registered physical page range. Similarly
1728 * sparse_memory_present_with_active_regions() calls memory_present() for
1729 * each range when SPARSEMEM is enabled.
c713216d
MG
1730 *
1731 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1732 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1733 */
1734extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1735unsigned long node_map_pfn_alignment(void);
32996250
YL
1736unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1737 unsigned long end_pfn);
c713216d
MG
1738extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1739 unsigned long end_pfn);
1740extern void get_pfn_range_for_nid(unsigned int nid,
1741 unsigned long *start_pfn, unsigned long *end_pfn);
1742extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1743extern void free_bootmem_with_active_regions(int nid,
1744 unsigned long max_low_pfn);
1745extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1746
0ee332c1 1747#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1748
0ee332c1 1749#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1750 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1751static inline int __early_pfn_to_nid(unsigned long pfn)
1752{
1753 return 0;
1754}
1755#else
1756/* please see mm/page_alloc.c */
1757extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1758/* there is a per-arch backend function. */
1759extern int __meminit __early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1760#endif
1761
0e0b864e 1762extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1763extern void memmap_init_zone(unsigned long, int, unsigned long,
1764 unsigned long, enum memmap_context);
bc75d33f 1765extern void setup_per_zone_wmarks(void);
1b79acc9 1766extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1767extern void mem_init(void);
8feae131 1768extern void __init mmap_init(void);
b2b755b5 1769extern void show_mem(unsigned int flags);
1da177e4
LT
1770extern void si_meminfo(struct sysinfo * val);
1771extern void si_meminfo_node(struct sysinfo *val, int nid);
1772
3ee9a4f0
JP
1773extern __printf(3, 4)
1774void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1775
e7c8d5c9 1776extern void setup_per_cpu_pageset(void);
e7c8d5c9 1777
112067f0 1778extern void zone_pcp_update(struct zone *zone);
340175b7 1779extern void zone_pcp_reset(struct zone *zone);
112067f0 1780
75f7ad8e
PS
1781/* page_alloc.c */
1782extern int min_free_kbytes;
1783
8feae131 1784/* nommu.c */
33e5d769 1785extern atomic_long_t mmap_pages_allocated;
7e660872 1786extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1787
6b2dbba8 1788/* interval_tree.c */
6b2dbba8
ML
1789void vma_interval_tree_insert(struct vm_area_struct *node,
1790 struct rb_root *root);
9826a516
ML
1791void vma_interval_tree_insert_after(struct vm_area_struct *node,
1792 struct vm_area_struct *prev,
1793 struct rb_root *root);
6b2dbba8
ML
1794void vma_interval_tree_remove(struct vm_area_struct *node,
1795 struct rb_root *root);
1796struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1797 unsigned long start, unsigned long last);
1798struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1799 unsigned long start, unsigned long last);
1800
1801#define vma_interval_tree_foreach(vma, root, start, last) \
1802 for (vma = vma_interval_tree_iter_first(root, start, last); \
1803 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1804
bf181b9f
ML
1805void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1806 struct rb_root *root);
1807void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1808 struct rb_root *root);
1809struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1810 struct rb_root *root, unsigned long start, unsigned long last);
1811struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1812 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1813#ifdef CONFIG_DEBUG_VM_RB
1814void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1815#endif
bf181b9f
ML
1816
1817#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1818 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1819 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1820
1da177e4 1821/* mmap.c */
34b4e4aa 1822extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1823extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1824 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1825extern struct vm_area_struct *vma_merge(struct mm_struct *,
1826 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1827 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1828 struct mempolicy *);
1829extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1830extern int split_vma(struct mm_struct *,
1831 struct vm_area_struct *, unsigned long addr, int new_below);
1832extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1833extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1834 struct rb_node **, struct rb_node *);
a8fb5618 1835extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1836extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1837 unsigned long addr, unsigned long len, pgoff_t pgoff,
1838 bool *need_rmap_locks);
1da177e4 1839extern void exit_mmap(struct mm_struct *);
925d1c40 1840
9c599024
CG
1841static inline int check_data_rlimit(unsigned long rlim,
1842 unsigned long new,
1843 unsigned long start,
1844 unsigned long end_data,
1845 unsigned long start_data)
1846{
1847 if (rlim < RLIM_INFINITY) {
1848 if (((new - start) + (end_data - start_data)) > rlim)
1849 return -ENOSPC;
1850 }
1851
1852 return 0;
1853}
1854
7906d00c
AA
1855extern int mm_take_all_locks(struct mm_struct *mm);
1856extern void mm_drop_all_locks(struct mm_struct *mm);
1857
38646013
JS
1858extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1859extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1860
119f657c 1861extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
3935ed6a
SS
1862extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1863 unsigned long addr, unsigned long len,
a62c34bd
AL
1864 unsigned long flags,
1865 const struct vm_special_mapping *spec);
1866/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1867extern int install_special_mapping(struct mm_struct *mm,
1868 unsigned long addr, unsigned long len,
1869 unsigned long flags, struct page **pages);
1da177e4
LT
1870
1871extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1872
0165ab44 1873extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1874 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1875extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1876 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1877 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1878extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1879
bebeb3d6
ML
1880#ifdef CONFIG_MMU
1881extern int __mm_populate(unsigned long addr, unsigned long len,
1882 int ignore_errors);
1883static inline void mm_populate(unsigned long addr, unsigned long len)
1884{
1885 /* Ignore errors */
1886 (void) __mm_populate(addr, len, 1);
1887}
1888#else
1889static inline void mm_populate(unsigned long addr, unsigned long len) {}
1890#endif
1891
e4eb1ff6
LT
1892/* These take the mm semaphore themselves */
1893extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1894extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1895extern unsigned long vm_mmap(struct file *, unsigned long,
1896 unsigned long, unsigned long,
1897 unsigned long, unsigned long);
1da177e4 1898
db4fbfb9
ML
1899struct vm_unmapped_area_info {
1900#define VM_UNMAPPED_AREA_TOPDOWN 1
1901 unsigned long flags;
1902 unsigned long length;
1903 unsigned long low_limit;
1904 unsigned long high_limit;
1905 unsigned long align_mask;
1906 unsigned long align_offset;
1907};
1908
1909extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1910extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1911
1912/*
1913 * Search for an unmapped address range.
1914 *
1915 * We are looking for a range that:
1916 * - does not intersect with any VMA;
1917 * - is contained within the [low_limit, high_limit) interval;
1918 * - is at least the desired size.
1919 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1920 */
1921static inline unsigned long
1922vm_unmapped_area(struct vm_unmapped_area_info *info)
1923{
1924 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1925 return unmapped_area(info);
1926 else
1927 return unmapped_area_topdown(info);
1928}
1929
85821aab 1930/* truncate.c */
1da177e4 1931extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1932extern void truncate_inode_pages_range(struct address_space *,
1933 loff_t lstart, loff_t lend);
91b0abe3 1934extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
1935
1936/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1937extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 1938extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 1939extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1940
1941/* mm/page-writeback.c */
1942int write_one_page(struct page *page, int wait);
1cf6e7d8 1943void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1944
1945/* readahead.c */
1946#define VM_MAX_READAHEAD 128 /* kbytes */
1947#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1948
1da177e4 1949int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1950 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1951
1952void page_cache_sync_readahead(struct address_space *mapping,
1953 struct file_ra_state *ra,
1954 struct file *filp,
1955 pgoff_t offset,
1956 unsigned long size);
1957
1958void page_cache_async_readahead(struct address_space *mapping,
1959 struct file_ra_state *ra,
1960 struct file *filp,
1961 struct page *pg,
1962 pgoff_t offset,
1963 unsigned long size);
1964
1da177e4
LT
1965unsigned long max_sane_readahead(unsigned long nr);
1966
d05f3169 1967/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1968extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1969
1970/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1971extern int expand_downwards(struct vm_area_struct *vma,
1972 unsigned long address);
8ca3eb08 1973#if VM_GROWSUP
46dea3d0 1974extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 1975#else
fee7e49d 1976 #define expand_upwards(vma, address) (0)
9ab88515 1977#endif
1da177e4
LT
1978
1979/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1980extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1981extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1982 struct vm_area_struct **pprev);
1983
1984/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1985 NULL if none. Assume start_addr < end_addr. */
1986static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1987{
1988 struct vm_area_struct * vma = find_vma(mm,start_addr);
1989
1990 if (vma && end_addr <= vma->vm_start)
1991 vma = NULL;
1992 return vma;
1993}
1994
1995static inline unsigned long vma_pages(struct vm_area_struct *vma)
1996{
1997 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1998}
1999
640708a2
PE
2000/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2001static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2002 unsigned long vm_start, unsigned long vm_end)
2003{
2004 struct vm_area_struct *vma = find_vma(mm, vm_start);
2005
2006 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2007 vma = NULL;
2008
2009 return vma;
2010}
2011
bad849b3 2012#ifdef CONFIG_MMU
804af2cf 2013pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2014void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2015#else
2016static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2017{
2018 return __pgprot(0);
2019}
64e45507
PF
2020static inline void vma_set_page_prot(struct vm_area_struct *vma)
2021{
2022 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2023}
bad849b3
DH
2024#endif
2025
5877231f 2026#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2027unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2028 unsigned long start, unsigned long end);
2029#endif
2030
deceb6cd 2031struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2032int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2033 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2034int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2035int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2036 unsigned long pfn);
423bad60
NP
2037int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2038 unsigned long pfn);
b4cbb197
LT
2039int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2040
deceb6cd 2041
240aadee
ML
2042struct page *follow_page_mask(struct vm_area_struct *vma,
2043 unsigned long address, unsigned int foll_flags,
2044 unsigned int *page_mask);
2045
2046static inline struct page *follow_page(struct vm_area_struct *vma,
2047 unsigned long address, unsigned int foll_flags)
2048{
2049 unsigned int unused_page_mask;
2050 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2051}
2052
deceb6cd
HD
2053#define FOLL_WRITE 0x01 /* check pte is writable */
2054#define FOLL_TOUCH 0x02 /* mark page accessed */
2055#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2056#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2057#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2058#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2059 * and return without waiting upon it */
110d74a9 2060#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 2061#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2062#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2063#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2064#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2065#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
1da177e4 2066
2f569afd 2067typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2068 void *data);
2069extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2070 unsigned long size, pte_fn_t fn, void *data);
2071
1da177e4 2072#ifdef CONFIG_PROC_FS
ab50b8ed 2073void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 2074#else
ab50b8ed 2075static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
2076 unsigned long flags, struct file *file, long pages)
2077{
44de9d0c 2078 mm->total_vm += pages;
1da177e4
LT
2079}
2080#endif /* CONFIG_PROC_FS */
2081
12d6f21e 2082#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2083extern bool _debug_pagealloc_enabled;
2084extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2085
2086static inline bool debug_pagealloc_enabled(void)
2087{
2088 return _debug_pagealloc_enabled;
2089}
2090
2091static inline void
2092kernel_map_pages(struct page *page, int numpages, int enable)
2093{
2094 if (!debug_pagealloc_enabled())
2095 return;
2096
2097 __kernel_map_pages(page, numpages, enable);
2098}
8a235efa
RW
2099#ifdef CONFIG_HIBERNATION
2100extern bool kernel_page_present(struct page *page);
2101#endif /* CONFIG_HIBERNATION */
12d6f21e 2102#else
1da177e4 2103static inline void
9858db50 2104kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2105#ifdef CONFIG_HIBERNATION
2106static inline bool kernel_page_present(struct page *page) { return true; }
2107#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2108#endif
2109
a6c19dfe 2110#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2111extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2112extern int in_gate_area_no_mm(unsigned long addr);
2113extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2114#else
a6c19dfe
AL
2115static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2116{
2117 return NULL;
2118}
2119static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2120static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2121{
2122 return 0;
2123}
1da177e4
LT
2124#endif /* __HAVE_ARCH_GATE_AREA */
2125
146732ce
JT
2126#ifdef CONFIG_SYSCTL
2127extern int sysctl_drop_caches;
8d65af78 2128int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2129 void __user *, size_t *, loff_t *);
146732ce
JT
2130#endif
2131
6b4f7799
JW
2132unsigned long shrink_node_slabs(gfp_t gfp_mask, int nid,
2133 unsigned long nr_scanned,
2134 unsigned long nr_eligible);
9d0243bc 2135
7a9166e3
LY
2136#ifndef CONFIG_MMU
2137#define randomize_va_space 0
2138#else
a62eaf15 2139extern int randomize_va_space;
7a9166e3 2140#endif
a62eaf15 2141
045e72ac 2142const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2143void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2144
9bdac914
YL
2145void sparse_mem_maps_populate_node(struct page **map_map,
2146 unsigned long pnum_begin,
2147 unsigned long pnum_end,
2148 unsigned long map_count,
2149 int nodeid);
2150
98f3cfc1 2151struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2152pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2153pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2154pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2155pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2156void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2157void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2158void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2159int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2160 int node);
2161int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2162void vmemmap_populate_print_last(void);
0197518c 2163#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2164void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2165#endif
46723bfa
YI
2166void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2167 unsigned long size);
6a46079c 2168
82ba011b
AK
2169enum mf_flags {
2170 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2171 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2172 MF_MUST_KILL = 1 << 2,
cf870c70 2173 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2174};
cd42f4a3 2175extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2176extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2177extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
2178extern int sysctl_memory_failure_early_kill;
2179extern int sysctl_memory_failure_recovery;
facb6011 2180extern void shake_page(struct page *p, int access);
293c07e3 2181extern atomic_long_t num_poisoned_pages;
facb6011 2182extern int soft_offline_page(struct page *page, int flags);
6a46079c 2183
47ad8475
AA
2184#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2185extern void clear_huge_page(struct page *page,
2186 unsigned long addr,
2187 unsigned int pages_per_huge_page);
2188extern void copy_user_huge_page(struct page *dst, struct page *src,
2189 unsigned long addr, struct vm_area_struct *vma,
2190 unsigned int pages_per_huge_page);
2191#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2192
e30825f1
JK
2193extern struct page_ext_operations debug_guardpage_ops;
2194extern struct page_ext_operations page_poisoning_ops;
2195
c0a32fc5
SG
2196#ifdef CONFIG_DEBUG_PAGEALLOC
2197extern unsigned int _debug_guardpage_minorder;
e30825f1 2198extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2199
2200static inline unsigned int debug_guardpage_minorder(void)
2201{
2202 return _debug_guardpage_minorder;
2203}
2204
e30825f1
JK
2205static inline bool debug_guardpage_enabled(void)
2206{
2207 return _debug_guardpage_enabled;
2208}
2209
c0a32fc5
SG
2210static inline bool page_is_guard(struct page *page)
2211{
e30825f1
JK
2212 struct page_ext *page_ext;
2213
2214 if (!debug_guardpage_enabled())
2215 return false;
2216
2217 page_ext = lookup_page_ext(page);
2218 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2219}
2220#else
2221static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2222static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2223static inline bool page_is_guard(struct page *page) { return false; }
2224#endif /* CONFIG_DEBUG_PAGEALLOC */
2225
f9872caf
CS
2226#if MAX_NUMNODES > 1
2227void __init setup_nr_node_ids(void);
2228#else
2229static inline void setup_nr_node_ids(void) {}
2230#endif
2231
1da177e4
LT
2232#endif /* __KERNEL__ */
2233#endif /* _LINUX_MM_H */