security: protect from stack expantion into low vm addresses
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4
LT
8#include <linux/gfp.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/prio_tree.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
1da177e4
LT
15
16struct mempolicy;
17struct anon_vma;
4e950f6f 18struct file_ra_state;
e8edc6e0 19struct user_struct;
4e950f6f 20struct writeback_control;
1da177e4
LT
21
22#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
23extern unsigned long max_mapnr;
24#endif
25
26extern unsigned long num_physpages;
27extern void * high_memory;
1da177e4
LT
28extern int page_cluster;
29
30#ifdef CONFIG_SYSCTL
31extern int sysctl_legacy_va_layout;
32#else
33#define sysctl_legacy_va_layout 0
34#endif
35
36#include <asm/page.h>
37#include <asm/pgtable.h>
38#include <asm/processor.h>
1da177e4 39
1da177e4
LT
40#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
41
42/*
43 * Linux kernel virtual memory manager primitives.
44 * The idea being to have a "virtual" mm in the same way
45 * we have a virtual fs - giving a cleaner interface to the
46 * mm details, and allowing different kinds of memory mappings
47 * (from shared memory to executable loading to arbitrary
48 * mmap() functions).
49 */
50
c43692e8
CL
51extern struct kmem_cache *vm_area_cachep;
52
1da177e4
LT
53/*
54 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
55 * disabled, then there's a single shared list of VMAs maintained by the
56 * system, and mm's subscribe to these individually
57 */
58struct vm_list_struct {
59 struct vm_list_struct *next;
60 struct vm_area_struct *vma;
61};
62
63#ifndef CONFIG_MMU
64extern struct rb_root nommu_vma_tree;
65extern struct rw_semaphore nommu_vma_sem;
66
67extern unsigned int kobjsize(const void *objp);
68#endif
69
70/*
71 * vm_flags..
72 */
73#define VM_READ 0x00000001 /* currently active flags */
74#define VM_WRITE 0x00000002
75#define VM_EXEC 0x00000004
76#define VM_SHARED 0x00000008
77
7e2cff42 78/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
79#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
80#define VM_MAYWRITE 0x00000020
81#define VM_MAYEXEC 0x00000040
82#define VM_MAYSHARE 0x00000080
83
84#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
85#define VM_GROWSUP 0x00000200
6aab341e 86#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
87#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
88
89#define VM_EXECUTABLE 0x00001000
90#define VM_LOCKED 0x00002000
91#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
92
93 /* Used by sys_madvise() */
94#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
95#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
96
97#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
98#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 99#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4
LT
100#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
101#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
102#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
103#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
4d7672b4 104#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
e5b97dde 105#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
d00806b1 106
d0217ac0 107#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
1da177e4
LT
108
109#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
110#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
111#endif
112
113#ifdef CONFIG_STACK_GROWSUP
114#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
115#else
116#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
117#endif
118
119#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
120#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
121#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
122#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
123#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
124
125/*
126 * mapping from the currently active vm_flags protection bits (the
127 * low four bits) to a page protection mask..
128 */
129extern pgprot_t protection_map[16];
130
d0217ac0
NP
131#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
132#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
133
134
54cb8821 135/*
d0217ac0 136 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
137 * ->fault function. The vma's ->fault is responsible for returning a bitmask
138 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 139 *
d0217ac0
NP
140 * pgoff should be used in favour of virtual_address, if possible. If pgoff
141 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
142 * mapping support.
54cb8821 143 */
d0217ac0
NP
144struct vm_fault {
145 unsigned int flags; /* FAULT_FLAG_xxx flags */
146 pgoff_t pgoff; /* Logical page offset based on vma */
147 void __user *virtual_address; /* Faulting virtual address */
148
149 struct page *page; /* ->fault handlers should return a
83c54070 150 * page here, unless VM_FAULT_NOPAGE
d0217ac0 151 * is set (which is also implied by
83c54070 152 * VM_FAULT_ERROR).
d0217ac0 153 */
54cb8821 154};
1da177e4
LT
155
156/*
157 * These are the virtual MM functions - opening of an area, closing and
158 * unmapping it (needed to keep files on disk up-to-date etc), pointer
159 * to the functions called when a no-page or a wp-page exception occurs.
160 */
161struct vm_operations_struct {
162 void (*open)(struct vm_area_struct * area);
163 void (*close)(struct vm_area_struct * area);
d0217ac0 164 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
54cb8821
NP
165 struct page *(*nopage)(struct vm_area_struct *area,
166 unsigned long address, int *type);
167 unsigned long (*nopfn)(struct vm_area_struct *area,
168 unsigned long address);
9637a5ef
DH
169
170 /* notification that a previously read-only page is about to become
171 * writable, if an error is returned it will cause a SIGBUS */
172 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
1da177e4
LT
173#ifdef CONFIG_NUMA
174 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
175 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
176 unsigned long addr);
7b2259b3
CL
177 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
178 const nodemask_t *to, unsigned long flags);
1da177e4
LT
179#endif
180};
181
182struct mmu_gather;
183struct inode;
184
349aef0b
AM
185#define page_private(page) ((page)->private)
186#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 187
1da177e4
LT
188/*
189 * FIXME: take this include out, include page-flags.h in
190 * files which need it (119 of them)
191 */
192#include <linux/page-flags.h>
193
725d704e
NP
194#ifdef CONFIG_DEBUG_VM
195#define VM_BUG_ON(cond) BUG_ON(cond)
196#else
197#define VM_BUG_ON(condition) do { } while(0)
198#endif
199
1da177e4
LT
200/*
201 * Methods to modify the page usage count.
202 *
203 * What counts for a page usage:
204 * - cache mapping (page->mapping)
205 * - private data (page->private)
206 * - page mapped in a task's page tables, each mapping
207 * is counted separately
208 *
209 * Also, many kernel routines increase the page count before a critical
210 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
211 */
212
213/*
da6052f7 214 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 215 */
7c8ee9a8
NP
216static inline int put_page_testzero(struct page *page)
217{
725d704e 218 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 219 return atomic_dec_and_test(&page->_count);
7c8ee9a8 220}
1da177e4
LT
221
222/*
7c8ee9a8
NP
223 * Try to grab a ref unless the page has a refcount of zero, return false if
224 * that is the case.
1da177e4 225 */
7c8ee9a8
NP
226static inline int get_page_unless_zero(struct page *page)
227{
725d704e 228 VM_BUG_ON(PageCompound(page));
8dc04efb 229 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 230}
1da177e4 231
d85f3385
CL
232static inline struct page *compound_head(struct page *page)
233{
6d777953 234 if (unlikely(PageTail(page)))
d85f3385
CL
235 return page->first_page;
236 return page;
237}
238
4c21e2f2 239static inline int page_count(struct page *page)
1da177e4 240{
d85f3385 241 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
242}
243
244static inline void get_page(struct page *page)
245{
d85f3385 246 page = compound_head(page);
725d704e 247 VM_BUG_ON(atomic_read(&page->_count) == 0);
1da177e4
LT
248 atomic_inc(&page->_count);
249}
250
b49af68f
CL
251static inline struct page *virt_to_head_page(const void *x)
252{
253 struct page *page = virt_to_page(x);
254 return compound_head(page);
255}
256
7835e98b
NP
257/*
258 * Setup the page count before being freed into the page allocator for
259 * the first time (boot or memory hotplug)
260 */
261static inline void init_page_count(struct page *page)
262{
263 atomic_set(&page->_count, 1);
264}
265
1da177e4 266void put_page(struct page *page);
1d7ea732 267void put_pages_list(struct list_head *pages);
1da177e4 268
8dfcc9ba 269void split_page(struct page *page, unsigned int order);
8dfcc9ba 270
33f2ef89
AW
271/*
272 * Compound pages have a destructor function. Provide a
273 * prototype for that function and accessor functions.
274 * These are _only_ valid on the head of a PG_compound page.
275 */
276typedef void compound_page_dtor(struct page *);
277
278static inline void set_compound_page_dtor(struct page *page,
279 compound_page_dtor *dtor)
280{
281 page[1].lru.next = (void *)dtor;
282}
283
284static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
285{
286 return (compound_page_dtor *)page[1].lru.next;
287}
288
d85f3385
CL
289static inline int compound_order(struct page *page)
290{
6d777953 291 if (!PageHead(page))
d85f3385
CL
292 return 0;
293 return (unsigned long)page[1].lru.prev;
294}
295
296static inline void set_compound_order(struct page *page, unsigned long order)
297{
298 page[1].lru.prev = (void *)order;
299}
300
1da177e4
LT
301/*
302 * Multiple processes may "see" the same page. E.g. for untouched
303 * mappings of /dev/null, all processes see the same page full of
304 * zeroes, and text pages of executables and shared libraries have
305 * only one copy in memory, at most, normally.
306 *
307 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
308 * page_count() == 0 means the page is free. page->lru is then used for
309 * freelist management in the buddy allocator.
da6052f7 310 * page_count() > 0 means the page has been allocated.
1da177e4 311 *
da6052f7
NP
312 * Pages are allocated by the slab allocator in order to provide memory
313 * to kmalloc and kmem_cache_alloc. In this case, the management of the
314 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
315 * unless a particular usage is carefully commented. (the responsibility of
316 * freeing the kmalloc memory is the caller's, of course).
1da177e4 317 *
da6052f7
NP
318 * A page may be used by anyone else who does a __get_free_page().
319 * In this case, page_count still tracks the references, and should only
320 * be used through the normal accessor functions. The top bits of page->flags
321 * and page->virtual store page management information, but all other fields
322 * are unused and could be used privately, carefully. The management of this
323 * page is the responsibility of the one who allocated it, and those who have
324 * subsequently been given references to it.
325 *
326 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
327 * managed by the Linux memory manager: I/O, buffers, swapping etc.
328 * The following discussion applies only to them.
329 *
da6052f7
NP
330 * A pagecache page contains an opaque `private' member, which belongs to the
331 * page's address_space. Usually, this is the address of a circular list of
332 * the page's disk buffers. PG_private must be set to tell the VM to call
333 * into the filesystem to release these pages.
1da177e4 334 *
da6052f7
NP
335 * A page may belong to an inode's memory mapping. In this case, page->mapping
336 * is the pointer to the inode, and page->index is the file offset of the page,
337 * in units of PAGE_CACHE_SIZE.
1da177e4 338 *
da6052f7
NP
339 * If pagecache pages are not associated with an inode, they are said to be
340 * anonymous pages. These may become associated with the swapcache, and in that
341 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 342 *
da6052f7
NP
343 * In either case (swapcache or inode backed), the pagecache itself holds one
344 * reference to the page. Setting PG_private should also increment the
345 * refcount. The each user mapping also has a reference to the page.
1da177e4 346 *
da6052f7
NP
347 * The pagecache pages are stored in a per-mapping radix tree, which is
348 * rooted at mapping->page_tree, and indexed by offset.
349 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
350 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 351 *
da6052f7 352 * All pagecache pages may be subject to I/O:
1da177e4
LT
353 * - inode pages may need to be read from disk,
354 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
355 * to be written back to the inode on disk,
356 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
357 * modified may need to be swapped out to swap space and (later) to be read
358 * back into memory.
1da177e4
LT
359 */
360
361/*
362 * The zone field is never updated after free_area_init_core()
363 * sets it, so none of the operations on it need to be atomic.
1da177e4 364 */
348f8b6c 365
d41dee36
AW
366
367/*
368 * page->flags layout:
369 *
370 * There are three possibilities for how page->flags get
371 * laid out. The first is for the normal case, without
372 * sparsemem. The second is for sparsemem when there is
373 * plenty of space for node and section. The last is when
374 * we have run out of space and have to fall back to an
375 * alternate (slower) way of determining the node.
376 *
377 * No sparsemem: | NODE | ZONE | ... | FLAGS |
378 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
379 * no space for node: | SECTION | ZONE | ... | FLAGS |
380 */
381#ifdef CONFIG_SPARSEMEM
382#define SECTIONS_WIDTH SECTIONS_SHIFT
383#else
384#define SECTIONS_WIDTH 0
385#endif
386
387#define ZONES_WIDTH ZONES_SHIFT
388
389#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
390#define NODES_WIDTH NODES_SHIFT
391#else
392#define NODES_WIDTH 0
393#endif
394
395/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 396#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
397#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
398#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
399
400/*
401 * We are going to use the flags for the page to node mapping if its in
402 * there. This includes the case where there is no node, so it is implicit.
403 */
89689ae7
CL
404#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
405#define NODE_NOT_IN_PAGE_FLAGS
406#endif
d41dee36
AW
407
408#ifndef PFN_SECTION_SHIFT
409#define PFN_SECTION_SHIFT 0
410#endif
348f8b6c
DH
411
412/*
413 * Define the bit shifts to access each section. For non-existant
414 * sections we define the shift as 0; that plus a 0 mask ensures
415 * the compiler will optimise away reference to them.
416 */
d41dee36
AW
417#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
418#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
419#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 420
89689ae7
CL
421/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
422#ifdef NODE_NOT_IN_PAGEFLAGS
423#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
424#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
425 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 426#else
89689ae7 427#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
428#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
429 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
430#endif
431
bd8029b6 432#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 433
d41dee36
AW
434#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
435#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
348f8b6c
DH
436#endif
437
d41dee36
AW
438#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
439#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
440#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 441#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 442
2f1b6248 443static inline enum zone_type page_zonenum(struct page *page)
1da177e4 444{
348f8b6c 445 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 446}
1da177e4 447
89689ae7
CL
448/*
449 * The identification function is only used by the buddy allocator for
450 * determining if two pages could be buddies. We are not really
451 * identifying a zone since we could be using a the section number
452 * id if we have not node id available in page flags.
453 * We guarantee only that it will return the same value for two
454 * combinable pages in a zone.
455 */
cb2b95e1
AW
456static inline int page_zone_id(struct page *page)
457{
89689ae7 458 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
459}
460
25ba77c1 461static inline int zone_to_nid(struct zone *zone)
89fa3024 462{
d5f541ed
CL
463#ifdef CONFIG_NUMA
464 return zone->node;
465#else
466 return 0;
467#endif
89fa3024
CL
468}
469
89689ae7 470#ifdef NODE_NOT_IN_PAGE_FLAGS
25ba77c1 471extern int page_to_nid(struct page *page);
89689ae7 472#else
25ba77c1 473static inline int page_to_nid(struct page *page)
d41dee36 474{
89689ae7 475 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 476}
89689ae7
CL
477#endif
478
479static inline struct zone *page_zone(struct page *page)
480{
481 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
482}
483
d41dee36
AW
484static inline unsigned long page_to_section(struct page *page)
485{
486 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
487}
488
2f1b6248 489static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
490{
491 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
492 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
493}
2f1b6248 494
348f8b6c
DH
495static inline void set_page_node(struct page *page, unsigned long node)
496{
497 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
498 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 499}
89689ae7 500
d41dee36
AW
501static inline void set_page_section(struct page *page, unsigned long section)
502{
503 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
504 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
505}
1da177e4 506
2f1b6248 507static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 508 unsigned long node, unsigned long pfn)
1da177e4 509{
348f8b6c
DH
510 set_page_zone(page, zone);
511 set_page_node(page, node);
d41dee36 512 set_page_section(page, pfn_to_section_nr(pfn));
1da177e4
LT
513}
514
f6ac2354
CL
515/*
516 * Some inline functions in vmstat.h depend on page_zone()
517 */
518#include <linux/vmstat.h>
519
652050ae 520static __always_inline void *lowmem_page_address(struct page *page)
1da177e4
LT
521{
522 return __va(page_to_pfn(page) << PAGE_SHIFT);
523}
524
525#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
526#define HASHED_PAGE_VIRTUAL
527#endif
528
529#if defined(WANT_PAGE_VIRTUAL)
530#define page_address(page) ((page)->virtual)
531#define set_page_address(page, address) \
532 do { \
533 (page)->virtual = (address); \
534 } while(0)
535#define page_address_init() do { } while(0)
536#endif
537
538#if defined(HASHED_PAGE_VIRTUAL)
539void *page_address(struct page *page);
540void set_page_address(struct page *page, void *virtual);
541void page_address_init(void);
542#endif
543
544#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
545#define page_address(page) lowmem_page_address(page)
546#define set_page_address(page, address) do { } while(0)
547#define page_address_init() do { } while(0)
548#endif
549
550/*
551 * On an anonymous page mapped into a user virtual memory area,
552 * page->mapping points to its anon_vma, not to a struct address_space;
553 * with the PAGE_MAPPING_ANON bit set to distinguish it.
554 *
555 * Please note that, confusingly, "page_mapping" refers to the inode
556 * address_space which maps the page from disk; whereas "page_mapped"
557 * refers to user virtual address space into which the page is mapped.
558 */
559#define PAGE_MAPPING_ANON 1
560
561extern struct address_space swapper_space;
562static inline struct address_space *page_mapping(struct page *page)
563{
564 struct address_space *mapping = page->mapping;
565
b5fab14e 566 VM_BUG_ON(PageSlab(page));
1da177e4
LT
567 if (unlikely(PageSwapCache(page)))
568 mapping = &swapper_space;
569 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
570 mapping = NULL;
571 return mapping;
572}
573
574static inline int PageAnon(struct page *page)
575{
576 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
577}
578
579/*
580 * Return the pagecache index of the passed page. Regular pagecache pages
581 * use ->index whereas swapcache pages use ->private
582 */
583static inline pgoff_t page_index(struct page *page)
584{
585 if (unlikely(PageSwapCache(page)))
4c21e2f2 586 return page_private(page);
1da177e4
LT
587 return page->index;
588}
589
590/*
591 * The atomic page->_mapcount, like _count, starts from -1:
592 * so that transitions both from it and to it can be tracked,
593 * using atomic_inc_and_test and atomic_add_negative(-1).
594 */
595static inline void reset_page_mapcount(struct page *page)
596{
597 atomic_set(&(page)->_mapcount, -1);
598}
599
600static inline int page_mapcount(struct page *page)
601{
602 return atomic_read(&(page)->_mapcount) + 1;
603}
604
605/*
606 * Return true if this page is mapped into pagetables.
607 */
608static inline int page_mapped(struct page *page)
609{
610 return atomic_read(&(page)->_mapcount) >= 0;
611}
612
613/*
614 * Error return values for the *_nopage functions
615 */
616#define NOPAGE_SIGBUS (NULL)
617#define NOPAGE_OOM ((struct page *) (-1))
618
f4b81804
JS
619/*
620 * Error return values for the *_nopfn functions
621 */
622#define NOPFN_SIGBUS ((unsigned long) -1)
623#define NOPFN_OOM ((unsigned long) -2)
22cd25ed 624#define NOPFN_REFAULT ((unsigned long) -3)
f4b81804 625
1da177e4
LT
626/*
627 * Different kinds of faults, as returned by handle_mm_fault().
628 * Used to decide whether a process gets delivered SIGBUS or
629 * just gets major/minor fault counters bumped up.
630 */
d0217ac0 631
83c54070 632#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 633
83c54070
NP
634#define VM_FAULT_OOM 0x0001
635#define VM_FAULT_SIGBUS 0x0002
636#define VM_FAULT_MAJOR 0x0004
637#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
f33ea7f4 638
83c54070
NP
639#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
640#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1da177e4 641
83c54070 642#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS)
d0217ac0 643
1da177e4
LT
644#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
645
646extern void show_free_areas(void);
647
648#ifdef CONFIG_SHMEM
1da177e4
LT
649int shmem_lock(struct file *file, int lock, struct user_struct *user);
650#else
03b00ebc
RK
651static inline int shmem_lock(struct file *file, int lock,
652 struct user_struct *user)
653{
654 return 0;
655}
1da177e4
LT
656#endif
657struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
658
659int shmem_zero_setup(struct vm_area_struct *);
660
b0e15190
DH
661#ifndef CONFIG_MMU
662extern unsigned long shmem_get_unmapped_area(struct file *file,
663 unsigned long addr,
664 unsigned long len,
665 unsigned long pgoff,
666 unsigned long flags);
667#endif
668
e8edc6e0 669extern int can_do_mlock(void);
1da177e4
LT
670extern int user_shm_lock(size_t, struct user_struct *);
671extern void user_shm_unlock(size_t, struct user_struct *);
672
673/*
674 * Parameter block passed down to zap_pte_range in exceptional cases.
675 */
676struct zap_details {
677 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
678 struct address_space *check_mapping; /* Check page->mapping if set */
679 pgoff_t first_index; /* Lowest page->index to unmap */
680 pgoff_t last_index; /* Highest page->index to unmap */
681 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
1da177e4
LT
682 unsigned long truncate_count; /* Compare vm_truncate_count */
683};
684
6aab341e 685struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
ee39b37b 686unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 687 unsigned long size, struct zap_details *);
508034a3 688unsigned long unmap_vmas(struct mmu_gather **tlb,
1da177e4
LT
689 struct vm_area_struct *start_vma, unsigned long start_addr,
690 unsigned long end_addr, unsigned long *nr_accounted,
691 struct zap_details *);
3bf5ee95
HD
692void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
693 unsigned long end, unsigned long floor, unsigned long ceiling);
694void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
e0da382c 695 unsigned long floor, unsigned long ceiling);
1da177e4
LT
696int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
697 struct vm_area_struct *vma);
1da177e4
LT
698void unmap_mapping_range(struct address_space *mapping,
699 loff_t const holebegin, loff_t const holelen, int even_cows);
700
701static inline void unmap_shared_mapping_range(struct address_space *mapping,
702 loff_t const holebegin, loff_t const holelen)
703{
704 unmap_mapping_range(mapping, holebegin, holelen, 0);
705}
706
707extern int vmtruncate(struct inode * inode, loff_t offset);
f6b3ec23 708extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
f33ea7f4 709
7ee1dd3f 710#ifdef CONFIG_MMU
83c54070 711extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
7ee1dd3f 712 unsigned long address, int write_access);
7ee1dd3f
DH
713#else
714static inline int handle_mm_fault(struct mm_struct *mm,
715 struct vm_area_struct *vma, unsigned long address,
716 int write_access)
717{
718 /* should never happen if there's no MMU */
719 BUG();
720 return VM_FAULT_SIGBUS;
721}
722#endif
f33ea7f4 723
1da177e4
LT
724extern int make_pages_present(unsigned long addr, unsigned long end);
725extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1da177e4
LT
726
727int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
728 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
b5810039 729void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
1da177e4 730
cf9a2ae8
DH
731extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
732extern void do_invalidatepage(struct page *page, unsigned long offset);
733
1da177e4 734int __set_page_dirty_nobuffers(struct page *page);
76719325 735int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
736int redirty_page_for_writepage(struct writeback_control *wbc,
737 struct page *page);
738int FASTCALL(set_page_dirty(struct page *page));
739int set_page_dirty_lock(struct page *page);
740int clear_page_dirty_for_io(struct page *page);
741
b6a2fea3
OW
742extern unsigned long move_page_tables(struct vm_area_struct *vma,
743 unsigned long old_addr, struct vm_area_struct *new_vma,
744 unsigned long new_addr, unsigned long len);
1da177e4
LT
745extern unsigned long do_mremap(unsigned long addr,
746 unsigned long old_len, unsigned long new_len,
747 unsigned long flags, unsigned long new_addr);
b6a2fea3
OW
748extern int mprotect_fixup(struct vm_area_struct *vma,
749 struct vm_area_struct **pprev, unsigned long start,
750 unsigned long end, unsigned long newflags);
1da177e4
LT
751
752/*
8e1f936b 753 * A callback you can register to apply pressure to ageable caches.
1da177e4 754 *
8e1f936b
RR
755 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
756 * look through the least-recently-used 'nr_to_scan' entries and
757 * attempt to free them up. It should return the number of objects
758 * which remain in the cache. If it returns -1, it means it cannot do
759 * any scanning at this time (eg. there is a risk of deadlock).
1da177e4 760 *
8e1f936b
RR
761 * The 'gfpmask' refers to the allocation we are currently trying to
762 * fulfil.
763 *
764 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
765 * querying the cache size, so a fastpath for that case is appropriate.
1da177e4 766 */
8e1f936b
RR
767struct shrinker {
768 int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
769 int seeks; /* seeks to recreate an obj */
1da177e4 770
8e1f936b
RR
771 /* These are for internal use */
772 struct list_head list;
773 long nr; /* objs pending delete */
774};
775#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
776extern void register_shrinker(struct shrinker *);
777extern void unregister_shrinker(struct shrinker *);
1da177e4 778
4e950f6f 779int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 780
c9cfcddf
LT
781extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
782
5f22df00
NP
783#ifdef __PAGETABLE_PUD_FOLDED
784static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
785 unsigned long address)
786{
787 return 0;
788}
789#else
1bb3630e 790int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
791#endif
792
793#ifdef __PAGETABLE_PMD_FOLDED
794static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
795 unsigned long address)
796{
797 return 0;
798}
799#else
1bb3630e 800int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
801#endif
802
1bb3630e
HD
803int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
804int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
805
1da177e4
LT
806/*
807 * The following ifdef needed to get the 4level-fixup.h header to work.
808 * Remove it when 4level-fixup.h has been removed.
809 */
1bb3630e 810#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
811static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
812{
1bb3630e
HD
813 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
814 NULL: pud_offset(pgd, address);
1da177e4
LT
815}
816
817static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
818{
1bb3630e
HD
819 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
820 NULL: pmd_offset(pud, address);
1da177e4 821}
1bb3630e
HD
822#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
823
4c21e2f2
HD
824#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
825/*
826 * We tuck a spinlock to guard each pagetable page into its struct page,
827 * at page->private, with BUILD_BUG_ON to make sure that this will not
828 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
829 * When freeing, reset page->mapping so free_pages_check won't complain.
830 */
349aef0b 831#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
832#define pte_lock_init(_page) do { \
833 spin_lock_init(__pte_lockptr(_page)); \
834} while (0)
835#define pte_lock_deinit(page) ((page)->mapping = NULL)
836#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
837#else
838/*
839 * We use mm->page_table_lock to guard all pagetable pages of the mm.
840 */
841#define pte_lock_init(page) do {} while (0)
842#define pte_lock_deinit(page) do {} while (0)
843#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
844#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
845
c74df32c
HD
846#define pte_offset_map_lock(mm, pmd, address, ptlp) \
847({ \
4c21e2f2 848 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
849 pte_t *__pte = pte_offset_map(pmd, address); \
850 *(ptlp) = __ptl; \
851 spin_lock(__ptl); \
852 __pte; \
853})
854
855#define pte_unmap_unlock(pte, ptl) do { \
856 spin_unlock(ptl); \
857 pte_unmap(pte); \
858} while (0)
859
1bb3630e
HD
860#define pte_alloc_map(mm, pmd, address) \
861 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
862 NULL: pte_offset_map(pmd, address))
863
c74df32c
HD
864#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
865 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
866 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
867
1bb3630e
HD
868#define pte_alloc_kernel(pmd, address) \
869 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
870 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
871
872extern void free_area_init(unsigned long * zones_size);
873extern void free_area_init_node(int nid, pg_data_t *pgdat,
874 unsigned long * zones_size, unsigned long zone_start_pfn,
875 unsigned long *zholes_size);
c713216d
MG
876#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
877/*
878 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
879 * zones, allocate the backing mem_map and account for memory holes in a more
880 * architecture independent manner. This is a substitute for creating the
881 * zone_sizes[] and zholes_size[] arrays and passing them to
882 * free_area_init_node()
883 *
884 * An architecture is expected to register range of page frames backed by
885 * physical memory with add_active_range() before calling
886 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
887 * usage, an architecture is expected to do something like
888 *
889 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
890 * max_highmem_pfn};
891 * for_each_valid_physical_page_range()
892 * add_active_range(node_id, start_pfn, end_pfn)
893 * free_area_init_nodes(max_zone_pfns);
894 *
895 * If the architecture guarantees that there are no holes in the ranges
896 * registered with add_active_range(), free_bootmem_active_regions()
897 * will call free_bootmem_node() for each registered physical page range.
898 * Similarly sparse_memory_present_with_active_regions() calls
899 * memory_present() for each range when SPARSEMEM is enabled.
900 *
901 * See mm/page_alloc.c for more information on each function exposed by
902 * CONFIG_ARCH_POPULATES_NODE_MAP
903 */
904extern void free_area_init_nodes(unsigned long *max_zone_pfn);
905extern void add_active_range(unsigned int nid, unsigned long start_pfn,
906 unsigned long end_pfn);
907extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
908 unsigned long new_end_pfn);
fb01439c
MG
909extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
910 unsigned long end_pfn);
c713216d
MG
911extern void remove_all_active_ranges(void);
912extern unsigned long absent_pages_in_range(unsigned long start_pfn,
913 unsigned long end_pfn);
914extern void get_pfn_range_for_nid(unsigned int nid,
915 unsigned long *start_pfn, unsigned long *end_pfn);
916extern unsigned long find_min_pfn_with_active_regions(void);
917extern unsigned long find_max_pfn_with_active_regions(void);
918extern void free_bootmem_with_active_regions(int nid,
919 unsigned long max_low_pfn);
920extern void sparse_memory_present_with_active_regions(int nid);
921#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
922extern int early_pfn_to_nid(unsigned long pfn);
923#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
924#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
0e0b864e 925extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
926extern void memmap_init_zone(unsigned long, int, unsigned long,
927 unsigned long, enum memmap_context);
3947be19 928extern void setup_per_zone_pages_min(void);
1da177e4
LT
929extern void mem_init(void);
930extern void show_mem(void);
931extern void si_meminfo(struct sysinfo * val);
932extern void si_meminfo_node(struct sysinfo *val, int nid);
933
e7c8d5c9
CL
934#ifdef CONFIG_NUMA
935extern void setup_per_cpu_pageset(void);
936#else
937static inline void setup_per_cpu_pageset(void) {}
938#endif
939
1da177e4
LT
940/* prio_tree.c */
941void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
942void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
943void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
944struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
945 struct prio_tree_iter *iter);
946
947#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
948 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
949 (vma = vma_prio_tree_next(vma, iter)); )
950
951static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
952 struct list_head *list)
953{
954 vma->shared.vm_set.parent = NULL;
955 list_add_tail(&vma->shared.vm_set.list, list);
956}
957
958/* mmap.c */
34b4e4aa 959extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1da177e4
LT
960extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
961 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
962extern struct vm_area_struct *vma_merge(struct mm_struct *,
963 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
964 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
965 struct mempolicy *);
966extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
967extern int split_vma(struct mm_struct *,
968 struct vm_area_struct *, unsigned long addr, int new_below);
969extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
970extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
971 struct rb_node **, struct rb_node *);
a8fb5618 972extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
973extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
974 unsigned long addr, unsigned long len, pgoff_t pgoff);
975extern void exit_mmap(struct mm_struct *);
119f657c 976extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
977extern int install_special_mapping(struct mm_struct *mm,
978 unsigned long addr, unsigned long len,
979 unsigned long flags, struct page **pages);
1da177e4
LT
980
981extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
982
983extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
984 unsigned long len, unsigned long prot,
985 unsigned long flag, unsigned long pgoff);
0165ab44
MS
986extern unsigned long mmap_region(struct file *file, unsigned long addr,
987 unsigned long len, unsigned long flags,
988 unsigned int vm_flags, unsigned long pgoff,
989 int accountable);
1da177e4
LT
990
991static inline unsigned long do_mmap(struct file *file, unsigned long addr,
992 unsigned long len, unsigned long prot,
993 unsigned long flag, unsigned long offset)
994{
995 unsigned long ret = -EINVAL;
996 if ((offset + PAGE_ALIGN(len)) < offset)
997 goto out;
998 if (!(offset & ~PAGE_MASK))
999 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1000out:
1001 return ret;
1002}
1003
1004extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1005
1006extern unsigned long do_brk(unsigned long, unsigned long);
1007
1008/* filemap.c */
1009extern unsigned long page_unuse(struct page *);
1010extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1011extern void truncate_inode_pages_range(struct address_space *,
1012 loff_t lstart, loff_t lend);
1da177e4
LT
1013
1014/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1015extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1da177e4
LT
1016
1017/* mm/page-writeback.c */
1018int write_one_page(struct page *page, int wait);
1019
1020/* readahead.c */
1021#define VM_MAX_READAHEAD 128 /* kbytes */
1022#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4
LT
1023
1024int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1025 pgoff_t offset, unsigned long nr_to_read);
1da177e4 1026int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1027 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1028
1029void page_cache_sync_readahead(struct address_space *mapping,
1030 struct file_ra_state *ra,
1031 struct file *filp,
1032 pgoff_t offset,
1033 unsigned long size);
1034
1035void page_cache_async_readahead(struct address_space *mapping,
1036 struct file_ra_state *ra,
1037 struct file *filp,
1038 struct page *pg,
1039 pgoff_t offset,
1040 unsigned long size);
1041
1da177e4
LT
1042unsigned long max_sane_readahead(unsigned long nr);
1043
1044/* Do stack extension */
46dea3d0 1045extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
9ab88515 1046#ifdef CONFIG_IA64
46dea3d0 1047extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
9ab88515 1048#endif
b6a2fea3
OW
1049extern int expand_stack_downwards(struct vm_area_struct *vma,
1050 unsigned long address);
1da177e4
LT
1051
1052/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1053extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1054extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1055 struct vm_area_struct **pprev);
1056
1057/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1058 NULL if none. Assume start_addr < end_addr. */
1059static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1060{
1061 struct vm_area_struct * vma = find_vma(mm,start_addr);
1062
1063 if (vma && end_addr <= vma->vm_start)
1064 vma = NULL;
1065 return vma;
1066}
1067
1068static inline unsigned long vma_pages(struct vm_area_struct *vma)
1069{
1070 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1071}
1072
804af2cf 1073pgprot_t vm_get_page_prot(unsigned long vm_flags);
deceb6cd
HD
1074struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1075struct page *vmalloc_to_page(void *addr);
1076unsigned long vmalloc_to_pfn(void *addr);
1077int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1078 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1079int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1080int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1081 unsigned long pfn);
deceb6cd 1082
6aab341e 1083struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1084 unsigned int foll_flags);
1085#define FOLL_WRITE 0x01 /* check pte is writable */
1086#define FOLL_TOUCH 0x02 /* mark page accessed */
1087#define FOLL_GET 0x04 /* do get_page on page */
1088#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1da177e4 1089
aee16b3c
JF
1090typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
1091 void *data);
1092extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1093 unsigned long size, pte_fn_t fn, void *data);
1094
1da177e4 1095#ifdef CONFIG_PROC_FS
ab50b8ed 1096void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1097#else
ab50b8ed 1098static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1099 unsigned long flags, struct file *file, long pages)
1100{
1101}
1102#endif /* CONFIG_PROC_FS */
1103
1da177e4
LT
1104#ifndef CONFIG_DEBUG_PAGEALLOC
1105static inline void
9858db50 1106kernel_map_pages(struct page *page, int numpages, int enable) {}
1da177e4
LT
1107#endif
1108
1109extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1110#ifdef __HAVE_ARCH_GATE_AREA
1111int in_gate_area_no_task(unsigned long addr);
1112int in_gate_area(struct task_struct *task, unsigned long addr);
1113#else
1114int in_gate_area_no_task(unsigned long addr);
1115#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1116#endif /* __HAVE_ARCH_GATE_AREA */
1117
9d0243bc
AM
1118int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1119 void __user *, size_t *, loff_t *);
69e05944 1120unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
9d0243bc
AM
1121 unsigned long lru_pages);
1122void drop_pagecache(void);
1123void drop_slab(void);
1124
7a9166e3
LY
1125#ifndef CONFIG_MMU
1126#define randomize_va_space 0
1127#else
a62eaf15 1128extern int randomize_va_space;
7a9166e3 1129#endif
a62eaf15 1130
045e72ac 1131const char * arch_vma_name(struct vm_area_struct *vma);
e6e5494c 1132
98f3cfc1 1133struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1134pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1135pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1136pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1137pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41
CL
1138void *vmemmap_alloc_block(unsigned long size, int node);
1139void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
29c71111
AW
1140int vmemmap_populate_basepages(struct page *start_page,
1141 unsigned long pages, int node);
1142int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
8f6aac41 1143
1da177e4
LT
1144#endif /* __KERNEL__ */
1145#endif /* _LINUX_MM_H */