mm: Move immutable fields of 'struct vm_fault' into anonymous struct
[linux-2.6-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
9740ca4e 18#include <linux/mmap_lock.h>
08677214 19#include <linux/range.h>
c6f6b596 20#include <linux/pfn.h>
3565fce3 21#include <linux/percpu-refcount.h>
e9da73d6 22#include <linux/bit_spinlock.h>
b0d40c92 23#include <linux/shrinker.h>
9c599024 24#include <linux/resource.h>
e30825f1 25#include <linux/page_ext.h>
8025e5dd 26#include <linux/err.h>
41901567 27#include <linux/page-flags.h>
fe896d18 28#include <linux/page_ref.h>
7b2d55d2 29#include <linux/memremap.h>
3b3b1a29 30#include <linux/overflow.h>
b5420237 31#include <linux/sizes.h>
7969f226 32#include <linux/sched.h>
65fddcfc 33#include <linux/pgtable.h>
34303244 34#include <linux/kasan.h>
1da177e4
LT
35
36struct mempolicy;
37struct anon_vma;
bf181b9f 38struct anon_vma_chain;
4e950f6f 39struct file_ra_state;
e8edc6e0 40struct user_struct;
4e950f6f 41struct writeback_control;
682aa8e1 42struct bdi_writeback;
bce617ed 43struct pt_regs;
1da177e4 44
5ef64cc8
LT
45extern int sysctl_page_lock_unfairness;
46
597b7305
MH
47void init_mm_internals(void);
48
fccc9987 49#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 50extern unsigned long max_mapnr;
fccc9987
JL
51
52static inline void set_max_mapnr(unsigned long limit)
53{
54 max_mapnr = limit;
55}
56#else
57static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
58#endif
59
ca79b0c2
AK
60extern atomic_long_t _totalram_pages;
61static inline unsigned long totalram_pages(void)
62{
63 return (unsigned long)atomic_long_read(&_totalram_pages);
64}
65
66static inline void totalram_pages_inc(void)
67{
68 atomic_long_inc(&_totalram_pages);
69}
70
71static inline void totalram_pages_dec(void)
72{
73 atomic_long_dec(&_totalram_pages);
74}
75
76static inline void totalram_pages_add(long count)
77{
78 atomic_long_add(count, &_totalram_pages);
79}
80
1da177e4 81extern void * high_memory;
1da177e4
LT
82extern int page_cluster;
83
84#ifdef CONFIG_SYSCTL
85extern int sysctl_legacy_va_layout;
86#else
87#define sysctl_legacy_va_layout 0
88#endif
89
d07e2259
DC
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91extern const int mmap_rnd_bits_min;
92extern const int mmap_rnd_bits_max;
93extern int mmap_rnd_bits __read_mostly;
94#endif
95#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96extern const int mmap_rnd_compat_bits_min;
97extern const int mmap_rnd_compat_bits_max;
98extern int mmap_rnd_compat_bits __read_mostly;
99#endif
100
1da177e4 101#include <asm/page.h>
1da177e4 102#include <asm/processor.h>
1da177e4 103
d9344522
AK
104/*
105 * Architectures that support memory tagging (assigning tags to memory regions,
106 * embedding these tags into addresses that point to these memory regions, and
107 * checking that the memory and the pointer tags match on memory accesses)
108 * redefine this macro to strip tags from pointers.
109 * It's defined as noop for arcitectures that don't support memory tagging.
110 */
111#ifndef untagged_addr
112#define untagged_addr(addr) (addr)
113#endif
114
79442ed1
TC
115#ifndef __pa_symbol
116#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
117#endif
118
1dff8083
AB
119#ifndef page_to_virt
120#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
121#endif
122
568c5fe5
LA
123#ifndef lm_alias
124#define lm_alias(x) __va(__pa_symbol(x))
125#endif
126
593befa6
DD
127/*
128 * To prevent common memory management code establishing
129 * a zero page mapping on a read fault.
130 * This macro should be defined within <asm/pgtable.h>.
131 * s390 does this to prevent multiplexing of hardware bits
132 * related to the physical page in case of virtualization.
133 */
134#ifndef mm_forbids_zeropage
135#define mm_forbids_zeropage(X) (0)
136#endif
137
a4a3ede2
PT
138/*
139 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
140 * If an architecture decides to implement their own version of
141 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
142 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 143 */
5470dea4
AD
144#if BITS_PER_LONG == 64
145/* This function must be updated when the size of struct page grows above 80
146 * or reduces below 56. The idea that compiler optimizes out switch()
147 * statement, and only leaves move/store instructions. Also the compiler can
148 * combine write statments if they are both assignments and can be reordered,
149 * this can result in several of the writes here being dropped.
150 */
151#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
152static inline void __mm_zero_struct_page(struct page *page)
153{
154 unsigned long *_pp = (void *)page;
155
156 /* Check that struct page is either 56, 64, 72, or 80 bytes */
157 BUILD_BUG_ON(sizeof(struct page) & 7);
158 BUILD_BUG_ON(sizeof(struct page) < 56);
159 BUILD_BUG_ON(sizeof(struct page) > 80);
160
161 switch (sizeof(struct page)) {
162 case 80:
df561f66
GS
163 _pp[9] = 0;
164 fallthrough;
5470dea4 165 case 72:
df561f66
GS
166 _pp[8] = 0;
167 fallthrough;
5470dea4 168 case 64:
df561f66
GS
169 _pp[7] = 0;
170 fallthrough;
5470dea4
AD
171 case 56:
172 _pp[6] = 0;
173 _pp[5] = 0;
174 _pp[4] = 0;
175 _pp[3] = 0;
176 _pp[2] = 0;
177 _pp[1] = 0;
178 _pp[0] = 0;
179 }
180}
181#else
a4a3ede2
PT
182#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
183#endif
184
ea606cf5
AR
185/*
186 * Default maximum number of active map areas, this limits the number of vmas
187 * per mm struct. Users can overwrite this number by sysctl but there is a
188 * problem.
189 *
190 * When a program's coredump is generated as ELF format, a section is created
191 * per a vma. In ELF, the number of sections is represented in unsigned short.
192 * This means the number of sections should be smaller than 65535 at coredump.
193 * Because the kernel adds some informative sections to a image of program at
194 * generating coredump, we need some margin. The number of extra sections is
195 * 1-3 now and depends on arch. We use "5" as safe margin, here.
196 *
197 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
198 * not a hard limit any more. Although some userspace tools can be surprised by
199 * that.
200 */
201#define MAPCOUNT_ELF_CORE_MARGIN (5)
202#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
203
204extern int sysctl_max_map_count;
205
c9b1d098 206extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 207extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 208
49f0ce5f
JM
209extern int sysctl_overcommit_memory;
210extern int sysctl_overcommit_ratio;
211extern unsigned long sysctl_overcommit_kbytes;
212
32927393
CH
213int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
214 loff_t *);
215int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
216 loff_t *);
56f3547b
FT
217int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
218 loff_t *);
6d87d0ec
SJ
219/*
220 * Any attempt to mark this function as static leads to build failure
221 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
222 * is referred to by BPF code. This must be visible for error injection.
223 */
224int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
225 pgoff_t index, gfp_t gfp, void **shadowp);
49f0ce5f 226
1da177e4
LT
227#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
228
27ac792c
AR
229/* to align the pointer to the (next) page boundary */
230#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
231
0fa73b86 232/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 233#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 234
f86196ea
NB
235#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
236
1da177e4
LT
237/*
238 * Linux kernel virtual memory manager primitives.
239 * The idea being to have a "virtual" mm in the same way
240 * we have a virtual fs - giving a cleaner interface to the
241 * mm details, and allowing different kinds of memory mappings
242 * (from shared memory to executable loading to arbitrary
243 * mmap() functions).
244 */
245
490fc053 246struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
247struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
248void vm_area_free(struct vm_area_struct *);
c43692e8 249
1da177e4 250#ifndef CONFIG_MMU
8feae131
DH
251extern struct rb_root nommu_region_tree;
252extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
253
254extern unsigned int kobjsize(const void *objp);
255#endif
256
257/*
605d9288 258 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 259 * When changing, update also include/trace/events/mmflags.h
1da177e4 260 */
cc2383ec
KK
261#define VM_NONE 0x00000000
262
1da177e4
LT
263#define VM_READ 0x00000001 /* currently active flags */
264#define VM_WRITE 0x00000002
265#define VM_EXEC 0x00000004
266#define VM_SHARED 0x00000008
267
7e2cff42 268/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
269#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
270#define VM_MAYWRITE 0x00000020
271#define VM_MAYEXEC 0x00000040
272#define VM_MAYSHARE 0x00000080
273
274#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 275#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 276#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 277#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 278#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 279
1da177e4
LT
280#define VM_LOCKED 0x00002000
281#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
282
283 /* Used by sys_madvise() */
284#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
285#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
286
287#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
288#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 289#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 290#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 291#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 292#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 293#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 294#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 295#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 296#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 297
d9104d1c
CG
298#ifdef CONFIG_MEM_SOFT_DIRTY
299# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
300#else
301# define VM_SOFTDIRTY 0
302#endif
303
b379d790 304#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
305#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
306#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 307#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 308
63c17fb8
DH
309#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
310#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
311#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
312#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
313#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 314#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
315#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
316#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
317#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
318#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 319#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
320#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
321
5212213a 322#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
323# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
324# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 325# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
326# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
327# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
328#ifdef CONFIG_PPC
329# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
330#else
331# define VM_PKEY_BIT4 0
8f62c883 332#endif
5212213a
RP
333#endif /* CONFIG_ARCH_HAS_PKEYS */
334
335#if defined(CONFIG_X86)
336# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
337#elif defined(CONFIG_PPC)
338# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
339#elif defined(CONFIG_PARISC)
340# define VM_GROWSUP VM_ARCH_1
341#elif defined(CONFIG_IA64)
342# define VM_GROWSUP VM_ARCH_1
74a04967
KA
343#elif defined(CONFIG_SPARC64)
344# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
345# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
346#elif defined(CONFIG_ARM64)
347# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
348# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
349#elif !defined(CONFIG_MMU)
350# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
351#endif
352
9f341931
CM
353#if defined(CONFIG_ARM64_MTE)
354# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
355# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
356#else
357# define VM_MTE VM_NONE
358# define VM_MTE_ALLOWED VM_NONE
359#endif
360
cc2383ec
KK
361#ifndef VM_GROWSUP
362# define VM_GROWSUP VM_NONE
363#endif
364
a8bef8ff
MG
365/* Bits set in the VMA until the stack is in its final location */
366#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
367
c62da0c3
AK
368#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
369
370/* Common data flag combinations */
371#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
372 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
373#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
374 VM_MAYWRITE | VM_MAYEXEC)
375#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
376 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
377
378#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
379#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
380#endif
381
1da177e4
LT
382#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
383#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
384#endif
385
386#ifdef CONFIG_STACK_GROWSUP
30bdbb78 387#define VM_STACK VM_GROWSUP
1da177e4 388#else
30bdbb78 389#define VM_STACK VM_GROWSDOWN
1da177e4
LT
390#endif
391
30bdbb78
KK
392#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
393
6cb4d9a2
AK
394/* VMA basic access permission flags */
395#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
396
397
b291f000 398/*
78f11a25 399 * Special vmas that are non-mergable, non-mlock()able.
b291f000 400 */
9050d7eb 401#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 402
b4443772
AK
403/* This mask prevents VMA from being scanned with khugepaged */
404#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
405
a0715cc2
AT
406/* This mask defines which mm->def_flags a process can inherit its parent */
407#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
408
de60f5f1
EM
409/* This mask is used to clear all the VMA flags used by mlock */
410#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
411
2c2d57b5
KA
412/* Arch-specific flags to clear when updating VM flags on protection change */
413#ifndef VM_ARCH_CLEAR
414# define VM_ARCH_CLEAR VM_NONE
415#endif
416#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
417
1da177e4
LT
418/*
419 * mapping from the currently active vm_flags protection bits (the
420 * low four bits) to a page protection mask..
421 */
422extern pgprot_t protection_map[16];
423
c270a7ee
PX
424/**
425 * Fault flag definitions.
426 *
427 * @FAULT_FLAG_WRITE: Fault was a write fault.
428 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
429 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
c1e8d7c6 430 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
c270a7ee
PX
431 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
432 * @FAULT_FLAG_TRIED: The fault has been tried once.
433 * @FAULT_FLAG_USER: The fault originated in userspace.
434 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
435 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
436 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
46bdb427 437 * @FAULT_FLAG_PREFAULT: Fault was a prefault.
4064b982
PX
438 *
439 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
440 * whether we would allow page faults to retry by specifying these two
441 * fault flags correctly. Currently there can be three legal combinations:
442 *
443 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
444 * this is the first try
445 *
446 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
447 * we've already tried at least once
448 *
449 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
450 *
451 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
452 * be used. Note that page faults can be allowed to retry for multiple times,
453 * in which case we'll have an initial fault with flags (a) then later on
454 * continuous faults with flags (b). We should always try to detect pending
455 * signals before a retry to make sure the continuous page faults can still be
456 * interrupted if necessary.
c270a7ee
PX
457 */
458#define FAULT_FLAG_WRITE 0x01
459#define FAULT_FLAG_MKWRITE 0x02
460#define FAULT_FLAG_ALLOW_RETRY 0x04
461#define FAULT_FLAG_RETRY_NOWAIT 0x08
462#define FAULT_FLAG_KILLABLE 0x10
463#define FAULT_FLAG_TRIED 0x20
464#define FAULT_FLAG_USER 0x40
465#define FAULT_FLAG_REMOTE 0x80
466#define FAULT_FLAG_INSTRUCTION 0x100
467#define FAULT_FLAG_INTERRUPTIBLE 0x200
46bdb427 468#define FAULT_FLAG_PREFAULT 0x400
d0217ac0 469
dde16072
PX
470/*
471 * The default fault flags that should be used by most of the
472 * arch-specific page fault handlers.
473 */
474#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
475 FAULT_FLAG_KILLABLE | \
476 FAULT_FLAG_INTERRUPTIBLE)
dde16072 477
4064b982
PX
478/**
479 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
480 *
481 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 482 * the mmap_lock for too long a time when waiting for another condition
4064b982 483 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
484 * mmap_lock in the first round to avoid potential starvation of other
485 * processes that would also want the mmap_lock.
4064b982
PX
486 *
487 * Return: true if the page fault allows retry and this is the first
488 * attempt of the fault handling; false otherwise.
489 */
490static inline bool fault_flag_allow_retry_first(unsigned int flags)
491{
492 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
493 (!(flags & FAULT_FLAG_TRIED));
494}
495
282a8e03
RZ
496#define FAULT_FLAG_TRACE \
497 { FAULT_FLAG_WRITE, "WRITE" }, \
498 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
499 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
500 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
501 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
502 { FAULT_FLAG_TRIED, "TRIED" }, \
503 { FAULT_FLAG_USER, "USER" }, \
504 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee 505 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
46bdb427
WD
506 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
507 { FAULT_FLAG_PREFAULT, "PREFAULT" }
282a8e03 508
54cb8821 509/*
11192337 510 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
511 * ->fault function. The vma's ->fault is responsible for returning a bitmask
512 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 513 *
c20cd45e
MH
514 * MM layer fills up gfp_mask for page allocations but fault handler might
515 * alter it if its implementation requires a different allocation context.
516 *
9b4bdd2f 517 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 518 */
d0217ac0 519struct vm_fault {
742d3372
WD
520 struct {
521 struct vm_area_struct *vma; /* Target VMA */
522 gfp_t gfp_mask; /* gfp mask to be used for allocations */
523 pgoff_t pgoff; /* Logical page offset based on vma */
524 unsigned long address; /* Faulting virtual address */
525 };
526 unsigned int flags; /* FAULT_FLAG_xxx flags
527 * XXX: should really be 'const' */
82b0f8c3 528 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 529 * the 'address' */
a2d58167
DJ
530 pud_t *pud; /* Pointer to pud entry matching
531 * the 'address'
532 */
2994302b 533 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 534
3917048d 535 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 536 struct page *page; /* ->fault handlers should return a
83c54070 537 * page here, unless VM_FAULT_NOPAGE
d0217ac0 538 * is set (which is also implied by
83c54070 539 * VM_FAULT_ERROR).
d0217ac0 540 */
82b0f8c3 541 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
542 pte_t *pte; /* Pointer to pte entry matching
543 * the 'address'. NULL if the page
544 * table hasn't been allocated.
545 */
546 spinlock_t *ptl; /* Page table lock.
547 * Protects pte page table if 'pte'
548 * is not NULL, otherwise pmd.
549 */
7267ec00 550 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
551 * vm_ops->map_pages() sets up a page
552 * table from atomic context.
7267ec00
KS
553 * do_fault_around() pre-allocates
554 * page table to avoid allocation from
555 * atomic context.
556 */
54cb8821 557};
1da177e4 558
c791ace1
DJ
559/* page entry size for vm->huge_fault() */
560enum page_entry_size {
561 PE_SIZE_PTE = 0,
562 PE_SIZE_PMD,
563 PE_SIZE_PUD,
564};
565
1da177e4
LT
566/*
567 * These are the virtual MM functions - opening of an area, closing and
568 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 569 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
570 */
571struct vm_operations_struct {
572 void (*open)(struct vm_area_struct * area);
573 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
574 /* Called any time before splitting to check if it's allowed */
575 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
cd544fd1 576 int (*mremap)(struct vm_area_struct *area, unsigned long flags);
95bb7c42
SC
577 /*
578 * Called by mprotect() to make driver-specific permission
579 * checks before mprotect() is finalised. The VMA must not
580 * be modified. Returns 0 if eprotect() can proceed.
581 */
582 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
583 unsigned long end, unsigned long newflags);
1c8f4220
SJ
584 vm_fault_t (*fault)(struct vm_fault *vmf);
585 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
586 enum page_entry_size pe_size);
f9ce0be7 587 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 588 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 589 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
590
591 /* notification that a previously read-only page is about to become
592 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 593 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 594
dd906184 595 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 596 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 597
28b2ee20
RR
598 /* called by access_process_vm when get_user_pages() fails, typically
599 * for use by special VMAs that can switch between memory and hardware
600 */
601 int (*access)(struct vm_area_struct *vma, unsigned long addr,
602 void *buf, int len, int write);
78d683e8
AL
603
604 /* Called by the /proc/PID/maps code to ask the vma whether it
605 * has a special name. Returning non-NULL will also cause this
606 * vma to be dumped unconditionally. */
607 const char *(*name)(struct vm_area_struct *vma);
608
1da177e4 609#ifdef CONFIG_NUMA
a6020ed7
LS
610 /*
611 * set_policy() op must add a reference to any non-NULL @new mempolicy
612 * to hold the policy upon return. Caller should pass NULL @new to
613 * remove a policy and fall back to surrounding context--i.e. do not
614 * install a MPOL_DEFAULT policy, nor the task or system default
615 * mempolicy.
616 */
1da177e4 617 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
618
619 /*
620 * get_policy() op must add reference [mpol_get()] to any policy at
621 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
622 * in mm/mempolicy.c will do this automatically.
623 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 624 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
625 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
626 * must return NULL--i.e., do not "fallback" to task or system default
627 * policy.
628 */
1da177e4
LT
629 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
630 unsigned long addr);
631#endif
667a0a06
DV
632 /*
633 * Called by vm_normal_page() for special PTEs to find the
634 * page for @addr. This is useful if the default behavior
635 * (using pte_page()) would not find the correct page.
636 */
637 struct page *(*find_special_page)(struct vm_area_struct *vma,
638 unsigned long addr);
1da177e4
LT
639};
640
027232da
KS
641static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
642{
bfd40eaf
KS
643 static const struct vm_operations_struct dummy_vm_ops = {};
644
a670468f 645 memset(vma, 0, sizeof(*vma));
027232da 646 vma->vm_mm = mm;
bfd40eaf 647 vma->vm_ops = &dummy_vm_ops;
027232da
KS
648 INIT_LIST_HEAD(&vma->anon_vma_chain);
649}
650
bfd40eaf
KS
651static inline void vma_set_anonymous(struct vm_area_struct *vma)
652{
653 vma->vm_ops = NULL;
654}
655
43675e6f
YS
656static inline bool vma_is_anonymous(struct vm_area_struct *vma)
657{
658 return !vma->vm_ops;
659}
660
222100ee
AK
661static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
662{
663 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
664
665 if (!maybe_stack)
666 return false;
667
668 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
669 VM_STACK_INCOMPLETE_SETUP)
670 return true;
671
672 return false;
673}
674
7969f226
AK
675static inline bool vma_is_foreign(struct vm_area_struct *vma)
676{
677 if (!current->mm)
678 return true;
679
680 if (current->mm != vma->vm_mm)
681 return true;
682
683 return false;
684}
3122e80e
AK
685
686static inline bool vma_is_accessible(struct vm_area_struct *vma)
687{
6cb4d9a2 688 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
689}
690
43675e6f
YS
691#ifdef CONFIG_SHMEM
692/*
693 * The vma_is_shmem is not inline because it is used only by slow
694 * paths in userfault.
695 */
696bool vma_is_shmem(struct vm_area_struct *vma);
697#else
698static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
699#endif
700
701int vma_is_stack_for_current(struct vm_area_struct *vma);
702
8b11ec1b
LT
703/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
704#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
705
1da177e4
LT
706struct mmu_gather;
707struct inode;
708
71e3aac0 709#include <linux/huge_mm.h>
1da177e4
LT
710
711/*
712 * Methods to modify the page usage count.
713 *
714 * What counts for a page usage:
715 * - cache mapping (page->mapping)
716 * - private data (page->private)
717 * - page mapped in a task's page tables, each mapping
718 * is counted separately
719 *
720 * Also, many kernel routines increase the page count before a critical
721 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
722 */
723
724/*
da6052f7 725 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 726 */
7c8ee9a8
NP
727static inline int put_page_testzero(struct page *page)
728{
fe896d18
JK
729 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
730 return page_ref_dec_and_test(page);
7c8ee9a8 731}
1da177e4
LT
732
733/*
7c8ee9a8
NP
734 * Try to grab a ref unless the page has a refcount of zero, return false if
735 * that is the case.
8e0861fa
AK
736 * This can be called when MMU is off so it must not access
737 * any of the virtual mappings.
1da177e4 738 */
7c8ee9a8
NP
739static inline int get_page_unless_zero(struct page *page)
740{
fe896d18 741 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 742}
1da177e4 743
53df8fdc 744extern int page_is_ram(unsigned long pfn);
124fe20d
DW
745
746enum {
747 REGION_INTERSECTS,
748 REGION_DISJOINT,
749 REGION_MIXED,
750};
751
1c29f25b
TK
752int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
753 unsigned long desc);
53df8fdc 754
48667e7a 755/* Support for virtually mapped pages */
b3bdda02
CL
756struct page *vmalloc_to_page(const void *addr);
757unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 758
0738c4bb
PM
759/*
760 * Determine if an address is within the vmalloc range
761 *
762 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
763 * is no special casing required.
764 */
9bd3bb67
AK
765
766#ifndef is_ioremap_addr
767#define is_ioremap_addr(x) is_vmalloc_addr(x)
768#endif
769
81ac3ad9 770#ifdef CONFIG_MMU
186525bd 771extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
772extern int is_vmalloc_or_module_addr(const void *x);
773#else
186525bd
IM
774static inline bool is_vmalloc_addr(const void *x)
775{
776 return false;
777}
934831d0 778static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
779{
780 return 0;
781}
782#endif
9e2779fa 783
a7c3e901
MH
784extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
785static inline void *kvmalloc(size_t size, gfp_t flags)
786{
787 return kvmalloc_node(size, flags, NUMA_NO_NODE);
788}
789static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
790{
791 return kvmalloc_node(size, flags | __GFP_ZERO, node);
792}
793static inline void *kvzalloc(size_t size, gfp_t flags)
794{
795 return kvmalloc(size, flags | __GFP_ZERO);
796}
797
752ade68
MH
798static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
799{
3b3b1a29
KC
800 size_t bytes;
801
802 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
803 return NULL;
804
3b3b1a29 805 return kvmalloc(bytes, flags);
752ade68
MH
806}
807
1c542f38
KC
808static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
809{
810 return kvmalloc_array(n, size, flags | __GFP_ZERO);
811}
812
39f1f78d 813extern void kvfree(const void *addr);
d4eaa283 814extern void kvfree_sensitive(const void *addr, size_t len);
39f1f78d 815
bac3cf4d 816static inline int head_compound_mapcount(struct page *head)
6dc5ea16
JH
817{
818 return atomic_read(compound_mapcount_ptr(head)) + 1;
819}
820
6988f31d
KK
821/*
822 * Mapcount of compound page as a whole, does not include mapped sub-pages.
823 *
824 * Must be called only for compound pages or any their tail sub-pages.
825 */
53f9263b
KS
826static inline int compound_mapcount(struct page *page)
827{
5f527c2b 828 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b 829 page = compound_head(page);
bac3cf4d 830 return head_compound_mapcount(page);
53f9263b
KS
831}
832
70b50f94
AA
833/*
834 * The atomic page->_mapcount, starts from -1: so that transitions
835 * both from it and to it can be tracked, using atomic_inc_and_test
836 * and atomic_add_negative(-1).
837 */
22b751c3 838static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
839{
840 atomic_set(&(page)->_mapcount, -1);
841}
842
b20ce5e0
KS
843int __page_mapcount(struct page *page);
844
6988f31d
KK
845/*
846 * Mapcount of 0-order page; when compound sub-page, includes
847 * compound_mapcount().
848 *
849 * Result is undefined for pages which cannot be mapped into userspace.
850 * For example SLAB or special types of pages. See function page_has_type().
851 * They use this place in struct page differently.
852 */
70b50f94
AA
853static inline int page_mapcount(struct page *page)
854{
b20ce5e0
KS
855 if (unlikely(PageCompound(page)))
856 return __page_mapcount(page);
857 return atomic_read(&page->_mapcount) + 1;
858}
859
860#ifdef CONFIG_TRANSPARENT_HUGEPAGE
861int total_mapcount(struct page *page);
6d0a07ed 862int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
863#else
864static inline int total_mapcount(struct page *page)
865{
866 return page_mapcount(page);
70b50f94 867}
6d0a07ed
AA
868static inline int page_trans_huge_mapcount(struct page *page,
869 int *total_mapcount)
870{
871 int mapcount = page_mapcount(page);
872 if (total_mapcount)
873 *total_mapcount = mapcount;
874 return mapcount;
875}
b20ce5e0 876#endif
70b50f94 877
b49af68f
CL
878static inline struct page *virt_to_head_page(const void *x)
879{
880 struct page *page = virt_to_page(x);
ccaafd7f 881
1d798ca3 882 return compound_head(page);
b49af68f
CL
883}
884
ddc58f27
KS
885void __put_page(struct page *page);
886
1d7ea732 887void put_pages_list(struct list_head *pages);
1da177e4 888
8dfcc9ba 889void split_page(struct page *page, unsigned int order);
8dfcc9ba 890
33f2ef89
AW
891/*
892 * Compound pages have a destructor function. Provide a
893 * prototype for that function and accessor functions.
f1e61557 894 * These are _only_ valid on the head of a compound page.
33f2ef89 895 */
f1e61557
KS
896typedef void compound_page_dtor(struct page *);
897
898/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
899enum compound_dtor_id {
900 NULL_COMPOUND_DTOR,
901 COMPOUND_PAGE_DTOR,
902#ifdef CONFIG_HUGETLB_PAGE
903 HUGETLB_PAGE_DTOR,
9a982250
KS
904#endif
905#ifdef CONFIG_TRANSPARENT_HUGEPAGE
906 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
907#endif
908 NR_COMPOUND_DTORS,
909};
ae70eddd 910extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
911
912static inline void set_compound_page_dtor(struct page *page,
f1e61557 913 enum compound_dtor_id compound_dtor)
33f2ef89 914{
f1e61557
KS
915 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
916 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
917}
918
ff45fc3c 919static inline void destroy_compound_page(struct page *page)
33f2ef89 920{
f1e61557 921 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 922 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
923}
924
d00181b9 925static inline unsigned int compound_order(struct page *page)
d85f3385 926{
6d777953 927 if (!PageHead(page))
d85f3385 928 return 0;
e4b294c2 929 return page[1].compound_order;
d85f3385
CL
930}
931
47e29d32
JH
932static inline bool hpage_pincount_available(struct page *page)
933{
934 /*
935 * Can the page->hpage_pinned_refcount field be used? That field is in
936 * the 3rd page of the compound page, so the smallest (2-page) compound
937 * pages cannot support it.
938 */
939 page = compound_head(page);
940 return PageCompound(page) && compound_order(page) > 1;
941}
942
bac3cf4d 943static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
944{
945 return atomic_read(compound_pincount_ptr(head));
946}
947
47e29d32
JH
948static inline int compound_pincount(struct page *page)
949{
950 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
951 page = compound_head(page);
bac3cf4d 952 return head_compound_pincount(page);
47e29d32
JH
953}
954
f1e61557 955static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 956{
e4b294c2 957 page[1].compound_order = order;
1378a5ee 958 page[1].compound_nr = 1U << order;
d85f3385
CL
959}
960
d8c6546b
MWO
961/* Returns the number of pages in this potentially compound page. */
962static inline unsigned long compound_nr(struct page *page)
963{
1378a5ee
MWO
964 if (!PageHead(page))
965 return 1;
966 return page[1].compound_nr;
d8c6546b
MWO
967}
968
a50b854e
MWO
969/* Returns the number of bytes in this potentially compound page. */
970static inline unsigned long page_size(struct page *page)
971{
972 return PAGE_SIZE << compound_order(page);
973}
974
94ad9338
MWO
975/* Returns the number of bits needed for the number of bytes in a page */
976static inline unsigned int page_shift(struct page *page)
977{
978 return PAGE_SHIFT + compound_order(page);
979}
980
9a982250
KS
981void free_compound_page(struct page *page);
982
3dece370 983#ifdef CONFIG_MMU
14fd403f
AA
984/*
985 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
986 * servicing faults for write access. In the normal case, do always want
987 * pte_mkwrite. But get_user_pages can cause write faults for mappings
988 * that do not have writing enabled, when used by access_process_vm.
989 */
990static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
991{
992 if (likely(vma->vm_flags & VM_WRITE))
993 pte = pte_mkwrite(pte);
994 return pte;
995}
8c6e50b0 996
f9ce0be7
KS
997vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
998void do_set_pte(struct vm_fault *vmf, struct page *page);
999
2b740303
SJ
1000vm_fault_t finish_fault(struct vm_fault *vmf);
1001vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1002#endif
14fd403f 1003
1da177e4
LT
1004/*
1005 * Multiple processes may "see" the same page. E.g. for untouched
1006 * mappings of /dev/null, all processes see the same page full of
1007 * zeroes, and text pages of executables and shared libraries have
1008 * only one copy in memory, at most, normally.
1009 *
1010 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1011 * page_count() == 0 means the page is free. page->lru is then used for
1012 * freelist management in the buddy allocator.
da6052f7 1013 * page_count() > 0 means the page has been allocated.
1da177e4 1014 *
da6052f7
NP
1015 * Pages are allocated by the slab allocator in order to provide memory
1016 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1017 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1018 * unless a particular usage is carefully commented. (the responsibility of
1019 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1020 *
da6052f7
NP
1021 * A page may be used by anyone else who does a __get_free_page().
1022 * In this case, page_count still tracks the references, and should only
1023 * be used through the normal accessor functions. The top bits of page->flags
1024 * and page->virtual store page management information, but all other fields
1025 * are unused and could be used privately, carefully. The management of this
1026 * page is the responsibility of the one who allocated it, and those who have
1027 * subsequently been given references to it.
1028 *
1029 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1030 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1031 * The following discussion applies only to them.
1032 *
da6052f7
NP
1033 * A pagecache page contains an opaque `private' member, which belongs to the
1034 * page's address_space. Usually, this is the address of a circular list of
1035 * the page's disk buffers. PG_private must be set to tell the VM to call
1036 * into the filesystem to release these pages.
1da177e4 1037 *
da6052f7
NP
1038 * A page may belong to an inode's memory mapping. In this case, page->mapping
1039 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1040 * in units of PAGE_SIZE.
1da177e4 1041 *
da6052f7
NP
1042 * If pagecache pages are not associated with an inode, they are said to be
1043 * anonymous pages. These may become associated with the swapcache, and in that
1044 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1045 *
da6052f7
NP
1046 * In either case (swapcache or inode backed), the pagecache itself holds one
1047 * reference to the page. Setting PG_private should also increment the
1048 * refcount. The each user mapping also has a reference to the page.
1da177e4 1049 *
da6052f7 1050 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1051 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1052 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1053 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1054 *
da6052f7 1055 * All pagecache pages may be subject to I/O:
1da177e4
LT
1056 * - inode pages may need to be read from disk,
1057 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1058 * to be written back to the inode on disk,
1059 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1060 * modified may need to be swapped out to swap space and (later) to be read
1061 * back into memory.
1da177e4
LT
1062 */
1063
1064/*
1065 * The zone field is never updated after free_area_init_core()
1066 * sets it, so none of the operations on it need to be atomic.
1da177e4 1067 */
348f8b6c 1068
90572890 1069/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1070#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1071#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1072#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1073#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1074#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1075
348f8b6c 1076/*
25985edc 1077 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1078 * sections we define the shift as 0; that plus a 0 mask ensures
1079 * the compiler will optimise away reference to them.
1080 */
d41dee36
AW
1081#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1082#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1083#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1084#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1085#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1086
bce54bbf
WD
1087/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1088#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1089#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1090#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1091 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1092#else
89689ae7 1093#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1094#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1095 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1096#endif
1097
bd8029b6 1098#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1099
d41dee36
AW
1100#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1101#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1102#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1103#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1104#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1105#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1106
33dd4e0e 1107static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1108{
c403f6a3 1109 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
348f8b6c 1110 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1111}
1da177e4 1112
260ae3f7
DW
1113#ifdef CONFIG_ZONE_DEVICE
1114static inline bool is_zone_device_page(const struct page *page)
1115{
1116 return page_zonenum(page) == ZONE_DEVICE;
1117}
966cf44f
AD
1118extern void memmap_init_zone_device(struct zone *, unsigned long,
1119 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1120#else
1121static inline bool is_zone_device_page(const struct page *page)
1122{
1123 return false;
1124}
7b2d55d2 1125#endif
5042db43 1126
e7638488 1127#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1128void free_devmap_managed_page(struct page *page);
e7638488 1129DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1130
1131static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1132{
1133 if (!static_branch_unlikely(&devmap_managed_key))
1134 return false;
1135 if (!is_zone_device_page(page))
1136 return false;
1137 switch (page->pgmap->type) {
1138 case MEMORY_DEVICE_PRIVATE:
e7638488 1139 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1140 return true;
1141 default:
1142 break;
1143 }
1144 return false;
1145}
1146
07d80269
JH
1147void put_devmap_managed_page(struct page *page);
1148
e7638488 1149#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1150static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1151{
1152 return false;
1153}
07d80269
JH
1154
1155static inline void put_devmap_managed_page(struct page *page)
1156{
1157}
7588adf8 1158#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1159
6b368cd4
JG
1160static inline bool is_device_private_page(const struct page *page)
1161{
7588adf8
RM
1162 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1163 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1164 is_zone_device_page(page) &&
1165 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1166}
e7638488 1167
52916982
LG
1168static inline bool is_pci_p2pdma_page(const struct page *page)
1169{
7588adf8
RM
1170 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1171 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1172 is_zone_device_page(page) &&
1173 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1174}
7b2d55d2 1175
f958d7b5
LT
1176/* 127: arbitrary random number, small enough to assemble well */
1177#define page_ref_zero_or_close_to_overflow(page) \
1178 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1179
3565fce3
DW
1180static inline void get_page(struct page *page)
1181{
1182 page = compound_head(page);
1183 /*
1184 * Getting a normal page or the head of a compound page
0139aa7b 1185 * requires to already have an elevated page->_refcount.
3565fce3 1186 */
f958d7b5 1187 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1188 page_ref_inc(page);
3565fce3
DW
1189}
1190
3faa52c0
JH
1191bool __must_check try_grab_page(struct page *page, unsigned int flags);
1192
88b1a17d
LT
1193static inline __must_check bool try_get_page(struct page *page)
1194{
1195 page = compound_head(page);
1196 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1197 return false;
fe896d18 1198 page_ref_inc(page);
88b1a17d 1199 return true;
3565fce3
DW
1200}
1201
1202static inline void put_page(struct page *page)
1203{
1204 page = compound_head(page);
1205
7b2d55d2 1206 /*
e7638488
DW
1207 * For devmap managed pages we need to catch refcount transition from
1208 * 2 to 1, when refcount reach one it means the page is free and we
1209 * need to inform the device driver through callback. See
7b2d55d2
JG
1210 * include/linux/memremap.h and HMM for details.
1211 */
07d80269
JH
1212 if (page_is_devmap_managed(page)) {
1213 put_devmap_managed_page(page);
7b2d55d2 1214 return;
07d80269 1215 }
7b2d55d2 1216
3565fce3
DW
1217 if (put_page_testzero(page))
1218 __put_page(page);
3565fce3
DW
1219}
1220
3faa52c0
JH
1221/*
1222 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1223 * the page's refcount so that two separate items are tracked: the original page
1224 * reference count, and also a new count of how many pin_user_pages() calls were
1225 * made against the page. ("gup-pinned" is another term for the latter).
1226 *
1227 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1228 * distinct from normal pages. As such, the unpin_user_page() call (and its
1229 * variants) must be used in order to release gup-pinned pages.
1230 *
1231 * Choice of value:
1232 *
1233 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1234 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1235 * simpler, due to the fact that adding an even power of two to the page
1236 * refcount has the effect of using only the upper N bits, for the code that
1237 * counts up using the bias value. This means that the lower bits are left for
1238 * the exclusive use of the original code that increments and decrements by one
1239 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1240 *
3faa52c0
JH
1241 * Of course, once the lower bits overflow into the upper bits (and this is
1242 * OK, because subtraction recovers the original values), then visual inspection
1243 * no longer suffices to directly view the separate counts. However, for normal
1244 * applications that don't have huge page reference counts, this won't be an
1245 * issue.
fc1d8e7c 1246 *
3faa52c0
JH
1247 * Locking: the lockless algorithm described in page_cache_get_speculative()
1248 * and page_cache_gup_pin_speculative() provides safe operation for
1249 * get_user_pages and page_mkclean and other calls that race to set up page
1250 * table entries.
fc1d8e7c 1251 */
3faa52c0 1252#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1253
3faa52c0 1254void unpin_user_page(struct page *page);
f1f6a7dd
JH
1255void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1256 bool make_dirty);
f1f6a7dd 1257void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1258
3faa52c0
JH
1259/**
1260 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1261 *
1262 * This function checks if a page has been pinned via a call to
1263 * pin_user_pages*().
1264 *
1265 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1266 * because it means "definitely not pinned for DMA", but true means "probably
1267 * pinned for DMA, but possibly a false positive due to having at least
1268 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1269 *
1270 * False positives are OK, because: a) it's unlikely for a page to get that many
1271 * refcounts, and b) all the callers of this routine are expected to be able to
1272 * deal gracefully with a false positive.
1273 *
47e29d32
JH
1274 * For huge pages, the result will be exactly correct. That's because we have
1275 * more tracking data available: the 3rd struct page in the compound page is
1276 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1277 * scheme).
1278 *
72ef5e52 1279 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0
JH
1280 *
1281 * @page: pointer to page to be queried.
1282 * @Return: True, if it is likely that the page has been "dma-pinned".
1283 * False, if the page is definitely not dma-pinned.
1284 */
1285static inline bool page_maybe_dma_pinned(struct page *page)
1286{
47e29d32
JH
1287 if (hpage_pincount_available(page))
1288 return compound_pincount(page) > 0;
1289
3faa52c0
JH
1290 /*
1291 * page_ref_count() is signed. If that refcount overflows, then
1292 * page_ref_count() returns a negative value, and callers will avoid
1293 * further incrementing the refcount.
1294 *
1295 * Here, for that overflow case, use the signed bit to count a little
1296 * bit higher via unsigned math, and thus still get an accurate result.
1297 */
1298 return ((unsigned int)page_ref_count(compound_head(page))) >=
1299 GUP_PIN_COUNTING_BIAS;
1300}
1301
9127ab4f
CS
1302#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1303#define SECTION_IN_PAGE_FLAGS
1304#endif
1305
89689ae7 1306/*
7a8010cd
VB
1307 * The identification function is mainly used by the buddy allocator for
1308 * determining if two pages could be buddies. We are not really identifying
1309 * the zone since we could be using the section number id if we do not have
1310 * node id available in page flags.
1311 * We only guarantee that it will return the same value for two combinable
1312 * pages in a zone.
89689ae7 1313 */
cb2b95e1
AW
1314static inline int page_zone_id(struct page *page)
1315{
89689ae7 1316 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1317}
1318
89689ae7 1319#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1320extern int page_to_nid(const struct page *page);
89689ae7 1321#else
33dd4e0e 1322static inline int page_to_nid(const struct page *page)
d41dee36 1323{
f165b378
PT
1324 struct page *p = (struct page *)page;
1325
1326 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1327}
89689ae7
CL
1328#endif
1329
57e0a030 1330#ifdef CONFIG_NUMA_BALANCING
90572890 1331static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1332{
90572890 1333 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1334}
1335
90572890 1336static inline int cpupid_to_pid(int cpupid)
57e0a030 1337{
90572890 1338 return cpupid & LAST__PID_MASK;
57e0a030 1339}
b795854b 1340
90572890 1341static inline int cpupid_to_cpu(int cpupid)
b795854b 1342{
90572890 1343 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1344}
1345
90572890 1346static inline int cpupid_to_nid(int cpupid)
b795854b 1347{
90572890 1348 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1349}
1350
90572890 1351static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1352{
90572890 1353 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1354}
1355
90572890 1356static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1357{
90572890 1358 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1359}
1360
8c8a743c
PZ
1361static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1362{
1363 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1364}
1365
1366#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1367#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1368static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1369{
1ae71d03 1370 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1371}
90572890
PZ
1372
1373static inline int page_cpupid_last(struct page *page)
1374{
1375 return page->_last_cpupid;
1376}
1377static inline void page_cpupid_reset_last(struct page *page)
b795854b 1378{
1ae71d03 1379 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1380}
1381#else
90572890 1382static inline int page_cpupid_last(struct page *page)
75980e97 1383{
90572890 1384 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1385}
1386
90572890 1387extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1388
90572890 1389static inline void page_cpupid_reset_last(struct page *page)
75980e97 1390{
09940a4f 1391 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1392}
90572890
PZ
1393#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1394#else /* !CONFIG_NUMA_BALANCING */
1395static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1396{
90572890 1397 return page_to_nid(page); /* XXX */
57e0a030
MG
1398}
1399
90572890 1400static inline int page_cpupid_last(struct page *page)
57e0a030 1401{
90572890 1402 return page_to_nid(page); /* XXX */
57e0a030
MG
1403}
1404
90572890 1405static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1406{
1407 return -1;
1408}
1409
90572890 1410static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1411{
1412 return -1;
1413}
1414
90572890 1415static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1416{
1417 return -1;
1418}
1419
90572890
PZ
1420static inline int cpu_pid_to_cpupid(int nid, int pid)
1421{
1422 return -1;
1423}
1424
1425static inline bool cpupid_pid_unset(int cpupid)
b795854b 1426{
2b787449 1427 return true;
b795854b
MG
1428}
1429
90572890 1430static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1431{
1432}
8c8a743c
PZ
1433
1434static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1435{
1436 return false;
1437}
90572890 1438#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1439
2e903b91 1440#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1441
2813b9c0
AK
1442static inline u8 page_kasan_tag(const struct page *page)
1443{
34303244
AK
1444 if (kasan_enabled())
1445 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1446 return 0xff;
2813b9c0
AK
1447}
1448
1449static inline void page_kasan_tag_set(struct page *page, u8 tag)
1450{
34303244
AK
1451 if (kasan_enabled()) {
1452 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1453 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1454 }
2813b9c0
AK
1455}
1456
1457static inline void page_kasan_tag_reset(struct page *page)
1458{
34303244
AK
1459 if (kasan_enabled())
1460 page_kasan_tag_set(page, 0xff);
2813b9c0 1461}
34303244
AK
1462
1463#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1464
2813b9c0
AK
1465static inline u8 page_kasan_tag(const struct page *page)
1466{
1467 return 0xff;
1468}
1469
1470static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1471static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1472
1473#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1474
33dd4e0e 1475static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1476{
1477 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1478}
1479
75ef7184
MG
1480static inline pg_data_t *page_pgdat(const struct page *page)
1481{
1482 return NODE_DATA(page_to_nid(page));
1483}
1484
9127ab4f 1485#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1486static inline void set_page_section(struct page *page, unsigned long section)
1487{
1488 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1489 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1490}
1491
aa462abe 1492static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1493{
1494 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1495}
308c05e3 1496#endif
d41dee36 1497
2f1b6248 1498static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1499{
1500 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1501 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1502}
2f1b6248 1503
348f8b6c
DH
1504static inline void set_page_node(struct page *page, unsigned long node)
1505{
1506 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1507 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1508}
89689ae7 1509
2f1b6248 1510static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1511 unsigned long node, unsigned long pfn)
1da177e4 1512{
348f8b6c
DH
1513 set_page_zone(page, zone);
1514 set_page_node(page, node);
9127ab4f 1515#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1516 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1517#endif
1da177e4
LT
1518}
1519
f6ac2354
CL
1520/*
1521 * Some inline functions in vmstat.h depend on page_zone()
1522 */
1523#include <linux/vmstat.h>
1524
33dd4e0e 1525static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1526{
1dff8083 1527 return page_to_virt(page);
1da177e4
LT
1528}
1529
1530#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1531#define HASHED_PAGE_VIRTUAL
1532#endif
1533
1534#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1535static inline void *page_address(const struct page *page)
1536{
1537 return page->virtual;
1538}
1539static inline void set_page_address(struct page *page, void *address)
1540{
1541 page->virtual = address;
1542}
1da177e4
LT
1543#define page_address_init() do { } while(0)
1544#endif
1545
1546#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1547void *page_address(const struct page *page);
1da177e4
LT
1548void set_page_address(struct page *page, void *virtual);
1549void page_address_init(void);
1550#endif
1551
1552#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1553#define page_address(page) lowmem_page_address(page)
1554#define set_page_address(page, address) do { } while(0)
1555#define page_address_init() do { } while(0)
1556#endif
1557
e39155ea
KS
1558extern void *page_rmapping(struct page *page);
1559extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1560extern struct address_space *page_mapping(struct page *page);
1da177e4 1561
f981c595
MG
1562extern struct address_space *__page_file_mapping(struct page *);
1563
1564static inline
1565struct address_space *page_file_mapping(struct page *page)
1566{
1567 if (unlikely(PageSwapCache(page)))
1568 return __page_file_mapping(page);
1569
1570 return page->mapping;
1571}
1572
f6ab1f7f
HY
1573extern pgoff_t __page_file_index(struct page *page);
1574
1da177e4
LT
1575/*
1576 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1577 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1578 */
1579static inline pgoff_t page_index(struct page *page)
1580{
1581 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1582 return __page_file_index(page);
1da177e4
LT
1583 return page->index;
1584}
1585
1aa8aea5 1586bool page_mapped(struct page *page);
bda807d4 1587struct address_space *page_mapping(struct page *page);
cb9f753a 1588struct address_space *page_mapping_file(struct page *page);
1da177e4 1589
2f064f34
MH
1590/*
1591 * Return true only if the page has been allocated with
1592 * ALLOC_NO_WATERMARKS and the low watermark was not
1593 * met implying that the system is under some pressure.
1594 */
1595static inline bool page_is_pfmemalloc(struct page *page)
1596{
1597 /*
1598 * Page index cannot be this large so this must be
1599 * a pfmemalloc page.
1600 */
1601 return page->index == -1UL;
1602}
1603
1604/*
1605 * Only to be called by the page allocator on a freshly allocated
1606 * page.
1607 */
1608static inline void set_page_pfmemalloc(struct page *page)
1609{
1610 page->index = -1UL;
1611}
1612
1613static inline void clear_page_pfmemalloc(struct page *page)
1614{
1615 page->index = 0;
1616}
1617
1c0fe6e3
NP
1618/*
1619 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1620 */
1621extern void pagefault_out_of_memory(void);
1622
1da177e4 1623#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1624#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1da177e4 1625
ddd588b5 1626/*
7bf02ea2 1627 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1628 * various contexts.
1629 */
4b59e6c4 1630#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1631
9af744d7 1632extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1633
710ec38b 1634#ifdef CONFIG_MMU
7f43add4 1635extern bool can_do_mlock(void);
710ec38b
AB
1636#else
1637static inline bool can_do_mlock(void) { return false; }
1638#endif
1da177e4
LT
1639extern int user_shm_lock(size_t, struct user_struct *);
1640extern void user_shm_unlock(size_t, struct user_struct *);
1641
1642/*
1643 * Parameter block passed down to zap_pte_range in exceptional cases.
1644 */
1645struct zap_details {
1da177e4
LT
1646 struct address_space *check_mapping; /* Check page->mapping if set */
1647 pgoff_t first_index; /* Lowest page->index to unmap */
1648 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1649};
1650
25b2995a
CH
1651struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1652 pte_t pte);
28093f9f
GS
1653struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1654 pmd_t pmd);
7e675137 1655
27d036e3
LR
1656void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1657 unsigned long size);
14f5ff5d 1658void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1659 unsigned long size);
4f74d2c8
LT
1660void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1661 unsigned long start, unsigned long end);
e6473092 1662
ac46d4f3
JG
1663struct mmu_notifier_range;
1664
42b77728 1665void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1666 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1667int
1668copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed
CH
1669int follow_pte(struct mm_struct *mm, unsigned long address,
1670 struct mmu_notifier_range *range, pte_t **ptepp, pmd_t **pmdpp,
1671 spinlock_t **ptlp);
3b6748e2
JW
1672int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1673 unsigned long *pfn);
d87fe660 1674int follow_phys(struct vm_area_struct *vma, unsigned long address,
1675 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1676int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1677 void *buf, int len, int write);
1da177e4 1678
7caef267 1679extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1680extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1681void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1682void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1683int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1684int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1685int invalidate_inode_page(struct page *page);
1686
7ee1dd3f 1687#ifdef CONFIG_MMU
2b740303 1688extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1689 unsigned long address, unsigned int flags,
1690 struct pt_regs *regs);
64019a2e 1691extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1692 unsigned long address, unsigned int fault_flags,
1693 bool *unlocked);
977fbdcd
MW
1694void unmap_mapping_pages(struct address_space *mapping,
1695 pgoff_t start, pgoff_t nr, bool even_cows);
1696void unmap_mapping_range(struct address_space *mapping,
1697 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1698#else
2b740303 1699static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1700 unsigned long address, unsigned int flags,
1701 struct pt_regs *regs)
7ee1dd3f
DH
1702{
1703 /* should never happen if there's no MMU */
1704 BUG();
1705 return VM_FAULT_SIGBUS;
1706}
64019a2e 1707static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1708 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1709{
1710 /* should never happen if there's no MMU */
1711 BUG();
1712 return -EFAULT;
1713}
977fbdcd
MW
1714static inline void unmap_mapping_pages(struct address_space *mapping,
1715 pgoff_t start, pgoff_t nr, bool even_cows) { }
1716static inline void unmap_mapping_range(struct address_space *mapping,
1717 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1718#endif
f33ea7f4 1719
977fbdcd
MW
1720static inline void unmap_shared_mapping_range(struct address_space *mapping,
1721 loff_t const holebegin, loff_t const holelen)
1722{
1723 unmap_mapping_range(mapping, holebegin, holelen, 0);
1724}
1725
1726extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1727 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1728extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1729 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
1730extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1731 void *buf, int len, unsigned int gup_flags);
1da177e4 1732
64019a2e 1733long get_user_pages_remote(struct mm_struct *mm,
1e987790 1734 unsigned long start, unsigned long nr_pages,
9beae1ea 1735 unsigned int gup_flags, struct page **pages,
5b56d49f 1736 struct vm_area_struct **vmas, int *locked);
64019a2e 1737long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1738 unsigned long start, unsigned long nr_pages,
1739 unsigned int gup_flags, struct page **pages,
1740 struct vm_area_struct **vmas, int *locked);
c12d2da5 1741long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1742 unsigned int gup_flags, struct page **pages,
cde70140 1743 struct vm_area_struct **vmas);
eddb1c22
JH
1744long pin_user_pages(unsigned long start, unsigned long nr_pages,
1745 unsigned int gup_flags, struct page **pages,
1746 struct vm_area_struct **vmas);
c12d2da5 1747long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1748 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1749long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1750 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1751long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1752 struct page **pages, unsigned int gup_flags);
91429023
JH
1753long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1754 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1755
73b0140b
IW
1756int get_user_pages_fast(unsigned long start, int nr_pages,
1757 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1758int pin_user_pages_fast(unsigned long start, int nr_pages,
1759 unsigned int gup_flags, struct page **pages);
8025e5dd 1760
79eb597c
DJ
1761int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1762int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1763 struct task_struct *task, bool bypass_rlim);
1764
8025e5dd
JK
1765/* Container for pinned pfns / pages */
1766struct frame_vector {
1767 unsigned int nr_allocated; /* Number of frames we have space for */
1768 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1769 bool got_ref; /* Did we pin pages by getting page ref? */
1770 bool is_pfns; /* Does array contain pages or pfns? */
57e86fa1 1771 void *ptrs[]; /* Array of pinned pfns / pages. Use
8025e5dd
JK
1772 * pfns_vector_pages() or pfns_vector_pfns()
1773 * for access */
1774};
1775
1776struct frame_vector *frame_vector_create(unsigned int nr_frames);
1777void frame_vector_destroy(struct frame_vector *vec);
1778int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1779 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1780void put_vaddr_frames(struct frame_vector *vec);
1781int frame_vector_to_pages(struct frame_vector *vec);
1782void frame_vector_to_pfns(struct frame_vector *vec);
1783
1784static inline unsigned int frame_vector_count(struct frame_vector *vec)
1785{
1786 return vec->nr_frames;
1787}
1788
1789static inline struct page **frame_vector_pages(struct frame_vector *vec)
1790{
1791 if (vec->is_pfns) {
1792 int err = frame_vector_to_pages(vec);
1793
1794 if (err)
1795 return ERR_PTR(err);
1796 }
1797 return (struct page **)(vec->ptrs);
1798}
1799
1800static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1801{
1802 if (!vec->is_pfns)
1803 frame_vector_to_pfns(vec);
1804 return (unsigned long *)(vec->ptrs);
1805}
1806
18022c5d
MG
1807struct kvec;
1808int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1809 struct page **pages);
1810int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1811struct page *get_dump_page(unsigned long addr);
1da177e4 1812
cf9a2ae8 1813extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1814extern void do_invalidatepage(struct page *page, unsigned int offset,
1815 unsigned int length);
cf9a2ae8 1816
f82b3764 1817void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1818int __set_page_dirty_nobuffers(struct page *page);
76719325 1819int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1820int redirty_page_for_writepage(struct writeback_control *wbc,
1821 struct page *page);
62cccb8c 1822void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1823void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1824 struct bdi_writeback *wb);
b3c97528 1825int set_page_dirty(struct page *page);
1da177e4 1826int set_page_dirty_lock(struct page *page);
736304f3
JK
1827void __cancel_dirty_page(struct page *page);
1828static inline void cancel_dirty_page(struct page *page)
1829{
1830 /* Avoid atomic ops, locking, etc. when not actually needed. */
1831 if (PageDirty(page))
1832 __cancel_dirty_page(page);
1833}
1da177e4 1834int clear_page_dirty_for_io(struct page *page);
b9ea2515 1835
a9090253 1836int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1837
b6a2fea3
OW
1838extern unsigned long move_page_tables(struct vm_area_struct *vma,
1839 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1840 unsigned long new_addr, unsigned long len,
1841 bool need_rmap_locks);
58705444
PX
1842
1843/*
1844 * Flags used by change_protection(). For now we make it a bitmap so
1845 * that we can pass in multiple flags just like parameters. However
1846 * for now all the callers are only use one of the flags at the same
1847 * time.
1848 */
1849/* Whether we should allow dirty bit accounting */
1850#define MM_CP_DIRTY_ACCT (1UL << 0)
1851/* Whether this protection change is for NUMA hints */
1852#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1853/* Whether this change is for write protecting */
1854#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1855#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1856#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1857 MM_CP_UFFD_WP_RESOLVE)
58705444 1858
7da4d641
PZ
1859extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1860 unsigned long end, pgprot_t newprot,
58705444 1861 unsigned long cp_flags);
b6a2fea3
OW
1862extern int mprotect_fixup(struct vm_area_struct *vma,
1863 struct vm_area_struct **pprev, unsigned long start,
1864 unsigned long end, unsigned long newflags);
1da177e4 1865
465a454f
PZ
1866/*
1867 * doesn't attempt to fault and will return short.
1868 */
dadbb612
SJ
1869int get_user_pages_fast_only(unsigned long start, int nr_pages,
1870 unsigned int gup_flags, struct page **pages);
104acc32
JH
1871int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1872 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1873
1874static inline bool get_user_page_fast_only(unsigned long addr,
1875 unsigned int gup_flags, struct page **pagep)
1876{
1877 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1878}
d559db08
KH
1879/*
1880 * per-process(per-mm_struct) statistics.
1881 */
d559db08
KH
1882static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1883{
69c97823
KK
1884 long val = atomic_long_read(&mm->rss_stat.count[member]);
1885
1886#ifdef SPLIT_RSS_COUNTING
1887 /*
1888 * counter is updated in asynchronous manner and may go to minus.
1889 * But it's never be expected number for users.
1890 */
1891 if (val < 0)
1892 val = 0;
172703b0 1893#endif
69c97823
KK
1894 return (unsigned long)val;
1895}
d559db08 1896
e4dcad20 1897void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1898
d559db08
KH
1899static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1900{
b3d1411b
JFG
1901 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1902
e4dcad20 1903 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1904}
1905
1906static inline void inc_mm_counter(struct mm_struct *mm, int member)
1907{
b3d1411b
JFG
1908 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1909
e4dcad20 1910 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1911}
1912
1913static inline void dec_mm_counter(struct mm_struct *mm, int member)
1914{
b3d1411b
JFG
1915 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1916
e4dcad20 1917 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1918}
1919
eca56ff9
JM
1920/* Optimized variant when page is already known not to be PageAnon */
1921static inline int mm_counter_file(struct page *page)
1922{
1923 if (PageSwapBacked(page))
1924 return MM_SHMEMPAGES;
1925 return MM_FILEPAGES;
1926}
1927
1928static inline int mm_counter(struct page *page)
1929{
1930 if (PageAnon(page))
1931 return MM_ANONPAGES;
1932 return mm_counter_file(page);
1933}
1934
d559db08
KH
1935static inline unsigned long get_mm_rss(struct mm_struct *mm)
1936{
1937 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1938 get_mm_counter(mm, MM_ANONPAGES) +
1939 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1940}
1941
1942static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1943{
1944 return max(mm->hiwater_rss, get_mm_rss(mm));
1945}
1946
1947static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1948{
1949 return max(mm->hiwater_vm, mm->total_vm);
1950}
1951
1952static inline void update_hiwater_rss(struct mm_struct *mm)
1953{
1954 unsigned long _rss = get_mm_rss(mm);
1955
1956 if ((mm)->hiwater_rss < _rss)
1957 (mm)->hiwater_rss = _rss;
1958}
1959
1960static inline void update_hiwater_vm(struct mm_struct *mm)
1961{
1962 if (mm->hiwater_vm < mm->total_vm)
1963 mm->hiwater_vm = mm->total_vm;
1964}
1965
695f0559
PC
1966static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1967{
1968 mm->hiwater_rss = get_mm_rss(mm);
1969}
1970
d559db08
KH
1971static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1972 struct mm_struct *mm)
1973{
1974 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1975
1976 if (*maxrss < hiwater_rss)
1977 *maxrss = hiwater_rss;
1978}
1979
53bddb4e 1980#if defined(SPLIT_RSS_COUNTING)
05af2e10 1981void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1982#else
05af2e10 1983static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1984{
1985}
1986#endif
465a454f 1987
78e7c5af
AK
1988#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1989static inline int pte_special(pte_t pte)
1990{
1991 return 0;
1992}
1993
1994static inline pte_t pte_mkspecial(pte_t pte)
1995{
1996 return pte;
1997}
1998#endif
1999
17596731 2000#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2001static inline int pte_devmap(pte_t pte)
2002{
2003 return 0;
2004}
2005#endif
2006
6d2329f8 2007int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 2008
25ca1d6c
NK
2009extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2010 spinlock_t **ptl);
2011static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2012 spinlock_t **ptl)
2013{
2014 pte_t *ptep;
2015 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2016 return ptep;
2017}
c9cfcddf 2018
c2febafc
KS
2019#ifdef __PAGETABLE_P4D_FOLDED
2020static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2021 unsigned long address)
2022{
2023 return 0;
2024}
2025#else
2026int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2027#endif
2028
b4e98d9a 2029#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2030static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2031 unsigned long address)
2032{
2033 return 0;
2034}
b4e98d9a
KS
2035static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2036static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2037
5f22df00 2038#else
c2febafc 2039int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2040
b4e98d9a
KS
2041static inline void mm_inc_nr_puds(struct mm_struct *mm)
2042{
6d212db1
MS
2043 if (mm_pud_folded(mm))
2044 return;
af5b0f6a 2045 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2046}
2047
2048static inline void mm_dec_nr_puds(struct mm_struct *mm)
2049{
6d212db1
MS
2050 if (mm_pud_folded(mm))
2051 return;
af5b0f6a 2052 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2053}
5f22df00
NP
2054#endif
2055
2d2f5119 2056#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2057static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2058 unsigned long address)
2059{
2060 return 0;
2061}
dc6c9a35 2062
dc6c9a35
KS
2063static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2064static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2065
5f22df00 2066#else
1bb3630e 2067int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2068
dc6c9a35
KS
2069static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2070{
6d212db1
MS
2071 if (mm_pmd_folded(mm))
2072 return;
af5b0f6a 2073 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2074}
2075
2076static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2077{
6d212db1
MS
2078 if (mm_pmd_folded(mm))
2079 return;
af5b0f6a 2080 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2081}
5f22df00
NP
2082#endif
2083
c4812909 2084#ifdef CONFIG_MMU
af5b0f6a 2085static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2086{
af5b0f6a 2087 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2088}
2089
af5b0f6a 2090static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2091{
af5b0f6a 2092 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2093}
2094
2095static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2096{
af5b0f6a 2097 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2098}
2099
2100static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2101{
af5b0f6a 2102 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2103}
2104#else
c4812909 2105
af5b0f6a
KS
2106static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2107static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2108{
2109 return 0;
2110}
2111
2112static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2113static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2114#endif
2115
4cf58924
JFG
2116int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2117int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2118
f949286c
MR
2119#if defined(CONFIG_MMU)
2120
c2febafc
KS
2121static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2122 unsigned long address)
2123{
2124 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2125 NULL : p4d_offset(pgd, address);
2126}
2127
2128static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2129 unsigned long address)
1da177e4 2130{
c2febafc
KS
2131 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2132 NULL : pud_offset(p4d, address);
1da177e4 2133}
d8626138 2134
1da177e4
LT
2135static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2136{
1bb3630e
HD
2137 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2138 NULL: pmd_offset(pud, address);
1da177e4 2139}
f949286c 2140#endif /* CONFIG_MMU */
1bb3630e 2141
57c1ffce 2142#if USE_SPLIT_PTE_PTLOCKS
597d795a 2143#if ALLOC_SPLIT_PTLOCKS
b35f1819 2144void __init ptlock_cache_init(void);
539edb58
PZ
2145extern bool ptlock_alloc(struct page *page);
2146extern void ptlock_free(struct page *page);
2147
2148static inline spinlock_t *ptlock_ptr(struct page *page)
2149{
2150 return page->ptl;
2151}
597d795a 2152#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2153static inline void ptlock_cache_init(void)
2154{
2155}
2156
49076ec2
KS
2157static inline bool ptlock_alloc(struct page *page)
2158{
49076ec2
KS
2159 return true;
2160}
539edb58 2161
49076ec2
KS
2162static inline void ptlock_free(struct page *page)
2163{
49076ec2
KS
2164}
2165
2166static inline spinlock_t *ptlock_ptr(struct page *page)
2167{
539edb58 2168 return &page->ptl;
49076ec2 2169}
597d795a 2170#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2171
2172static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2173{
2174 return ptlock_ptr(pmd_page(*pmd));
2175}
2176
2177static inline bool ptlock_init(struct page *page)
2178{
2179 /*
2180 * prep_new_page() initialize page->private (and therefore page->ptl)
2181 * with 0. Make sure nobody took it in use in between.
2182 *
2183 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2184 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2185 */
309381fe 2186 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2187 if (!ptlock_alloc(page))
2188 return false;
2189 spin_lock_init(ptlock_ptr(page));
2190 return true;
2191}
2192
57c1ffce 2193#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2194/*
2195 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2196 */
49076ec2
KS
2197static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2198{
2199 return &mm->page_table_lock;
2200}
b35f1819 2201static inline void ptlock_cache_init(void) {}
49076ec2 2202static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2203static inline void ptlock_free(struct page *page) {}
57c1ffce 2204#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2205
b35f1819
KS
2206static inline void pgtable_init(void)
2207{
2208 ptlock_cache_init();
2209 pgtable_cache_init();
2210}
2211
b4ed71f5 2212static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2213{
706874e9
VD
2214 if (!ptlock_init(page))
2215 return false;
1d40a5ea 2216 __SetPageTable(page);
f0c0c115 2217 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2218 return true;
2f569afd
MS
2219}
2220
b4ed71f5 2221static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2222{
9e247bab 2223 ptlock_free(page);
1d40a5ea 2224 __ClearPageTable(page);
f0c0c115 2225 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2226}
2227
c74df32c
HD
2228#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2229({ \
4c21e2f2 2230 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2231 pte_t *__pte = pte_offset_map(pmd, address); \
2232 *(ptlp) = __ptl; \
2233 spin_lock(__ptl); \
2234 __pte; \
2235})
2236
2237#define pte_unmap_unlock(pte, ptl) do { \
2238 spin_unlock(ptl); \
2239 pte_unmap(pte); \
2240} while (0)
2241
4cf58924 2242#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2243
2244#define pte_alloc_map(mm, pmd, address) \
4cf58924 2245 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2246
c74df32c 2247#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2248 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2249 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2250
1bb3630e 2251#define pte_alloc_kernel(pmd, address) \
4cf58924 2252 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2253 NULL: pte_offset_kernel(pmd, address))
1da177e4 2254
e009bb30
KS
2255#if USE_SPLIT_PMD_PTLOCKS
2256
634391ac
MS
2257static struct page *pmd_to_page(pmd_t *pmd)
2258{
2259 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2260 return virt_to_page((void *)((unsigned long) pmd & mask));
2261}
2262
e009bb30
KS
2263static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2264{
634391ac 2265 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2266}
2267
b2b29d6d 2268static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2269{
e009bb30
KS
2270#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2271 page->pmd_huge_pte = NULL;
2272#endif
49076ec2 2273 return ptlock_init(page);
e009bb30
KS
2274}
2275
b2b29d6d 2276static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2277{
2278#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2279 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2280#endif
49076ec2 2281 ptlock_free(page);
e009bb30
KS
2282}
2283
634391ac 2284#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2285
2286#else
2287
9a86cb7b
KS
2288static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2289{
2290 return &mm->page_table_lock;
2291}
2292
b2b29d6d
MW
2293static inline bool pmd_ptlock_init(struct page *page) { return true; }
2294static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2295
c389a250 2296#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2297
e009bb30
KS
2298#endif
2299
9a86cb7b
KS
2300static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2301{
2302 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2303 spin_lock(ptl);
2304 return ptl;
2305}
2306
b2b29d6d
MW
2307static inline bool pgtable_pmd_page_ctor(struct page *page)
2308{
2309 if (!pmd_ptlock_init(page))
2310 return false;
2311 __SetPageTable(page);
f0c0c115 2312 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2313 return true;
2314}
2315
2316static inline void pgtable_pmd_page_dtor(struct page *page)
2317{
2318 pmd_ptlock_free(page);
2319 __ClearPageTable(page);
f0c0c115 2320 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2321}
2322
a00cc7d9
MW
2323/*
2324 * No scalability reason to split PUD locks yet, but follow the same pattern
2325 * as the PMD locks to make it easier if we decide to. The VM should not be
2326 * considered ready to switch to split PUD locks yet; there may be places
2327 * which need to be converted from page_table_lock.
2328 */
2329static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2330{
2331 return &mm->page_table_lock;
2332}
2333
2334static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2335{
2336 spinlock_t *ptl = pud_lockptr(mm, pud);
2337
2338 spin_lock(ptl);
2339 return ptl;
2340}
62906027 2341
a00cc7d9 2342extern void __init pagecache_init(void);
bc9331a1 2343extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2344extern void free_initmem(void);
2345
69afade7
JL
2346/*
2347 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2348 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2349 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2350 * Return pages freed into the buddy system.
2351 */
11199692 2352extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2353 int poison, const char *s);
c3d5f5f0 2354
cfa11e08
JL
2355#ifdef CONFIG_HIGHMEM
2356/*
2357 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2358 * and totalram_pages.
2359 */
2360extern void free_highmem_page(struct page *page);
2361#endif
69afade7 2362
c3d5f5f0 2363extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2364extern void mem_init_print_info(const char *str);
69afade7 2365
4b50bcc7 2366extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2367
69afade7
JL
2368/* Free the reserved page into the buddy system, so it gets managed. */
2369static inline void __free_reserved_page(struct page *page)
2370{
2371 ClearPageReserved(page);
2372 init_page_count(page);
2373 __free_page(page);
2374}
2375
2376static inline void free_reserved_page(struct page *page)
2377{
2378 __free_reserved_page(page);
2379 adjust_managed_page_count(page, 1);
2380}
2381
2382static inline void mark_page_reserved(struct page *page)
2383{
2384 SetPageReserved(page);
2385 adjust_managed_page_count(page, -1);
2386}
2387
2388/*
2389 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2390 * The freed pages will be poisoned with pattern "poison" if it's within
2391 * range [0, UCHAR_MAX].
2392 * Return pages freed into the buddy system.
69afade7
JL
2393 */
2394static inline unsigned long free_initmem_default(int poison)
2395{
2396 extern char __init_begin[], __init_end[];
2397
11199692 2398 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2399 poison, "unused kernel");
2400}
2401
7ee3d4e8
JL
2402static inline unsigned long get_num_physpages(void)
2403{
2404 int nid;
2405 unsigned long phys_pages = 0;
2406
2407 for_each_online_node(nid)
2408 phys_pages += node_present_pages(nid);
2409
2410 return phys_pages;
2411}
2412
c713216d 2413/*
3f08a302 2414 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2415 * zones, allocate the backing mem_map and account for memory holes in an
2416 * architecture independent manner.
c713216d
MG
2417 *
2418 * An architecture is expected to register range of page frames backed by
0ee332c1 2419 * physical memory with memblock_add[_node]() before calling
9691a071 2420 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2421 * usage, an architecture is expected to do something like
2422 *
2423 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2424 * max_highmem_pfn};
2425 * for_each_valid_physical_page_range()
0ee332c1 2426 * memblock_add_node(base, size, nid)
9691a071 2427 * free_area_init(max_zone_pfns);
c713216d 2428 */
9691a071 2429void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2430unsigned long node_map_pfn_alignment(void);
32996250
YL
2431unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2432 unsigned long end_pfn);
c713216d
MG
2433extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2434 unsigned long end_pfn);
2435extern void get_pfn_range_for_nid(unsigned int nid,
2436 unsigned long *start_pfn, unsigned long *end_pfn);
2437extern unsigned long find_min_pfn_with_active_regions(void);
f2dbcfa7 2438
3f08a302 2439#ifndef CONFIG_NEED_MULTIPLE_NODES
6f24fbd3 2440static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2441{
2442 return 0;
2443}
2444#else
2445/* please see mm/page_alloc.c */
2446extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2447#endif
2448
0e0b864e 2449extern void set_dma_reserve(unsigned long new_dma_reserve);
dc2da7b4
BH
2450extern void memmap_init_zone(unsigned long, int, unsigned long,
2451 unsigned long, unsigned long, enum meminit_context,
2452 struct vmem_altmap *, int migratetype);
bc75d33f 2453extern void setup_per_zone_wmarks(void);
1b79acc9 2454extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2455extern void mem_init(void);
8feae131 2456extern void __init mmap_init(void);
9af744d7 2457extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2458extern long si_mem_available(void);
1da177e4
LT
2459extern void si_meminfo(struct sysinfo * val);
2460extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2461#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2462extern unsigned long arch_reserved_kernel_pages(void);
2463#endif
1da177e4 2464
a8e99259
MH
2465extern __printf(3, 4)
2466void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2467
e7c8d5c9 2468extern void setup_per_cpu_pageset(void);
e7c8d5c9 2469
75f7ad8e
PS
2470/* page_alloc.c */
2471extern int min_free_kbytes;
1c30844d 2472extern int watermark_boost_factor;
795ae7a0 2473extern int watermark_scale_factor;
51930df5 2474extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2475
8feae131 2476/* nommu.c */
33e5d769 2477extern atomic_long_t mmap_pages_allocated;
7e660872 2478extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2479
6b2dbba8 2480/* interval_tree.c */
6b2dbba8 2481void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2482 struct rb_root_cached *root);
9826a516
ML
2483void vma_interval_tree_insert_after(struct vm_area_struct *node,
2484 struct vm_area_struct *prev,
f808c13f 2485 struct rb_root_cached *root);
6b2dbba8 2486void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2487 struct rb_root_cached *root);
2488struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2489 unsigned long start, unsigned long last);
2490struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2491 unsigned long start, unsigned long last);
2492
2493#define vma_interval_tree_foreach(vma, root, start, last) \
2494 for (vma = vma_interval_tree_iter_first(root, start, last); \
2495 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2496
bf181b9f 2497void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2498 struct rb_root_cached *root);
bf181b9f 2499void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2500 struct rb_root_cached *root);
2501struct anon_vma_chain *
2502anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2503 unsigned long start, unsigned long last);
bf181b9f
ML
2504struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2505 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2506#ifdef CONFIG_DEBUG_VM_RB
2507void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2508#endif
bf181b9f
ML
2509
2510#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2511 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2512 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2513
1da177e4 2514/* mmap.c */
34b4e4aa 2515extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2516extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2517 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2518 struct vm_area_struct *expand);
2519static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2520 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2521{
2522 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2523}
1da177e4
LT
2524extern struct vm_area_struct *vma_merge(struct mm_struct *,
2525 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2526 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2527 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2528extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2529extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2530 unsigned long addr, int new_below);
2531extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2532 unsigned long addr, int new_below);
1da177e4
LT
2533extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2534extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2535 struct rb_node **, struct rb_node *);
a8fb5618 2536extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2537extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2538 unsigned long addr, unsigned long len, pgoff_t pgoff,
2539 bool *need_rmap_locks);
1da177e4 2540extern void exit_mmap(struct mm_struct *);
925d1c40 2541
9c599024
CG
2542static inline int check_data_rlimit(unsigned long rlim,
2543 unsigned long new,
2544 unsigned long start,
2545 unsigned long end_data,
2546 unsigned long start_data)
2547{
2548 if (rlim < RLIM_INFINITY) {
2549 if (((new - start) + (end_data - start_data)) > rlim)
2550 return -ENOSPC;
2551 }
2552
2553 return 0;
2554}
2555
7906d00c
AA
2556extern int mm_take_all_locks(struct mm_struct *mm);
2557extern void mm_drop_all_locks(struct mm_struct *mm);
2558
38646013
JS
2559extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2560extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2561extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2562
84638335
KK
2563extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2564extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2565
2eefd878
DS
2566extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2567 const struct vm_special_mapping *sm);
3935ed6a
SS
2568extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2569 unsigned long addr, unsigned long len,
a62c34bd
AL
2570 unsigned long flags,
2571 const struct vm_special_mapping *spec);
2572/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2573extern int install_special_mapping(struct mm_struct *mm,
2574 unsigned long addr, unsigned long len,
2575 unsigned long flags, struct page **pages);
1da177e4 2576
649775be
AG
2577unsigned long randomize_stack_top(unsigned long stack_top);
2578
1da177e4
LT
2579extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2580
0165ab44 2581extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2582 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2583 struct list_head *uf);
1fcfd8db 2584extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2585 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2586 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2587extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2588 struct list_head *uf, bool downgrade);
897ab3e0
MR
2589extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2590 struct list_head *uf);
0726b01e 2591extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2592
bebeb3d6
ML
2593#ifdef CONFIG_MMU
2594extern int __mm_populate(unsigned long addr, unsigned long len,
2595 int ignore_errors);
2596static inline void mm_populate(unsigned long addr, unsigned long len)
2597{
2598 /* Ignore errors */
2599 (void) __mm_populate(addr, len, 1);
2600}
2601#else
2602static inline void mm_populate(unsigned long addr, unsigned long len) {}
2603#endif
2604
e4eb1ff6 2605/* These take the mm semaphore themselves */
5d22fc25 2606extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2607extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2608extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2609extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2610 unsigned long, unsigned long,
2611 unsigned long, unsigned long);
1da177e4 2612
db4fbfb9
ML
2613struct vm_unmapped_area_info {
2614#define VM_UNMAPPED_AREA_TOPDOWN 1
2615 unsigned long flags;
2616 unsigned long length;
2617 unsigned long low_limit;
2618 unsigned long high_limit;
2619 unsigned long align_mask;
2620 unsigned long align_offset;
2621};
2622
baceaf1c 2623extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2624
85821aab 2625/* truncate.c */
1da177e4 2626extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2627extern void truncate_inode_pages_range(struct address_space *,
2628 loff_t lstart, loff_t lend);
91b0abe3 2629extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2630
2631/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2632extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2633extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2634 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2635extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2636
2637/* mm/page-writeback.c */
2b69c828 2638int __must_check write_one_page(struct page *page);
1cf6e7d8 2639void task_dirty_inc(struct task_struct *tsk);
1da177e4 2640
1be7107f 2641extern unsigned long stack_guard_gap;
d05f3169 2642/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2643extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2644
11192337 2645/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2646extern int expand_downwards(struct vm_area_struct *vma,
2647 unsigned long address);
8ca3eb08 2648#if VM_GROWSUP
46dea3d0 2649extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2650#else
fee7e49d 2651 #define expand_upwards(vma, address) (0)
9ab88515 2652#endif
1da177e4
LT
2653
2654/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2655extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2656extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2657 struct vm_area_struct **pprev);
2658
2659/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2660 NULL if none. Assume start_addr < end_addr. */
2661static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2662{
2663 struct vm_area_struct * vma = find_vma(mm,start_addr);
2664
2665 if (vma && end_addr <= vma->vm_start)
2666 vma = NULL;
2667 return vma;
2668}
2669
1be7107f
HD
2670static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2671{
2672 unsigned long vm_start = vma->vm_start;
2673
2674 if (vma->vm_flags & VM_GROWSDOWN) {
2675 vm_start -= stack_guard_gap;
2676 if (vm_start > vma->vm_start)
2677 vm_start = 0;
2678 }
2679 return vm_start;
2680}
2681
2682static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2683{
2684 unsigned long vm_end = vma->vm_end;
2685
2686 if (vma->vm_flags & VM_GROWSUP) {
2687 vm_end += stack_guard_gap;
2688 if (vm_end < vma->vm_end)
2689 vm_end = -PAGE_SIZE;
2690 }
2691 return vm_end;
2692}
2693
1da177e4
LT
2694static inline unsigned long vma_pages(struct vm_area_struct *vma)
2695{
2696 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2697}
2698
640708a2
PE
2699/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2700static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2701 unsigned long vm_start, unsigned long vm_end)
2702{
2703 struct vm_area_struct *vma = find_vma(mm, vm_start);
2704
2705 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2706 vma = NULL;
2707
2708 return vma;
2709}
2710
017b1660
MK
2711static inline bool range_in_vma(struct vm_area_struct *vma,
2712 unsigned long start, unsigned long end)
2713{
2714 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2715}
2716
bad849b3 2717#ifdef CONFIG_MMU
804af2cf 2718pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2719void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2720#else
2721static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2722{
2723 return __pgprot(0);
2724}
64e45507
PF
2725static inline void vma_set_page_prot(struct vm_area_struct *vma)
2726{
2727 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2728}
bad849b3
DH
2729#endif
2730
295992fb
CK
2731void vma_set_file(struct vm_area_struct *vma, struct file *file);
2732
5877231f 2733#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2734unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2735 unsigned long start, unsigned long end);
2736#endif
2737
deceb6cd 2738struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2739int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2740 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2741int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2742int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2743 struct page **pages, unsigned long *num);
a667d745
SJ
2744int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2745 unsigned long num);
2746int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2747 unsigned long num);
ae2b01f3 2748vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2749 unsigned long pfn);
f5e6d1d5
MW
2750vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2751 unsigned long pfn, pgprot_t pgprot);
5d747637 2752vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2753 pfn_t pfn);
574c5b3d
TH
2754vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2755 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2756vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2757 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2758int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2759
1c8f4220
SJ
2760static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2761 unsigned long addr, struct page *page)
2762{
2763 int err = vm_insert_page(vma, addr, page);
2764
2765 if (err == -ENOMEM)
2766 return VM_FAULT_OOM;
2767 if (err < 0 && err != -EBUSY)
2768 return VM_FAULT_SIGBUS;
2769
2770 return VM_FAULT_NOPAGE;
2771}
2772
f8f6ae5d
JG
2773#ifndef io_remap_pfn_range
2774static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2775 unsigned long addr, unsigned long pfn,
2776 unsigned long size, pgprot_t prot)
2777{
2778 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2779}
2780#endif
2781
d97baf94
SJ
2782static inline vm_fault_t vmf_error(int err)
2783{
2784 if (err == -ENOMEM)
2785 return VM_FAULT_OOM;
2786 return VM_FAULT_SIGBUS;
2787}
2788
df06b37f
KB
2789struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2790 unsigned int foll_flags);
240aadee 2791
deceb6cd
HD
2792#define FOLL_WRITE 0x01 /* check pte is writable */
2793#define FOLL_TOUCH 0x02 /* mark page accessed */
2794#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2795#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2796#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2797#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2798 * and return without waiting upon it */
84d33df2 2799#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2800#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2801#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2802#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2803#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2804#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2805#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2806#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2807#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2808#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2809#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2810#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2811#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2812#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2813
2814/*
eddb1c22
JH
2815 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2816 * other. Here is what they mean, and how to use them:
932f4a63
IW
2817 *
2818 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2819 * period _often_ under userspace control. This is in contrast to
2820 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2821 *
2822 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2823 * lifetime enforced by the filesystem and we need guarantees that longterm
2824 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2825 * the filesystem. Ideas for this coordination include revoking the longterm
2826 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2827 * added after the problem with filesystems was found FS DAX VMAs are
2828 * specifically failed. Filesystem pages are still subject to bugs and use of
2829 * FOLL_LONGTERM should be avoided on those pages.
2830 *
2831 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2832 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2833 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2834 * is due to an incompatibility with the FS DAX check and
eddb1c22 2835 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2836 *
eddb1c22
JH
2837 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2838 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2839 * FOLL_LONGTERM is specified.
eddb1c22
JH
2840 *
2841 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2842 * but an additional pin counting system) will be invoked. This is intended for
2843 * anything that gets a page reference and then touches page data (for example,
2844 * Direct IO). This lets the filesystem know that some non-file-system entity is
2845 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2846 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2847 * a call to unpin_user_page().
eddb1c22
JH
2848 *
2849 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2850 * and separate refcounting mechanisms, however, and that means that each has
2851 * its own acquire and release mechanisms:
2852 *
2853 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2854 *
f1f6a7dd 2855 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2856 *
2857 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2858 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2859 * calls applied to them, and that's perfectly OK. This is a constraint on the
2860 * callers, not on the pages.)
2861 *
2862 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2863 * directly by the caller. That's in order to help avoid mismatches when
2864 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2865 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2866 *
72ef5e52 2867 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2868 */
1da177e4 2869
2b740303 2870static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2871{
2872 if (vm_fault & VM_FAULT_OOM)
2873 return -ENOMEM;
2874 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2875 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2876 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2877 return -EFAULT;
2878 return 0;
2879}
2880
8b1e0f81 2881typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2882extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2883 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2884extern int apply_to_existing_page_range(struct mm_struct *mm,
2885 unsigned long address, unsigned long size,
2886 pte_fn_t fn, void *data);
aee16b3c 2887
04013513 2888extern void init_mem_debugging_and_hardening(void);
8823b1db 2889#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
2890extern void __kernel_poison_pages(struct page *page, int numpages);
2891extern void __kernel_unpoison_pages(struct page *page, int numpages);
2892extern bool _page_poisoning_enabled_early;
2893DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2894static inline bool page_poisoning_enabled(void)
2895{
2896 return _page_poisoning_enabled_early;
2897}
2898/*
2899 * For use in fast paths after init_mem_debugging() has run, or when a
2900 * false negative result is not harmful when called too early.
2901 */
2902static inline bool page_poisoning_enabled_static(void)
2903{
2904 return static_branch_unlikely(&_page_poisoning_enabled);
2905}
2906static inline void kernel_poison_pages(struct page *page, int numpages)
2907{
2908 if (page_poisoning_enabled_static())
2909 __kernel_poison_pages(page, numpages);
2910}
2911static inline void kernel_unpoison_pages(struct page *page, int numpages)
2912{
2913 if (page_poisoning_enabled_static())
2914 __kernel_unpoison_pages(page, numpages);
2915}
8823b1db
LA
2916#else
2917static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 2918static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 2919static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
2920static inline void kernel_poison_pages(struct page *page, int numpages) { }
2921static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
2922#endif
2923
6471384a 2924DECLARE_STATIC_KEY_FALSE(init_on_alloc);
6471384a
AP
2925static inline bool want_init_on_alloc(gfp_t flags)
2926{
04013513 2927 if (static_branch_unlikely(&init_on_alloc))
6471384a
AP
2928 return true;
2929 return flags & __GFP_ZERO;
2930}
2931
6471384a 2932DECLARE_STATIC_KEY_FALSE(init_on_free);
6471384a
AP
2933static inline bool want_init_on_free(void)
2934{
04013513 2935 return static_branch_unlikely(&init_on_free);
6471384a
AP
2936}
2937
8e57f8ac
VB
2938extern bool _debug_pagealloc_enabled_early;
2939DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
2940
2941static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
2942{
2943 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2944 _debug_pagealloc_enabled_early;
2945}
2946
2947/*
2948 * For use in fast paths after init_debug_pagealloc() has run, or when a
2949 * false negative result is not harmful when called too early.
2950 */
2951static inline bool debug_pagealloc_enabled_static(void)
031bc574 2952{
96a2b03f
VB
2953 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2954 return false;
2955
2956 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
2957}
2958
5d6ad668 2959#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 2960/*
5d6ad668
MR
2961 * To support DEBUG_PAGEALLOC architecture must ensure that
2962 * __kernel_map_pages() never fails
c87cbc1f 2963 */
d6332692
RE
2964extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2965
77bc7fd6
MR
2966static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
2967{
2968 if (debug_pagealloc_enabled_static())
2969 __kernel_map_pages(page, numpages, 1);
2970}
2971
2972static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
2973{
2974 if (debug_pagealloc_enabled_static())
2975 __kernel_map_pages(page, numpages, 0);
2976}
5d6ad668 2977#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
2978static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
2979static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 2980#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2981
a6c19dfe 2982#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2983extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2984extern int in_gate_area_no_mm(unsigned long addr);
2985extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2986#else
a6c19dfe
AL
2987static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2988{
2989 return NULL;
2990}
2991static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2992static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2993{
2994 return 0;
2995}
1da177e4
LT
2996#endif /* __HAVE_ARCH_GATE_AREA */
2997
44a70ade
MH
2998extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2999
146732ce
JT
3000#ifdef CONFIG_SYSCTL
3001extern int sysctl_drop_caches;
32927393
CH
3002int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3003 loff_t *);
146732ce
JT
3004#endif
3005
cb731d6c
VD
3006void drop_slab(void);
3007void drop_slab_node(int nid);
9d0243bc 3008
7a9166e3
LY
3009#ifndef CONFIG_MMU
3010#define randomize_va_space 0
3011#else
a62eaf15 3012extern int randomize_va_space;
7a9166e3 3013#endif
a62eaf15 3014
045e72ac 3015const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3016#ifdef CONFIG_MMU
03252919 3017void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3018#else
3019static inline void print_vma_addr(char *prefix, unsigned long rip)
3020{
3021}
3022#endif
e6e5494c 3023
35fd1eb1 3024void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
3025struct page * __populate_section_memmap(unsigned long pfn,
3026 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 3027pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3028p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3029pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3030pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7
AK
3031pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3032 struct vmem_altmap *altmap);
8f6aac41 3033void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3034struct vmem_altmap;
56993b4e
AK
3035void *vmemmap_alloc_block_buf(unsigned long size, int node,
3036 struct vmem_altmap *altmap);
8f6aac41 3037void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 3038int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3039 int node, struct vmem_altmap *altmap);
7b73d978
CH
3040int vmemmap_populate(unsigned long start, unsigned long end, int node,
3041 struct vmem_altmap *altmap);
c2b91e2e 3042void vmemmap_populate_print_last(void);
0197518c 3043#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3044void vmemmap_free(unsigned long start, unsigned long end,
3045 struct vmem_altmap *altmap);
0197518c 3046#endif
46723bfa 3047void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3048 unsigned long nr_pages);
6a46079c 3049
82ba011b
AK
3050enum mf_flags {
3051 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3052 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3053 MF_MUST_KILL = 1 << 2,
cf870c70 3054 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 3055};
83b57531
EB
3056extern int memory_failure(unsigned long pfn, int flags);
3057extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3058extern void memory_failure_queue_kick(int cpu);
847ce401 3059extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3060extern int sysctl_memory_failure_early_kill;
3061extern int sysctl_memory_failure_recovery;
facb6011 3062extern void shake_page(struct page *p, int access);
5844a486 3063extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3064extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3065
cc637b17
XX
3066
3067/*
3068 * Error handlers for various types of pages.
3069 */
cc3e2af4 3070enum mf_result {
cc637b17
XX
3071 MF_IGNORED, /* Error: cannot be handled */
3072 MF_FAILED, /* Error: handling failed */
3073 MF_DELAYED, /* Will be handled later */
3074 MF_RECOVERED, /* Successfully recovered */
3075};
3076
3077enum mf_action_page_type {
3078 MF_MSG_KERNEL,
3079 MF_MSG_KERNEL_HIGH_ORDER,
3080 MF_MSG_SLAB,
3081 MF_MSG_DIFFERENT_COMPOUND,
3082 MF_MSG_POISONED_HUGE,
3083 MF_MSG_HUGE,
3084 MF_MSG_FREE_HUGE,
31286a84 3085 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3086 MF_MSG_UNMAP_FAILED,
3087 MF_MSG_DIRTY_SWAPCACHE,
3088 MF_MSG_CLEAN_SWAPCACHE,
3089 MF_MSG_DIRTY_MLOCKED_LRU,
3090 MF_MSG_CLEAN_MLOCKED_LRU,
3091 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3092 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3093 MF_MSG_DIRTY_LRU,
3094 MF_MSG_CLEAN_LRU,
3095 MF_MSG_TRUNCATED_LRU,
3096 MF_MSG_BUDDY,
3097 MF_MSG_BUDDY_2ND,
6100e34b 3098 MF_MSG_DAX,
5d1fd5dc 3099 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3100 MF_MSG_UNKNOWN,
3101};
3102
47ad8475
AA
3103#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3104extern void clear_huge_page(struct page *page,
c79b57e4 3105 unsigned long addr_hint,
47ad8475
AA
3106 unsigned int pages_per_huge_page);
3107extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3108 unsigned long addr_hint,
3109 struct vm_area_struct *vma,
47ad8475 3110 unsigned int pages_per_huge_page);
fa4d75c1
MK
3111extern long copy_huge_page_from_user(struct page *dst_page,
3112 const void __user *usr_src,
810a56b9
MK
3113 unsigned int pages_per_huge_page,
3114 bool allow_pagefault);
2484ca9b
THV
3115
3116/**
3117 * vma_is_special_huge - Are transhuge page-table entries considered special?
3118 * @vma: Pointer to the struct vm_area_struct to consider
3119 *
3120 * Whether transhuge page-table entries are considered "special" following
3121 * the definition in vm_normal_page().
3122 *
3123 * Return: true if transhuge page-table entries should be considered special,
3124 * false otherwise.
3125 */
3126static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3127{
3128 return vma_is_dax(vma) || (vma->vm_file &&
3129 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3130}
3131
47ad8475
AA
3132#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3133
c0a32fc5
SG
3134#ifdef CONFIG_DEBUG_PAGEALLOC
3135extern unsigned int _debug_guardpage_minorder;
96a2b03f 3136DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3137
3138static inline unsigned int debug_guardpage_minorder(void)
3139{
3140 return _debug_guardpage_minorder;
3141}
3142
e30825f1
JK
3143static inline bool debug_guardpage_enabled(void)
3144{
96a2b03f 3145 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3146}
3147
c0a32fc5
SG
3148static inline bool page_is_guard(struct page *page)
3149{
e30825f1
JK
3150 if (!debug_guardpage_enabled())
3151 return false;
3152
3972f6bb 3153 return PageGuard(page);
c0a32fc5
SG
3154}
3155#else
3156static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3157static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3158static inline bool page_is_guard(struct page *page) { return false; }
3159#endif /* CONFIG_DEBUG_PAGEALLOC */
3160
f9872caf
CS
3161#if MAX_NUMNODES > 1
3162void __init setup_nr_node_ids(void);
3163#else
3164static inline void setup_nr_node_ids(void) {}
3165#endif
3166
010c164a
SL
3167extern int memcmp_pages(struct page *page1, struct page *page2);
3168
3169static inline int pages_identical(struct page *page1, struct page *page2)
3170{
3171 return !memcmp_pages(page1, page2);
3172}
3173
c5acad84
TH
3174#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3175unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3176 pgoff_t first_index, pgoff_t nr,
3177 pgoff_t bitmap_pgoff,
3178 unsigned long *bitmap,
3179 pgoff_t *start,
3180 pgoff_t *end);
3181
3182unsigned long wp_shared_mapping_range(struct address_space *mapping,
3183 pgoff_t first_index, pgoff_t nr);
3184#endif
3185
2374c09b
CH
3186extern int sysctl_nr_trim_pages;
3187
1da177e4
LT
3188#endif /* __KERNEL__ */
3189#endif /* _LINUX_MM_H */