mm: unexport follow_pte_pmd
[linux-2.6-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
9740ca4e 18#include <linux/mmap_lock.h>
08677214 19#include <linux/range.h>
c6f6b596 20#include <linux/pfn.h>
3565fce3 21#include <linux/percpu-refcount.h>
e9da73d6 22#include <linux/bit_spinlock.h>
b0d40c92 23#include <linux/shrinker.h>
9c599024 24#include <linux/resource.h>
e30825f1 25#include <linux/page_ext.h>
8025e5dd 26#include <linux/err.h>
41901567 27#include <linux/page-flags.h>
fe896d18 28#include <linux/page_ref.h>
7b2d55d2 29#include <linux/memremap.h>
3b3b1a29 30#include <linux/overflow.h>
b5420237 31#include <linux/sizes.h>
7969f226 32#include <linux/sched.h>
65fddcfc 33#include <linux/pgtable.h>
1da177e4
LT
34
35struct mempolicy;
36struct anon_vma;
bf181b9f 37struct anon_vma_chain;
4e950f6f 38struct file_ra_state;
e8edc6e0 39struct user_struct;
4e950f6f 40struct writeback_control;
682aa8e1 41struct bdi_writeback;
bce617ed 42struct pt_regs;
1da177e4 43
5ef64cc8
LT
44extern int sysctl_page_lock_unfairness;
45
597b7305
MH
46void init_mm_internals(void);
47
fccc9987 48#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 49extern unsigned long max_mapnr;
fccc9987
JL
50
51static inline void set_max_mapnr(unsigned long limit)
52{
53 max_mapnr = limit;
54}
55#else
56static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
57#endif
58
ca79b0c2
AK
59extern atomic_long_t _totalram_pages;
60static inline unsigned long totalram_pages(void)
61{
62 return (unsigned long)atomic_long_read(&_totalram_pages);
63}
64
65static inline void totalram_pages_inc(void)
66{
67 atomic_long_inc(&_totalram_pages);
68}
69
70static inline void totalram_pages_dec(void)
71{
72 atomic_long_dec(&_totalram_pages);
73}
74
75static inline void totalram_pages_add(long count)
76{
77 atomic_long_add(count, &_totalram_pages);
78}
79
1da177e4 80extern void * high_memory;
1da177e4
LT
81extern int page_cluster;
82
83#ifdef CONFIG_SYSCTL
84extern int sysctl_legacy_va_layout;
85#else
86#define sysctl_legacy_va_layout 0
87#endif
88
d07e2259
DC
89#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90extern const int mmap_rnd_bits_min;
91extern const int mmap_rnd_bits_max;
92extern int mmap_rnd_bits __read_mostly;
93#endif
94#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95extern const int mmap_rnd_compat_bits_min;
96extern const int mmap_rnd_compat_bits_max;
97extern int mmap_rnd_compat_bits __read_mostly;
98#endif
99
1da177e4 100#include <asm/page.h>
1da177e4 101#include <asm/processor.h>
1da177e4 102
d9344522
AK
103/*
104 * Architectures that support memory tagging (assigning tags to memory regions,
105 * embedding these tags into addresses that point to these memory regions, and
106 * checking that the memory and the pointer tags match on memory accesses)
107 * redefine this macro to strip tags from pointers.
108 * It's defined as noop for arcitectures that don't support memory tagging.
109 */
110#ifndef untagged_addr
111#define untagged_addr(addr) (addr)
112#endif
113
79442ed1
TC
114#ifndef __pa_symbol
115#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
116#endif
117
1dff8083
AB
118#ifndef page_to_virt
119#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
120#endif
121
568c5fe5
LA
122#ifndef lm_alias
123#define lm_alias(x) __va(__pa_symbol(x))
124#endif
125
593befa6
DD
126/*
127 * To prevent common memory management code establishing
128 * a zero page mapping on a read fault.
129 * This macro should be defined within <asm/pgtable.h>.
130 * s390 does this to prevent multiplexing of hardware bits
131 * related to the physical page in case of virtualization.
132 */
133#ifndef mm_forbids_zeropage
134#define mm_forbids_zeropage(X) (0)
135#endif
136
a4a3ede2
PT
137/*
138 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
139 * If an architecture decides to implement their own version of
140 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
141 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 142 */
5470dea4
AD
143#if BITS_PER_LONG == 64
144/* This function must be updated when the size of struct page grows above 80
145 * or reduces below 56. The idea that compiler optimizes out switch()
146 * statement, and only leaves move/store instructions. Also the compiler can
147 * combine write statments if they are both assignments and can be reordered,
148 * this can result in several of the writes here being dropped.
149 */
150#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
151static inline void __mm_zero_struct_page(struct page *page)
152{
153 unsigned long *_pp = (void *)page;
154
155 /* Check that struct page is either 56, 64, 72, or 80 bytes */
156 BUILD_BUG_ON(sizeof(struct page) & 7);
157 BUILD_BUG_ON(sizeof(struct page) < 56);
158 BUILD_BUG_ON(sizeof(struct page) > 80);
159
160 switch (sizeof(struct page)) {
161 case 80:
df561f66
GS
162 _pp[9] = 0;
163 fallthrough;
5470dea4 164 case 72:
df561f66
GS
165 _pp[8] = 0;
166 fallthrough;
5470dea4 167 case 64:
df561f66
GS
168 _pp[7] = 0;
169 fallthrough;
5470dea4
AD
170 case 56:
171 _pp[6] = 0;
172 _pp[5] = 0;
173 _pp[4] = 0;
174 _pp[3] = 0;
175 _pp[2] = 0;
176 _pp[1] = 0;
177 _pp[0] = 0;
178 }
179}
180#else
a4a3ede2
PT
181#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
182#endif
183
ea606cf5
AR
184/*
185 * Default maximum number of active map areas, this limits the number of vmas
186 * per mm struct. Users can overwrite this number by sysctl but there is a
187 * problem.
188 *
189 * When a program's coredump is generated as ELF format, a section is created
190 * per a vma. In ELF, the number of sections is represented in unsigned short.
191 * This means the number of sections should be smaller than 65535 at coredump.
192 * Because the kernel adds some informative sections to a image of program at
193 * generating coredump, we need some margin. The number of extra sections is
194 * 1-3 now and depends on arch. We use "5" as safe margin, here.
195 *
196 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
197 * not a hard limit any more. Although some userspace tools can be surprised by
198 * that.
199 */
200#define MAPCOUNT_ELF_CORE_MARGIN (5)
201#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
202
203extern int sysctl_max_map_count;
204
c9b1d098 205extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 206extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 207
49f0ce5f
JM
208extern int sysctl_overcommit_memory;
209extern int sysctl_overcommit_ratio;
210extern unsigned long sysctl_overcommit_kbytes;
211
32927393
CH
212int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
213 loff_t *);
214int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
215 loff_t *);
56f3547b
FT
216int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
217 loff_t *);
49f0ce5f 218
1da177e4
LT
219#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
220
27ac792c
AR
221/* to align the pointer to the (next) page boundary */
222#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
223
0fa73b86 224/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 225#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 226
f86196ea
NB
227#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
228
1da177e4
LT
229/*
230 * Linux kernel virtual memory manager primitives.
231 * The idea being to have a "virtual" mm in the same way
232 * we have a virtual fs - giving a cleaner interface to the
233 * mm details, and allowing different kinds of memory mappings
234 * (from shared memory to executable loading to arbitrary
235 * mmap() functions).
236 */
237
490fc053 238struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
239struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
240void vm_area_free(struct vm_area_struct *);
c43692e8 241
1da177e4 242#ifndef CONFIG_MMU
8feae131
DH
243extern struct rb_root nommu_region_tree;
244extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
245
246extern unsigned int kobjsize(const void *objp);
247#endif
248
249/*
605d9288 250 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 251 * When changing, update also include/trace/events/mmflags.h
1da177e4 252 */
cc2383ec
KK
253#define VM_NONE 0x00000000
254
1da177e4
LT
255#define VM_READ 0x00000001 /* currently active flags */
256#define VM_WRITE 0x00000002
257#define VM_EXEC 0x00000004
258#define VM_SHARED 0x00000008
259
7e2cff42 260/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
261#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
262#define VM_MAYWRITE 0x00000020
263#define VM_MAYEXEC 0x00000040
264#define VM_MAYSHARE 0x00000080
265
266#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 267#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 268#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 269#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 270#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 271
1da177e4
LT
272#define VM_LOCKED 0x00002000
273#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
274
275 /* Used by sys_madvise() */
276#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
277#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
278
279#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
280#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 281#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 282#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 283#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 284#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 285#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 286#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 287#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 288#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 289
d9104d1c
CG
290#ifdef CONFIG_MEM_SOFT_DIRTY
291# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
292#else
293# define VM_SOFTDIRTY 0
294#endif
295
b379d790 296#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
297#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
298#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 299#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 300
63c17fb8
DH
301#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
302#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
303#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
304#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
305#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 306#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
307#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
308#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
309#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
310#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 311#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
312#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
313
5212213a 314#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
315# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
316# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 317# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
318# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
319# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
320#ifdef CONFIG_PPC
321# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
322#else
323# define VM_PKEY_BIT4 0
8f62c883 324#endif
5212213a
RP
325#endif /* CONFIG_ARCH_HAS_PKEYS */
326
327#if defined(CONFIG_X86)
328# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
329#elif defined(CONFIG_PPC)
330# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
331#elif defined(CONFIG_PARISC)
332# define VM_GROWSUP VM_ARCH_1
333#elif defined(CONFIG_IA64)
334# define VM_GROWSUP VM_ARCH_1
74a04967
KA
335#elif defined(CONFIG_SPARC64)
336# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
337# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
338#elif defined(CONFIG_ARM64)
339# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
340# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
341#elif !defined(CONFIG_MMU)
342# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
343#endif
344
9f341931
CM
345#if defined(CONFIG_ARM64_MTE)
346# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
347# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
348#else
349# define VM_MTE VM_NONE
350# define VM_MTE_ALLOWED VM_NONE
351#endif
352
cc2383ec
KK
353#ifndef VM_GROWSUP
354# define VM_GROWSUP VM_NONE
355#endif
356
a8bef8ff
MG
357/* Bits set in the VMA until the stack is in its final location */
358#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
359
c62da0c3
AK
360#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
361
362/* Common data flag combinations */
363#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
364 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
365#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
366 VM_MAYWRITE | VM_MAYEXEC)
367#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
368 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
369
370#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
371#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
372#endif
373
1da177e4
LT
374#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
375#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
376#endif
377
378#ifdef CONFIG_STACK_GROWSUP
30bdbb78 379#define VM_STACK VM_GROWSUP
1da177e4 380#else
30bdbb78 381#define VM_STACK VM_GROWSDOWN
1da177e4
LT
382#endif
383
30bdbb78
KK
384#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
385
6cb4d9a2
AK
386/* VMA basic access permission flags */
387#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
388
389
b291f000 390/*
78f11a25 391 * Special vmas that are non-mergable, non-mlock()able.
b291f000 392 */
9050d7eb 393#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 394
b4443772
AK
395/* This mask prevents VMA from being scanned with khugepaged */
396#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
397
a0715cc2
AT
398/* This mask defines which mm->def_flags a process can inherit its parent */
399#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
400
de60f5f1
EM
401/* This mask is used to clear all the VMA flags used by mlock */
402#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
403
2c2d57b5
KA
404/* Arch-specific flags to clear when updating VM flags on protection change */
405#ifndef VM_ARCH_CLEAR
406# define VM_ARCH_CLEAR VM_NONE
407#endif
408#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
409
1da177e4
LT
410/*
411 * mapping from the currently active vm_flags protection bits (the
412 * low four bits) to a page protection mask..
413 */
414extern pgprot_t protection_map[16];
415
c270a7ee
PX
416/**
417 * Fault flag definitions.
418 *
419 * @FAULT_FLAG_WRITE: Fault was a write fault.
420 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
421 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
c1e8d7c6 422 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
c270a7ee
PX
423 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
424 * @FAULT_FLAG_TRIED: The fault has been tried once.
425 * @FAULT_FLAG_USER: The fault originated in userspace.
426 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
427 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
428 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
4064b982
PX
429 *
430 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
431 * whether we would allow page faults to retry by specifying these two
432 * fault flags correctly. Currently there can be three legal combinations:
433 *
434 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
435 * this is the first try
436 *
437 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
438 * we've already tried at least once
439 *
440 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
441 *
442 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
443 * be used. Note that page faults can be allowed to retry for multiple times,
444 * in which case we'll have an initial fault with flags (a) then later on
445 * continuous faults with flags (b). We should always try to detect pending
446 * signals before a retry to make sure the continuous page faults can still be
447 * interrupted if necessary.
c270a7ee
PX
448 */
449#define FAULT_FLAG_WRITE 0x01
450#define FAULT_FLAG_MKWRITE 0x02
451#define FAULT_FLAG_ALLOW_RETRY 0x04
452#define FAULT_FLAG_RETRY_NOWAIT 0x08
453#define FAULT_FLAG_KILLABLE 0x10
454#define FAULT_FLAG_TRIED 0x20
455#define FAULT_FLAG_USER 0x40
456#define FAULT_FLAG_REMOTE 0x80
457#define FAULT_FLAG_INSTRUCTION 0x100
458#define FAULT_FLAG_INTERRUPTIBLE 0x200
d0217ac0 459
dde16072
PX
460/*
461 * The default fault flags that should be used by most of the
462 * arch-specific page fault handlers.
463 */
464#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
465 FAULT_FLAG_KILLABLE | \
466 FAULT_FLAG_INTERRUPTIBLE)
dde16072 467
4064b982
PX
468/**
469 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
470 *
471 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 472 * the mmap_lock for too long a time when waiting for another condition
4064b982 473 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
474 * mmap_lock in the first round to avoid potential starvation of other
475 * processes that would also want the mmap_lock.
4064b982
PX
476 *
477 * Return: true if the page fault allows retry and this is the first
478 * attempt of the fault handling; false otherwise.
479 */
480static inline bool fault_flag_allow_retry_first(unsigned int flags)
481{
482 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
483 (!(flags & FAULT_FLAG_TRIED));
484}
485
282a8e03
RZ
486#define FAULT_FLAG_TRACE \
487 { FAULT_FLAG_WRITE, "WRITE" }, \
488 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
489 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
490 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
491 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
492 { FAULT_FLAG_TRIED, "TRIED" }, \
493 { FAULT_FLAG_USER, "USER" }, \
494 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
495 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
496 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 497
54cb8821 498/*
11192337 499 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
500 * ->fault function. The vma's ->fault is responsible for returning a bitmask
501 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 502 *
c20cd45e
MH
503 * MM layer fills up gfp_mask for page allocations but fault handler might
504 * alter it if its implementation requires a different allocation context.
505 *
9b4bdd2f 506 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 507 */
d0217ac0 508struct vm_fault {
82b0f8c3 509 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 510 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 511 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 512 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 513 unsigned long address; /* Faulting virtual address */
82b0f8c3 514 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 515 * the 'address' */
a2d58167
DJ
516 pud_t *pud; /* Pointer to pud entry matching
517 * the 'address'
518 */
2994302b 519 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 520
3917048d 521 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 522 struct page *page; /* ->fault handlers should return a
83c54070 523 * page here, unless VM_FAULT_NOPAGE
d0217ac0 524 * is set (which is also implied by
83c54070 525 * VM_FAULT_ERROR).
d0217ac0 526 */
82b0f8c3 527 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
528 pte_t *pte; /* Pointer to pte entry matching
529 * the 'address'. NULL if the page
530 * table hasn't been allocated.
531 */
532 spinlock_t *ptl; /* Page table lock.
533 * Protects pte page table if 'pte'
534 * is not NULL, otherwise pmd.
535 */
7267ec00
KS
536 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
537 * vm_ops->map_pages() calls
538 * alloc_set_pte() from atomic context.
539 * do_fault_around() pre-allocates
540 * page table to avoid allocation from
541 * atomic context.
542 */
54cb8821 543};
1da177e4 544
c791ace1
DJ
545/* page entry size for vm->huge_fault() */
546enum page_entry_size {
547 PE_SIZE_PTE = 0,
548 PE_SIZE_PMD,
549 PE_SIZE_PUD,
550};
551
1da177e4
LT
552/*
553 * These are the virtual MM functions - opening of an area, closing and
554 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 555 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
556 */
557struct vm_operations_struct {
558 void (*open)(struct vm_area_struct * area);
559 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
560 /* Called any time before splitting to check if it's allowed */
561 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
cd544fd1 562 int (*mremap)(struct vm_area_struct *area, unsigned long flags);
95bb7c42
SC
563 /*
564 * Called by mprotect() to make driver-specific permission
565 * checks before mprotect() is finalised. The VMA must not
566 * be modified. Returns 0 if eprotect() can proceed.
567 */
568 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
569 unsigned long end, unsigned long newflags);
1c8f4220
SJ
570 vm_fault_t (*fault)(struct vm_fault *vmf);
571 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
572 enum page_entry_size pe_size);
82b0f8c3 573 void (*map_pages)(struct vm_fault *vmf,
bae473a4 574 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 575 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
576
577 /* notification that a previously read-only page is about to become
578 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 579 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 580
dd906184 581 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 582 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 583
28b2ee20
RR
584 /* called by access_process_vm when get_user_pages() fails, typically
585 * for use by special VMAs that can switch between memory and hardware
586 */
587 int (*access)(struct vm_area_struct *vma, unsigned long addr,
588 void *buf, int len, int write);
78d683e8
AL
589
590 /* Called by the /proc/PID/maps code to ask the vma whether it
591 * has a special name. Returning non-NULL will also cause this
592 * vma to be dumped unconditionally. */
593 const char *(*name)(struct vm_area_struct *vma);
594
1da177e4 595#ifdef CONFIG_NUMA
a6020ed7
LS
596 /*
597 * set_policy() op must add a reference to any non-NULL @new mempolicy
598 * to hold the policy upon return. Caller should pass NULL @new to
599 * remove a policy and fall back to surrounding context--i.e. do not
600 * install a MPOL_DEFAULT policy, nor the task or system default
601 * mempolicy.
602 */
1da177e4 603 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
604
605 /*
606 * get_policy() op must add reference [mpol_get()] to any policy at
607 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
608 * in mm/mempolicy.c will do this automatically.
609 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 610 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
611 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
612 * must return NULL--i.e., do not "fallback" to task or system default
613 * policy.
614 */
1da177e4
LT
615 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
616 unsigned long addr);
617#endif
667a0a06
DV
618 /*
619 * Called by vm_normal_page() for special PTEs to find the
620 * page for @addr. This is useful if the default behavior
621 * (using pte_page()) would not find the correct page.
622 */
623 struct page *(*find_special_page)(struct vm_area_struct *vma,
624 unsigned long addr);
1da177e4
LT
625};
626
027232da
KS
627static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
628{
bfd40eaf
KS
629 static const struct vm_operations_struct dummy_vm_ops = {};
630
a670468f 631 memset(vma, 0, sizeof(*vma));
027232da 632 vma->vm_mm = mm;
bfd40eaf 633 vma->vm_ops = &dummy_vm_ops;
027232da
KS
634 INIT_LIST_HEAD(&vma->anon_vma_chain);
635}
636
bfd40eaf
KS
637static inline void vma_set_anonymous(struct vm_area_struct *vma)
638{
639 vma->vm_ops = NULL;
640}
641
43675e6f
YS
642static inline bool vma_is_anonymous(struct vm_area_struct *vma)
643{
644 return !vma->vm_ops;
645}
646
222100ee
AK
647static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
648{
649 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
650
651 if (!maybe_stack)
652 return false;
653
654 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
655 VM_STACK_INCOMPLETE_SETUP)
656 return true;
657
658 return false;
659}
660
7969f226
AK
661static inline bool vma_is_foreign(struct vm_area_struct *vma)
662{
663 if (!current->mm)
664 return true;
665
666 if (current->mm != vma->vm_mm)
667 return true;
668
669 return false;
670}
3122e80e
AK
671
672static inline bool vma_is_accessible(struct vm_area_struct *vma)
673{
6cb4d9a2 674 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
675}
676
43675e6f
YS
677#ifdef CONFIG_SHMEM
678/*
679 * The vma_is_shmem is not inline because it is used only by slow
680 * paths in userfault.
681 */
682bool vma_is_shmem(struct vm_area_struct *vma);
683#else
684static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
685#endif
686
687int vma_is_stack_for_current(struct vm_area_struct *vma);
688
8b11ec1b
LT
689/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
690#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
691
1da177e4
LT
692struct mmu_gather;
693struct inode;
694
71e3aac0 695#include <linux/huge_mm.h>
1da177e4
LT
696
697/*
698 * Methods to modify the page usage count.
699 *
700 * What counts for a page usage:
701 * - cache mapping (page->mapping)
702 * - private data (page->private)
703 * - page mapped in a task's page tables, each mapping
704 * is counted separately
705 *
706 * Also, many kernel routines increase the page count before a critical
707 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
708 */
709
710/*
da6052f7 711 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 712 */
7c8ee9a8
NP
713static inline int put_page_testzero(struct page *page)
714{
fe896d18
JK
715 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
716 return page_ref_dec_and_test(page);
7c8ee9a8 717}
1da177e4
LT
718
719/*
7c8ee9a8
NP
720 * Try to grab a ref unless the page has a refcount of zero, return false if
721 * that is the case.
8e0861fa
AK
722 * This can be called when MMU is off so it must not access
723 * any of the virtual mappings.
1da177e4 724 */
7c8ee9a8
NP
725static inline int get_page_unless_zero(struct page *page)
726{
fe896d18 727 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 728}
1da177e4 729
53df8fdc 730extern int page_is_ram(unsigned long pfn);
124fe20d
DW
731
732enum {
733 REGION_INTERSECTS,
734 REGION_DISJOINT,
735 REGION_MIXED,
736};
737
1c29f25b
TK
738int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
739 unsigned long desc);
53df8fdc 740
48667e7a 741/* Support for virtually mapped pages */
b3bdda02
CL
742struct page *vmalloc_to_page(const void *addr);
743unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 744
0738c4bb
PM
745/*
746 * Determine if an address is within the vmalloc range
747 *
748 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
749 * is no special casing required.
750 */
9bd3bb67
AK
751
752#ifndef is_ioremap_addr
753#define is_ioremap_addr(x) is_vmalloc_addr(x)
754#endif
755
81ac3ad9 756#ifdef CONFIG_MMU
186525bd 757extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
758extern int is_vmalloc_or_module_addr(const void *x);
759#else
186525bd
IM
760static inline bool is_vmalloc_addr(const void *x)
761{
762 return false;
763}
934831d0 764static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
765{
766 return 0;
767}
768#endif
9e2779fa 769
a7c3e901
MH
770extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
771static inline void *kvmalloc(size_t size, gfp_t flags)
772{
773 return kvmalloc_node(size, flags, NUMA_NO_NODE);
774}
775static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
776{
777 return kvmalloc_node(size, flags | __GFP_ZERO, node);
778}
779static inline void *kvzalloc(size_t size, gfp_t flags)
780{
781 return kvmalloc(size, flags | __GFP_ZERO);
782}
783
752ade68
MH
784static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
785{
3b3b1a29
KC
786 size_t bytes;
787
788 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
789 return NULL;
790
3b3b1a29 791 return kvmalloc(bytes, flags);
752ade68
MH
792}
793
1c542f38
KC
794static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
795{
796 return kvmalloc_array(n, size, flags | __GFP_ZERO);
797}
798
39f1f78d 799extern void kvfree(const void *addr);
d4eaa283 800extern void kvfree_sensitive(const void *addr, size_t len);
39f1f78d 801
bac3cf4d 802static inline int head_compound_mapcount(struct page *head)
6dc5ea16
JH
803{
804 return atomic_read(compound_mapcount_ptr(head)) + 1;
805}
806
6988f31d
KK
807/*
808 * Mapcount of compound page as a whole, does not include mapped sub-pages.
809 *
810 * Must be called only for compound pages or any their tail sub-pages.
811 */
53f9263b
KS
812static inline int compound_mapcount(struct page *page)
813{
5f527c2b 814 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b 815 page = compound_head(page);
bac3cf4d 816 return head_compound_mapcount(page);
53f9263b
KS
817}
818
70b50f94
AA
819/*
820 * The atomic page->_mapcount, starts from -1: so that transitions
821 * both from it and to it can be tracked, using atomic_inc_and_test
822 * and atomic_add_negative(-1).
823 */
22b751c3 824static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
825{
826 atomic_set(&(page)->_mapcount, -1);
827}
828
b20ce5e0
KS
829int __page_mapcount(struct page *page);
830
6988f31d
KK
831/*
832 * Mapcount of 0-order page; when compound sub-page, includes
833 * compound_mapcount().
834 *
835 * Result is undefined for pages which cannot be mapped into userspace.
836 * For example SLAB or special types of pages. See function page_has_type().
837 * They use this place in struct page differently.
838 */
70b50f94
AA
839static inline int page_mapcount(struct page *page)
840{
b20ce5e0
KS
841 if (unlikely(PageCompound(page)))
842 return __page_mapcount(page);
843 return atomic_read(&page->_mapcount) + 1;
844}
845
846#ifdef CONFIG_TRANSPARENT_HUGEPAGE
847int total_mapcount(struct page *page);
6d0a07ed 848int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
849#else
850static inline int total_mapcount(struct page *page)
851{
852 return page_mapcount(page);
70b50f94 853}
6d0a07ed
AA
854static inline int page_trans_huge_mapcount(struct page *page,
855 int *total_mapcount)
856{
857 int mapcount = page_mapcount(page);
858 if (total_mapcount)
859 *total_mapcount = mapcount;
860 return mapcount;
861}
b20ce5e0 862#endif
70b50f94 863
b49af68f
CL
864static inline struct page *virt_to_head_page(const void *x)
865{
866 struct page *page = virt_to_page(x);
ccaafd7f 867
1d798ca3 868 return compound_head(page);
b49af68f
CL
869}
870
ddc58f27
KS
871void __put_page(struct page *page);
872
1d7ea732 873void put_pages_list(struct list_head *pages);
1da177e4 874
8dfcc9ba 875void split_page(struct page *page, unsigned int order);
8dfcc9ba 876
33f2ef89
AW
877/*
878 * Compound pages have a destructor function. Provide a
879 * prototype for that function and accessor functions.
f1e61557 880 * These are _only_ valid on the head of a compound page.
33f2ef89 881 */
f1e61557
KS
882typedef void compound_page_dtor(struct page *);
883
884/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
885enum compound_dtor_id {
886 NULL_COMPOUND_DTOR,
887 COMPOUND_PAGE_DTOR,
888#ifdef CONFIG_HUGETLB_PAGE
889 HUGETLB_PAGE_DTOR,
9a982250
KS
890#endif
891#ifdef CONFIG_TRANSPARENT_HUGEPAGE
892 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
893#endif
894 NR_COMPOUND_DTORS,
895};
ae70eddd 896extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
897
898static inline void set_compound_page_dtor(struct page *page,
f1e61557 899 enum compound_dtor_id compound_dtor)
33f2ef89 900{
f1e61557
KS
901 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
902 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
903}
904
ff45fc3c 905static inline void destroy_compound_page(struct page *page)
33f2ef89 906{
f1e61557 907 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 908 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
909}
910
d00181b9 911static inline unsigned int compound_order(struct page *page)
d85f3385 912{
6d777953 913 if (!PageHead(page))
d85f3385 914 return 0;
e4b294c2 915 return page[1].compound_order;
d85f3385
CL
916}
917
47e29d32
JH
918static inline bool hpage_pincount_available(struct page *page)
919{
920 /*
921 * Can the page->hpage_pinned_refcount field be used? That field is in
922 * the 3rd page of the compound page, so the smallest (2-page) compound
923 * pages cannot support it.
924 */
925 page = compound_head(page);
926 return PageCompound(page) && compound_order(page) > 1;
927}
928
bac3cf4d 929static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
930{
931 return atomic_read(compound_pincount_ptr(head));
932}
933
47e29d32
JH
934static inline int compound_pincount(struct page *page)
935{
936 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
937 page = compound_head(page);
bac3cf4d 938 return head_compound_pincount(page);
47e29d32
JH
939}
940
f1e61557 941static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 942{
e4b294c2 943 page[1].compound_order = order;
1378a5ee 944 page[1].compound_nr = 1U << order;
d85f3385
CL
945}
946
d8c6546b
MWO
947/* Returns the number of pages in this potentially compound page. */
948static inline unsigned long compound_nr(struct page *page)
949{
1378a5ee
MWO
950 if (!PageHead(page))
951 return 1;
952 return page[1].compound_nr;
d8c6546b
MWO
953}
954
a50b854e
MWO
955/* Returns the number of bytes in this potentially compound page. */
956static inline unsigned long page_size(struct page *page)
957{
958 return PAGE_SIZE << compound_order(page);
959}
960
94ad9338
MWO
961/* Returns the number of bits needed for the number of bytes in a page */
962static inline unsigned int page_shift(struct page *page)
963{
964 return PAGE_SHIFT + compound_order(page);
965}
966
9a982250
KS
967void free_compound_page(struct page *page);
968
3dece370 969#ifdef CONFIG_MMU
14fd403f
AA
970/*
971 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
972 * servicing faults for write access. In the normal case, do always want
973 * pte_mkwrite. But get_user_pages can cause write faults for mappings
974 * that do not have writing enabled, when used by access_process_vm.
975 */
976static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
977{
978 if (likely(vma->vm_flags & VM_WRITE))
979 pte = pte_mkwrite(pte);
980 return pte;
981}
8c6e50b0 982
9d82c694 983vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
2b740303
SJ
984vm_fault_t finish_fault(struct vm_fault *vmf);
985vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 986#endif
14fd403f 987
1da177e4
LT
988/*
989 * Multiple processes may "see" the same page. E.g. for untouched
990 * mappings of /dev/null, all processes see the same page full of
991 * zeroes, and text pages of executables and shared libraries have
992 * only one copy in memory, at most, normally.
993 *
994 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
995 * page_count() == 0 means the page is free. page->lru is then used for
996 * freelist management in the buddy allocator.
da6052f7 997 * page_count() > 0 means the page has been allocated.
1da177e4 998 *
da6052f7
NP
999 * Pages are allocated by the slab allocator in order to provide memory
1000 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1001 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1002 * unless a particular usage is carefully commented. (the responsibility of
1003 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1004 *
da6052f7
NP
1005 * A page may be used by anyone else who does a __get_free_page().
1006 * In this case, page_count still tracks the references, and should only
1007 * be used through the normal accessor functions. The top bits of page->flags
1008 * and page->virtual store page management information, but all other fields
1009 * are unused and could be used privately, carefully. The management of this
1010 * page is the responsibility of the one who allocated it, and those who have
1011 * subsequently been given references to it.
1012 *
1013 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1014 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1015 * The following discussion applies only to them.
1016 *
da6052f7
NP
1017 * A pagecache page contains an opaque `private' member, which belongs to the
1018 * page's address_space. Usually, this is the address of a circular list of
1019 * the page's disk buffers. PG_private must be set to tell the VM to call
1020 * into the filesystem to release these pages.
1da177e4 1021 *
da6052f7
NP
1022 * A page may belong to an inode's memory mapping. In this case, page->mapping
1023 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1024 * in units of PAGE_SIZE.
1da177e4 1025 *
da6052f7
NP
1026 * If pagecache pages are not associated with an inode, they are said to be
1027 * anonymous pages. These may become associated with the swapcache, and in that
1028 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1029 *
da6052f7
NP
1030 * In either case (swapcache or inode backed), the pagecache itself holds one
1031 * reference to the page. Setting PG_private should also increment the
1032 * refcount. The each user mapping also has a reference to the page.
1da177e4 1033 *
da6052f7 1034 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1035 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1036 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1037 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1038 *
da6052f7 1039 * All pagecache pages may be subject to I/O:
1da177e4
LT
1040 * - inode pages may need to be read from disk,
1041 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1042 * to be written back to the inode on disk,
1043 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1044 * modified may need to be swapped out to swap space and (later) to be read
1045 * back into memory.
1da177e4
LT
1046 */
1047
1048/*
1049 * The zone field is never updated after free_area_init_core()
1050 * sets it, so none of the operations on it need to be atomic.
1da177e4 1051 */
348f8b6c 1052
90572890 1053/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1054#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1055#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1056#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1057#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1058#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1059
348f8b6c 1060/*
25985edc 1061 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1062 * sections we define the shift as 0; that plus a 0 mask ensures
1063 * the compiler will optimise away reference to them.
1064 */
d41dee36
AW
1065#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1066#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1067#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1068#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1069#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1070
bce54bbf
WD
1071/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1072#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1073#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1074#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1075 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1076#else
89689ae7 1077#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1078#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1079 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1080#endif
1081
bd8029b6 1082#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1083
d41dee36
AW
1084#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1085#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1086#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1087#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1088#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1089#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1090
33dd4e0e 1091static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1092{
c403f6a3 1093 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
348f8b6c 1094 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1095}
1da177e4 1096
260ae3f7
DW
1097#ifdef CONFIG_ZONE_DEVICE
1098static inline bool is_zone_device_page(const struct page *page)
1099{
1100 return page_zonenum(page) == ZONE_DEVICE;
1101}
966cf44f
AD
1102extern void memmap_init_zone_device(struct zone *, unsigned long,
1103 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1104#else
1105static inline bool is_zone_device_page(const struct page *page)
1106{
1107 return false;
1108}
7b2d55d2 1109#endif
5042db43 1110
e7638488 1111#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1112void free_devmap_managed_page(struct page *page);
e7638488 1113DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1114
1115static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1116{
1117 if (!static_branch_unlikely(&devmap_managed_key))
1118 return false;
1119 if (!is_zone_device_page(page))
1120 return false;
1121 switch (page->pgmap->type) {
1122 case MEMORY_DEVICE_PRIVATE:
e7638488 1123 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1124 return true;
1125 default:
1126 break;
1127 }
1128 return false;
1129}
1130
07d80269
JH
1131void put_devmap_managed_page(struct page *page);
1132
e7638488 1133#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1134static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1135{
1136 return false;
1137}
07d80269
JH
1138
1139static inline void put_devmap_managed_page(struct page *page)
1140{
1141}
7588adf8 1142#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1143
6b368cd4
JG
1144static inline bool is_device_private_page(const struct page *page)
1145{
7588adf8
RM
1146 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1147 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1148 is_zone_device_page(page) &&
1149 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1150}
e7638488 1151
52916982
LG
1152static inline bool is_pci_p2pdma_page(const struct page *page)
1153{
7588adf8
RM
1154 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1155 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1156 is_zone_device_page(page) &&
1157 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1158}
7b2d55d2 1159
f958d7b5
LT
1160/* 127: arbitrary random number, small enough to assemble well */
1161#define page_ref_zero_or_close_to_overflow(page) \
1162 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1163
3565fce3
DW
1164static inline void get_page(struct page *page)
1165{
1166 page = compound_head(page);
1167 /*
1168 * Getting a normal page or the head of a compound page
0139aa7b 1169 * requires to already have an elevated page->_refcount.
3565fce3 1170 */
f958d7b5 1171 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1172 page_ref_inc(page);
3565fce3
DW
1173}
1174
3faa52c0
JH
1175bool __must_check try_grab_page(struct page *page, unsigned int flags);
1176
88b1a17d
LT
1177static inline __must_check bool try_get_page(struct page *page)
1178{
1179 page = compound_head(page);
1180 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1181 return false;
fe896d18 1182 page_ref_inc(page);
88b1a17d 1183 return true;
3565fce3
DW
1184}
1185
1186static inline void put_page(struct page *page)
1187{
1188 page = compound_head(page);
1189
7b2d55d2 1190 /*
e7638488
DW
1191 * For devmap managed pages we need to catch refcount transition from
1192 * 2 to 1, when refcount reach one it means the page is free and we
1193 * need to inform the device driver through callback. See
7b2d55d2
JG
1194 * include/linux/memremap.h and HMM for details.
1195 */
07d80269
JH
1196 if (page_is_devmap_managed(page)) {
1197 put_devmap_managed_page(page);
7b2d55d2 1198 return;
07d80269 1199 }
7b2d55d2 1200
3565fce3
DW
1201 if (put_page_testzero(page))
1202 __put_page(page);
3565fce3
DW
1203}
1204
3faa52c0
JH
1205/*
1206 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1207 * the page's refcount so that two separate items are tracked: the original page
1208 * reference count, and also a new count of how many pin_user_pages() calls were
1209 * made against the page. ("gup-pinned" is another term for the latter).
1210 *
1211 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1212 * distinct from normal pages. As such, the unpin_user_page() call (and its
1213 * variants) must be used in order to release gup-pinned pages.
1214 *
1215 * Choice of value:
1216 *
1217 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1218 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1219 * simpler, due to the fact that adding an even power of two to the page
1220 * refcount has the effect of using only the upper N bits, for the code that
1221 * counts up using the bias value. This means that the lower bits are left for
1222 * the exclusive use of the original code that increments and decrements by one
1223 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1224 *
3faa52c0
JH
1225 * Of course, once the lower bits overflow into the upper bits (and this is
1226 * OK, because subtraction recovers the original values), then visual inspection
1227 * no longer suffices to directly view the separate counts. However, for normal
1228 * applications that don't have huge page reference counts, this won't be an
1229 * issue.
fc1d8e7c 1230 *
3faa52c0
JH
1231 * Locking: the lockless algorithm described in page_cache_get_speculative()
1232 * and page_cache_gup_pin_speculative() provides safe operation for
1233 * get_user_pages and page_mkclean and other calls that race to set up page
1234 * table entries.
fc1d8e7c 1235 */
3faa52c0 1236#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1237
3faa52c0 1238void unpin_user_page(struct page *page);
f1f6a7dd
JH
1239void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1240 bool make_dirty);
f1f6a7dd 1241void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1242
3faa52c0
JH
1243/**
1244 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1245 *
1246 * This function checks if a page has been pinned via a call to
1247 * pin_user_pages*().
1248 *
1249 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1250 * because it means "definitely not pinned for DMA", but true means "probably
1251 * pinned for DMA, but possibly a false positive due to having at least
1252 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1253 *
1254 * False positives are OK, because: a) it's unlikely for a page to get that many
1255 * refcounts, and b) all the callers of this routine are expected to be able to
1256 * deal gracefully with a false positive.
1257 *
47e29d32
JH
1258 * For huge pages, the result will be exactly correct. That's because we have
1259 * more tracking data available: the 3rd struct page in the compound page is
1260 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1261 * scheme).
1262 *
72ef5e52 1263 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0
JH
1264 *
1265 * @page: pointer to page to be queried.
1266 * @Return: True, if it is likely that the page has been "dma-pinned".
1267 * False, if the page is definitely not dma-pinned.
1268 */
1269static inline bool page_maybe_dma_pinned(struct page *page)
1270{
47e29d32
JH
1271 if (hpage_pincount_available(page))
1272 return compound_pincount(page) > 0;
1273
3faa52c0
JH
1274 /*
1275 * page_ref_count() is signed. If that refcount overflows, then
1276 * page_ref_count() returns a negative value, and callers will avoid
1277 * further incrementing the refcount.
1278 *
1279 * Here, for that overflow case, use the signed bit to count a little
1280 * bit higher via unsigned math, and thus still get an accurate result.
1281 */
1282 return ((unsigned int)page_ref_count(compound_head(page))) >=
1283 GUP_PIN_COUNTING_BIAS;
1284}
1285
9127ab4f
CS
1286#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1287#define SECTION_IN_PAGE_FLAGS
1288#endif
1289
89689ae7 1290/*
7a8010cd
VB
1291 * The identification function is mainly used by the buddy allocator for
1292 * determining if two pages could be buddies. We are not really identifying
1293 * the zone since we could be using the section number id if we do not have
1294 * node id available in page flags.
1295 * We only guarantee that it will return the same value for two combinable
1296 * pages in a zone.
89689ae7 1297 */
cb2b95e1
AW
1298static inline int page_zone_id(struct page *page)
1299{
89689ae7 1300 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1301}
1302
89689ae7 1303#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1304extern int page_to_nid(const struct page *page);
89689ae7 1305#else
33dd4e0e 1306static inline int page_to_nid(const struct page *page)
d41dee36 1307{
f165b378
PT
1308 struct page *p = (struct page *)page;
1309
1310 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1311}
89689ae7
CL
1312#endif
1313
57e0a030 1314#ifdef CONFIG_NUMA_BALANCING
90572890 1315static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1316{
90572890 1317 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1318}
1319
90572890 1320static inline int cpupid_to_pid(int cpupid)
57e0a030 1321{
90572890 1322 return cpupid & LAST__PID_MASK;
57e0a030 1323}
b795854b 1324
90572890 1325static inline int cpupid_to_cpu(int cpupid)
b795854b 1326{
90572890 1327 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1328}
1329
90572890 1330static inline int cpupid_to_nid(int cpupid)
b795854b 1331{
90572890 1332 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1333}
1334
90572890 1335static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1336{
90572890 1337 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1338}
1339
90572890 1340static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1341{
90572890 1342 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1343}
1344
8c8a743c
PZ
1345static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1346{
1347 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1348}
1349
1350#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1351#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1352static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1353{
1ae71d03 1354 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1355}
90572890
PZ
1356
1357static inline int page_cpupid_last(struct page *page)
1358{
1359 return page->_last_cpupid;
1360}
1361static inline void page_cpupid_reset_last(struct page *page)
b795854b 1362{
1ae71d03 1363 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1364}
1365#else
90572890 1366static inline int page_cpupid_last(struct page *page)
75980e97 1367{
90572890 1368 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1369}
1370
90572890 1371extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1372
90572890 1373static inline void page_cpupid_reset_last(struct page *page)
75980e97 1374{
09940a4f 1375 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1376}
90572890
PZ
1377#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1378#else /* !CONFIG_NUMA_BALANCING */
1379static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1380{
90572890 1381 return page_to_nid(page); /* XXX */
57e0a030
MG
1382}
1383
90572890 1384static inline int page_cpupid_last(struct page *page)
57e0a030 1385{
90572890 1386 return page_to_nid(page); /* XXX */
57e0a030
MG
1387}
1388
90572890 1389static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1390{
1391 return -1;
1392}
1393
90572890 1394static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1395{
1396 return -1;
1397}
1398
90572890 1399static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1400{
1401 return -1;
1402}
1403
90572890
PZ
1404static inline int cpu_pid_to_cpupid(int nid, int pid)
1405{
1406 return -1;
1407}
1408
1409static inline bool cpupid_pid_unset(int cpupid)
b795854b 1410{
2b787449 1411 return true;
b795854b
MG
1412}
1413
90572890 1414static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1415{
1416}
8c8a743c
PZ
1417
1418static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1419{
1420 return false;
1421}
90572890 1422#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1423
2813b9c0
AK
1424#ifdef CONFIG_KASAN_SW_TAGS
1425static inline u8 page_kasan_tag(const struct page *page)
1426{
1427 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1428}
1429
1430static inline void page_kasan_tag_set(struct page *page, u8 tag)
1431{
1432 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1433 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1434}
1435
1436static inline void page_kasan_tag_reset(struct page *page)
1437{
1438 page_kasan_tag_set(page, 0xff);
1439}
1440#else
1441static inline u8 page_kasan_tag(const struct page *page)
1442{
1443 return 0xff;
1444}
1445
1446static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1447static inline void page_kasan_tag_reset(struct page *page) { }
1448#endif
1449
33dd4e0e 1450static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1451{
1452 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1453}
1454
75ef7184
MG
1455static inline pg_data_t *page_pgdat(const struct page *page)
1456{
1457 return NODE_DATA(page_to_nid(page));
1458}
1459
9127ab4f 1460#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1461static inline void set_page_section(struct page *page, unsigned long section)
1462{
1463 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1464 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1465}
1466
aa462abe 1467static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1468{
1469 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1470}
308c05e3 1471#endif
d41dee36 1472
2f1b6248 1473static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1474{
1475 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1476 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1477}
2f1b6248 1478
348f8b6c
DH
1479static inline void set_page_node(struct page *page, unsigned long node)
1480{
1481 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1482 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1483}
89689ae7 1484
2f1b6248 1485static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1486 unsigned long node, unsigned long pfn)
1da177e4 1487{
348f8b6c
DH
1488 set_page_zone(page, zone);
1489 set_page_node(page, node);
9127ab4f 1490#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1491 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1492#endif
1da177e4
LT
1493}
1494
f6ac2354
CL
1495/*
1496 * Some inline functions in vmstat.h depend on page_zone()
1497 */
1498#include <linux/vmstat.h>
1499
33dd4e0e 1500static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1501{
1dff8083 1502 return page_to_virt(page);
1da177e4
LT
1503}
1504
1505#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1506#define HASHED_PAGE_VIRTUAL
1507#endif
1508
1509#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1510static inline void *page_address(const struct page *page)
1511{
1512 return page->virtual;
1513}
1514static inline void set_page_address(struct page *page, void *address)
1515{
1516 page->virtual = address;
1517}
1da177e4
LT
1518#define page_address_init() do { } while(0)
1519#endif
1520
1521#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1522void *page_address(const struct page *page);
1da177e4
LT
1523void set_page_address(struct page *page, void *virtual);
1524void page_address_init(void);
1525#endif
1526
1527#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1528#define page_address(page) lowmem_page_address(page)
1529#define set_page_address(page, address) do { } while(0)
1530#define page_address_init() do { } while(0)
1531#endif
1532
e39155ea
KS
1533extern void *page_rmapping(struct page *page);
1534extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1535extern struct address_space *page_mapping(struct page *page);
1da177e4 1536
f981c595
MG
1537extern struct address_space *__page_file_mapping(struct page *);
1538
1539static inline
1540struct address_space *page_file_mapping(struct page *page)
1541{
1542 if (unlikely(PageSwapCache(page)))
1543 return __page_file_mapping(page);
1544
1545 return page->mapping;
1546}
1547
f6ab1f7f
HY
1548extern pgoff_t __page_file_index(struct page *page);
1549
1da177e4
LT
1550/*
1551 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1552 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1553 */
1554static inline pgoff_t page_index(struct page *page)
1555{
1556 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1557 return __page_file_index(page);
1da177e4
LT
1558 return page->index;
1559}
1560
1aa8aea5 1561bool page_mapped(struct page *page);
bda807d4 1562struct address_space *page_mapping(struct page *page);
cb9f753a 1563struct address_space *page_mapping_file(struct page *page);
1da177e4 1564
2f064f34
MH
1565/*
1566 * Return true only if the page has been allocated with
1567 * ALLOC_NO_WATERMARKS and the low watermark was not
1568 * met implying that the system is under some pressure.
1569 */
1570static inline bool page_is_pfmemalloc(struct page *page)
1571{
1572 /*
1573 * Page index cannot be this large so this must be
1574 * a pfmemalloc page.
1575 */
1576 return page->index == -1UL;
1577}
1578
1579/*
1580 * Only to be called by the page allocator on a freshly allocated
1581 * page.
1582 */
1583static inline void set_page_pfmemalloc(struct page *page)
1584{
1585 page->index = -1UL;
1586}
1587
1588static inline void clear_page_pfmemalloc(struct page *page)
1589{
1590 page->index = 0;
1591}
1592
1c0fe6e3
NP
1593/*
1594 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1595 */
1596extern void pagefault_out_of_memory(void);
1597
1da177e4 1598#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1599#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1da177e4 1600
ddd588b5 1601/*
7bf02ea2 1602 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1603 * various contexts.
1604 */
4b59e6c4 1605#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1606
9af744d7 1607extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1608
710ec38b 1609#ifdef CONFIG_MMU
7f43add4 1610extern bool can_do_mlock(void);
710ec38b
AB
1611#else
1612static inline bool can_do_mlock(void) { return false; }
1613#endif
1da177e4
LT
1614extern int user_shm_lock(size_t, struct user_struct *);
1615extern void user_shm_unlock(size_t, struct user_struct *);
1616
1617/*
1618 * Parameter block passed down to zap_pte_range in exceptional cases.
1619 */
1620struct zap_details {
1da177e4
LT
1621 struct address_space *check_mapping; /* Check page->mapping if set */
1622 pgoff_t first_index; /* Lowest page->index to unmap */
1623 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1624};
1625
25b2995a
CH
1626struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1627 pte_t pte);
28093f9f
GS
1628struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1629 pmd_t pmd);
7e675137 1630
27d036e3
LR
1631void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1632 unsigned long size);
14f5ff5d 1633void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1634 unsigned long size);
4f74d2c8
LT
1635void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1636 unsigned long start, unsigned long end);
e6473092 1637
ac46d4f3
JG
1638struct mmu_notifier_range;
1639
42b77728 1640void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1641 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1642int
1643copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
09796395 1644int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
1645 struct mmu_notifier_range *range,
1646 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1647int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1648 unsigned long *pfn);
d87fe660 1649int follow_phys(struct vm_area_struct *vma, unsigned long address,
1650 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1651int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1652 void *buf, int len, int write);
1da177e4 1653
7caef267 1654extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1655extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1656void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1657void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1658int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1659int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1660int invalidate_inode_page(struct page *page);
1661
7ee1dd3f 1662#ifdef CONFIG_MMU
2b740303 1663extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1664 unsigned long address, unsigned int flags,
1665 struct pt_regs *regs);
64019a2e 1666extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1667 unsigned long address, unsigned int fault_flags,
1668 bool *unlocked);
977fbdcd
MW
1669void unmap_mapping_pages(struct address_space *mapping,
1670 pgoff_t start, pgoff_t nr, bool even_cows);
1671void unmap_mapping_range(struct address_space *mapping,
1672 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1673#else
2b740303 1674static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1675 unsigned long address, unsigned int flags,
1676 struct pt_regs *regs)
7ee1dd3f
DH
1677{
1678 /* should never happen if there's no MMU */
1679 BUG();
1680 return VM_FAULT_SIGBUS;
1681}
64019a2e 1682static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1683 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1684{
1685 /* should never happen if there's no MMU */
1686 BUG();
1687 return -EFAULT;
1688}
977fbdcd
MW
1689static inline void unmap_mapping_pages(struct address_space *mapping,
1690 pgoff_t start, pgoff_t nr, bool even_cows) { }
1691static inline void unmap_mapping_range(struct address_space *mapping,
1692 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1693#endif
f33ea7f4 1694
977fbdcd
MW
1695static inline void unmap_shared_mapping_range(struct address_space *mapping,
1696 loff_t const holebegin, loff_t const holelen)
1697{
1698 unmap_mapping_range(mapping, holebegin, holelen, 0);
1699}
1700
1701extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1702 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1703extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1704 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
1705extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1706 void *buf, int len, unsigned int gup_flags);
1da177e4 1707
64019a2e 1708long get_user_pages_remote(struct mm_struct *mm,
1e987790 1709 unsigned long start, unsigned long nr_pages,
9beae1ea 1710 unsigned int gup_flags, struct page **pages,
5b56d49f 1711 struct vm_area_struct **vmas, int *locked);
64019a2e 1712long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1713 unsigned long start, unsigned long nr_pages,
1714 unsigned int gup_flags, struct page **pages,
1715 struct vm_area_struct **vmas, int *locked);
c12d2da5 1716long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1717 unsigned int gup_flags, struct page **pages,
cde70140 1718 struct vm_area_struct **vmas);
eddb1c22
JH
1719long pin_user_pages(unsigned long start, unsigned long nr_pages,
1720 unsigned int gup_flags, struct page **pages,
1721 struct vm_area_struct **vmas);
c12d2da5 1722long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1723 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1724long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1725 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1726long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1727 struct page **pages, unsigned int gup_flags);
91429023
JH
1728long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1729 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1730
73b0140b
IW
1731int get_user_pages_fast(unsigned long start, int nr_pages,
1732 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1733int pin_user_pages_fast(unsigned long start, int nr_pages,
1734 unsigned int gup_flags, struct page **pages);
8025e5dd 1735
79eb597c
DJ
1736int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1737int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1738 struct task_struct *task, bool bypass_rlim);
1739
8025e5dd
JK
1740/* Container for pinned pfns / pages */
1741struct frame_vector {
1742 unsigned int nr_allocated; /* Number of frames we have space for */
1743 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1744 bool got_ref; /* Did we pin pages by getting page ref? */
1745 bool is_pfns; /* Does array contain pages or pfns? */
57e86fa1 1746 void *ptrs[]; /* Array of pinned pfns / pages. Use
8025e5dd
JK
1747 * pfns_vector_pages() or pfns_vector_pfns()
1748 * for access */
1749};
1750
1751struct frame_vector *frame_vector_create(unsigned int nr_frames);
1752void frame_vector_destroy(struct frame_vector *vec);
1753int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1754 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1755void put_vaddr_frames(struct frame_vector *vec);
1756int frame_vector_to_pages(struct frame_vector *vec);
1757void frame_vector_to_pfns(struct frame_vector *vec);
1758
1759static inline unsigned int frame_vector_count(struct frame_vector *vec)
1760{
1761 return vec->nr_frames;
1762}
1763
1764static inline struct page **frame_vector_pages(struct frame_vector *vec)
1765{
1766 if (vec->is_pfns) {
1767 int err = frame_vector_to_pages(vec);
1768
1769 if (err)
1770 return ERR_PTR(err);
1771 }
1772 return (struct page **)(vec->ptrs);
1773}
1774
1775static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1776{
1777 if (!vec->is_pfns)
1778 frame_vector_to_pfns(vec);
1779 return (unsigned long *)(vec->ptrs);
1780}
1781
18022c5d
MG
1782struct kvec;
1783int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1784 struct page **pages);
1785int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1786struct page *get_dump_page(unsigned long addr);
1da177e4 1787
cf9a2ae8 1788extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1789extern void do_invalidatepage(struct page *page, unsigned int offset,
1790 unsigned int length);
cf9a2ae8 1791
f82b3764 1792void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1793int __set_page_dirty_nobuffers(struct page *page);
76719325 1794int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1795int redirty_page_for_writepage(struct writeback_control *wbc,
1796 struct page *page);
62cccb8c 1797void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1798void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1799 struct bdi_writeback *wb);
b3c97528 1800int set_page_dirty(struct page *page);
1da177e4 1801int set_page_dirty_lock(struct page *page);
736304f3
JK
1802void __cancel_dirty_page(struct page *page);
1803static inline void cancel_dirty_page(struct page *page)
1804{
1805 /* Avoid atomic ops, locking, etc. when not actually needed. */
1806 if (PageDirty(page))
1807 __cancel_dirty_page(page);
1808}
1da177e4 1809int clear_page_dirty_for_io(struct page *page);
b9ea2515 1810
a9090253 1811int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1812
b6a2fea3
OW
1813extern unsigned long move_page_tables(struct vm_area_struct *vma,
1814 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1815 unsigned long new_addr, unsigned long len,
1816 bool need_rmap_locks);
58705444
PX
1817
1818/*
1819 * Flags used by change_protection(). For now we make it a bitmap so
1820 * that we can pass in multiple flags just like parameters. However
1821 * for now all the callers are only use one of the flags at the same
1822 * time.
1823 */
1824/* Whether we should allow dirty bit accounting */
1825#define MM_CP_DIRTY_ACCT (1UL << 0)
1826/* Whether this protection change is for NUMA hints */
1827#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1828/* Whether this change is for write protecting */
1829#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1830#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1831#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1832 MM_CP_UFFD_WP_RESOLVE)
58705444 1833
7da4d641
PZ
1834extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1835 unsigned long end, pgprot_t newprot,
58705444 1836 unsigned long cp_flags);
b6a2fea3
OW
1837extern int mprotect_fixup(struct vm_area_struct *vma,
1838 struct vm_area_struct **pprev, unsigned long start,
1839 unsigned long end, unsigned long newflags);
1da177e4 1840
465a454f
PZ
1841/*
1842 * doesn't attempt to fault and will return short.
1843 */
dadbb612
SJ
1844int get_user_pages_fast_only(unsigned long start, int nr_pages,
1845 unsigned int gup_flags, struct page **pages);
104acc32
JH
1846int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1847 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1848
1849static inline bool get_user_page_fast_only(unsigned long addr,
1850 unsigned int gup_flags, struct page **pagep)
1851{
1852 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1853}
d559db08
KH
1854/*
1855 * per-process(per-mm_struct) statistics.
1856 */
d559db08
KH
1857static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1858{
69c97823
KK
1859 long val = atomic_long_read(&mm->rss_stat.count[member]);
1860
1861#ifdef SPLIT_RSS_COUNTING
1862 /*
1863 * counter is updated in asynchronous manner and may go to minus.
1864 * But it's never be expected number for users.
1865 */
1866 if (val < 0)
1867 val = 0;
172703b0 1868#endif
69c97823
KK
1869 return (unsigned long)val;
1870}
d559db08 1871
e4dcad20 1872void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1873
d559db08
KH
1874static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1875{
b3d1411b
JFG
1876 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1877
e4dcad20 1878 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1879}
1880
1881static inline void inc_mm_counter(struct mm_struct *mm, int member)
1882{
b3d1411b
JFG
1883 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1884
e4dcad20 1885 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1886}
1887
1888static inline void dec_mm_counter(struct mm_struct *mm, int member)
1889{
b3d1411b
JFG
1890 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1891
e4dcad20 1892 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1893}
1894
eca56ff9
JM
1895/* Optimized variant when page is already known not to be PageAnon */
1896static inline int mm_counter_file(struct page *page)
1897{
1898 if (PageSwapBacked(page))
1899 return MM_SHMEMPAGES;
1900 return MM_FILEPAGES;
1901}
1902
1903static inline int mm_counter(struct page *page)
1904{
1905 if (PageAnon(page))
1906 return MM_ANONPAGES;
1907 return mm_counter_file(page);
1908}
1909
d559db08
KH
1910static inline unsigned long get_mm_rss(struct mm_struct *mm)
1911{
1912 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1913 get_mm_counter(mm, MM_ANONPAGES) +
1914 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1915}
1916
1917static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1918{
1919 return max(mm->hiwater_rss, get_mm_rss(mm));
1920}
1921
1922static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1923{
1924 return max(mm->hiwater_vm, mm->total_vm);
1925}
1926
1927static inline void update_hiwater_rss(struct mm_struct *mm)
1928{
1929 unsigned long _rss = get_mm_rss(mm);
1930
1931 if ((mm)->hiwater_rss < _rss)
1932 (mm)->hiwater_rss = _rss;
1933}
1934
1935static inline void update_hiwater_vm(struct mm_struct *mm)
1936{
1937 if (mm->hiwater_vm < mm->total_vm)
1938 mm->hiwater_vm = mm->total_vm;
1939}
1940
695f0559
PC
1941static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1942{
1943 mm->hiwater_rss = get_mm_rss(mm);
1944}
1945
d559db08
KH
1946static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1947 struct mm_struct *mm)
1948{
1949 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1950
1951 if (*maxrss < hiwater_rss)
1952 *maxrss = hiwater_rss;
1953}
1954
53bddb4e 1955#if defined(SPLIT_RSS_COUNTING)
05af2e10 1956void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1957#else
05af2e10 1958static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1959{
1960}
1961#endif
465a454f 1962
78e7c5af
AK
1963#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1964static inline int pte_special(pte_t pte)
1965{
1966 return 0;
1967}
1968
1969static inline pte_t pte_mkspecial(pte_t pte)
1970{
1971 return pte;
1972}
1973#endif
1974
17596731 1975#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
1976static inline int pte_devmap(pte_t pte)
1977{
1978 return 0;
1979}
1980#endif
1981
6d2329f8 1982int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1983
25ca1d6c
NK
1984extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1985 spinlock_t **ptl);
1986static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1987 spinlock_t **ptl)
1988{
1989 pte_t *ptep;
1990 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1991 return ptep;
1992}
c9cfcddf 1993
c2febafc
KS
1994#ifdef __PAGETABLE_P4D_FOLDED
1995static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1996 unsigned long address)
1997{
1998 return 0;
1999}
2000#else
2001int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2002#endif
2003
b4e98d9a 2004#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2005static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2006 unsigned long address)
2007{
2008 return 0;
2009}
b4e98d9a
KS
2010static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2011static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2012
5f22df00 2013#else
c2febafc 2014int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2015
b4e98d9a
KS
2016static inline void mm_inc_nr_puds(struct mm_struct *mm)
2017{
6d212db1
MS
2018 if (mm_pud_folded(mm))
2019 return;
af5b0f6a 2020 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2021}
2022
2023static inline void mm_dec_nr_puds(struct mm_struct *mm)
2024{
6d212db1
MS
2025 if (mm_pud_folded(mm))
2026 return;
af5b0f6a 2027 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2028}
5f22df00
NP
2029#endif
2030
2d2f5119 2031#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2032static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2033 unsigned long address)
2034{
2035 return 0;
2036}
dc6c9a35 2037
dc6c9a35
KS
2038static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2039static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2040
5f22df00 2041#else
1bb3630e 2042int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2043
dc6c9a35
KS
2044static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2045{
6d212db1
MS
2046 if (mm_pmd_folded(mm))
2047 return;
af5b0f6a 2048 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2049}
2050
2051static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2052{
6d212db1
MS
2053 if (mm_pmd_folded(mm))
2054 return;
af5b0f6a 2055 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2056}
5f22df00
NP
2057#endif
2058
c4812909 2059#ifdef CONFIG_MMU
af5b0f6a 2060static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2061{
af5b0f6a 2062 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2063}
2064
af5b0f6a 2065static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2066{
af5b0f6a 2067 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2068}
2069
2070static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2071{
af5b0f6a 2072 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2073}
2074
2075static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2076{
af5b0f6a 2077 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2078}
2079#else
c4812909 2080
af5b0f6a
KS
2081static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2082static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2083{
2084 return 0;
2085}
2086
2087static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2088static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2089#endif
2090
4cf58924
JFG
2091int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2092int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2093
f949286c
MR
2094#if defined(CONFIG_MMU)
2095
c2febafc
KS
2096static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2097 unsigned long address)
2098{
2099 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2100 NULL : p4d_offset(pgd, address);
2101}
2102
2103static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2104 unsigned long address)
1da177e4 2105{
c2febafc
KS
2106 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2107 NULL : pud_offset(p4d, address);
1da177e4 2108}
d8626138 2109
1da177e4
LT
2110static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2111{
1bb3630e
HD
2112 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2113 NULL: pmd_offset(pud, address);
1da177e4 2114}
f949286c 2115#endif /* CONFIG_MMU */
1bb3630e 2116
57c1ffce 2117#if USE_SPLIT_PTE_PTLOCKS
597d795a 2118#if ALLOC_SPLIT_PTLOCKS
b35f1819 2119void __init ptlock_cache_init(void);
539edb58
PZ
2120extern bool ptlock_alloc(struct page *page);
2121extern void ptlock_free(struct page *page);
2122
2123static inline spinlock_t *ptlock_ptr(struct page *page)
2124{
2125 return page->ptl;
2126}
597d795a 2127#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2128static inline void ptlock_cache_init(void)
2129{
2130}
2131
49076ec2
KS
2132static inline bool ptlock_alloc(struct page *page)
2133{
49076ec2
KS
2134 return true;
2135}
539edb58 2136
49076ec2
KS
2137static inline void ptlock_free(struct page *page)
2138{
49076ec2
KS
2139}
2140
2141static inline spinlock_t *ptlock_ptr(struct page *page)
2142{
539edb58 2143 return &page->ptl;
49076ec2 2144}
597d795a 2145#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2146
2147static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2148{
2149 return ptlock_ptr(pmd_page(*pmd));
2150}
2151
2152static inline bool ptlock_init(struct page *page)
2153{
2154 /*
2155 * prep_new_page() initialize page->private (and therefore page->ptl)
2156 * with 0. Make sure nobody took it in use in between.
2157 *
2158 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2159 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2160 */
309381fe 2161 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2162 if (!ptlock_alloc(page))
2163 return false;
2164 spin_lock_init(ptlock_ptr(page));
2165 return true;
2166}
2167
57c1ffce 2168#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2169/*
2170 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2171 */
49076ec2
KS
2172static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2173{
2174 return &mm->page_table_lock;
2175}
b35f1819 2176static inline void ptlock_cache_init(void) {}
49076ec2 2177static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2178static inline void ptlock_free(struct page *page) {}
57c1ffce 2179#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2180
b35f1819
KS
2181static inline void pgtable_init(void)
2182{
2183 ptlock_cache_init();
2184 pgtable_cache_init();
2185}
2186
b4ed71f5 2187static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2188{
706874e9
VD
2189 if (!ptlock_init(page))
2190 return false;
1d40a5ea 2191 __SetPageTable(page);
f0c0c115 2192 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2193 return true;
2f569afd
MS
2194}
2195
b4ed71f5 2196static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2197{
9e247bab 2198 ptlock_free(page);
1d40a5ea 2199 __ClearPageTable(page);
f0c0c115 2200 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2201}
2202
c74df32c
HD
2203#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2204({ \
4c21e2f2 2205 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2206 pte_t *__pte = pte_offset_map(pmd, address); \
2207 *(ptlp) = __ptl; \
2208 spin_lock(__ptl); \
2209 __pte; \
2210})
2211
2212#define pte_unmap_unlock(pte, ptl) do { \
2213 spin_unlock(ptl); \
2214 pte_unmap(pte); \
2215} while (0)
2216
4cf58924 2217#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2218
2219#define pte_alloc_map(mm, pmd, address) \
4cf58924 2220 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2221
c74df32c 2222#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2223 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2224 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2225
1bb3630e 2226#define pte_alloc_kernel(pmd, address) \
4cf58924 2227 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2228 NULL: pte_offset_kernel(pmd, address))
1da177e4 2229
e009bb30
KS
2230#if USE_SPLIT_PMD_PTLOCKS
2231
634391ac
MS
2232static struct page *pmd_to_page(pmd_t *pmd)
2233{
2234 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2235 return virt_to_page((void *)((unsigned long) pmd & mask));
2236}
2237
e009bb30
KS
2238static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2239{
634391ac 2240 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2241}
2242
b2b29d6d 2243static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2244{
e009bb30
KS
2245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2246 page->pmd_huge_pte = NULL;
2247#endif
49076ec2 2248 return ptlock_init(page);
e009bb30
KS
2249}
2250
b2b29d6d 2251static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2252{
2253#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2254 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2255#endif
49076ec2 2256 ptlock_free(page);
e009bb30
KS
2257}
2258
634391ac 2259#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2260
2261#else
2262
9a86cb7b
KS
2263static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2264{
2265 return &mm->page_table_lock;
2266}
2267
b2b29d6d
MW
2268static inline bool pmd_ptlock_init(struct page *page) { return true; }
2269static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2270
c389a250 2271#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2272
e009bb30
KS
2273#endif
2274
9a86cb7b
KS
2275static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2276{
2277 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2278 spin_lock(ptl);
2279 return ptl;
2280}
2281
b2b29d6d
MW
2282static inline bool pgtable_pmd_page_ctor(struct page *page)
2283{
2284 if (!pmd_ptlock_init(page))
2285 return false;
2286 __SetPageTable(page);
f0c0c115 2287 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2288 return true;
2289}
2290
2291static inline void pgtable_pmd_page_dtor(struct page *page)
2292{
2293 pmd_ptlock_free(page);
2294 __ClearPageTable(page);
f0c0c115 2295 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2296}
2297
a00cc7d9
MW
2298/*
2299 * No scalability reason to split PUD locks yet, but follow the same pattern
2300 * as the PMD locks to make it easier if we decide to. The VM should not be
2301 * considered ready to switch to split PUD locks yet; there may be places
2302 * which need to be converted from page_table_lock.
2303 */
2304static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2305{
2306 return &mm->page_table_lock;
2307}
2308
2309static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2310{
2311 spinlock_t *ptl = pud_lockptr(mm, pud);
2312
2313 spin_lock(ptl);
2314 return ptl;
2315}
62906027 2316
a00cc7d9 2317extern void __init pagecache_init(void);
bc9331a1 2318extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2319extern void free_initmem(void);
2320
69afade7
JL
2321/*
2322 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2323 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2324 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2325 * Return pages freed into the buddy system.
2326 */
11199692 2327extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2328 int poison, const char *s);
c3d5f5f0 2329
cfa11e08
JL
2330#ifdef CONFIG_HIGHMEM
2331/*
2332 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2333 * and totalram_pages.
2334 */
2335extern void free_highmem_page(struct page *page);
2336#endif
69afade7 2337
c3d5f5f0 2338extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2339extern void mem_init_print_info(const char *str);
69afade7 2340
4b50bcc7 2341extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2342
69afade7
JL
2343/* Free the reserved page into the buddy system, so it gets managed. */
2344static inline void __free_reserved_page(struct page *page)
2345{
2346 ClearPageReserved(page);
2347 init_page_count(page);
2348 __free_page(page);
2349}
2350
2351static inline void free_reserved_page(struct page *page)
2352{
2353 __free_reserved_page(page);
2354 adjust_managed_page_count(page, 1);
2355}
2356
2357static inline void mark_page_reserved(struct page *page)
2358{
2359 SetPageReserved(page);
2360 adjust_managed_page_count(page, -1);
2361}
2362
2363/*
2364 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2365 * The freed pages will be poisoned with pattern "poison" if it's within
2366 * range [0, UCHAR_MAX].
2367 * Return pages freed into the buddy system.
69afade7
JL
2368 */
2369static inline unsigned long free_initmem_default(int poison)
2370{
2371 extern char __init_begin[], __init_end[];
2372
11199692 2373 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2374 poison, "unused kernel");
2375}
2376
7ee3d4e8
JL
2377static inline unsigned long get_num_physpages(void)
2378{
2379 int nid;
2380 unsigned long phys_pages = 0;
2381
2382 for_each_online_node(nid)
2383 phys_pages += node_present_pages(nid);
2384
2385 return phys_pages;
2386}
2387
c713216d 2388/*
3f08a302 2389 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2390 * zones, allocate the backing mem_map and account for memory holes in an
2391 * architecture independent manner.
c713216d
MG
2392 *
2393 * An architecture is expected to register range of page frames backed by
0ee332c1 2394 * physical memory with memblock_add[_node]() before calling
9691a071 2395 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2396 * usage, an architecture is expected to do something like
2397 *
2398 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2399 * max_highmem_pfn};
2400 * for_each_valid_physical_page_range()
0ee332c1 2401 * memblock_add_node(base, size, nid)
9691a071 2402 * free_area_init(max_zone_pfns);
c713216d 2403 */
9691a071 2404void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2405unsigned long node_map_pfn_alignment(void);
32996250
YL
2406unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2407 unsigned long end_pfn);
c713216d
MG
2408extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2409 unsigned long end_pfn);
2410extern void get_pfn_range_for_nid(unsigned int nid,
2411 unsigned long *start_pfn, unsigned long *end_pfn);
2412extern unsigned long find_min_pfn_with_active_regions(void);
f2dbcfa7 2413
3f08a302 2414#ifndef CONFIG_NEED_MULTIPLE_NODES
6f24fbd3 2415static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2416{
2417 return 0;
2418}
2419#else
2420/* please see mm/page_alloc.c */
2421extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2422#endif
2423
0e0b864e 2424extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7 2425extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
d882c006 2426 enum meminit_context, struct vmem_altmap *, int migratetype);
bc75d33f 2427extern void setup_per_zone_wmarks(void);
1b79acc9 2428extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2429extern void mem_init(void);
8feae131 2430extern void __init mmap_init(void);
9af744d7 2431extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2432extern long si_mem_available(void);
1da177e4
LT
2433extern void si_meminfo(struct sysinfo * val);
2434extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2435#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2436extern unsigned long arch_reserved_kernel_pages(void);
2437#endif
1da177e4 2438
a8e99259
MH
2439extern __printf(3, 4)
2440void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2441
e7c8d5c9 2442extern void setup_per_cpu_pageset(void);
e7c8d5c9 2443
75f7ad8e
PS
2444/* page_alloc.c */
2445extern int min_free_kbytes;
1c30844d 2446extern int watermark_boost_factor;
795ae7a0 2447extern int watermark_scale_factor;
51930df5 2448extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2449
8feae131 2450/* nommu.c */
33e5d769 2451extern atomic_long_t mmap_pages_allocated;
7e660872 2452extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2453
6b2dbba8 2454/* interval_tree.c */
6b2dbba8 2455void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2456 struct rb_root_cached *root);
9826a516
ML
2457void vma_interval_tree_insert_after(struct vm_area_struct *node,
2458 struct vm_area_struct *prev,
f808c13f 2459 struct rb_root_cached *root);
6b2dbba8 2460void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2461 struct rb_root_cached *root);
2462struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2463 unsigned long start, unsigned long last);
2464struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2465 unsigned long start, unsigned long last);
2466
2467#define vma_interval_tree_foreach(vma, root, start, last) \
2468 for (vma = vma_interval_tree_iter_first(root, start, last); \
2469 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2470
bf181b9f 2471void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2472 struct rb_root_cached *root);
bf181b9f 2473void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2474 struct rb_root_cached *root);
2475struct anon_vma_chain *
2476anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2477 unsigned long start, unsigned long last);
bf181b9f
ML
2478struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2479 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2480#ifdef CONFIG_DEBUG_VM_RB
2481void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2482#endif
bf181b9f
ML
2483
2484#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2485 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2486 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2487
1da177e4 2488/* mmap.c */
34b4e4aa 2489extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2490extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2491 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2492 struct vm_area_struct *expand);
2493static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2494 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2495{
2496 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2497}
1da177e4
LT
2498extern struct vm_area_struct *vma_merge(struct mm_struct *,
2499 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2500 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2501 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2502extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2503extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2504 unsigned long addr, int new_below);
2505extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2506 unsigned long addr, int new_below);
1da177e4
LT
2507extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2508extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2509 struct rb_node **, struct rb_node *);
a8fb5618 2510extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2511extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2512 unsigned long addr, unsigned long len, pgoff_t pgoff,
2513 bool *need_rmap_locks);
1da177e4 2514extern void exit_mmap(struct mm_struct *);
925d1c40 2515
9c599024
CG
2516static inline int check_data_rlimit(unsigned long rlim,
2517 unsigned long new,
2518 unsigned long start,
2519 unsigned long end_data,
2520 unsigned long start_data)
2521{
2522 if (rlim < RLIM_INFINITY) {
2523 if (((new - start) + (end_data - start_data)) > rlim)
2524 return -ENOSPC;
2525 }
2526
2527 return 0;
2528}
2529
7906d00c
AA
2530extern int mm_take_all_locks(struct mm_struct *mm);
2531extern void mm_drop_all_locks(struct mm_struct *mm);
2532
38646013
JS
2533extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2534extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2535extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2536
84638335
KK
2537extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2538extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2539
2eefd878
DS
2540extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2541 const struct vm_special_mapping *sm);
3935ed6a
SS
2542extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2543 unsigned long addr, unsigned long len,
a62c34bd
AL
2544 unsigned long flags,
2545 const struct vm_special_mapping *spec);
2546/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2547extern int install_special_mapping(struct mm_struct *mm,
2548 unsigned long addr, unsigned long len,
2549 unsigned long flags, struct page **pages);
1da177e4 2550
649775be
AG
2551unsigned long randomize_stack_top(unsigned long stack_top);
2552
1da177e4
LT
2553extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2554
0165ab44 2555extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2556 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2557 struct list_head *uf);
1fcfd8db 2558extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2559 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2560 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2561extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2562 struct list_head *uf, bool downgrade);
897ab3e0
MR
2563extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2564 struct list_head *uf);
0726b01e 2565extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2566
bebeb3d6
ML
2567#ifdef CONFIG_MMU
2568extern int __mm_populate(unsigned long addr, unsigned long len,
2569 int ignore_errors);
2570static inline void mm_populate(unsigned long addr, unsigned long len)
2571{
2572 /* Ignore errors */
2573 (void) __mm_populate(addr, len, 1);
2574}
2575#else
2576static inline void mm_populate(unsigned long addr, unsigned long len) {}
2577#endif
2578
e4eb1ff6 2579/* These take the mm semaphore themselves */
5d22fc25 2580extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2581extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2582extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2583extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2584 unsigned long, unsigned long,
2585 unsigned long, unsigned long);
1da177e4 2586
db4fbfb9
ML
2587struct vm_unmapped_area_info {
2588#define VM_UNMAPPED_AREA_TOPDOWN 1
2589 unsigned long flags;
2590 unsigned long length;
2591 unsigned long low_limit;
2592 unsigned long high_limit;
2593 unsigned long align_mask;
2594 unsigned long align_offset;
2595};
2596
baceaf1c 2597extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2598
85821aab 2599/* truncate.c */
1da177e4 2600extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2601extern void truncate_inode_pages_range(struct address_space *,
2602 loff_t lstart, loff_t lend);
91b0abe3 2603extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2604
2605/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2606extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2607extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2608 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2609extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2610
2611/* mm/page-writeback.c */
2b69c828 2612int __must_check write_one_page(struct page *page);
1cf6e7d8 2613void task_dirty_inc(struct task_struct *tsk);
1da177e4 2614
1be7107f 2615extern unsigned long stack_guard_gap;
d05f3169 2616/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2617extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2618
11192337 2619/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2620extern int expand_downwards(struct vm_area_struct *vma,
2621 unsigned long address);
8ca3eb08 2622#if VM_GROWSUP
46dea3d0 2623extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2624#else
fee7e49d 2625 #define expand_upwards(vma, address) (0)
9ab88515 2626#endif
1da177e4
LT
2627
2628/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2629extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2630extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2631 struct vm_area_struct **pprev);
2632
2633/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2634 NULL if none. Assume start_addr < end_addr. */
2635static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2636{
2637 struct vm_area_struct * vma = find_vma(mm,start_addr);
2638
2639 if (vma && end_addr <= vma->vm_start)
2640 vma = NULL;
2641 return vma;
2642}
2643
1be7107f
HD
2644static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2645{
2646 unsigned long vm_start = vma->vm_start;
2647
2648 if (vma->vm_flags & VM_GROWSDOWN) {
2649 vm_start -= stack_guard_gap;
2650 if (vm_start > vma->vm_start)
2651 vm_start = 0;
2652 }
2653 return vm_start;
2654}
2655
2656static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2657{
2658 unsigned long vm_end = vma->vm_end;
2659
2660 if (vma->vm_flags & VM_GROWSUP) {
2661 vm_end += stack_guard_gap;
2662 if (vm_end < vma->vm_end)
2663 vm_end = -PAGE_SIZE;
2664 }
2665 return vm_end;
2666}
2667
1da177e4
LT
2668static inline unsigned long vma_pages(struct vm_area_struct *vma)
2669{
2670 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2671}
2672
640708a2
PE
2673/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2674static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2675 unsigned long vm_start, unsigned long vm_end)
2676{
2677 struct vm_area_struct *vma = find_vma(mm, vm_start);
2678
2679 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2680 vma = NULL;
2681
2682 return vma;
2683}
2684
017b1660
MK
2685static inline bool range_in_vma(struct vm_area_struct *vma,
2686 unsigned long start, unsigned long end)
2687{
2688 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2689}
2690
bad849b3 2691#ifdef CONFIG_MMU
804af2cf 2692pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2693void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2694#else
2695static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2696{
2697 return __pgprot(0);
2698}
64e45507
PF
2699static inline void vma_set_page_prot(struct vm_area_struct *vma)
2700{
2701 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2702}
bad849b3
DH
2703#endif
2704
5877231f 2705#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2706unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2707 unsigned long start, unsigned long end);
2708#endif
2709
deceb6cd 2710struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2711int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2712 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2713int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2714int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2715 struct page **pages, unsigned long *num);
a667d745
SJ
2716int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2717 unsigned long num);
2718int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2719 unsigned long num);
ae2b01f3 2720vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2721 unsigned long pfn);
f5e6d1d5
MW
2722vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2723 unsigned long pfn, pgprot_t pgprot);
5d747637 2724vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2725 pfn_t pfn);
574c5b3d
TH
2726vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2727 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2728vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2729 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2730int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2731
1c8f4220
SJ
2732static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2733 unsigned long addr, struct page *page)
2734{
2735 int err = vm_insert_page(vma, addr, page);
2736
2737 if (err == -ENOMEM)
2738 return VM_FAULT_OOM;
2739 if (err < 0 && err != -EBUSY)
2740 return VM_FAULT_SIGBUS;
2741
2742 return VM_FAULT_NOPAGE;
2743}
2744
f8f6ae5d
JG
2745#ifndef io_remap_pfn_range
2746static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2747 unsigned long addr, unsigned long pfn,
2748 unsigned long size, pgprot_t prot)
2749{
2750 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2751}
2752#endif
2753
d97baf94
SJ
2754static inline vm_fault_t vmf_error(int err)
2755{
2756 if (err == -ENOMEM)
2757 return VM_FAULT_OOM;
2758 return VM_FAULT_SIGBUS;
2759}
2760
df06b37f
KB
2761struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2762 unsigned int foll_flags);
240aadee 2763
deceb6cd
HD
2764#define FOLL_WRITE 0x01 /* check pte is writable */
2765#define FOLL_TOUCH 0x02 /* mark page accessed */
2766#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2767#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2768#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2769#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2770 * and return without waiting upon it */
84d33df2 2771#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2772#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2773#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2774#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2775#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2776#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2777#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2778#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2779#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2780#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2781#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2782#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2783#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2784#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2785
2786/*
eddb1c22
JH
2787 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2788 * other. Here is what they mean, and how to use them:
932f4a63
IW
2789 *
2790 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2791 * period _often_ under userspace control. This is in contrast to
2792 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2793 *
2794 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2795 * lifetime enforced by the filesystem and we need guarantees that longterm
2796 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2797 * the filesystem. Ideas for this coordination include revoking the longterm
2798 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2799 * added after the problem with filesystems was found FS DAX VMAs are
2800 * specifically failed. Filesystem pages are still subject to bugs and use of
2801 * FOLL_LONGTERM should be avoided on those pages.
2802 *
2803 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2804 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2805 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2806 * is due to an incompatibility with the FS DAX check and
eddb1c22 2807 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2808 *
eddb1c22
JH
2809 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2810 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2811 * FOLL_LONGTERM is specified.
eddb1c22
JH
2812 *
2813 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2814 * but an additional pin counting system) will be invoked. This is intended for
2815 * anything that gets a page reference and then touches page data (for example,
2816 * Direct IO). This lets the filesystem know that some non-file-system entity is
2817 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2818 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2819 * a call to unpin_user_page().
eddb1c22
JH
2820 *
2821 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2822 * and separate refcounting mechanisms, however, and that means that each has
2823 * its own acquire and release mechanisms:
2824 *
2825 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2826 *
f1f6a7dd 2827 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2828 *
2829 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2830 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2831 * calls applied to them, and that's perfectly OK. This is a constraint on the
2832 * callers, not on the pages.)
2833 *
2834 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2835 * directly by the caller. That's in order to help avoid mismatches when
2836 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2837 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2838 *
72ef5e52 2839 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2840 */
1da177e4 2841
2b740303 2842static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2843{
2844 if (vm_fault & VM_FAULT_OOM)
2845 return -ENOMEM;
2846 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2847 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2848 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2849 return -EFAULT;
2850 return 0;
2851}
2852
8b1e0f81 2853typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2854extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2855 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2856extern int apply_to_existing_page_range(struct mm_struct *mm,
2857 unsigned long address, unsigned long size,
2858 pte_fn_t fn, void *data);
aee16b3c 2859
04013513 2860extern void init_mem_debugging_and_hardening(void);
8823b1db 2861#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
2862extern void __kernel_poison_pages(struct page *page, int numpages);
2863extern void __kernel_unpoison_pages(struct page *page, int numpages);
2864extern bool _page_poisoning_enabled_early;
2865DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2866static inline bool page_poisoning_enabled(void)
2867{
2868 return _page_poisoning_enabled_early;
2869}
2870/*
2871 * For use in fast paths after init_mem_debugging() has run, or when a
2872 * false negative result is not harmful when called too early.
2873 */
2874static inline bool page_poisoning_enabled_static(void)
2875{
2876 return static_branch_unlikely(&_page_poisoning_enabled);
2877}
2878static inline void kernel_poison_pages(struct page *page, int numpages)
2879{
2880 if (page_poisoning_enabled_static())
2881 __kernel_poison_pages(page, numpages);
2882}
2883static inline void kernel_unpoison_pages(struct page *page, int numpages)
2884{
2885 if (page_poisoning_enabled_static())
2886 __kernel_unpoison_pages(page, numpages);
2887}
8823b1db
LA
2888#else
2889static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 2890static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 2891static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
2892static inline void kernel_poison_pages(struct page *page, int numpages) { }
2893static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
2894#endif
2895
6471384a 2896DECLARE_STATIC_KEY_FALSE(init_on_alloc);
6471384a
AP
2897static inline bool want_init_on_alloc(gfp_t flags)
2898{
04013513 2899 if (static_branch_unlikely(&init_on_alloc))
6471384a
AP
2900 return true;
2901 return flags & __GFP_ZERO;
2902}
2903
6471384a 2904DECLARE_STATIC_KEY_FALSE(init_on_free);
6471384a
AP
2905static inline bool want_init_on_free(void)
2906{
04013513 2907 return static_branch_unlikely(&init_on_free);
6471384a
AP
2908}
2909
8e57f8ac
VB
2910extern bool _debug_pagealloc_enabled_early;
2911DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
2912
2913static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
2914{
2915 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2916 _debug_pagealloc_enabled_early;
2917}
2918
2919/*
2920 * For use in fast paths after init_debug_pagealloc() has run, or when a
2921 * false negative result is not harmful when called too early.
2922 */
2923static inline bool debug_pagealloc_enabled_static(void)
031bc574 2924{
96a2b03f
VB
2925 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2926 return false;
2927
2928 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
2929}
2930
5d6ad668 2931#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 2932/*
5d6ad668
MR
2933 * To support DEBUG_PAGEALLOC architecture must ensure that
2934 * __kernel_map_pages() never fails
c87cbc1f 2935 */
d6332692
RE
2936extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2937
77bc7fd6
MR
2938static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
2939{
2940 if (debug_pagealloc_enabled_static())
2941 __kernel_map_pages(page, numpages, 1);
2942}
2943
2944static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
2945{
2946 if (debug_pagealloc_enabled_static())
2947 __kernel_map_pages(page, numpages, 0);
2948}
5d6ad668 2949#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
2950static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
2951static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 2952#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2953
a6c19dfe 2954#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2955extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2956extern int in_gate_area_no_mm(unsigned long addr);
2957extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2958#else
a6c19dfe
AL
2959static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2960{
2961 return NULL;
2962}
2963static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2964static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2965{
2966 return 0;
2967}
1da177e4
LT
2968#endif /* __HAVE_ARCH_GATE_AREA */
2969
44a70ade
MH
2970extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2971
146732ce
JT
2972#ifdef CONFIG_SYSCTL
2973extern int sysctl_drop_caches;
32927393
CH
2974int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2975 loff_t *);
146732ce
JT
2976#endif
2977
cb731d6c
VD
2978void drop_slab(void);
2979void drop_slab_node(int nid);
9d0243bc 2980
7a9166e3
LY
2981#ifndef CONFIG_MMU
2982#define randomize_va_space 0
2983#else
a62eaf15 2984extern int randomize_va_space;
7a9166e3 2985#endif
a62eaf15 2986
045e72ac 2987const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 2988#ifdef CONFIG_MMU
03252919 2989void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
2990#else
2991static inline void print_vma_addr(char *prefix, unsigned long rip)
2992{
2993}
2994#endif
e6e5494c 2995
35fd1eb1 2996void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
2997struct page * __populate_section_memmap(unsigned long pfn,
2998 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 2999pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3000p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3001pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3002pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7
AK
3003pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3004 struct vmem_altmap *altmap);
8f6aac41 3005void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3006struct vmem_altmap;
56993b4e
AK
3007void *vmemmap_alloc_block_buf(unsigned long size, int node,
3008 struct vmem_altmap *altmap);
8f6aac41 3009void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 3010int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3011 int node, struct vmem_altmap *altmap);
7b73d978
CH
3012int vmemmap_populate(unsigned long start, unsigned long end, int node,
3013 struct vmem_altmap *altmap);
c2b91e2e 3014void vmemmap_populate_print_last(void);
0197518c 3015#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3016void vmemmap_free(unsigned long start, unsigned long end,
3017 struct vmem_altmap *altmap);
0197518c 3018#endif
46723bfa 3019void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3020 unsigned long nr_pages);
6a46079c 3021
82ba011b
AK
3022enum mf_flags {
3023 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3024 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3025 MF_MUST_KILL = 1 << 2,
cf870c70 3026 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 3027};
83b57531
EB
3028extern int memory_failure(unsigned long pfn, int flags);
3029extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3030extern void memory_failure_queue_kick(int cpu);
847ce401 3031extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3032extern int sysctl_memory_failure_early_kill;
3033extern int sysctl_memory_failure_recovery;
facb6011 3034extern void shake_page(struct page *p, int access);
5844a486 3035extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3036extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3037
cc637b17
XX
3038
3039/*
3040 * Error handlers for various types of pages.
3041 */
cc3e2af4 3042enum mf_result {
cc637b17
XX
3043 MF_IGNORED, /* Error: cannot be handled */
3044 MF_FAILED, /* Error: handling failed */
3045 MF_DELAYED, /* Will be handled later */
3046 MF_RECOVERED, /* Successfully recovered */
3047};
3048
3049enum mf_action_page_type {
3050 MF_MSG_KERNEL,
3051 MF_MSG_KERNEL_HIGH_ORDER,
3052 MF_MSG_SLAB,
3053 MF_MSG_DIFFERENT_COMPOUND,
3054 MF_MSG_POISONED_HUGE,
3055 MF_MSG_HUGE,
3056 MF_MSG_FREE_HUGE,
31286a84 3057 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3058 MF_MSG_UNMAP_FAILED,
3059 MF_MSG_DIRTY_SWAPCACHE,
3060 MF_MSG_CLEAN_SWAPCACHE,
3061 MF_MSG_DIRTY_MLOCKED_LRU,
3062 MF_MSG_CLEAN_MLOCKED_LRU,
3063 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3064 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3065 MF_MSG_DIRTY_LRU,
3066 MF_MSG_CLEAN_LRU,
3067 MF_MSG_TRUNCATED_LRU,
3068 MF_MSG_BUDDY,
3069 MF_MSG_BUDDY_2ND,
6100e34b 3070 MF_MSG_DAX,
5d1fd5dc 3071 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3072 MF_MSG_UNKNOWN,
3073};
3074
47ad8475
AA
3075#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3076extern void clear_huge_page(struct page *page,
c79b57e4 3077 unsigned long addr_hint,
47ad8475
AA
3078 unsigned int pages_per_huge_page);
3079extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3080 unsigned long addr_hint,
3081 struct vm_area_struct *vma,
47ad8475 3082 unsigned int pages_per_huge_page);
fa4d75c1
MK
3083extern long copy_huge_page_from_user(struct page *dst_page,
3084 const void __user *usr_src,
810a56b9
MK
3085 unsigned int pages_per_huge_page,
3086 bool allow_pagefault);
2484ca9b
THV
3087
3088/**
3089 * vma_is_special_huge - Are transhuge page-table entries considered special?
3090 * @vma: Pointer to the struct vm_area_struct to consider
3091 *
3092 * Whether transhuge page-table entries are considered "special" following
3093 * the definition in vm_normal_page().
3094 *
3095 * Return: true if transhuge page-table entries should be considered special,
3096 * false otherwise.
3097 */
3098static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3099{
3100 return vma_is_dax(vma) || (vma->vm_file &&
3101 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3102}
3103
47ad8475
AA
3104#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3105
c0a32fc5
SG
3106#ifdef CONFIG_DEBUG_PAGEALLOC
3107extern unsigned int _debug_guardpage_minorder;
96a2b03f 3108DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3109
3110static inline unsigned int debug_guardpage_minorder(void)
3111{
3112 return _debug_guardpage_minorder;
3113}
3114
e30825f1
JK
3115static inline bool debug_guardpage_enabled(void)
3116{
96a2b03f 3117 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3118}
3119
c0a32fc5
SG
3120static inline bool page_is_guard(struct page *page)
3121{
e30825f1
JK
3122 if (!debug_guardpage_enabled())
3123 return false;
3124
3972f6bb 3125 return PageGuard(page);
c0a32fc5
SG
3126}
3127#else
3128static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3129static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3130static inline bool page_is_guard(struct page *page) { return false; }
3131#endif /* CONFIG_DEBUG_PAGEALLOC */
3132
f9872caf
CS
3133#if MAX_NUMNODES > 1
3134void __init setup_nr_node_ids(void);
3135#else
3136static inline void setup_nr_node_ids(void) {}
3137#endif
3138
010c164a
SL
3139extern int memcmp_pages(struct page *page1, struct page *page2);
3140
3141static inline int pages_identical(struct page *page1, struct page *page2)
3142{
3143 return !memcmp_pages(page1, page2);
3144}
3145
c5acad84
TH
3146#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3147unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3148 pgoff_t first_index, pgoff_t nr,
3149 pgoff_t bitmap_pgoff,
3150 unsigned long *bitmap,
3151 pgoff_t *start,
3152 pgoff_t *end);
3153
3154unsigned long wp_shared_mapping_range(struct address_space *mapping,
3155 pgoff_t first_index, pgoff_t nr);
3156#endif
3157
2374c09b
CH
3158extern int sysctl_nr_trim_pages;
3159
1da177e4
LT
3160#endif /* __KERNEL__ */
3161#endif /* _LINUX_MM_H */