mm/core, x86/mm/pkeys: Store protection bits in high VMA flags
[linux-2.6-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
3565fce3 19#include <linux/percpu-refcount.h>
e9da73d6 20#include <linux/bit_spinlock.h>
b0d40c92 21#include <linux/shrinker.h>
9c599024 22#include <linux/resource.h>
e30825f1 23#include <linux/page_ext.h>
8025e5dd 24#include <linux/err.h>
1da177e4
LT
25
26struct mempolicy;
27struct anon_vma;
bf181b9f 28struct anon_vma_chain;
4e950f6f 29struct file_ra_state;
e8edc6e0 30struct user_struct;
4e950f6f 31struct writeback_control;
682aa8e1 32struct bdi_writeback;
1da177e4 33
fccc9987 34#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 35extern unsigned long max_mapnr;
fccc9987
JL
36
37static inline void set_max_mapnr(unsigned long limit)
38{
39 max_mapnr = limit;
40}
41#else
42static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
43#endif
44
4481374c 45extern unsigned long totalram_pages;
1da177e4 46extern void * high_memory;
1da177e4
LT
47extern int page_cluster;
48
49#ifdef CONFIG_SYSCTL
50extern int sysctl_legacy_va_layout;
51#else
52#define sysctl_legacy_va_layout 0
53#endif
54
d07e2259
DC
55#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
56extern const int mmap_rnd_bits_min;
57extern const int mmap_rnd_bits_max;
58extern int mmap_rnd_bits __read_mostly;
59#endif
60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
61extern const int mmap_rnd_compat_bits_min;
62extern const int mmap_rnd_compat_bits_max;
63extern int mmap_rnd_compat_bits __read_mostly;
64#endif
65
1da177e4
LT
66#include <asm/page.h>
67#include <asm/pgtable.h>
68#include <asm/processor.h>
1da177e4 69
79442ed1
TC
70#ifndef __pa_symbol
71#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
72#endif
73
593befa6
DD
74/*
75 * To prevent common memory management code establishing
76 * a zero page mapping on a read fault.
77 * This macro should be defined within <asm/pgtable.h>.
78 * s390 does this to prevent multiplexing of hardware bits
79 * related to the physical page in case of virtualization.
80 */
81#ifndef mm_forbids_zeropage
82#define mm_forbids_zeropage(X) (0)
83#endif
84
c9b1d098 85extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 86extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 87
49f0ce5f
JM
88extern int sysctl_overcommit_memory;
89extern int sysctl_overcommit_ratio;
90extern unsigned long sysctl_overcommit_kbytes;
91
92extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
93 size_t *, loff_t *);
94extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
95 size_t *, loff_t *);
96
1da177e4
LT
97#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
98
27ac792c
AR
99/* to align the pointer to the (next) page boundary */
100#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
101
0fa73b86
AM
102/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
103#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
104
1da177e4
LT
105/*
106 * Linux kernel virtual memory manager primitives.
107 * The idea being to have a "virtual" mm in the same way
108 * we have a virtual fs - giving a cleaner interface to the
109 * mm details, and allowing different kinds of memory mappings
110 * (from shared memory to executable loading to arbitrary
111 * mmap() functions).
112 */
113
c43692e8
CL
114extern struct kmem_cache *vm_area_cachep;
115
1da177e4 116#ifndef CONFIG_MMU
8feae131
DH
117extern struct rb_root nommu_region_tree;
118extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
119
120extern unsigned int kobjsize(const void *objp);
121#endif
122
123/*
605d9288 124 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 125 */
cc2383ec
KK
126#define VM_NONE 0x00000000
127
1da177e4
LT
128#define VM_READ 0x00000001 /* currently active flags */
129#define VM_WRITE 0x00000002
130#define VM_EXEC 0x00000004
131#define VM_SHARED 0x00000008
132
7e2cff42 133/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
134#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
135#define VM_MAYWRITE 0x00000020
136#define VM_MAYEXEC 0x00000040
137#define VM_MAYSHARE 0x00000080
138
139#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 140#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 141#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 142#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 143#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 144
1da177e4
LT
145#define VM_LOCKED 0x00002000
146#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
147
148 /* Used by sys_madvise() */
149#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
150#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
151
152#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
153#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 154#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 155#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 156#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 157#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 158#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 159#define VM_ARCH_2 0x02000000
0103bd16 160#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 161
d9104d1c
CG
162#ifdef CONFIG_MEM_SOFT_DIRTY
163# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
164#else
165# define VM_SOFTDIRTY 0
166#endif
167
b379d790 168#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
169#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
170#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 171#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 172
63c17fb8
DH
173#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
174#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
175#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
176#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
177#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
178#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
179#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
180#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
181#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
182#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
183
cc2383ec
KK
184#if defined(CONFIG_X86)
185# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
186#elif defined(CONFIG_PPC)
187# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
188#elif defined(CONFIG_PARISC)
189# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
190#elif defined(CONFIG_METAG)
191# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
192#elif defined(CONFIG_IA64)
193# define VM_GROWSUP VM_ARCH_1
194#elif !defined(CONFIG_MMU)
195# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
196#endif
197
4aae7e43
QR
198#if defined(CONFIG_X86)
199/* MPX specific bounds table or bounds directory */
200# define VM_MPX VM_ARCH_2
201#endif
202
cc2383ec
KK
203#ifndef VM_GROWSUP
204# define VM_GROWSUP VM_NONE
205#endif
206
a8bef8ff
MG
207/* Bits set in the VMA until the stack is in its final location */
208#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
209
1da177e4
LT
210#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
211#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
212#endif
213
214#ifdef CONFIG_STACK_GROWSUP
30bdbb78 215#define VM_STACK VM_GROWSUP
1da177e4 216#else
30bdbb78 217#define VM_STACK VM_GROWSDOWN
1da177e4
LT
218#endif
219
30bdbb78
KK
220#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
221
b291f000 222/*
78f11a25
AA
223 * Special vmas that are non-mergable, non-mlock()able.
224 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 225 */
9050d7eb 226#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 227
a0715cc2
AT
228/* This mask defines which mm->def_flags a process can inherit its parent */
229#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
230
de60f5f1
EM
231/* This mask is used to clear all the VMA flags used by mlock */
232#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
233
1da177e4
LT
234/*
235 * mapping from the currently active vm_flags protection bits (the
236 * low four bits) to a page protection mask..
237 */
238extern pgprot_t protection_map[16];
239
d0217ac0 240#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
241#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
242#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
243#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
244#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
245#define FAULT_FLAG_TRIED 0x20 /* Second try */
246#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
d0217ac0 247
54cb8821 248/*
d0217ac0 249 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
250 * ->fault function. The vma's ->fault is responsible for returning a bitmask
251 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 252 *
c20cd45e
MH
253 * MM layer fills up gfp_mask for page allocations but fault handler might
254 * alter it if its implementation requires a different allocation context.
255 *
9b4bdd2f 256 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 257 */
d0217ac0
NP
258struct vm_fault {
259 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 260 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0
NP
261 pgoff_t pgoff; /* Logical page offset based on vma */
262 void __user *virtual_address; /* Faulting virtual address */
263
2e4cdab0 264 struct page *cow_page; /* Handler may choose to COW */
d0217ac0 265 struct page *page; /* ->fault handlers should return a
83c54070 266 * page here, unless VM_FAULT_NOPAGE
d0217ac0 267 * is set (which is also implied by
83c54070 268 * VM_FAULT_ERROR).
d0217ac0 269 */
8c6e50b0
KS
270 /* for ->map_pages() only */
271 pgoff_t max_pgoff; /* map pages for offset from pgoff till
272 * max_pgoff inclusive */
273 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 274};
1da177e4
LT
275
276/*
277 * These are the virtual MM functions - opening of an area, closing and
278 * unmapping it (needed to keep files on disk up-to-date etc), pointer
279 * to the functions called when a no-page or a wp-page exception occurs.
280 */
281struct vm_operations_struct {
282 void (*open)(struct vm_area_struct * area);
283 void (*close)(struct vm_area_struct * area);
5477e70a 284 int (*mremap)(struct vm_area_struct * area);
d0217ac0 285 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
b96375f7
MW
286 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
287 pmd_t *, unsigned int flags);
8c6e50b0 288 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
289
290 /* notification that a previously read-only page is about to become
291 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 292 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 293
dd906184
BH
294 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
295 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
296
28b2ee20
RR
297 /* called by access_process_vm when get_user_pages() fails, typically
298 * for use by special VMAs that can switch between memory and hardware
299 */
300 int (*access)(struct vm_area_struct *vma, unsigned long addr,
301 void *buf, int len, int write);
78d683e8
AL
302
303 /* Called by the /proc/PID/maps code to ask the vma whether it
304 * has a special name. Returning non-NULL will also cause this
305 * vma to be dumped unconditionally. */
306 const char *(*name)(struct vm_area_struct *vma);
307
1da177e4 308#ifdef CONFIG_NUMA
a6020ed7
LS
309 /*
310 * set_policy() op must add a reference to any non-NULL @new mempolicy
311 * to hold the policy upon return. Caller should pass NULL @new to
312 * remove a policy and fall back to surrounding context--i.e. do not
313 * install a MPOL_DEFAULT policy, nor the task or system default
314 * mempolicy.
315 */
1da177e4 316 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
317
318 /*
319 * get_policy() op must add reference [mpol_get()] to any policy at
320 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
321 * in mm/mempolicy.c will do this automatically.
322 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
323 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
324 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
325 * must return NULL--i.e., do not "fallback" to task or system default
326 * policy.
327 */
1da177e4
LT
328 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
329 unsigned long addr);
330#endif
667a0a06
DV
331 /*
332 * Called by vm_normal_page() for special PTEs to find the
333 * page for @addr. This is useful if the default behavior
334 * (using pte_page()) would not find the correct page.
335 */
336 struct page *(*find_special_page)(struct vm_area_struct *vma,
337 unsigned long addr);
1da177e4
LT
338};
339
340struct mmu_gather;
341struct inode;
342
349aef0b
AM
343#define page_private(page) ((page)->private)
344#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 345
5c7fb56e
DW
346#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
347static inline int pmd_devmap(pmd_t pmd)
348{
349 return 0;
350}
351#endif
352
1da177e4
LT
353/*
354 * FIXME: take this include out, include page-flags.h in
355 * files which need it (119 of them)
356 */
357#include <linux/page-flags.h>
71e3aac0 358#include <linux/huge_mm.h>
1da177e4
LT
359
360/*
361 * Methods to modify the page usage count.
362 *
363 * What counts for a page usage:
364 * - cache mapping (page->mapping)
365 * - private data (page->private)
366 * - page mapped in a task's page tables, each mapping
367 * is counted separately
368 *
369 * Also, many kernel routines increase the page count before a critical
370 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
371 */
372
373/*
da6052f7 374 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 375 */
7c8ee9a8
NP
376static inline int put_page_testzero(struct page *page)
377{
309381fe 378 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 379 return atomic_dec_and_test(&page->_count);
7c8ee9a8 380}
1da177e4
LT
381
382/*
7c8ee9a8
NP
383 * Try to grab a ref unless the page has a refcount of zero, return false if
384 * that is the case.
8e0861fa
AK
385 * This can be called when MMU is off so it must not access
386 * any of the virtual mappings.
1da177e4 387 */
7c8ee9a8
NP
388static inline int get_page_unless_zero(struct page *page)
389{
8dc04efb 390 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 391}
1da177e4 392
53df8fdc 393extern int page_is_ram(unsigned long pfn);
124fe20d
DW
394
395enum {
396 REGION_INTERSECTS,
397 REGION_DISJOINT,
398 REGION_MIXED,
399};
400
401int region_intersects(resource_size_t offset, size_t size, const char *type);
53df8fdc 402
48667e7a 403/* Support for virtually mapped pages */
b3bdda02
CL
404struct page *vmalloc_to_page(const void *addr);
405unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 406
0738c4bb
PM
407/*
408 * Determine if an address is within the vmalloc range
409 *
410 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
411 * is no special casing required.
412 */
9e2779fa
CL
413static inline int is_vmalloc_addr(const void *x)
414{
0738c4bb 415#ifdef CONFIG_MMU
9e2779fa
CL
416 unsigned long addr = (unsigned long)x;
417
418 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
419#else
420 return 0;
8ca3ed87 421#endif
0738c4bb 422}
81ac3ad9
KH
423#ifdef CONFIG_MMU
424extern int is_vmalloc_or_module_addr(const void *x);
425#else
934831d0 426static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
427{
428 return 0;
429}
430#endif
9e2779fa 431
39f1f78d
AV
432extern void kvfree(const void *addr);
433
53f9263b
KS
434static inline atomic_t *compound_mapcount_ptr(struct page *page)
435{
436 return &page[1].compound_mapcount;
437}
438
439static inline int compound_mapcount(struct page *page)
440{
441 if (!PageCompound(page))
442 return 0;
443 page = compound_head(page);
444 return atomic_read(compound_mapcount_ptr(page)) + 1;
445}
446
70b50f94
AA
447/*
448 * The atomic page->_mapcount, starts from -1: so that transitions
449 * both from it and to it can be tracked, using atomic_inc_and_test
450 * and atomic_add_negative(-1).
451 */
22b751c3 452static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
453{
454 atomic_set(&(page)->_mapcount, -1);
455}
456
b20ce5e0
KS
457int __page_mapcount(struct page *page);
458
70b50f94
AA
459static inline int page_mapcount(struct page *page)
460{
1d148e21 461 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 462
b20ce5e0
KS
463 if (unlikely(PageCompound(page)))
464 return __page_mapcount(page);
465 return atomic_read(&page->_mapcount) + 1;
466}
467
468#ifdef CONFIG_TRANSPARENT_HUGEPAGE
469int total_mapcount(struct page *page);
470#else
471static inline int total_mapcount(struct page *page)
472{
473 return page_mapcount(page);
70b50f94 474}
b20ce5e0 475#endif
70b50f94 476
4c21e2f2 477static inline int page_count(struct page *page)
1da177e4 478{
d85f3385 479 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
480}
481
b49af68f
CL
482static inline struct page *virt_to_head_page(const void *x)
483{
484 struct page *page = virt_to_page(x);
ccaafd7f 485
1d798ca3 486 return compound_head(page);
b49af68f
CL
487}
488
7835e98b
NP
489/*
490 * Setup the page count before being freed into the page allocator for
491 * the first time (boot or memory hotplug)
492 */
493static inline void init_page_count(struct page *page)
494{
495 atomic_set(&page->_count, 1);
496}
497
ddc58f27
KS
498void __put_page(struct page *page);
499
1d7ea732 500void put_pages_list(struct list_head *pages);
1da177e4 501
8dfcc9ba 502void split_page(struct page *page, unsigned int order);
748446bb 503int split_free_page(struct page *page);
8dfcc9ba 504
33f2ef89
AW
505/*
506 * Compound pages have a destructor function. Provide a
507 * prototype for that function and accessor functions.
f1e61557 508 * These are _only_ valid on the head of a compound page.
33f2ef89 509 */
f1e61557
KS
510typedef void compound_page_dtor(struct page *);
511
512/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
513enum compound_dtor_id {
514 NULL_COMPOUND_DTOR,
515 COMPOUND_PAGE_DTOR,
516#ifdef CONFIG_HUGETLB_PAGE
517 HUGETLB_PAGE_DTOR,
9a982250
KS
518#endif
519#ifdef CONFIG_TRANSPARENT_HUGEPAGE
520 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
521#endif
522 NR_COMPOUND_DTORS,
523};
524extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
525
526static inline void set_compound_page_dtor(struct page *page,
f1e61557 527 enum compound_dtor_id compound_dtor)
33f2ef89 528{
f1e61557
KS
529 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
530 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
531}
532
533static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
534{
f1e61557
KS
535 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
536 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
537}
538
d00181b9 539static inline unsigned int compound_order(struct page *page)
d85f3385 540{
6d777953 541 if (!PageHead(page))
d85f3385 542 return 0;
e4b294c2 543 return page[1].compound_order;
d85f3385
CL
544}
545
f1e61557 546static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 547{
e4b294c2 548 page[1].compound_order = order;
d85f3385
CL
549}
550
9a982250
KS
551void free_compound_page(struct page *page);
552
3dece370 553#ifdef CONFIG_MMU
14fd403f
AA
554/*
555 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
556 * servicing faults for write access. In the normal case, do always want
557 * pte_mkwrite. But get_user_pages can cause write faults for mappings
558 * that do not have writing enabled, when used by access_process_vm.
559 */
560static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
561{
562 if (likely(vma->vm_flags & VM_WRITE))
563 pte = pte_mkwrite(pte);
564 return pte;
565}
8c6e50b0
KS
566
567void do_set_pte(struct vm_area_struct *vma, unsigned long address,
568 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 569#endif
14fd403f 570
1da177e4
LT
571/*
572 * Multiple processes may "see" the same page. E.g. for untouched
573 * mappings of /dev/null, all processes see the same page full of
574 * zeroes, and text pages of executables and shared libraries have
575 * only one copy in memory, at most, normally.
576 *
577 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
578 * page_count() == 0 means the page is free. page->lru is then used for
579 * freelist management in the buddy allocator.
da6052f7 580 * page_count() > 0 means the page has been allocated.
1da177e4 581 *
da6052f7
NP
582 * Pages are allocated by the slab allocator in order to provide memory
583 * to kmalloc and kmem_cache_alloc. In this case, the management of the
584 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
585 * unless a particular usage is carefully commented. (the responsibility of
586 * freeing the kmalloc memory is the caller's, of course).
1da177e4 587 *
da6052f7
NP
588 * A page may be used by anyone else who does a __get_free_page().
589 * In this case, page_count still tracks the references, and should only
590 * be used through the normal accessor functions. The top bits of page->flags
591 * and page->virtual store page management information, but all other fields
592 * are unused and could be used privately, carefully. The management of this
593 * page is the responsibility of the one who allocated it, and those who have
594 * subsequently been given references to it.
595 *
596 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
597 * managed by the Linux memory manager: I/O, buffers, swapping etc.
598 * The following discussion applies only to them.
599 *
da6052f7
NP
600 * A pagecache page contains an opaque `private' member, which belongs to the
601 * page's address_space. Usually, this is the address of a circular list of
602 * the page's disk buffers. PG_private must be set to tell the VM to call
603 * into the filesystem to release these pages.
1da177e4 604 *
da6052f7
NP
605 * A page may belong to an inode's memory mapping. In this case, page->mapping
606 * is the pointer to the inode, and page->index is the file offset of the page,
607 * in units of PAGE_CACHE_SIZE.
1da177e4 608 *
da6052f7
NP
609 * If pagecache pages are not associated with an inode, they are said to be
610 * anonymous pages. These may become associated with the swapcache, and in that
611 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 612 *
da6052f7
NP
613 * In either case (swapcache or inode backed), the pagecache itself holds one
614 * reference to the page. Setting PG_private should also increment the
615 * refcount. The each user mapping also has a reference to the page.
1da177e4 616 *
da6052f7
NP
617 * The pagecache pages are stored in a per-mapping radix tree, which is
618 * rooted at mapping->page_tree, and indexed by offset.
619 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
620 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 621 *
da6052f7 622 * All pagecache pages may be subject to I/O:
1da177e4
LT
623 * - inode pages may need to be read from disk,
624 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
625 * to be written back to the inode on disk,
626 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
627 * modified may need to be swapped out to swap space and (later) to be read
628 * back into memory.
1da177e4
LT
629 */
630
631/*
632 * The zone field is never updated after free_area_init_core()
633 * sets it, so none of the operations on it need to be atomic.
1da177e4 634 */
348f8b6c 635
90572890 636/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 637#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
638#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
639#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 640#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 641
348f8b6c 642/*
25985edc 643 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
644 * sections we define the shift as 0; that plus a 0 mask ensures
645 * the compiler will optimise away reference to them.
646 */
d41dee36
AW
647#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
648#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
649#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 650#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 651
bce54bbf
WD
652/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
653#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 654#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
655#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
656 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 657#else
89689ae7 658#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
659#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
660 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
661#endif
662
bd8029b6 663#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 664
9223b419
CL
665#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
666#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
667#endif
668
d41dee36
AW
669#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
670#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
671#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 672#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 673#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 674
33dd4e0e 675static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 676{
348f8b6c 677 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 678}
1da177e4 679
260ae3f7 680#ifdef CONFIG_ZONE_DEVICE
3565fce3
DW
681void get_zone_device_page(struct page *page);
682void put_zone_device_page(struct page *page);
260ae3f7
DW
683static inline bool is_zone_device_page(const struct page *page)
684{
685 return page_zonenum(page) == ZONE_DEVICE;
686}
687#else
3565fce3
DW
688static inline void get_zone_device_page(struct page *page)
689{
690}
691static inline void put_zone_device_page(struct page *page)
692{
693}
260ae3f7
DW
694static inline bool is_zone_device_page(const struct page *page)
695{
696 return false;
697}
698#endif
699
3565fce3
DW
700static inline void get_page(struct page *page)
701{
702 page = compound_head(page);
703 /*
704 * Getting a normal page or the head of a compound page
705 * requires to already have an elevated page->_count.
706 */
707 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
708 atomic_inc(&page->_count);
709
710 if (unlikely(is_zone_device_page(page)))
711 get_zone_device_page(page);
712}
713
714static inline void put_page(struct page *page)
715{
716 page = compound_head(page);
717
718 if (put_page_testzero(page))
719 __put_page(page);
720
721 if (unlikely(is_zone_device_page(page)))
722 put_zone_device_page(page);
723}
724
9127ab4f
CS
725#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
726#define SECTION_IN_PAGE_FLAGS
727#endif
728
89689ae7 729/*
7a8010cd
VB
730 * The identification function is mainly used by the buddy allocator for
731 * determining if two pages could be buddies. We are not really identifying
732 * the zone since we could be using the section number id if we do not have
733 * node id available in page flags.
734 * We only guarantee that it will return the same value for two combinable
735 * pages in a zone.
89689ae7 736 */
cb2b95e1
AW
737static inline int page_zone_id(struct page *page)
738{
89689ae7 739 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
740}
741
25ba77c1 742static inline int zone_to_nid(struct zone *zone)
89fa3024 743{
d5f541ed
CL
744#ifdef CONFIG_NUMA
745 return zone->node;
746#else
747 return 0;
748#endif
89fa3024
CL
749}
750
89689ae7 751#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 752extern int page_to_nid(const struct page *page);
89689ae7 753#else
33dd4e0e 754static inline int page_to_nid(const struct page *page)
d41dee36 755{
89689ae7 756 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 757}
89689ae7
CL
758#endif
759
57e0a030 760#ifdef CONFIG_NUMA_BALANCING
90572890 761static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 762{
90572890 763 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
764}
765
90572890 766static inline int cpupid_to_pid(int cpupid)
57e0a030 767{
90572890 768 return cpupid & LAST__PID_MASK;
57e0a030 769}
b795854b 770
90572890 771static inline int cpupid_to_cpu(int cpupid)
b795854b 772{
90572890 773 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
774}
775
90572890 776static inline int cpupid_to_nid(int cpupid)
b795854b 777{
90572890 778 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
779}
780
90572890 781static inline bool cpupid_pid_unset(int cpupid)
57e0a030 782{
90572890 783 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
784}
785
90572890 786static inline bool cpupid_cpu_unset(int cpupid)
b795854b 787{
90572890 788 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
789}
790
8c8a743c
PZ
791static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
792{
793 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
794}
795
796#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
797#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
798static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 799{
1ae71d03 800 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 801}
90572890
PZ
802
803static inline int page_cpupid_last(struct page *page)
804{
805 return page->_last_cpupid;
806}
807static inline void page_cpupid_reset_last(struct page *page)
b795854b 808{
1ae71d03 809 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
810}
811#else
90572890 812static inline int page_cpupid_last(struct page *page)
75980e97 813{
90572890 814 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
815}
816
90572890 817extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 818
90572890 819static inline void page_cpupid_reset_last(struct page *page)
75980e97 820{
90572890 821 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 822
90572890
PZ
823 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
824 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 825}
90572890
PZ
826#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
827#else /* !CONFIG_NUMA_BALANCING */
828static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 829{
90572890 830 return page_to_nid(page); /* XXX */
57e0a030
MG
831}
832
90572890 833static inline int page_cpupid_last(struct page *page)
57e0a030 834{
90572890 835 return page_to_nid(page); /* XXX */
57e0a030
MG
836}
837
90572890 838static inline int cpupid_to_nid(int cpupid)
b795854b
MG
839{
840 return -1;
841}
842
90572890 843static inline int cpupid_to_pid(int cpupid)
b795854b
MG
844{
845 return -1;
846}
847
90572890 848static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
849{
850 return -1;
851}
852
90572890
PZ
853static inline int cpu_pid_to_cpupid(int nid, int pid)
854{
855 return -1;
856}
857
858static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
859{
860 return 1;
861}
862
90572890 863static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
864{
865}
8c8a743c
PZ
866
867static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
868{
869 return false;
870}
90572890 871#endif /* CONFIG_NUMA_BALANCING */
57e0a030 872
33dd4e0e 873static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
874{
875 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
876}
877
9127ab4f 878#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
879static inline void set_page_section(struct page *page, unsigned long section)
880{
881 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
882 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
883}
884
aa462abe 885static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
886{
887 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
888}
308c05e3 889#endif
d41dee36 890
2f1b6248 891static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
892{
893 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
894 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
895}
2f1b6248 896
348f8b6c
DH
897static inline void set_page_node(struct page *page, unsigned long node)
898{
899 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
900 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 901}
89689ae7 902
2f1b6248 903static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 904 unsigned long node, unsigned long pfn)
1da177e4 905{
348f8b6c
DH
906 set_page_zone(page, zone);
907 set_page_node(page, node);
9127ab4f 908#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 909 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 910#endif
1da177e4
LT
911}
912
0610c25d
GT
913#ifdef CONFIG_MEMCG
914static inline struct mem_cgroup *page_memcg(struct page *page)
915{
916 return page->mem_cgroup;
917}
918
919static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
920{
921 page->mem_cgroup = memcg;
922}
923#else
924static inline struct mem_cgroup *page_memcg(struct page *page)
925{
926 return NULL;
927}
928
929static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
930{
931}
932#endif
933
f6ac2354
CL
934/*
935 * Some inline functions in vmstat.h depend on page_zone()
936 */
937#include <linux/vmstat.h>
938
33dd4e0e 939static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 940{
aa462abe 941 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
942}
943
944#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
945#define HASHED_PAGE_VIRTUAL
946#endif
947
948#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
949static inline void *page_address(const struct page *page)
950{
951 return page->virtual;
952}
953static inline void set_page_address(struct page *page, void *address)
954{
955 page->virtual = address;
956}
1da177e4
LT
957#define page_address_init() do { } while(0)
958#endif
959
960#if defined(HASHED_PAGE_VIRTUAL)
f9918794 961void *page_address(const struct page *page);
1da177e4
LT
962void set_page_address(struct page *page, void *virtual);
963void page_address_init(void);
964#endif
965
966#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
967#define page_address(page) lowmem_page_address(page)
968#define set_page_address(page, address) do { } while(0)
969#define page_address_init() do { } while(0)
970#endif
971
e39155ea
KS
972extern void *page_rmapping(struct page *page);
973extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 974extern struct address_space *page_mapping(struct page *page);
1da177e4 975
f981c595
MG
976extern struct address_space *__page_file_mapping(struct page *);
977
978static inline
979struct address_space *page_file_mapping(struct page *page)
980{
981 if (unlikely(PageSwapCache(page)))
982 return __page_file_mapping(page);
983
984 return page->mapping;
985}
986
1da177e4
LT
987/*
988 * Return the pagecache index of the passed page. Regular pagecache pages
989 * use ->index whereas swapcache pages use ->private
990 */
991static inline pgoff_t page_index(struct page *page)
992{
993 if (unlikely(PageSwapCache(page)))
4c21e2f2 994 return page_private(page);
1da177e4
LT
995 return page->index;
996}
997
f981c595
MG
998extern pgoff_t __page_file_index(struct page *page);
999
1000/*
1001 * Return the file index of the page. Regular pagecache pages use ->index
1002 * whereas swapcache pages use swp_offset(->private)
1003 */
1004static inline pgoff_t page_file_index(struct page *page)
1005{
1006 if (unlikely(PageSwapCache(page)))
1007 return __page_file_index(page);
1008
1009 return page->index;
1010}
1011
1da177e4
LT
1012/*
1013 * Return true if this page is mapped into pagetables.
e1534ae9 1014 * For compound page it returns true if any subpage of compound page is mapped.
1da177e4 1015 */
e1534ae9 1016static inline bool page_mapped(struct page *page)
1da177e4 1017{
e1534ae9
KS
1018 int i;
1019 if (likely(!PageCompound(page)))
1020 return atomic_read(&page->_mapcount) >= 0;
1021 page = compound_head(page);
1022 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
1023 return true;
1024 for (i = 0; i < hpage_nr_pages(page); i++) {
1025 if (atomic_read(&page[i]._mapcount) >= 0)
1026 return true;
1027 }
1028 return false;
1da177e4
LT
1029}
1030
2f064f34
MH
1031/*
1032 * Return true only if the page has been allocated with
1033 * ALLOC_NO_WATERMARKS and the low watermark was not
1034 * met implying that the system is under some pressure.
1035 */
1036static inline bool page_is_pfmemalloc(struct page *page)
1037{
1038 /*
1039 * Page index cannot be this large so this must be
1040 * a pfmemalloc page.
1041 */
1042 return page->index == -1UL;
1043}
1044
1045/*
1046 * Only to be called by the page allocator on a freshly allocated
1047 * page.
1048 */
1049static inline void set_page_pfmemalloc(struct page *page)
1050{
1051 page->index = -1UL;
1052}
1053
1054static inline void clear_page_pfmemalloc(struct page *page)
1055{
1056 page->index = 0;
1057}
1058
1da177e4
LT
1059/*
1060 * Different kinds of faults, as returned by handle_mm_fault().
1061 * Used to decide whether a process gets delivered SIGBUS or
1062 * just gets major/minor fault counters bumped up.
1063 */
d0217ac0 1064
83c54070 1065#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1066
83c54070
NP
1067#define VM_FAULT_OOM 0x0001
1068#define VM_FAULT_SIGBUS 0x0002
1069#define VM_FAULT_MAJOR 0x0004
1070#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1071#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1072#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1073#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1074
83c54070
NP
1075#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1076#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1077#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1078#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1079
aa50d3a7
AK
1080#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1081
33692f27
LT
1082#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1083 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1084 VM_FAULT_FALLBACK)
aa50d3a7
AK
1085
1086/* Encode hstate index for a hwpoisoned large page */
1087#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1088#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1089
1c0fe6e3
NP
1090/*
1091 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1092 */
1093extern void pagefault_out_of_memory(void);
1094
1da177e4
LT
1095#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1096
ddd588b5 1097/*
7bf02ea2 1098 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1099 * various contexts.
1100 */
4b59e6c4 1101#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1102
7bf02ea2
DR
1103extern void show_free_areas(unsigned int flags);
1104extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1105
1da177e4 1106int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1107#ifdef CONFIG_SHMEM
1108bool shmem_mapping(struct address_space *mapping);
1109#else
1110static inline bool shmem_mapping(struct address_space *mapping)
1111{
1112 return false;
1113}
1114#endif
1da177e4 1115
7f43add4 1116extern bool can_do_mlock(void);
1da177e4
LT
1117extern int user_shm_lock(size_t, struct user_struct *);
1118extern void user_shm_unlock(size_t, struct user_struct *);
1119
1120/*
1121 * Parameter block passed down to zap_pte_range in exceptional cases.
1122 */
1123struct zap_details {
1da177e4
LT
1124 struct address_space *check_mapping; /* Check page->mapping if set */
1125 pgoff_t first_index; /* Lowest page->index to unmap */
1126 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1127};
1128
7e675137
NP
1129struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1130 pte_t pte);
1131
c627f9cc
JS
1132int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1133 unsigned long size);
14f5ff5d 1134void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1135 unsigned long size, struct zap_details *);
4f74d2c8
LT
1136void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1137 unsigned long start, unsigned long end);
e6473092
MM
1138
1139/**
1140 * mm_walk - callbacks for walk_page_range
e6473092 1141 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1142 * this handler is required to be able to handle
1143 * pmd_trans_huge() pmds. They may simply choose to
1144 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1145 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1146 * @pte_hole: if set, called for each hole at all levels
5dc37642 1147 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426
NH
1148 * @test_walk: caller specific callback function to determine whether
1149 * we walk over the current vma or not. A positive returned
1150 * value means "do page table walk over the current vma,"
1151 * and a negative one means "abort current page table walk
1152 * right now." 0 means "skip the current vma."
1153 * @mm: mm_struct representing the target process of page table walk
1154 * @vma: vma currently walked (NULL if walking outside vmas)
1155 * @private: private data for callbacks' usage
e6473092 1156 *
fafaa426 1157 * (see the comment on walk_page_range() for more details)
e6473092
MM
1158 */
1159struct mm_walk {
0f157a5b
AM
1160 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1161 unsigned long next, struct mm_walk *walk);
1162 int (*pte_entry)(pte_t *pte, unsigned long addr,
1163 unsigned long next, struct mm_walk *walk);
1164 int (*pte_hole)(unsigned long addr, unsigned long next,
1165 struct mm_walk *walk);
1166 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1167 unsigned long addr, unsigned long next,
1168 struct mm_walk *walk);
fafaa426
NH
1169 int (*test_walk)(unsigned long addr, unsigned long next,
1170 struct mm_walk *walk);
2165009b 1171 struct mm_struct *mm;
fafaa426 1172 struct vm_area_struct *vma;
2165009b 1173 void *private;
e6473092
MM
1174};
1175
2165009b
DH
1176int walk_page_range(unsigned long addr, unsigned long end,
1177 struct mm_walk *walk);
900fc5f1 1178int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1179void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1180 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1181int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1182 struct vm_area_struct *vma);
1da177e4
LT
1183void unmap_mapping_range(struct address_space *mapping,
1184 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1185int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1186 unsigned long *pfn);
d87fe660 1187int follow_phys(struct vm_area_struct *vma, unsigned long address,
1188 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1189int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1190 void *buf, int len, int write);
1da177e4
LT
1191
1192static inline void unmap_shared_mapping_range(struct address_space *mapping,
1193 loff_t const holebegin, loff_t const holelen)
1194{
1195 unmap_mapping_range(mapping, holebegin, holelen, 0);
1196}
1197
7caef267 1198extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1199extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1200void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1201void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1202int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1203int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1204int invalidate_inode_page(struct page *page);
1205
7ee1dd3f 1206#ifdef CONFIG_MMU
83c54070 1207extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1208 unsigned long address, unsigned int flags);
5c723ba5 1209extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1210 unsigned long address, unsigned int fault_flags,
1211 bool *unlocked);
7ee1dd3f
DH
1212#else
1213static inline int handle_mm_fault(struct mm_struct *mm,
1214 struct vm_area_struct *vma, unsigned long address,
d06063cc 1215 unsigned int flags)
7ee1dd3f
DH
1216{
1217 /* should never happen if there's no MMU */
1218 BUG();
1219 return VM_FAULT_SIGBUS;
1220}
5c723ba5
PZ
1221static inline int fixup_user_fault(struct task_struct *tsk,
1222 struct mm_struct *mm, unsigned long address,
4a9e1cda 1223 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1224{
1225 /* should never happen if there's no MMU */
1226 BUG();
1227 return -EFAULT;
1228}
7ee1dd3f 1229#endif
f33ea7f4 1230
1da177e4 1231extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1232extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1233 void *buf, int len, int write);
1da177e4 1234
28a35716
ML
1235long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1236 unsigned long start, unsigned long nr_pages,
1237 unsigned int foll_flags, struct page **pages,
1238 struct vm_area_struct **vmas, int *nonblocking);
1e987790
DH
1239long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1240 unsigned long start, unsigned long nr_pages,
1241 int write, int force, struct page **pages,
1242 struct vm_area_struct **vmas);
cde70140
DH
1243long get_user_pages6(unsigned long start, unsigned long nr_pages,
1244 int write, int force, struct page **pages,
1245 struct vm_area_struct **vmas);
1246long get_user_pages_locked6(unsigned long start, unsigned long nr_pages,
1247 int write, int force, struct page **pages, int *locked);
0fd71a56
AA
1248long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1249 unsigned long start, unsigned long nr_pages,
1250 int write, int force, struct page **pages,
1251 unsigned int gup_flags);
cde70140 1252long get_user_pages_unlocked5(unsigned long start, unsigned long nr_pages,
f0818f47 1253 int write, int force, struct page **pages);
d2bf6be8
NP
1254int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1255 struct page **pages);
8025e5dd 1256
cde70140
DH
1257/* suppress warnings from use in EXPORT_SYMBOL() */
1258#ifndef __DISABLE_GUP_DEPRECATED
1259#define __gup_deprecated __deprecated
1260#else
1261#define __gup_deprecated
1262#endif
1263/*
1264 * These macros provide backward-compatibility with the old
1265 * get_user_pages() variants which took tsk/mm. These
1266 * functions/macros provide both compile-time __deprecated so we
1267 * can catch old-style use and not break the build. The actual
1268 * functions also have WARN_ON()s to let us know at runtime if
1269 * the get_user_pages() should have been the "remote" variant.
1270 *
1271 * These are hideous, but temporary.
1272 *
1273 * If you run into one of these __deprecated warnings, look
1274 * at how you are calling get_user_pages(). If you are calling
1275 * it with current/current->mm as the first two arguments,
1276 * simply remove those arguments. The behavior will be the same
1277 * as it is now. If you are calling it on another task, use
1278 * get_user_pages_remote() instead.
1279 *
1280 * Any questions? Ask Dave Hansen <dave@sr71.net>
1281 */
1282long
1283__gup_deprecated
1284get_user_pages8(struct task_struct *tsk, struct mm_struct *mm,
1285 unsigned long start, unsigned long nr_pages,
1286 int write, int force, struct page **pages,
1287 struct vm_area_struct **vmas);
1288#define GUP_MACRO(_1, _2, _3, _4, _5, _6, _7, _8, get_user_pages, ...) \
1289 get_user_pages
1290#define get_user_pages(...) GUP_MACRO(__VA_ARGS__, \
1291 get_user_pages8, x, \
1292 get_user_pages6, x, x, x, x, x)(__VA_ARGS__)
1293
1294__gup_deprecated
1295long get_user_pages_locked8(struct task_struct *tsk, struct mm_struct *mm,
1296 unsigned long start, unsigned long nr_pages,
1297 int write, int force, struct page **pages,
1298 int *locked);
1299#define GUPL_MACRO(_1, _2, _3, _4, _5, _6, _7, _8, get_user_pages_locked, ...) \
1300 get_user_pages_locked
1301#define get_user_pages_locked(...) GUPL_MACRO(__VA_ARGS__, \
1302 get_user_pages_locked8, x, \
1303 get_user_pages_locked6, x, x, x, x)(__VA_ARGS__)
1304
1305__gup_deprecated
1306long get_user_pages_unlocked7(struct task_struct *tsk, struct mm_struct *mm,
1307 unsigned long start, unsigned long nr_pages,
1308 int write, int force, struct page **pages);
1309#define GUPU_MACRO(_1, _2, _3, _4, _5, _6, _7, get_user_pages_unlocked, ...) \
1310 get_user_pages_unlocked
1311#define get_user_pages_unlocked(...) GUPU_MACRO(__VA_ARGS__, \
1312 get_user_pages_unlocked7, x, \
1313 get_user_pages_unlocked5, x, x, x, x)(__VA_ARGS__)
1314
8025e5dd
JK
1315/* Container for pinned pfns / pages */
1316struct frame_vector {
1317 unsigned int nr_allocated; /* Number of frames we have space for */
1318 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1319 bool got_ref; /* Did we pin pages by getting page ref? */
1320 bool is_pfns; /* Does array contain pages or pfns? */
1321 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1322 * pfns_vector_pages() or pfns_vector_pfns()
1323 * for access */
1324};
1325
1326struct frame_vector *frame_vector_create(unsigned int nr_frames);
1327void frame_vector_destroy(struct frame_vector *vec);
1328int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1329 bool write, bool force, struct frame_vector *vec);
1330void put_vaddr_frames(struct frame_vector *vec);
1331int frame_vector_to_pages(struct frame_vector *vec);
1332void frame_vector_to_pfns(struct frame_vector *vec);
1333
1334static inline unsigned int frame_vector_count(struct frame_vector *vec)
1335{
1336 return vec->nr_frames;
1337}
1338
1339static inline struct page **frame_vector_pages(struct frame_vector *vec)
1340{
1341 if (vec->is_pfns) {
1342 int err = frame_vector_to_pages(vec);
1343
1344 if (err)
1345 return ERR_PTR(err);
1346 }
1347 return (struct page **)(vec->ptrs);
1348}
1349
1350static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1351{
1352 if (!vec->is_pfns)
1353 frame_vector_to_pfns(vec);
1354 return (unsigned long *)(vec->ptrs);
1355}
1356
18022c5d
MG
1357struct kvec;
1358int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1359 struct page **pages);
1360int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1361struct page *get_dump_page(unsigned long addr);
1da177e4 1362
cf9a2ae8 1363extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1364extern void do_invalidatepage(struct page *page, unsigned int offset,
1365 unsigned int length);
cf9a2ae8 1366
1da177e4 1367int __set_page_dirty_nobuffers(struct page *page);
76719325 1368int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1369int redirty_page_for_writepage(struct writeback_control *wbc,
1370 struct page *page);
c4843a75
GT
1371void account_page_dirtied(struct page *page, struct address_space *mapping,
1372 struct mem_cgroup *memcg);
1373void account_page_cleaned(struct page *page, struct address_space *mapping,
682aa8e1 1374 struct mem_cgroup *memcg, struct bdi_writeback *wb);
b3c97528 1375int set_page_dirty(struct page *page);
1da177e4 1376int set_page_dirty_lock(struct page *page);
11f81bec 1377void cancel_dirty_page(struct page *page);
1da177e4 1378int clear_page_dirty_for_io(struct page *page);
b9ea2515 1379
a9090253 1380int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1381
39aa3cb3 1382/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1383static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1384{
1385 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1386}
1387
b5330628
ON
1388static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1389{
1390 return !vma->vm_ops;
1391}
1392
a09a79f6
MP
1393static inline int stack_guard_page_start(struct vm_area_struct *vma,
1394 unsigned long addr)
1395{
1396 return (vma->vm_flags & VM_GROWSDOWN) &&
1397 (vma->vm_start == addr) &&
1398 !vma_growsdown(vma->vm_prev, addr);
1399}
1400
1401/* Is the vma a continuation of the stack vma below it? */
1402static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1403{
1404 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1405}
1406
1407static inline int stack_guard_page_end(struct vm_area_struct *vma,
1408 unsigned long addr)
1409{
1410 return (vma->vm_flags & VM_GROWSUP) &&
1411 (vma->vm_end == addr) &&
1412 !vma_growsup(vma->vm_next, addr);
1413}
1414
65376df5 1415int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
b7643757 1416
b6a2fea3
OW
1417extern unsigned long move_page_tables(struct vm_area_struct *vma,
1418 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1419 unsigned long new_addr, unsigned long len,
1420 bool need_rmap_locks);
7da4d641
PZ
1421extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1422 unsigned long end, pgprot_t newprot,
4b10e7d5 1423 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1424extern int mprotect_fixup(struct vm_area_struct *vma,
1425 struct vm_area_struct **pprev, unsigned long start,
1426 unsigned long end, unsigned long newflags);
1da177e4 1427
465a454f
PZ
1428/*
1429 * doesn't attempt to fault and will return short.
1430 */
1431int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1432 struct page **pages);
d559db08
KH
1433/*
1434 * per-process(per-mm_struct) statistics.
1435 */
d559db08
KH
1436static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1437{
69c97823
KK
1438 long val = atomic_long_read(&mm->rss_stat.count[member]);
1439
1440#ifdef SPLIT_RSS_COUNTING
1441 /*
1442 * counter is updated in asynchronous manner and may go to minus.
1443 * But it's never be expected number for users.
1444 */
1445 if (val < 0)
1446 val = 0;
172703b0 1447#endif
69c97823
KK
1448 return (unsigned long)val;
1449}
d559db08
KH
1450
1451static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1452{
172703b0 1453 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1454}
1455
1456static inline void inc_mm_counter(struct mm_struct *mm, int member)
1457{
172703b0 1458 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1459}
1460
1461static inline void dec_mm_counter(struct mm_struct *mm, int member)
1462{
172703b0 1463 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1464}
1465
eca56ff9
JM
1466/* Optimized variant when page is already known not to be PageAnon */
1467static inline int mm_counter_file(struct page *page)
1468{
1469 if (PageSwapBacked(page))
1470 return MM_SHMEMPAGES;
1471 return MM_FILEPAGES;
1472}
1473
1474static inline int mm_counter(struct page *page)
1475{
1476 if (PageAnon(page))
1477 return MM_ANONPAGES;
1478 return mm_counter_file(page);
1479}
1480
d559db08
KH
1481static inline unsigned long get_mm_rss(struct mm_struct *mm)
1482{
1483 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1484 get_mm_counter(mm, MM_ANONPAGES) +
1485 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1486}
1487
1488static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1489{
1490 return max(mm->hiwater_rss, get_mm_rss(mm));
1491}
1492
1493static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1494{
1495 return max(mm->hiwater_vm, mm->total_vm);
1496}
1497
1498static inline void update_hiwater_rss(struct mm_struct *mm)
1499{
1500 unsigned long _rss = get_mm_rss(mm);
1501
1502 if ((mm)->hiwater_rss < _rss)
1503 (mm)->hiwater_rss = _rss;
1504}
1505
1506static inline void update_hiwater_vm(struct mm_struct *mm)
1507{
1508 if (mm->hiwater_vm < mm->total_vm)
1509 mm->hiwater_vm = mm->total_vm;
1510}
1511
695f0559
PC
1512static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1513{
1514 mm->hiwater_rss = get_mm_rss(mm);
1515}
1516
d559db08
KH
1517static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1518 struct mm_struct *mm)
1519{
1520 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1521
1522 if (*maxrss < hiwater_rss)
1523 *maxrss = hiwater_rss;
1524}
1525
53bddb4e 1526#if defined(SPLIT_RSS_COUNTING)
05af2e10 1527void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1528#else
05af2e10 1529static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1530{
1531}
1532#endif
465a454f 1533
3565fce3
DW
1534#ifndef __HAVE_ARCH_PTE_DEVMAP
1535static inline int pte_devmap(pte_t pte)
1536{
1537 return 0;
1538}
1539#endif
1540
4e950f6f 1541int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1542
25ca1d6c
NK
1543extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1544 spinlock_t **ptl);
1545static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1546 spinlock_t **ptl)
1547{
1548 pte_t *ptep;
1549 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1550 return ptep;
1551}
c9cfcddf 1552
5f22df00
NP
1553#ifdef __PAGETABLE_PUD_FOLDED
1554static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1555 unsigned long address)
1556{
1557 return 0;
1558}
1559#else
1bb3630e 1560int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1561#endif
1562
2d2f5119 1563#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1564static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1565 unsigned long address)
1566{
1567 return 0;
1568}
dc6c9a35 1569
2d2f5119
KS
1570static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1571
dc6c9a35
KS
1572static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1573{
1574 return 0;
1575}
1576
1577static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1578static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1579
5f22df00 1580#else
1bb3630e 1581int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1582
2d2f5119
KS
1583static inline void mm_nr_pmds_init(struct mm_struct *mm)
1584{
1585 atomic_long_set(&mm->nr_pmds, 0);
1586}
1587
dc6c9a35
KS
1588static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1589{
1590 return atomic_long_read(&mm->nr_pmds);
1591}
1592
1593static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1594{
1595 atomic_long_inc(&mm->nr_pmds);
1596}
1597
1598static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1599{
1600 atomic_long_dec(&mm->nr_pmds);
1601}
5f22df00
NP
1602#endif
1603
8ac1f832
AA
1604int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1605 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1606int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1607
1da177e4
LT
1608/*
1609 * The following ifdef needed to get the 4level-fixup.h header to work.
1610 * Remove it when 4level-fixup.h has been removed.
1611 */
1bb3630e 1612#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1613static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1614{
1bb3630e
HD
1615 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1616 NULL: pud_offset(pgd, address);
1da177e4
LT
1617}
1618
1619static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1620{
1bb3630e
HD
1621 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1622 NULL: pmd_offset(pud, address);
1da177e4 1623}
1bb3630e
HD
1624#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1625
57c1ffce 1626#if USE_SPLIT_PTE_PTLOCKS
597d795a 1627#if ALLOC_SPLIT_PTLOCKS
b35f1819 1628void __init ptlock_cache_init(void);
539edb58
PZ
1629extern bool ptlock_alloc(struct page *page);
1630extern void ptlock_free(struct page *page);
1631
1632static inline spinlock_t *ptlock_ptr(struct page *page)
1633{
1634 return page->ptl;
1635}
597d795a 1636#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1637static inline void ptlock_cache_init(void)
1638{
1639}
1640
49076ec2
KS
1641static inline bool ptlock_alloc(struct page *page)
1642{
49076ec2
KS
1643 return true;
1644}
539edb58 1645
49076ec2
KS
1646static inline void ptlock_free(struct page *page)
1647{
49076ec2
KS
1648}
1649
1650static inline spinlock_t *ptlock_ptr(struct page *page)
1651{
539edb58 1652 return &page->ptl;
49076ec2 1653}
597d795a 1654#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1655
1656static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1657{
1658 return ptlock_ptr(pmd_page(*pmd));
1659}
1660
1661static inline bool ptlock_init(struct page *page)
1662{
1663 /*
1664 * prep_new_page() initialize page->private (and therefore page->ptl)
1665 * with 0. Make sure nobody took it in use in between.
1666 *
1667 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1668 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1669 */
309381fe 1670 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1671 if (!ptlock_alloc(page))
1672 return false;
1673 spin_lock_init(ptlock_ptr(page));
1674 return true;
1675}
1676
1677/* Reset page->mapping so free_pages_check won't complain. */
1678static inline void pte_lock_deinit(struct page *page)
1679{
1680 page->mapping = NULL;
1681 ptlock_free(page);
1682}
1683
57c1ffce 1684#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1685/*
1686 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1687 */
49076ec2
KS
1688static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1689{
1690 return &mm->page_table_lock;
1691}
b35f1819 1692static inline void ptlock_cache_init(void) {}
49076ec2
KS
1693static inline bool ptlock_init(struct page *page) { return true; }
1694static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1695#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1696
b35f1819
KS
1697static inline void pgtable_init(void)
1698{
1699 ptlock_cache_init();
1700 pgtable_cache_init();
1701}
1702
390f44e2 1703static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1704{
706874e9
VD
1705 if (!ptlock_init(page))
1706 return false;
2f569afd 1707 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1708 return true;
2f569afd
MS
1709}
1710
1711static inline void pgtable_page_dtor(struct page *page)
1712{
1713 pte_lock_deinit(page);
1714 dec_zone_page_state(page, NR_PAGETABLE);
1715}
1716
c74df32c
HD
1717#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1718({ \
4c21e2f2 1719 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1720 pte_t *__pte = pte_offset_map(pmd, address); \
1721 *(ptlp) = __ptl; \
1722 spin_lock(__ptl); \
1723 __pte; \
1724})
1725
1726#define pte_unmap_unlock(pte, ptl) do { \
1727 spin_unlock(ptl); \
1728 pte_unmap(pte); \
1729} while (0)
1730
8ac1f832
AA
1731#define pte_alloc_map(mm, vma, pmd, address) \
1732 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1733 pmd, address))? \
1734 NULL: pte_offset_map(pmd, address))
1bb3630e 1735
c74df32c 1736#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1737 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1738 pmd, address))? \
c74df32c
HD
1739 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1740
1bb3630e 1741#define pte_alloc_kernel(pmd, address) \
8ac1f832 1742 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1743 NULL: pte_offset_kernel(pmd, address))
1da177e4 1744
e009bb30
KS
1745#if USE_SPLIT_PMD_PTLOCKS
1746
634391ac
MS
1747static struct page *pmd_to_page(pmd_t *pmd)
1748{
1749 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1750 return virt_to_page((void *)((unsigned long) pmd & mask));
1751}
1752
e009bb30
KS
1753static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1754{
634391ac 1755 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1756}
1757
1758static inline bool pgtable_pmd_page_ctor(struct page *page)
1759{
e009bb30
KS
1760#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1761 page->pmd_huge_pte = NULL;
1762#endif
49076ec2 1763 return ptlock_init(page);
e009bb30
KS
1764}
1765
1766static inline void pgtable_pmd_page_dtor(struct page *page)
1767{
1768#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1769 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1770#endif
49076ec2 1771 ptlock_free(page);
e009bb30
KS
1772}
1773
634391ac 1774#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1775
1776#else
1777
9a86cb7b
KS
1778static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1779{
1780 return &mm->page_table_lock;
1781}
1782
e009bb30
KS
1783static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1784static inline void pgtable_pmd_page_dtor(struct page *page) {}
1785
c389a250 1786#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1787
e009bb30
KS
1788#endif
1789
9a86cb7b
KS
1790static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1791{
1792 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1793 spin_lock(ptl);
1794 return ptl;
1795}
1796
1da177e4 1797extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1798extern void free_area_init_node(int nid, unsigned long * zones_size,
1799 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1800extern void free_initmem(void);
1801
69afade7
JL
1802/*
1803 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1804 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1805 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1806 * Return pages freed into the buddy system.
1807 */
11199692 1808extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1809 int poison, char *s);
c3d5f5f0 1810
cfa11e08
JL
1811#ifdef CONFIG_HIGHMEM
1812/*
1813 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1814 * and totalram_pages.
1815 */
1816extern void free_highmem_page(struct page *page);
1817#endif
69afade7 1818
c3d5f5f0 1819extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1820extern void mem_init_print_info(const char *str);
69afade7 1821
92923ca3
NZ
1822extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1823
69afade7
JL
1824/* Free the reserved page into the buddy system, so it gets managed. */
1825static inline void __free_reserved_page(struct page *page)
1826{
1827 ClearPageReserved(page);
1828 init_page_count(page);
1829 __free_page(page);
1830}
1831
1832static inline void free_reserved_page(struct page *page)
1833{
1834 __free_reserved_page(page);
1835 adjust_managed_page_count(page, 1);
1836}
1837
1838static inline void mark_page_reserved(struct page *page)
1839{
1840 SetPageReserved(page);
1841 adjust_managed_page_count(page, -1);
1842}
1843
1844/*
1845 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1846 * The freed pages will be poisoned with pattern "poison" if it's within
1847 * range [0, UCHAR_MAX].
1848 * Return pages freed into the buddy system.
69afade7
JL
1849 */
1850static inline unsigned long free_initmem_default(int poison)
1851{
1852 extern char __init_begin[], __init_end[];
1853
11199692 1854 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1855 poison, "unused kernel");
1856}
1857
7ee3d4e8
JL
1858static inline unsigned long get_num_physpages(void)
1859{
1860 int nid;
1861 unsigned long phys_pages = 0;
1862
1863 for_each_online_node(nid)
1864 phys_pages += node_present_pages(nid);
1865
1866 return phys_pages;
1867}
1868
0ee332c1 1869#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1870/*
0ee332c1 1871 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1872 * zones, allocate the backing mem_map and account for memory holes in a more
1873 * architecture independent manner. This is a substitute for creating the
1874 * zone_sizes[] and zholes_size[] arrays and passing them to
1875 * free_area_init_node()
1876 *
1877 * An architecture is expected to register range of page frames backed by
0ee332c1 1878 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1879 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1880 * usage, an architecture is expected to do something like
1881 *
1882 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1883 * max_highmem_pfn};
1884 * for_each_valid_physical_page_range()
0ee332c1 1885 * memblock_add_node(base, size, nid)
c713216d
MG
1886 * free_area_init_nodes(max_zone_pfns);
1887 *
0ee332c1
TH
1888 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1889 * registered physical page range. Similarly
1890 * sparse_memory_present_with_active_regions() calls memory_present() for
1891 * each range when SPARSEMEM is enabled.
c713216d
MG
1892 *
1893 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1894 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1895 */
1896extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1897unsigned long node_map_pfn_alignment(void);
32996250
YL
1898unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1899 unsigned long end_pfn);
c713216d
MG
1900extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1901 unsigned long end_pfn);
1902extern void get_pfn_range_for_nid(unsigned int nid,
1903 unsigned long *start_pfn, unsigned long *end_pfn);
1904extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1905extern void free_bootmem_with_active_regions(int nid,
1906 unsigned long max_low_pfn);
1907extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1908
0ee332c1 1909#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1910
0ee332c1 1911#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1912 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1913static inline int __early_pfn_to_nid(unsigned long pfn,
1914 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1915{
1916 return 0;
1917}
1918#else
1919/* please see mm/page_alloc.c */
1920extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1921/* there is a per-arch backend function. */
8a942fde
MG
1922extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1923 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1924#endif
1925
0e0b864e 1926extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1927extern void memmap_init_zone(unsigned long, int, unsigned long,
1928 unsigned long, enum memmap_context);
bc75d33f 1929extern void setup_per_zone_wmarks(void);
1b79acc9 1930extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1931extern void mem_init(void);
8feae131 1932extern void __init mmap_init(void);
b2b755b5 1933extern void show_mem(unsigned int flags);
1da177e4
LT
1934extern void si_meminfo(struct sysinfo * val);
1935extern void si_meminfo_node(struct sysinfo *val, int nid);
1936
3ee9a4f0 1937extern __printf(3, 4)
d00181b9
KS
1938void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1939 const char *fmt, ...);
a238ab5b 1940
e7c8d5c9 1941extern void setup_per_cpu_pageset(void);
e7c8d5c9 1942
112067f0 1943extern void zone_pcp_update(struct zone *zone);
340175b7 1944extern void zone_pcp_reset(struct zone *zone);
112067f0 1945
75f7ad8e
PS
1946/* page_alloc.c */
1947extern int min_free_kbytes;
1948
8feae131 1949/* nommu.c */
33e5d769 1950extern atomic_long_t mmap_pages_allocated;
7e660872 1951extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1952
6b2dbba8 1953/* interval_tree.c */
6b2dbba8
ML
1954void vma_interval_tree_insert(struct vm_area_struct *node,
1955 struct rb_root *root);
9826a516
ML
1956void vma_interval_tree_insert_after(struct vm_area_struct *node,
1957 struct vm_area_struct *prev,
1958 struct rb_root *root);
6b2dbba8
ML
1959void vma_interval_tree_remove(struct vm_area_struct *node,
1960 struct rb_root *root);
1961struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1962 unsigned long start, unsigned long last);
1963struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1964 unsigned long start, unsigned long last);
1965
1966#define vma_interval_tree_foreach(vma, root, start, last) \
1967 for (vma = vma_interval_tree_iter_first(root, start, last); \
1968 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1969
bf181b9f
ML
1970void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1971 struct rb_root *root);
1972void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1973 struct rb_root *root);
1974struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1975 struct rb_root *root, unsigned long start, unsigned long last);
1976struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1977 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1978#ifdef CONFIG_DEBUG_VM_RB
1979void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1980#endif
bf181b9f
ML
1981
1982#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1983 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1984 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1985
1da177e4 1986/* mmap.c */
34b4e4aa 1987extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1988extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1989 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1990extern struct vm_area_struct *vma_merge(struct mm_struct *,
1991 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1992 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 1993 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
1994extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1995extern int split_vma(struct mm_struct *,
1996 struct vm_area_struct *, unsigned long addr, int new_below);
1997extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1998extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1999 struct rb_node **, struct rb_node *);
a8fb5618 2000extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2001extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2002 unsigned long addr, unsigned long len, pgoff_t pgoff,
2003 bool *need_rmap_locks);
1da177e4 2004extern void exit_mmap(struct mm_struct *);
925d1c40 2005
9c599024
CG
2006static inline int check_data_rlimit(unsigned long rlim,
2007 unsigned long new,
2008 unsigned long start,
2009 unsigned long end_data,
2010 unsigned long start_data)
2011{
2012 if (rlim < RLIM_INFINITY) {
2013 if (((new - start) + (end_data - start_data)) > rlim)
2014 return -ENOSPC;
2015 }
2016
2017 return 0;
2018}
2019
7906d00c
AA
2020extern int mm_take_all_locks(struct mm_struct *mm);
2021extern void mm_drop_all_locks(struct mm_struct *mm);
2022
38646013
JS
2023extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2024extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 2025
84638335
KK
2026extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2027extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2028
3935ed6a
SS
2029extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2030 unsigned long addr, unsigned long len,
a62c34bd
AL
2031 unsigned long flags,
2032 const struct vm_special_mapping *spec);
2033/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2034extern int install_special_mapping(struct mm_struct *mm,
2035 unsigned long addr, unsigned long len,
2036 unsigned long flags, struct page **pages);
1da177e4
LT
2037
2038extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2039
0165ab44 2040extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 2041 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1fcfd8db 2042extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2043 unsigned long len, unsigned long prot, unsigned long flags,
1fcfd8db 2044 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1da177e4
LT
2045extern int do_munmap(struct mm_struct *, unsigned long, size_t);
2046
1fcfd8db
ON
2047static inline unsigned long
2048do_mmap_pgoff(struct file *file, unsigned long addr,
2049 unsigned long len, unsigned long prot, unsigned long flags,
2050 unsigned long pgoff, unsigned long *populate)
2051{
2052 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2053}
2054
bebeb3d6
ML
2055#ifdef CONFIG_MMU
2056extern int __mm_populate(unsigned long addr, unsigned long len,
2057 int ignore_errors);
2058static inline void mm_populate(unsigned long addr, unsigned long len)
2059{
2060 /* Ignore errors */
2061 (void) __mm_populate(addr, len, 1);
2062}
2063#else
2064static inline void mm_populate(unsigned long addr, unsigned long len) {}
2065#endif
2066
e4eb1ff6
LT
2067/* These take the mm semaphore themselves */
2068extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 2069extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
2070extern unsigned long vm_mmap(struct file *, unsigned long,
2071 unsigned long, unsigned long,
2072 unsigned long, unsigned long);
1da177e4 2073
db4fbfb9
ML
2074struct vm_unmapped_area_info {
2075#define VM_UNMAPPED_AREA_TOPDOWN 1
2076 unsigned long flags;
2077 unsigned long length;
2078 unsigned long low_limit;
2079 unsigned long high_limit;
2080 unsigned long align_mask;
2081 unsigned long align_offset;
2082};
2083
2084extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2085extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2086
2087/*
2088 * Search for an unmapped address range.
2089 *
2090 * We are looking for a range that:
2091 * - does not intersect with any VMA;
2092 * - is contained within the [low_limit, high_limit) interval;
2093 * - is at least the desired size.
2094 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2095 */
2096static inline unsigned long
2097vm_unmapped_area(struct vm_unmapped_area_info *info)
2098{
cdd7875e 2099 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2100 return unmapped_area_topdown(info);
cdd7875e
BP
2101 else
2102 return unmapped_area(info);
db4fbfb9
ML
2103}
2104
85821aab 2105/* truncate.c */
1da177e4 2106extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2107extern void truncate_inode_pages_range(struct address_space *,
2108 loff_t lstart, loff_t lend);
91b0abe3 2109extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2110
2111/* generic vm_area_ops exported for stackable file systems */
d0217ac0 2112extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 2113extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 2114extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
2115
2116/* mm/page-writeback.c */
2117int write_one_page(struct page *page, int wait);
1cf6e7d8 2118void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2119
2120/* readahead.c */
2121#define VM_MAX_READAHEAD 128 /* kbytes */
2122#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2123
1da177e4 2124int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2125 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2126
2127void page_cache_sync_readahead(struct address_space *mapping,
2128 struct file_ra_state *ra,
2129 struct file *filp,
2130 pgoff_t offset,
2131 unsigned long size);
2132
2133void page_cache_async_readahead(struct address_space *mapping,
2134 struct file_ra_state *ra,
2135 struct file *filp,
2136 struct page *pg,
2137 pgoff_t offset,
2138 unsigned long size);
2139
d05f3169 2140/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2141extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2142
2143/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2144extern int expand_downwards(struct vm_area_struct *vma,
2145 unsigned long address);
8ca3eb08 2146#if VM_GROWSUP
46dea3d0 2147extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2148#else
fee7e49d 2149 #define expand_upwards(vma, address) (0)
9ab88515 2150#endif
1da177e4
LT
2151
2152/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2153extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2154extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2155 struct vm_area_struct **pprev);
2156
2157/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2158 NULL if none. Assume start_addr < end_addr. */
2159static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2160{
2161 struct vm_area_struct * vma = find_vma(mm,start_addr);
2162
2163 if (vma && end_addr <= vma->vm_start)
2164 vma = NULL;
2165 return vma;
2166}
2167
2168static inline unsigned long vma_pages(struct vm_area_struct *vma)
2169{
2170 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2171}
2172
640708a2
PE
2173/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2174static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2175 unsigned long vm_start, unsigned long vm_end)
2176{
2177 struct vm_area_struct *vma = find_vma(mm, vm_start);
2178
2179 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2180 vma = NULL;
2181
2182 return vma;
2183}
2184
bad849b3 2185#ifdef CONFIG_MMU
804af2cf 2186pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2187void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2188#else
2189static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2190{
2191 return __pgprot(0);
2192}
64e45507
PF
2193static inline void vma_set_page_prot(struct vm_area_struct *vma)
2194{
2195 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2196}
bad849b3
DH
2197#endif
2198
5877231f 2199#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2200unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2201 unsigned long start, unsigned long end);
2202#endif
2203
deceb6cd 2204struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2205int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2206 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2207int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2208int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2209 unsigned long pfn);
1745cbc5
AL
2210int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2211 unsigned long pfn, pgprot_t pgprot);
423bad60 2212int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2213 pfn_t pfn);
b4cbb197
LT
2214int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2215
deceb6cd 2216
240aadee
ML
2217struct page *follow_page_mask(struct vm_area_struct *vma,
2218 unsigned long address, unsigned int foll_flags,
2219 unsigned int *page_mask);
2220
2221static inline struct page *follow_page(struct vm_area_struct *vma,
2222 unsigned long address, unsigned int foll_flags)
2223{
2224 unsigned int unused_page_mask;
2225 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2226}
2227
deceb6cd
HD
2228#define FOLL_WRITE 0x01 /* check pte is writable */
2229#define FOLL_TOUCH 0x02 /* mark page accessed */
2230#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2231#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2232#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2233#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2234 * and return without waiting upon it */
84d33df2 2235#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2236#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2237#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2238#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2239#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2240#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2241#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2242#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
1da177e4 2243
2f569afd 2244typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2245 void *data);
2246extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2247 unsigned long size, pte_fn_t fn, void *data);
2248
1da177e4 2249
12d6f21e 2250#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2251extern bool _debug_pagealloc_enabled;
2252extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2253
2254static inline bool debug_pagealloc_enabled(void)
2255{
2256 return _debug_pagealloc_enabled;
2257}
2258
2259static inline void
2260kernel_map_pages(struct page *page, int numpages, int enable)
2261{
2262 if (!debug_pagealloc_enabled())
2263 return;
2264
2265 __kernel_map_pages(page, numpages, enable);
2266}
8a235efa
RW
2267#ifdef CONFIG_HIBERNATION
2268extern bool kernel_page_present(struct page *page);
2269#endif /* CONFIG_HIBERNATION */
12d6f21e 2270#else
1da177e4 2271static inline void
9858db50 2272kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2273#ifdef CONFIG_HIBERNATION
2274static inline bool kernel_page_present(struct page *page) { return true; }
2275#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2276#endif
2277
a6c19dfe 2278#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2279extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2280extern int in_gate_area_no_mm(unsigned long addr);
2281extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2282#else
a6c19dfe
AL
2283static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2284{
2285 return NULL;
2286}
2287static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2288static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2289{
2290 return 0;
2291}
1da177e4
LT
2292#endif /* __HAVE_ARCH_GATE_AREA */
2293
146732ce
JT
2294#ifdef CONFIG_SYSCTL
2295extern int sysctl_drop_caches;
8d65af78 2296int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2297 void __user *, size_t *, loff_t *);
146732ce
JT
2298#endif
2299
cb731d6c
VD
2300void drop_slab(void);
2301void drop_slab_node(int nid);
9d0243bc 2302
7a9166e3
LY
2303#ifndef CONFIG_MMU
2304#define randomize_va_space 0
2305#else
a62eaf15 2306extern int randomize_va_space;
7a9166e3 2307#endif
a62eaf15 2308
045e72ac 2309const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2310void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2311
9bdac914
YL
2312void sparse_mem_maps_populate_node(struct page **map_map,
2313 unsigned long pnum_begin,
2314 unsigned long pnum_end,
2315 unsigned long map_count,
2316 int nodeid);
2317
98f3cfc1 2318struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2319pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2320pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2321pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2322pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2323void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2324struct vmem_altmap;
2325void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2326 struct vmem_altmap *altmap);
2327static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2328{
2329 return __vmemmap_alloc_block_buf(size, node, NULL);
2330}
2331
8f6aac41 2332void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2333int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2334 int node);
2335int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2336void vmemmap_populate_print_last(void);
0197518c 2337#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2338void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2339#endif
46723bfa
YI
2340void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2341 unsigned long size);
6a46079c 2342
82ba011b
AK
2343enum mf_flags {
2344 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2345 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2346 MF_MUST_KILL = 1 << 2,
cf870c70 2347 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2348};
cd42f4a3 2349extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2350extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2351extern int unpoison_memory(unsigned long pfn);
ead07f6a 2352extern int get_hwpoison_page(struct page *page);
4e41a30c 2353#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2354extern int sysctl_memory_failure_early_kill;
2355extern int sysctl_memory_failure_recovery;
facb6011 2356extern void shake_page(struct page *p, int access);
293c07e3 2357extern atomic_long_t num_poisoned_pages;
facb6011 2358extern int soft_offline_page(struct page *page, int flags);
6a46079c 2359
cc637b17
XX
2360
2361/*
2362 * Error handlers for various types of pages.
2363 */
cc3e2af4 2364enum mf_result {
cc637b17
XX
2365 MF_IGNORED, /* Error: cannot be handled */
2366 MF_FAILED, /* Error: handling failed */
2367 MF_DELAYED, /* Will be handled later */
2368 MF_RECOVERED, /* Successfully recovered */
2369};
2370
2371enum mf_action_page_type {
2372 MF_MSG_KERNEL,
2373 MF_MSG_KERNEL_HIGH_ORDER,
2374 MF_MSG_SLAB,
2375 MF_MSG_DIFFERENT_COMPOUND,
2376 MF_MSG_POISONED_HUGE,
2377 MF_MSG_HUGE,
2378 MF_MSG_FREE_HUGE,
2379 MF_MSG_UNMAP_FAILED,
2380 MF_MSG_DIRTY_SWAPCACHE,
2381 MF_MSG_CLEAN_SWAPCACHE,
2382 MF_MSG_DIRTY_MLOCKED_LRU,
2383 MF_MSG_CLEAN_MLOCKED_LRU,
2384 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2385 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2386 MF_MSG_DIRTY_LRU,
2387 MF_MSG_CLEAN_LRU,
2388 MF_MSG_TRUNCATED_LRU,
2389 MF_MSG_BUDDY,
2390 MF_MSG_BUDDY_2ND,
2391 MF_MSG_UNKNOWN,
2392};
2393
47ad8475
AA
2394#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2395extern void clear_huge_page(struct page *page,
2396 unsigned long addr,
2397 unsigned int pages_per_huge_page);
2398extern void copy_user_huge_page(struct page *dst, struct page *src,
2399 unsigned long addr, struct vm_area_struct *vma,
2400 unsigned int pages_per_huge_page);
2401#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2402
e30825f1
JK
2403extern struct page_ext_operations debug_guardpage_ops;
2404extern struct page_ext_operations page_poisoning_ops;
2405
c0a32fc5
SG
2406#ifdef CONFIG_DEBUG_PAGEALLOC
2407extern unsigned int _debug_guardpage_minorder;
e30825f1 2408extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2409
2410static inline unsigned int debug_guardpage_minorder(void)
2411{
2412 return _debug_guardpage_minorder;
2413}
2414
e30825f1
JK
2415static inline bool debug_guardpage_enabled(void)
2416{
2417 return _debug_guardpage_enabled;
2418}
2419
c0a32fc5
SG
2420static inline bool page_is_guard(struct page *page)
2421{
e30825f1
JK
2422 struct page_ext *page_ext;
2423
2424 if (!debug_guardpage_enabled())
2425 return false;
2426
2427 page_ext = lookup_page_ext(page);
2428 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2429}
2430#else
2431static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2432static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2433static inline bool page_is_guard(struct page *page) { return false; }
2434#endif /* CONFIG_DEBUG_PAGEALLOC */
2435
f9872caf
CS
2436#if MAX_NUMNODES > 1
2437void __init setup_nr_node_ids(void);
2438#else
2439static inline void setup_nr_node_ids(void) {}
2440#endif
2441
1da177e4
LT
2442#endif /* __KERNEL__ */
2443#endif /* _LINUX_MM_H */