mm/damon/core: initialize damo_filter->list from damos_new_filter()
[linux-2.6-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
f25cbb7a 31#include <linux/memremap.h>
ef6a22b7 32#include <linux/slab.h>
1da177e4
LT
33
34struct mempolicy;
35struct anon_vma;
bf181b9f 36struct anon_vma_chain;
e8edc6e0 37struct user_struct;
bce617ed 38struct pt_regs;
1da177e4 39
5ef64cc8
LT
40extern int sysctl_page_lock_unfairness;
41
b7ec1bf3 42void mm_core_init(void);
597b7305
MH
43void init_mm_internals(void);
44
a9ee6cf5 45#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 46extern unsigned long max_mapnr;
fccc9987
JL
47
48static inline void set_max_mapnr(unsigned long limit)
49{
50 max_mapnr = limit;
51}
52#else
53static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
54#endif
55
ca79b0c2
AK
56extern atomic_long_t _totalram_pages;
57static inline unsigned long totalram_pages(void)
58{
59 return (unsigned long)atomic_long_read(&_totalram_pages);
60}
61
62static inline void totalram_pages_inc(void)
63{
64 atomic_long_inc(&_totalram_pages);
65}
66
67static inline void totalram_pages_dec(void)
68{
69 atomic_long_dec(&_totalram_pages);
70}
71
72static inline void totalram_pages_add(long count)
73{
74 atomic_long_add(count, &_totalram_pages);
75}
76
1da177e4 77extern void * high_memory;
1da177e4 78extern int page_cluster;
ea0ffd0c 79extern const int page_cluster_max;
1da177e4
LT
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
d07e2259
DC
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
1da177e4 98#include <asm/page.h>
1da177e4 99#include <asm/processor.h>
1da177e4 100
79442ed1
TC
101#ifndef __pa_symbol
102#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
103#endif
104
1dff8083
AB
105#ifndef page_to_virt
106#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
107#endif
108
568c5fe5
LA
109#ifndef lm_alias
110#define lm_alias(x) __va(__pa_symbol(x))
111#endif
112
593befa6
DD
113/*
114 * To prevent common memory management code establishing
115 * a zero page mapping on a read fault.
116 * This macro should be defined within <asm/pgtable.h>.
117 * s390 does this to prevent multiplexing of hardware bits
118 * related to the physical page in case of virtualization.
119 */
120#ifndef mm_forbids_zeropage
121#define mm_forbids_zeropage(X) (0)
122#endif
123
a4a3ede2
PT
124/*
125 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
126 * If an architecture decides to implement their own version of
127 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
128 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 129 */
5470dea4 130#if BITS_PER_LONG == 64
3770e52f 131/* This function must be updated when the size of struct page grows above 96
5470dea4
AD
132 * or reduces below 56. The idea that compiler optimizes out switch()
133 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 134 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
135 * this can result in several of the writes here being dropped.
136 */
137#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
138static inline void __mm_zero_struct_page(struct page *page)
139{
140 unsigned long *_pp = (void *)page;
141
3770e52f 142 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
5470dea4
AD
143 BUILD_BUG_ON(sizeof(struct page) & 7);
144 BUILD_BUG_ON(sizeof(struct page) < 56);
3770e52f 145 BUILD_BUG_ON(sizeof(struct page) > 96);
5470dea4
AD
146
147 switch (sizeof(struct page)) {
3770e52f
AB
148 case 96:
149 _pp[11] = 0;
150 fallthrough;
151 case 88:
152 _pp[10] = 0;
153 fallthrough;
5470dea4 154 case 80:
df561f66
GS
155 _pp[9] = 0;
156 fallthrough;
5470dea4 157 case 72:
df561f66
GS
158 _pp[8] = 0;
159 fallthrough;
5470dea4 160 case 64:
df561f66
GS
161 _pp[7] = 0;
162 fallthrough;
5470dea4
AD
163 case 56:
164 _pp[6] = 0;
165 _pp[5] = 0;
166 _pp[4] = 0;
167 _pp[3] = 0;
168 _pp[2] = 0;
169 _pp[1] = 0;
170 _pp[0] = 0;
171 }
172}
173#else
a4a3ede2
PT
174#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
175#endif
176
ea606cf5
AR
177/*
178 * Default maximum number of active map areas, this limits the number of vmas
179 * per mm struct. Users can overwrite this number by sysctl but there is a
180 * problem.
181 *
182 * When a program's coredump is generated as ELF format, a section is created
183 * per a vma. In ELF, the number of sections is represented in unsigned short.
184 * This means the number of sections should be smaller than 65535 at coredump.
185 * Because the kernel adds some informative sections to a image of program at
186 * generating coredump, we need some margin. The number of extra sections is
187 * 1-3 now and depends on arch. We use "5" as safe margin, here.
188 *
189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190 * not a hard limit any more. Although some userspace tools can be surprised by
191 * that.
192 */
193#define MAPCOUNT_ELF_CORE_MARGIN (5)
194#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195
196extern int sysctl_max_map_count;
197
c9b1d098 198extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 199extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 200
49f0ce5f
JM
201extern int sysctl_overcommit_memory;
202extern int sysctl_overcommit_ratio;
203extern unsigned long sysctl_overcommit_kbytes;
204
32927393
CH
205int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 loff_t *);
207int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 loff_t *);
56f3547b
FT
209int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
210 loff_t *);
49f0ce5f 211
1cfcee72 212#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 214#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
215#else
216#define nth_page(page,n) ((page) + (n))
659508f9 217#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 218#endif
1da177e4 219
27ac792c
AR
220/* to align the pointer to the (next) page boundary */
221#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
222
335e52c2
DG
223/* to align the pointer to the (prev) page boundary */
224#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
225
0fa73b86 226/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 227#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 228
f86196ea 229#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
06d20bdb
MWO
230static inline struct folio *lru_to_folio(struct list_head *head)
231{
232 return list_entry((head)->prev, struct folio, lru);
233}
f86196ea 234
5748fbc5
KW
235void setup_initial_init_mm(void *start_code, void *end_code,
236 void *end_data, void *brk);
237
1da177e4
LT
238/*
239 * Linux kernel virtual memory manager primitives.
240 * The idea being to have a "virtual" mm in the same way
241 * we have a virtual fs - giving a cleaner interface to the
242 * mm details, and allowing different kinds of memory mappings
243 * (from shared memory to executable loading to arbitrary
244 * mmap() functions).
245 */
246
490fc053 247struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
248struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249void vm_area_free(struct vm_area_struct *);
0d2ebf9c
SB
250/* Use only if VMA has no other users */
251void __vm_area_free(struct vm_area_struct *vma);
c43692e8 252
1da177e4 253#ifndef CONFIG_MMU
8feae131
DH
254extern struct rb_root nommu_region_tree;
255extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
256
257extern unsigned int kobjsize(const void *objp);
258#endif
259
260/*
605d9288 261 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 262 * When changing, update also include/trace/events/mmflags.h
1da177e4 263 */
cc2383ec
KK
264#define VM_NONE 0x00000000
265
1da177e4
LT
266#define VM_READ 0x00000001 /* currently active flags */
267#define VM_WRITE 0x00000002
268#define VM_EXEC 0x00000004
269#define VM_SHARED 0x00000008
270
7e2cff42 271/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
272#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
273#define VM_MAYWRITE 0x00000020
274#define VM_MAYEXEC 0x00000040
275#define VM_MAYSHARE 0x00000080
276
277#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
b6b7a8fa 278#ifdef CONFIG_MMU
16ba6f81 279#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
b6b7a8fa
DH
280#else /* CONFIG_MMU */
281#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
282#define VM_UFFD_MISSING 0
283#endif /* CONFIG_MMU */
6aab341e 284#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 285#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 286
1da177e4
LT
287#define VM_LOCKED 0x00002000
288#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
289
290 /* Used by sys_madvise() */
291#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
292#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
293
294#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
295#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 296#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 297#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 298#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 299#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 300#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 301#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 302#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 303#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 304
d9104d1c
CG
305#ifdef CONFIG_MEM_SOFT_DIRTY
306# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
307#else
308# define VM_SOFTDIRTY 0
309#endif
310
b379d790 311#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
312#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
313#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 314#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 315
63c17fb8
DH
316#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
318#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
319#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
320#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 321#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
322#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
323#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
324#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
325#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 326#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
327#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
328
5212213a 329#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
330# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
331# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 332# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
333# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
334# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
335#ifdef CONFIG_PPC
336# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
337#else
338# define VM_PKEY_BIT4 0
8f62c883 339#endif
5212213a
RP
340#endif /* CONFIG_ARCH_HAS_PKEYS */
341
342#if defined(CONFIG_X86)
343# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
344#elif defined(CONFIG_PPC)
345# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
346#elif defined(CONFIG_PARISC)
347# define VM_GROWSUP VM_ARCH_1
348#elif defined(CONFIG_IA64)
349# define VM_GROWSUP VM_ARCH_1
74a04967
KA
350#elif defined(CONFIG_SPARC64)
351# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
352# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
353#elif defined(CONFIG_ARM64)
354# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
355# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
356#elif !defined(CONFIG_MMU)
357# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
358#endif
359
9f341931
CM
360#if defined(CONFIG_ARM64_MTE)
361# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
362# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
363#else
364# define VM_MTE VM_NONE
365# define VM_MTE_ALLOWED VM_NONE
366#endif
367
cc2383ec
KK
368#ifndef VM_GROWSUP
369# define VM_GROWSUP VM_NONE
370#endif
371
7677f7fd
AR
372#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
373# define VM_UFFD_MINOR_BIT 37
374# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
375#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
376# define VM_UFFD_MINOR VM_NONE
377#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
378
a8bef8ff 379/* Bits set in the VMA until the stack is in its final location */
f66066bc 380#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
a8bef8ff 381
c62da0c3
AK
382#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
383
384/* Common data flag combinations */
385#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
387#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
388 VM_MAYWRITE | VM_MAYEXEC)
389#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
390 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
391
392#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
393#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
394#endif
395
1da177e4
LT
396#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
397#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
398#endif
399
400#ifdef CONFIG_STACK_GROWSUP
30bdbb78 401#define VM_STACK VM_GROWSUP
f66066bc 402#define VM_STACK_EARLY VM_GROWSDOWN
1da177e4 403#else
30bdbb78 404#define VM_STACK VM_GROWSDOWN
f66066bc 405#define VM_STACK_EARLY 0
1da177e4
LT
406#endif
407
30bdbb78
KK
408#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
409
6cb4d9a2
AK
410/* VMA basic access permission flags */
411#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
412
413
b291f000 414/*
78f11a25 415 * Special vmas that are non-mergable, non-mlock()able.
b291f000 416 */
9050d7eb 417#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 418
b4443772
AK
419/* This mask prevents VMA from being scanned with khugepaged */
420#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
421
a0715cc2
AT
422/* This mask defines which mm->def_flags a process can inherit its parent */
423#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
424
e430a95a
SB
425/* This mask represents all the VMA flag bits used by mlock */
426#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
de60f5f1 427
2c2d57b5
KA
428/* Arch-specific flags to clear when updating VM flags on protection change */
429#ifndef VM_ARCH_CLEAR
430# define VM_ARCH_CLEAR VM_NONE
431#endif
432#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
433
1da177e4
LT
434/*
435 * mapping from the currently active vm_flags protection bits (the
436 * low four bits) to a page protection mask..
437 */
1da177e4 438
dde16072
PX
439/*
440 * The default fault flags that should be used by most of the
441 * arch-specific page fault handlers.
442 */
443#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
444 FAULT_FLAG_KILLABLE | \
445 FAULT_FLAG_INTERRUPTIBLE)
dde16072 446
4064b982
PX
447/**
448 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 449 * @flags: Fault flags.
4064b982
PX
450 *
451 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 452 * the mmap_lock for too long a time when waiting for another condition
4064b982 453 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
454 * mmap_lock in the first round to avoid potential starvation of other
455 * processes that would also want the mmap_lock.
4064b982
PX
456 *
457 * Return: true if the page fault allows retry and this is the first
458 * attempt of the fault handling; false otherwise.
459 */
da2f5eb3 460static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
461{
462 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
463 (!(flags & FAULT_FLAG_TRIED));
464}
465
282a8e03
RZ
466#define FAULT_FLAG_TRACE \
467 { FAULT_FLAG_WRITE, "WRITE" }, \
468 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
469 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
470 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
471 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
472 { FAULT_FLAG_TRIED, "TRIED" }, \
473 { FAULT_FLAG_USER, "USER" }, \
474 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee 475 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
55324e46
SB
476 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
477 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
282a8e03 478
54cb8821 479/*
11192337 480 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
481 * ->fault function. The vma's ->fault is responsible for returning a bitmask
482 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 483 *
c20cd45e
MH
484 * MM layer fills up gfp_mask for page allocations but fault handler might
485 * alter it if its implementation requires a different allocation context.
486 *
9b4bdd2f 487 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 488 */
d0217ac0 489struct vm_fault {
5857c920 490 const struct {
742d3372
WD
491 struct vm_area_struct *vma; /* Target VMA */
492 gfp_t gfp_mask; /* gfp mask to be used for allocations */
493 pgoff_t pgoff; /* Logical page offset based on vma */
824ddc60
NA
494 unsigned long address; /* Faulting virtual address - masked */
495 unsigned long real_address; /* Faulting virtual address - unmasked */
742d3372 496 };
da2f5eb3 497 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 498 * XXX: should really be 'const' */
82b0f8c3 499 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 500 * the 'address' */
a2d58167
DJ
501 pud_t *pud; /* Pointer to pud entry matching
502 * the 'address'
503 */
5db4f15c
YS
504 union {
505 pte_t orig_pte; /* Value of PTE at the time of fault */
506 pmd_t orig_pmd; /* Value of PMD at the time of fault,
507 * used by PMD fault only.
508 */
509 };
d0217ac0 510
3917048d 511 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 512 struct page *page; /* ->fault handlers should return a
83c54070 513 * page here, unless VM_FAULT_NOPAGE
d0217ac0 514 * is set (which is also implied by
83c54070 515 * VM_FAULT_ERROR).
d0217ac0 516 */
82b0f8c3 517 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
518 pte_t *pte; /* Pointer to pte entry matching
519 * the 'address'. NULL if the page
520 * table hasn't been allocated.
521 */
522 spinlock_t *ptl; /* Page table lock.
523 * Protects pte page table if 'pte'
524 * is not NULL, otherwise pmd.
525 */
7267ec00 526 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
527 * vm_ops->map_pages() sets up a page
528 * table from atomic context.
7267ec00
KS
529 * do_fault_around() pre-allocates
530 * page table to avoid allocation from
531 * atomic context.
532 */
54cb8821 533};
1da177e4 534
c791ace1
DJ
535/* page entry size for vm->huge_fault() */
536enum page_entry_size {
537 PE_SIZE_PTE = 0,
538 PE_SIZE_PMD,
539 PE_SIZE_PUD,
540};
541
1da177e4
LT
542/*
543 * These are the virtual MM functions - opening of an area, closing and
544 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 545 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
546 */
547struct vm_operations_struct {
548 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
549 /**
550 * @close: Called when the VMA is being removed from the MM.
551 * Context: User context. May sleep. Caller holds mmap_lock.
552 */
1da177e4 553 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
554 /* Called any time before splitting to check if it's allowed */
555 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 556 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
557 /*
558 * Called by mprotect() to make driver-specific permission
559 * checks before mprotect() is finalised. The VMA must not
3e0ee843 560 * be modified. Returns 0 if mprotect() can proceed.
95bb7c42
SC
561 */
562 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
563 unsigned long end, unsigned long newflags);
1c8f4220
SJ
564 vm_fault_t (*fault)(struct vm_fault *vmf);
565 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
566 enum page_entry_size pe_size);
f9ce0be7 567 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 568 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 569 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
570
571 /* notification that a previously read-only page is about to become
572 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 573 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 574
dd906184 575 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 576 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 577
28b2ee20 578 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
579 * for use by special VMAs. See also generic_access_phys() for a generic
580 * implementation useful for any iomem mapping.
28b2ee20
RR
581 */
582 int (*access)(struct vm_area_struct *vma, unsigned long addr,
583 void *buf, int len, int write);
78d683e8
AL
584
585 /* Called by the /proc/PID/maps code to ask the vma whether it
586 * has a special name. Returning non-NULL will also cause this
587 * vma to be dumped unconditionally. */
588 const char *(*name)(struct vm_area_struct *vma);
589
1da177e4 590#ifdef CONFIG_NUMA
a6020ed7
LS
591 /*
592 * set_policy() op must add a reference to any non-NULL @new mempolicy
593 * to hold the policy upon return. Caller should pass NULL @new to
594 * remove a policy and fall back to surrounding context--i.e. do not
595 * install a MPOL_DEFAULT policy, nor the task or system default
596 * mempolicy.
597 */
1da177e4 598 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
599
600 /*
601 * get_policy() op must add reference [mpol_get()] to any policy at
602 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
603 * in mm/mempolicy.c will do this automatically.
604 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 605 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
606 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
607 * must return NULL--i.e., do not "fallback" to task or system default
608 * policy.
609 */
1da177e4
LT
610 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
611 unsigned long addr);
612#endif
667a0a06
DV
613 /*
614 * Called by vm_normal_page() for special PTEs to find the
615 * page for @addr. This is useful if the default behavior
616 * (using pte_page()) would not find the correct page.
617 */
618 struct page *(*find_special_page)(struct vm_area_struct *vma,
619 unsigned long addr);
1da177e4
LT
620};
621
ef6a22b7
MG
622#ifdef CONFIG_NUMA_BALANCING
623static inline void vma_numab_state_init(struct vm_area_struct *vma)
624{
625 vma->numab_state = NULL;
626}
627static inline void vma_numab_state_free(struct vm_area_struct *vma)
628{
629 kfree(vma->numab_state);
630}
631#else
632static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
633static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
634#endif /* CONFIG_NUMA_BALANCING */
635
5e31275c 636#ifdef CONFIG_PER_VMA_LOCK
5e31275c
SB
637/*
638 * Try to read-lock a vma. The function is allowed to occasionally yield false
639 * locked result to avoid performance overhead, in which case we fall back to
640 * using mmap_lock. The function should never yield false unlocked result.
641 */
642static inline bool vma_start_read(struct vm_area_struct *vma)
643{
b1f02b95
JH
644 /*
645 * Check before locking. A race might cause false locked result.
646 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
647 * ACQUIRE semantics, because this is just a lockless check whose result
648 * we don't rely on for anything - the mm_lock_seq read against which we
649 * need ordering is below.
650 */
651 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
5e31275c
SB
652 return false;
653
c7f8f31c 654 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
5e31275c
SB
655 return false;
656
657 /*
658 * Overflow might produce false locked result.
659 * False unlocked result is impossible because we modify and check
c7f8f31c 660 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
5e31275c 661 * modification invalidates all existing locks.
b1f02b95
JH
662 *
663 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
664 * racing with vma_end_write_all(), we only start reading from the VMA
665 * after it has been unlocked.
666 * This pairs with RELEASE semantics in vma_end_write_all().
5e31275c 667 */
b1f02b95 668 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
c7f8f31c 669 up_read(&vma->vm_lock->lock);
5e31275c
SB
670 return false;
671 }
672 return true;
673}
674
675static inline void vma_end_read(struct vm_area_struct *vma)
676{
677 rcu_read_lock(); /* keeps vma alive till the end of up_read */
c7f8f31c 678 up_read(&vma->vm_lock->lock);
5e31275c
SB
679 rcu_read_unlock();
680}
681
55fd6fcc 682static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
5e31275c 683{
5e31275c
SB
684 mmap_assert_write_locked(vma->vm_mm);
685
686 /*
687 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
688 * mm->mm_lock_seq can't be concurrently modified.
689 */
b1f02b95 690 *mm_lock_seq = vma->vm_mm->mm_lock_seq;
55fd6fcc
SB
691 return (vma->vm_lock_seq == *mm_lock_seq);
692}
693
694static inline void vma_start_write(struct vm_area_struct *vma)
695{
696 int mm_lock_seq;
697
698 if (__is_vma_write_locked(vma, &mm_lock_seq))
5e31275c
SB
699 return;
700
c7f8f31c 701 down_write(&vma->vm_lock->lock);
b1f02b95
JH
702 /*
703 * We should use WRITE_ONCE() here because we can have concurrent reads
704 * from the early lockless pessimistic check in vma_start_read().
705 * We don't really care about the correctness of that early check, but
706 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
707 */
708 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
c7f8f31c 709 up_write(&vma->vm_lock->lock);
5e31275c
SB
710}
711
55fd6fcc
SB
712static inline bool vma_try_start_write(struct vm_area_struct *vma)
713{
714 int mm_lock_seq;
715
716 if (__is_vma_write_locked(vma, &mm_lock_seq))
717 return true;
718
719 if (!down_write_trylock(&vma->vm_lock->lock))
720 return false;
721
b1f02b95 722 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
55fd6fcc
SB
723 up_write(&vma->vm_lock->lock);
724 return true;
725}
726
5e31275c
SB
727static inline void vma_assert_write_locked(struct vm_area_struct *vma)
728{
55fd6fcc
SB
729 int mm_lock_seq;
730
731 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
5e31275c
SB
732}
733
457f67be
SB
734static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
735{
736 /* When detaching vma should be write-locked */
737 if (detached)
738 vma_assert_write_locked(vma);
739 vma->detached = detached;
740}
741
50ee3253
SB
742struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
743 unsigned long address);
744
5e31275c
SB
745#else /* CONFIG_PER_VMA_LOCK */
746
5e31275c
SB
747static inline bool vma_start_read(struct vm_area_struct *vma)
748 { return false; }
749static inline void vma_end_read(struct vm_area_struct *vma) {}
750static inline void vma_start_write(struct vm_area_struct *vma) {}
55fd6fcc
SB
751static inline bool vma_try_start_write(struct vm_area_struct *vma)
752 { return true; }
5e31275c 753static inline void vma_assert_write_locked(struct vm_area_struct *vma) {}
457f67be
SB
754static inline void vma_mark_detached(struct vm_area_struct *vma,
755 bool detached) {}
5e31275c
SB
756
757#endif /* CONFIG_PER_VMA_LOCK */
758
c7f8f31c
SB
759/*
760 * WARNING: vma_init does not initialize vma->vm_lock.
761 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
762 */
027232da
KS
763static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
764{
bfd40eaf
KS
765 static const struct vm_operations_struct dummy_vm_ops = {};
766
a670468f 767 memset(vma, 0, sizeof(*vma));
027232da 768 vma->vm_mm = mm;
bfd40eaf 769 vma->vm_ops = &dummy_vm_ops;
027232da 770 INIT_LIST_HEAD(&vma->anon_vma_chain);
457f67be 771 vma_mark_detached(vma, false);
ef6a22b7 772 vma_numab_state_init(vma);
027232da
KS
773}
774
bc292ab0
SB
775/* Use when VMA is not part of the VMA tree and needs no locking */
776static inline void vm_flags_init(struct vm_area_struct *vma,
777 vm_flags_t flags)
778{
779 ACCESS_PRIVATE(vma, __vm_flags) = flags;
780}
781
782/* Use when VMA is part of the VMA tree and modifications need coordination */
783static inline void vm_flags_reset(struct vm_area_struct *vma,
784 vm_flags_t flags)
785{
c7322933 786 vma_start_write(vma);
bc292ab0
SB
787 vm_flags_init(vma, flags);
788}
789
601c3c29
SB
790static inline void vm_flags_reset_once(struct vm_area_struct *vma,
791 vm_flags_t flags)
792{
c7322933 793 vma_start_write(vma);
601c3c29
SB
794 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
795}
796
bc292ab0
SB
797static inline void vm_flags_set(struct vm_area_struct *vma,
798 vm_flags_t flags)
799{
c7322933 800 vma_start_write(vma);
bc292ab0
SB
801 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
802}
803
804static inline void vm_flags_clear(struct vm_area_struct *vma,
805 vm_flags_t flags)
806{
c7322933 807 vma_start_write(vma);
bc292ab0
SB
808 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
809}
810
68f48381
SB
811/*
812 * Use only if VMA is not part of the VMA tree or has no other users and
813 * therefore needs no locking.
814 */
815static inline void __vm_flags_mod(struct vm_area_struct *vma,
816 vm_flags_t set, vm_flags_t clear)
817{
818 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
819}
820
bc292ab0
SB
821/*
822 * Use only when the order of set/clear operations is unimportant, otherwise
823 * use vm_flags_{set|clear} explicitly.
824 */
825static inline void vm_flags_mod(struct vm_area_struct *vma,
826 vm_flags_t set, vm_flags_t clear)
827{
c7322933 828 vma_start_write(vma);
68f48381 829 __vm_flags_mod(vma, set, clear);
bc292ab0
SB
830}
831
bfd40eaf
KS
832static inline void vma_set_anonymous(struct vm_area_struct *vma)
833{
834 vma->vm_ops = NULL;
835}
836
43675e6f
YS
837static inline bool vma_is_anonymous(struct vm_area_struct *vma)
838{
839 return !vma->vm_ops;
840}
841
222100ee
AK
842static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
843{
844 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
845
846 if (!maybe_stack)
847 return false;
848
849 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
850 VM_STACK_INCOMPLETE_SETUP)
851 return true;
852
853 return false;
854}
855
7969f226
AK
856static inline bool vma_is_foreign(struct vm_area_struct *vma)
857{
858 if (!current->mm)
859 return true;
860
861 if (current->mm != vma->vm_mm)
862 return true;
863
864 return false;
865}
3122e80e
AK
866
867static inline bool vma_is_accessible(struct vm_area_struct *vma)
868{
6cb4d9a2 869 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
870}
871
f39af059
MWO
872static inline
873struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
874{
b62b633e 875 return mas_find(&vmi->mas, max - 1);
f39af059
MWO
876}
877
878static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
879{
880 /*
b62b633e 881 * Uses mas_find() to get the first VMA when the iterator starts.
f39af059
MWO
882 * Calling mas_next() could skip the first entry.
883 */
b62b633e 884 return mas_find(&vmi->mas, ULONG_MAX);
f39af059
MWO
885}
886
bb5dbd22
LH
887static inline
888struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
889{
890 return mas_next_range(&vmi->mas, ULONG_MAX);
891}
892
893
f39af059
MWO
894static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
895{
896 return mas_prev(&vmi->mas, 0);
897}
898
bb5dbd22
LH
899static inline
900struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
901{
902 return mas_prev_range(&vmi->mas, 0);
903}
904
f39af059
MWO
905static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
906{
907 return vmi->mas.index;
908}
909
b62b633e
LH
910static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
911{
912 return vmi->mas.last + 1;
913}
914static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
915 unsigned long count)
916{
917 return mas_expected_entries(&vmi->mas, count);
918}
919
920/* Free any unused preallocations */
921static inline void vma_iter_free(struct vma_iterator *vmi)
922{
923 mas_destroy(&vmi->mas);
924}
925
926static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
927 struct vm_area_struct *vma)
928{
929 vmi->mas.index = vma->vm_start;
930 vmi->mas.last = vma->vm_end - 1;
931 mas_store(&vmi->mas, vma);
932 if (unlikely(mas_is_err(&vmi->mas)))
933 return -ENOMEM;
934
935 return 0;
936}
937
938static inline void vma_iter_invalidate(struct vma_iterator *vmi)
939{
940 mas_pause(&vmi->mas);
941}
942
943static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
944{
945 mas_set(&vmi->mas, addr);
946}
947
f39af059
MWO
948#define for_each_vma(__vmi, __vma) \
949 while (((__vma) = vma_next(&(__vmi))) != NULL)
950
951/* The MM code likes to work with exclusive end addresses */
952#define for_each_vma_range(__vmi, __vma, __end) \
b62b633e 953 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
f39af059 954
43675e6f
YS
955#ifdef CONFIG_SHMEM
956/*
957 * The vma_is_shmem is not inline because it is used only by slow
958 * paths in userfault.
959 */
960bool vma_is_shmem(struct vm_area_struct *vma);
d09e8ca6 961bool vma_is_anon_shmem(struct vm_area_struct *vma);
43675e6f
YS
962#else
963static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
d09e8ca6 964static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
43675e6f
YS
965#endif
966
967int vma_is_stack_for_current(struct vm_area_struct *vma);
968
8b11ec1b
LT
969/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
970#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
971
1da177e4
LT
972struct mmu_gather;
973struct inode;
974
5eb5cea1
MWO
975/*
976 * compound_order() can be called without holding a reference, which means
977 * that niceties like page_folio() don't work. These callers should be
978 * prepared to handle wild return values. For example, PG_head may be
979 * set before _folio_order is initialised, or this may be a tail page.
980 * See compaction.c for some good examples.
981 */
5bf34d7c
MWO
982static inline unsigned int compound_order(struct page *page)
983{
5eb5cea1
MWO
984 struct folio *folio = (struct folio *)page;
985
986 if (!test_bit(PG_head, &folio->flags))
5bf34d7c 987 return 0;
5eb5cea1 988 return folio->_folio_order;
5bf34d7c
MWO
989}
990
991/**
992 * folio_order - The allocation order of a folio.
993 * @folio: The folio.
994 *
995 * A folio is composed of 2^order pages. See get_order() for the definition
996 * of order.
997 *
998 * Return: The order of the folio.
999 */
1000static inline unsigned int folio_order(struct folio *folio)
1001{
c3a15bff
MWO
1002 if (!folio_test_large(folio))
1003 return 0;
1004 return folio->_folio_order;
5bf34d7c
MWO
1005}
1006
71e3aac0 1007#include <linux/huge_mm.h>
1da177e4
LT
1008
1009/*
1010 * Methods to modify the page usage count.
1011 *
1012 * What counts for a page usage:
1013 * - cache mapping (page->mapping)
1014 * - private data (page->private)
1015 * - page mapped in a task's page tables, each mapping
1016 * is counted separately
1017 *
1018 * Also, many kernel routines increase the page count before a critical
1019 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
1020 */
1021
1022/*
da6052f7 1023 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 1024 */
7c8ee9a8
NP
1025static inline int put_page_testzero(struct page *page)
1026{
fe896d18
JK
1027 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1028 return page_ref_dec_and_test(page);
7c8ee9a8 1029}
1da177e4 1030
b620f633
MWO
1031static inline int folio_put_testzero(struct folio *folio)
1032{
1033 return put_page_testzero(&folio->page);
1034}
1035
1da177e4 1036/*
7c8ee9a8
NP
1037 * Try to grab a ref unless the page has a refcount of zero, return false if
1038 * that is the case.
8e0861fa
AK
1039 * This can be called when MMU is off so it must not access
1040 * any of the virtual mappings.
1da177e4 1041 */
c2530328 1042static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 1043{
fe896d18 1044 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 1045}
1da177e4 1046
3c1ea2c7
VMO
1047static inline struct folio *folio_get_nontail_page(struct page *page)
1048{
1049 if (unlikely(!get_page_unless_zero(page)))
1050 return NULL;
1051 return (struct folio *)page;
1052}
1053
53df8fdc 1054extern int page_is_ram(unsigned long pfn);
124fe20d
DW
1055
1056enum {
1057 REGION_INTERSECTS,
1058 REGION_DISJOINT,
1059 REGION_MIXED,
1060};
1061
1c29f25b
TK
1062int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1063 unsigned long desc);
53df8fdc 1064
48667e7a 1065/* Support for virtually mapped pages */
b3bdda02
CL
1066struct page *vmalloc_to_page(const void *addr);
1067unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 1068
0738c4bb
PM
1069/*
1070 * Determine if an address is within the vmalloc range
1071 *
1072 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1073 * is no special casing required.
1074 */
9bd3bb67
AK
1075
1076#ifndef is_ioremap_addr
1077#define is_ioremap_addr(x) is_vmalloc_addr(x)
1078#endif
1079
81ac3ad9 1080#ifdef CONFIG_MMU
186525bd 1081extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
1082extern int is_vmalloc_or_module_addr(const void *x);
1083#else
186525bd
IM
1084static inline bool is_vmalloc_addr(const void *x)
1085{
1086 return false;
1087}
934831d0 1088static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
1089{
1090 return 0;
1091}
1092#endif
9e2779fa 1093
74e8ee47
MWO
1094/*
1095 * How many times the entire folio is mapped as a single unit (eg by a
1096 * PMD or PUD entry). This is probably not what you want, except for
cb67f428
HD
1097 * debugging purposes - it does not include PTE-mapped sub-pages; look
1098 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
74e8ee47
MWO
1099 */
1100static inline int folio_entire_mapcount(struct folio *folio)
6dc5ea16 1101{
74e8ee47 1102 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1aa4d03b 1103 return atomic_read(&folio->_entire_mapcount) + 1;
53f9263b
KS
1104}
1105
70b50f94
AA
1106/*
1107 * The atomic page->_mapcount, starts from -1: so that transitions
1108 * both from it and to it can be tracked, using atomic_inc_and_test
1109 * and atomic_add_negative(-1).
1110 */
22b751c3 1111static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
1112{
1113 atomic_set(&(page)->_mapcount, -1);
1114}
1115
c97eeb8f
MWO
1116/**
1117 * page_mapcount() - Number of times this precise page is mapped.
1118 * @page: The page.
1119 *
1120 * The number of times this page is mapped. If this page is part of
1121 * a large folio, it includes the number of times this page is mapped
1122 * as part of that folio.
6988f31d 1123 *
c97eeb8f 1124 * The result is undefined for pages which cannot be mapped into userspace.
6988f31d 1125 * For example SLAB or special types of pages. See function page_has_type().
c97eeb8f 1126 * They use this field in struct page differently.
6988f31d 1127 */
70b50f94
AA
1128static inline int page_mapcount(struct page *page)
1129{
cb67f428 1130 int mapcount = atomic_read(&page->_mapcount) + 1;
b20ce5e0 1131
c97eeb8f
MWO
1132 if (unlikely(PageCompound(page)))
1133 mapcount += folio_entire_mapcount(page_folio(page));
1134
1135 return mapcount;
b20ce5e0
KS
1136}
1137
b14224fb 1138int folio_total_mapcount(struct folio *folio);
4ba1119c 1139
cb67f428
HD
1140/**
1141 * folio_mapcount() - Calculate the number of mappings of this folio.
1142 * @folio: The folio.
1143 *
1144 * A large folio tracks both how many times the entire folio is mapped,
1145 * and how many times each individual page in the folio is mapped.
1146 * This function calculates the total number of times the folio is
1147 * mapped.
1148 *
1149 * Return: The number of times this folio is mapped.
1150 */
1151static inline int folio_mapcount(struct folio *folio)
4ba1119c 1152{
cb67f428
HD
1153 if (likely(!folio_test_large(folio)))
1154 return atomic_read(&folio->_mapcount) + 1;
b14224fb 1155 return folio_total_mapcount(folio);
4ba1119c
MWO
1156}
1157
b20ce5e0
KS
1158static inline int total_mapcount(struct page *page)
1159{
be5ef2d9
HD
1160 if (likely(!PageCompound(page)))
1161 return atomic_read(&page->_mapcount) + 1;
b14224fb 1162 return folio_total_mapcount(page_folio(page));
be5ef2d9
HD
1163}
1164
1165static inline bool folio_large_is_mapped(struct folio *folio)
1166{
4b51634c 1167 /*
1aa4d03b 1168 * Reading _entire_mapcount below could be omitted if hugetlb
eec20426 1169 * participated in incrementing nr_pages_mapped when compound mapped.
4b51634c 1170 */
eec20426 1171 return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1aa4d03b 1172 atomic_read(&folio->_entire_mapcount) >= 0;
cb67f428
HD
1173}
1174
1175/**
1176 * folio_mapped - Is this folio mapped into userspace?
1177 * @folio: The folio.
1178 *
1179 * Return: True if any page in this folio is referenced by user page tables.
1180 */
1181static inline bool folio_mapped(struct folio *folio)
1182{
be5ef2d9
HD
1183 if (likely(!folio_test_large(folio)))
1184 return atomic_read(&folio->_mapcount) >= 0;
1185 return folio_large_is_mapped(folio);
1186}
1187
1188/*
1189 * Return true if this page is mapped into pagetables.
1190 * For compound page it returns true if any sub-page of compound page is mapped,
1191 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1192 */
1193static inline bool page_mapped(struct page *page)
1194{
1195 if (likely(!PageCompound(page)))
1196 return atomic_read(&page->_mapcount) >= 0;
1197 return folio_large_is_mapped(page_folio(page));
70b50f94
AA
1198}
1199
b49af68f
CL
1200static inline struct page *virt_to_head_page(const void *x)
1201{
1202 struct page *page = virt_to_page(x);
ccaafd7f 1203
1d798ca3 1204 return compound_head(page);
b49af68f
CL
1205}
1206
7d4203c1
VB
1207static inline struct folio *virt_to_folio(const void *x)
1208{
1209 struct page *page = virt_to_page(x);
1210
1211 return page_folio(page);
1212}
1213
8d29c703 1214void __folio_put(struct folio *folio);
ddc58f27 1215
1d7ea732 1216void put_pages_list(struct list_head *pages);
1da177e4 1217
8dfcc9ba 1218void split_page(struct page *page, unsigned int order);
715cbfd6 1219void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 1220
a1554c00
ML
1221unsigned long nr_free_buffer_pages(void);
1222
33f2ef89
AW
1223/*
1224 * Compound pages have a destructor function. Provide a
1225 * prototype for that function and accessor functions.
f1e61557 1226 * These are _only_ valid on the head of a compound page.
33f2ef89 1227 */
f1e61557
KS
1228typedef void compound_page_dtor(struct page *);
1229
1230/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
1231enum compound_dtor_id {
1232 NULL_COMPOUND_DTOR,
1233 COMPOUND_PAGE_DTOR,
1234#ifdef CONFIG_HUGETLB_PAGE
1235 HUGETLB_PAGE_DTOR,
9a982250
KS
1236#endif
1237#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1238 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
1239#endif
1240 NR_COMPOUND_DTORS,
1241};
33f2ef89 1242
9fd33058
SK
1243static inline void folio_set_compound_dtor(struct folio *folio,
1244 enum compound_dtor_id compound_dtor)
1245{
1246 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1247 folio->_folio_dtor = compound_dtor;
1248}
1249
5375336c 1250void destroy_large_folio(struct folio *folio);
33f2ef89 1251
a50b854e
MWO
1252/* Returns the number of bytes in this potentially compound page. */
1253static inline unsigned long page_size(struct page *page)
1254{
1255 return PAGE_SIZE << compound_order(page);
1256}
1257
94ad9338
MWO
1258/* Returns the number of bits needed for the number of bytes in a page */
1259static inline unsigned int page_shift(struct page *page)
1260{
1261 return PAGE_SHIFT + compound_order(page);
1262}
1263
18788cfa
MWO
1264/**
1265 * thp_order - Order of a transparent huge page.
1266 * @page: Head page of a transparent huge page.
1267 */
1268static inline unsigned int thp_order(struct page *page)
1269{
1270 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1271 return compound_order(page);
1272}
1273
18788cfa
MWO
1274/**
1275 * thp_size - Size of a transparent huge page.
1276 * @page: Head page of a transparent huge page.
1277 *
1278 * Return: Number of bytes in this page.
1279 */
1280static inline unsigned long thp_size(struct page *page)
1281{
1282 return PAGE_SIZE << thp_order(page);
1283}
1284
9a982250
KS
1285void free_compound_page(struct page *page);
1286
3dece370 1287#ifdef CONFIG_MMU
14fd403f
AA
1288/*
1289 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1290 * servicing faults for write access. In the normal case, do always want
1291 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1292 * that do not have writing enabled, when used by access_process_vm.
1293 */
1294static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1295{
1296 if (likely(vma->vm_flags & VM_WRITE))
1297 pte = pte_mkwrite(pte);
1298 return pte;
1299}
8c6e50b0 1300
f9ce0be7 1301vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1302void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1303
2b740303
SJ
1304vm_fault_t finish_fault(struct vm_fault *vmf);
1305vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1306#endif
14fd403f 1307
1da177e4
LT
1308/*
1309 * Multiple processes may "see" the same page. E.g. for untouched
1310 * mappings of /dev/null, all processes see the same page full of
1311 * zeroes, and text pages of executables and shared libraries have
1312 * only one copy in memory, at most, normally.
1313 *
1314 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1315 * page_count() == 0 means the page is free. page->lru is then used for
1316 * freelist management in the buddy allocator.
da6052f7 1317 * page_count() > 0 means the page has been allocated.
1da177e4 1318 *
da6052f7
NP
1319 * Pages are allocated by the slab allocator in order to provide memory
1320 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1321 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1322 * unless a particular usage is carefully commented. (the responsibility of
1323 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1324 *
da6052f7
NP
1325 * A page may be used by anyone else who does a __get_free_page().
1326 * In this case, page_count still tracks the references, and should only
1327 * be used through the normal accessor functions. The top bits of page->flags
1328 * and page->virtual store page management information, but all other fields
1329 * are unused and could be used privately, carefully. The management of this
1330 * page is the responsibility of the one who allocated it, and those who have
1331 * subsequently been given references to it.
1332 *
1333 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1334 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1335 * The following discussion applies only to them.
1336 *
da6052f7
NP
1337 * A pagecache page contains an opaque `private' member, which belongs to the
1338 * page's address_space. Usually, this is the address of a circular list of
1339 * the page's disk buffers. PG_private must be set to tell the VM to call
1340 * into the filesystem to release these pages.
1da177e4 1341 *
da6052f7
NP
1342 * A page may belong to an inode's memory mapping. In this case, page->mapping
1343 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1344 * in units of PAGE_SIZE.
1da177e4 1345 *
da6052f7
NP
1346 * If pagecache pages are not associated with an inode, they are said to be
1347 * anonymous pages. These may become associated with the swapcache, and in that
1348 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1349 *
da6052f7
NP
1350 * In either case (swapcache or inode backed), the pagecache itself holds one
1351 * reference to the page. Setting PG_private should also increment the
1352 * refcount. The each user mapping also has a reference to the page.
1da177e4 1353 *
da6052f7 1354 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1355 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1356 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1357 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1358 *
da6052f7 1359 * All pagecache pages may be subject to I/O:
1da177e4
LT
1360 * - inode pages may need to be read from disk,
1361 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1362 * to be written back to the inode on disk,
1363 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1364 * modified may need to be swapped out to swap space and (later) to be read
1365 * back into memory.
1da177e4
LT
1366 */
1367
27674ef6 1368#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1369DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1370
f4f451a1
MS
1371bool __put_devmap_managed_page_refs(struct page *page, int refs);
1372static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1373{
1374 if (!static_branch_unlikely(&devmap_managed_key))
1375 return false;
1376 if (!is_zone_device_page(page))
1377 return false;
f4f451a1 1378 return __put_devmap_managed_page_refs(page, refs);
e7638488 1379}
27674ef6 1380#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
f4f451a1 1381static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1382{
1383 return false;
1384}
27674ef6 1385#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
7b2d55d2 1386
f4f451a1
MS
1387static inline bool put_devmap_managed_page(struct page *page)
1388{
1389 return put_devmap_managed_page_refs(page, 1);
1390}
1391
f958d7b5 1392/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1393#define folio_ref_zero_or_close_to_overflow(folio) \
1394 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1395
1396/**
1397 * folio_get - Increment the reference count on a folio.
1398 * @folio: The folio.
1399 *
1400 * Context: May be called in any context, as long as you know that
1401 * you have a refcount on the folio. If you do not already have one,
1402 * folio_try_get() may be the right interface for you to use.
1403 */
1404static inline void folio_get(struct folio *folio)
1405{
1406 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1407 folio_ref_inc(folio);
1408}
f958d7b5 1409
3565fce3
DW
1410static inline void get_page(struct page *page)
1411{
86d234cb 1412 folio_get(page_folio(page));
3565fce3
DW
1413}
1414
cd1adf1b
LT
1415static inline __must_check bool try_get_page(struct page *page)
1416{
1417 page = compound_head(page);
1418 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1419 return false;
1420 page_ref_inc(page);
1421 return true;
1422}
3565fce3 1423
b620f633
MWO
1424/**
1425 * folio_put - Decrement the reference count on a folio.
1426 * @folio: The folio.
1427 *
1428 * If the folio's reference count reaches zero, the memory will be
1429 * released back to the page allocator and may be used by another
1430 * allocation immediately. Do not access the memory or the struct folio
1431 * after calling folio_put() unless you can be sure that it wasn't the
1432 * last reference.
1433 *
1434 * Context: May be called in process or interrupt context, but not in NMI
1435 * context. May be called while holding a spinlock.
1436 */
1437static inline void folio_put(struct folio *folio)
1438{
1439 if (folio_put_testzero(folio))
8d29c703 1440 __folio_put(folio);
b620f633
MWO
1441}
1442
3fe7fa58
MWO
1443/**
1444 * folio_put_refs - Reduce the reference count on a folio.
1445 * @folio: The folio.
1446 * @refs: The amount to subtract from the folio's reference count.
1447 *
1448 * If the folio's reference count reaches zero, the memory will be
1449 * released back to the page allocator and may be used by another
1450 * allocation immediately. Do not access the memory or the struct folio
1451 * after calling folio_put_refs() unless you can be sure that these weren't
1452 * the last references.
1453 *
1454 * Context: May be called in process or interrupt context, but not in NMI
1455 * context. May be called while holding a spinlock.
1456 */
1457static inline void folio_put_refs(struct folio *folio, int refs)
1458{
1459 if (folio_ref_sub_and_test(folio, refs))
8d29c703 1460 __folio_put(folio);
3fe7fa58
MWO
1461}
1462
0411d6ee
SP
1463/*
1464 * union release_pages_arg - an array of pages or folios
449c7967 1465 *
0411d6ee 1466 * release_pages() releases a simple array of multiple pages, and
449c7967
LT
1467 * accepts various different forms of said page array: either
1468 * a regular old boring array of pages, an array of folios, or
1469 * an array of encoded page pointers.
1470 *
1471 * The transparent union syntax for this kind of "any of these
1472 * argument types" is all kinds of ugly, so look away.
1473 */
1474typedef union {
1475 struct page **pages;
1476 struct folio **folios;
1477 struct encoded_page **encoded_pages;
1478} release_pages_arg __attribute__ ((__transparent_union__));
1479
1480void release_pages(release_pages_arg, int nr);
e3c4cebf
MWO
1481
1482/**
1483 * folios_put - Decrement the reference count on an array of folios.
1484 * @folios: The folios.
1485 * @nr: How many folios there are.
1486 *
1487 * Like folio_put(), but for an array of folios. This is more efficient
1488 * than writing the loop yourself as it will optimise the locks which
1489 * need to be taken if the folios are freed.
1490 *
1491 * Context: May be called in process or interrupt context, but not in NMI
1492 * context. May be called while holding a spinlock.
1493 */
1494static inline void folios_put(struct folio **folios, unsigned int nr)
1495{
449c7967 1496 release_pages(folios, nr);
3fe7fa58
MWO
1497}
1498
3565fce3
DW
1499static inline void put_page(struct page *page)
1500{
b620f633 1501 struct folio *folio = page_folio(page);
3565fce3 1502
7b2d55d2 1503 /*
89574945
CH
1504 * For some devmap managed pages we need to catch refcount transition
1505 * from 2 to 1:
7b2d55d2 1506 */
89574945 1507 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1508 return;
b620f633 1509 folio_put(folio);
3565fce3
DW
1510}
1511
3faa52c0
JH
1512/*
1513 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1514 * the page's refcount so that two separate items are tracked: the original page
1515 * reference count, and also a new count of how many pin_user_pages() calls were
1516 * made against the page. ("gup-pinned" is another term for the latter).
1517 *
1518 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1519 * distinct from normal pages. As such, the unpin_user_page() call (and its
1520 * variants) must be used in order to release gup-pinned pages.
1521 *
1522 * Choice of value:
1523 *
1524 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1525 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1526 * simpler, due to the fact that adding an even power of two to the page
1527 * refcount has the effect of using only the upper N bits, for the code that
1528 * counts up using the bias value. This means that the lower bits are left for
1529 * the exclusive use of the original code that increments and decrements by one
1530 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1531 *
3faa52c0
JH
1532 * Of course, once the lower bits overflow into the upper bits (and this is
1533 * OK, because subtraction recovers the original values), then visual inspection
1534 * no longer suffices to directly view the separate counts. However, for normal
1535 * applications that don't have huge page reference counts, this won't be an
1536 * issue.
fc1d8e7c 1537 *
40fcc7fc
MWO
1538 * Locking: the lockless algorithm described in folio_try_get_rcu()
1539 * provides safe operation for get_user_pages(), page_mkclean() and
1540 * other calls that race to set up page table entries.
fc1d8e7c 1541 */
3faa52c0 1542#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1543
3faa52c0 1544void unpin_user_page(struct page *page);
f1f6a7dd
JH
1545void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1546 bool make_dirty);
458a4f78
JM
1547void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1548 bool make_dirty);
f1f6a7dd 1549void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1550
97a7e473
PX
1551static inline bool is_cow_mapping(vm_flags_t flags)
1552{
1553 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1554}
1555
fc4f4be9
DH
1556#ifndef CONFIG_MMU
1557static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1558{
1559 /*
1560 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1561 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1562 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1563 * underlying memory if ptrace is active, so this is only possible if
1564 * ptrace does not apply. Note that there is no mprotect() to upgrade
1565 * write permissions later.
1566 */
b6b7a8fa 1567 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
fc4f4be9
DH
1568}
1569#endif
1570
9127ab4f
CS
1571#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1572#define SECTION_IN_PAGE_FLAGS
1573#endif
1574
89689ae7 1575/*
7a8010cd
VB
1576 * The identification function is mainly used by the buddy allocator for
1577 * determining if two pages could be buddies. We are not really identifying
1578 * the zone since we could be using the section number id if we do not have
1579 * node id available in page flags.
1580 * We only guarantee that it will return the same value for two combinable
1581 * pages in a zone.
89689ae7 1582 */
cb2b95e1
AW
1583static inline int page_zone_id(struct page *page)
1584{
89689ae7 1585 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1586}
1587
89689ae7 1588#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1589extern int page_to_nid(const struct page *page);
89689ae7 1590#else
33dd4e0e 1591static inline int page_to_nid(const struct page *page)
d41dee36 1592{
f165b378
PT
1593 struct page *p = (struct page *)page;
1594
1595 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1596}
89689ae7
CL
1597#endif
1598
874fd90c
MWO
1599static inline int folio_nid(const struct folio *folio)
1600{
1601 return page_to_nid(&folio->page);
1602}
1603
57e0a030 1604#ifdef CONFIG_NUMA_BALANCING
33024536
HY
1605/* page access time bits needs to hold at least 4 seconds */
1606#define PAGE_ACCESS_TIME_MIN_BITS 12
1607#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1608#define PAGE_ACCESS_TIME_BUCKETS \
1609 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1610#else
1611#define PAGE_ACCESS_TIME_BUCKETS 0
1612#endif
1613
1614#define PAGE_ACCESS_TIME_MASK \
1615 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1616
90572890 1617static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1618{
90572890 1619 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1620}
1621
90572890 1622static inline int cpupid_to_pid(int cpupid)
57e0a030 1623{
90572890 1624 return cpupid & LAST__PID_MASK;
57e0a030 1625}
b795854b 1626
90572890 1627static inline int cpupid_to_cpu(int cpupid)
b795854b 1628{
90572890 1629 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1630}
1631
90572890 1632static inline int cpupid_to_nid(int cpupid)
b795854b 1633{
90572890 1634 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1635}
1636
90572890 1637static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1638{
90572890 1639 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1640}
1641
90572890 1642static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1643{
90572890 1644 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1645}
1646
8c8a743c
PZ
1647static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1648{
1649 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1650}
1651
1652#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1653#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1654static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1655{
1ae71d03 1656 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1657}
90572890
PZ
1658
1659static inline int page_cpupid_last(struct page *page)
1660{
1661 return page->_last_cpupid;
1662}
1663static inline void page_cpupid_reset_last(struct page *page)
b795854b 1664{
1ae71d03 1665 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1666}
1667#else
90572890 1668static inline int page_cpupid_last(struct page *page)
75980e97 1669{
90572890 1670 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1671}
1672
90572890 1673extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1674
90572890 1675static inline void page_cpupid_reset_last(struct page *page)
75980e97 1676{
09940a4f 1677 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1678}
90572890 1679#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
33024536
HY
1680
1681static inline int xchg_page_access_time(struct page *page, int time)
1682{
1683 int last_time;
1684
1685 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1686 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1687}
fc137c0d
R
1688
1689static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1690{
1691 unsigned int pid_bit;
1692
d46031f4 1693 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
20f58648
R
1694 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) {
1695 __set_bit(pid_bit, &vma->numab_state->access_pids[1]);
fc137c0d
R
1696 }
1697}
90572890
PZ
1698#else /* !CONFIG_NUMA_BALANCING */
1699static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1700{
90572890 1701 return page_to_nid(page); /* XXX */
57e0a030
MG
1702}
1703
33024536
HY
1704static inline int xchg_page_access_time(struct page *page, int time)
1705{
1706 return 0;
1707}
1708
90572890 1709static inline int page_cpupid_last(struct page *page)
57e0a030 1710{
90572890 1711 return page_to_nid(page); /* XXX */
57e0a030
MG
1712}
1713
90572890 1714static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1715{
1716 return -1;
1717}
1718
90572890 1719static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1720{
1721 return -1;
1722}
1723
90572890 1724static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1725{
1726 return -1;
1727}
1728
90572890
PZ
1729static inline int cpu_pid_to_cpupid(int nid, int pid)
1730{
1731 return -1;
1732}
1733
1734static inline bool cpupid_pid_unset(int cpupid)
b795854b 1735{
2b787449 1736 return true;
b795854b
MG
1737}
1738
90572890 1739static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1740{
1741}
8c8a743c
PZ
1742
1743static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1744{
1745 return false;
1746}
fc137c0d
R
1747
1748static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1749{
1750}
90572890 1751#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1752
2e903b91 1753#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1754
cf10bd4c
AK
1755/*
1756 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1757 * setting tags for all pages to native kernel tag value 0xff, as the default
1758 * value 0x00 maps to 0xff.
1759 */
1760
2813b9c0
AK
1761static inline u8 page_kasan_tag(const struct page *page)
1762{
cf10bd4c
AK
1763 u8 tag = 0xff;
1764
1765 if (kasan_enabled()) {
1766 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1767 tag ^= 0xff;
1768 }
1769
1770 return tag;
2813b9c0
AK
1771}
1772
1773static inline void page_kasan_tag_set(struct page *page, u8 tag)
1774{
27fe7339
PC
1775 unsigned long old_flags, flags;
1776
1777 if (!kasan_enabled())
1778 return;
1779
1780 tag ^= 0xff;
1781 old_flags = READ_ONCE(page->flags);
1782 do {
1783 flags = old_flags;
1784 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1785 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1786 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1787}
1788
1789static inline void page_kasan_tag_reset(struct page *page)
1790{
34303244
AK
1791 if (kasan_enabled())
1792 page_kasan_tag_set(page, 0xff);
2813b9c0 1793}
34303244
AK
1794
1795#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1796
2813b9c0
AK
1797static inline u8 page_kasan_tag(const struct page *page)
1798{
1799 return 0xff;
1800}
1801
1802static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1803static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1804
1805#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1806
33dd4e0e 1807static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1808{
1809 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1810}
1811
75ef7184
MG
1812static inline pg_data_t *page_pgdat(const struct page *page)
1813{
1814 return NODE_DATA(page_to_nid(page));
1815}
1816
32b8fc48
MWO
1817static inline struct zone *folio_zone(const struct folio *folio)
1818{
1819 return page_zone(&folio->page);
1820}
1821
1822static inline pg_data_t *folio_pgdat(const struct folio *folio)
1823{
1824 return page_pgdat(&folio->page);
1825}
1826
9127ab4f 1827#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1828static inline void set_page_section(struct page *page, unsigned long section)
1829{
1830 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1831 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1832}
1833
aa462abe 1834static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1835{
1836 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1837}
308c05e3 1838#endif
d41dee36 1839
bf6bd276
MWO
1840/**
1841 * folio_pfn - Return the Page Frame Number of a folio.
1842 * @folio: The folio.
1843 *
1844 * A folio may contain multiple pages. The pages have consecutive
1845 * Page Frame Numbers.
1846 *
1847 * Return: The Page Frame Number of the first page in the folio.
1848 */
1849static inline unsigned long folio_pfn(struct folio *folio)
1850{
1851 return page_to_pfn(&folio->page);
1852}
1853
018ee47f
YZ
1854static inline struct folio *pfn_folio(unsigned long pfn)
1855{
1856 return page_folio(pfn_to_page(pfn));
1857}
1858
0b90ddae
MWO
1859/**
1860 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1861 * @folio: The folio.
1862 *
1863 * This function checks if a folio has been pinned via a call to
1864 * a function in the pin_user_pages() family.
1865 *
1866 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1867 * because it means "definitely not pinned for DMA", but true means "probably
1868 * pinned for DMA, but possibly a false positive due to having at least
1869 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1870 *
1871 * False positives are OK, because: a) it's unlikely for a folio to
1872 * get that many refcounts, and b) all the callers of this routine are
1873 * expected to be able to deal gracefully with a false positive.
1874 *
1875 * For large folios, the result will be exactly correct. That's because
94688e8e 1876 * we have more tracking data available: the _pincount field is used
0b90ddae
MWO
1877 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1878 *
1879 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1880 *
1881 * Return: True, if it is likely that the page has been "dma-pinned".
1882 * False, if the page is definitely not dma-pinned.
1883 */
1884static inline bool folio_maybe_dma_pinned(struct folio *folio)
1885{
1886 if (folio_test_large(folio))
94688e8e 1887 return atomic_read(&folio->_pincount) > 0;
0b90ddae
MWO
1888
1889 /*
1890 * folio_ref_count() is signed. If that refcount overflows, then
1891 * folio_ref_count() returns a negative value, and callers will avoid
1892 * further incrementing the refcount.
1893 *
1894 * Here, for that overflow case, use the sign bit to count a little
1895 * bit higher via unsigned math, and thus still get an accurate result.
1896 */
1897 return ((unsigned int)folio_ref_count(folio)) >=
1898 GUP_PIN_COUNTING_BIAS;
1899}
1900
1901static inline bool page_maybe_dma_pinned(struct page *page)
1902{
1903 return folio_maybe_dma_pinned(page_folio(page));
1904}
1905
1906/*
1907 * This should most likely only be called during fork() to see whether we
fb3d824d 1908 * should break the cow immediately for an anon page on the src mm.
623a1ddf
DH
1909 *
1910 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
0b90ddae
MWO
1911 */
1912static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1913 struct page *page)
1914{
623a1ddf 1915 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
0b90ddae
MWO
1916
1917 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1918 return false;
1919
1920 return page_maybe_dma_pinned(page);
1921}
1922
c8070b78
DH
1923/**
1924 * is_zero_page - Query if a page is a zero page
1925 * @page: The page to query
1926 *
1927 * This returns true if @page is one of the permanent zero pages.
1928 */
1929static inline bool is_zero_page(const struct page *page)
1930{
1931 return is_zero_pfn(page_to_pfn(page));
1932}
1933
1934/**
1935 * is_zero_folio - Query if a folio is a zero page
1936 * @folio: The folio to query
1937 *
1938 * This returns true if @folio is one of the permanent zero pages.
1939 */
1940static inline bool is_zero_folio(const struct folio *folio)
1941{
1942 return is_zero_page(&folio->page);
1943}
1944
5d949953 1945/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
8e3560d9 1946#ifdef CONFIG_MIGRATION
5d949953 1947static inline bool folio_is_longterm_pinnable(struct folio *folio)
8e3560d9 1948{
1c563432 1949#ifdef CONFIG_CMA
5d949953 1950 int mt = folio_migratetype(folio);
1c563432
MK
1951
1952 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1953 return false;
1954#endif
c8070b78 1955 /* The zero page can be "pinned" but gets special handling. */
6e17c6de 1956 if (is_zero_folio(folio))
fcab34b4
AW
1957 return true;
1958
1959 /* Coherent device memory must always allow eviction. */
5d949953 1960 if (folio_is_device_coherent(folio))
fcab34b4
AW
1961 return false;
1962
5d949953
VMO
1963 /* Otherwise, non-movable zone folios can be pinned. */
1964 return !folio_is_zone_movable(folio);
1965
8e3560d9
PT
1966}
1967#else
5d949953 1968static inline bool folio_is_longterm_pinnable(struct folio *folio)
8e3560d9
PT
1969{
1970 return true;
1971}
1972#endif
1973
2f1b6248 1974static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1975{
1976 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1977 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1978}
2f1b6248 1979
348f8b6c
DH
1980static inline void set_page_node(struct page *page, unsigned long node)
1981{
1982 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1983 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1984}
89689ae7 1985
2f1b6248 1986static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1987 unsigned long node, unsigned long pfn)
1da177e4 1988{
348f8b6c
DH
1989 set_page_zone(page, zone);
1990 set_page_node(page, node);
9127ab4f 1991#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1992 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1993#endif
1da177e4
LT
1994}
1995
7b230db3
MWO
1996/**
1997 * folio_nr_pages - The number of pages in the folio.
1998 * @folio: The folio.
1999 *
2000 * Return: A positive power of two.
2001 */
2002static inline long folio_nr_pages(struct folio *folio)
2003{
c3a15bff
MWO
2004 if (!folio_test_large(folio))
2005 return 1;
2006#ifdef CONFIG_64BIT
2007 return folio->_folio_nr_pages;
2008#else
2009 return 1L << folio->_folio_order;
2010#endif
7b230db3
MWO
2011}
2012
21a000fe
MWO
2013/*
2014 * compound_nr() returns the number of pages in this potentially compound
2015 * page. compound_nr() can be called on a tail page, and is defined to
2016 * return 1 in that case.
2017 */
2018static inline unsigned long compound_nr(struct page *page)
2019{
2020 struct folio *folio = (struct folio *)page;
2021
2022 if (!test_bit(PG_head, &folio->flags))
2023 return 1;
2024#ifdef CONFIG_64BIT
2025 return folio->_folio_nr_pages;
2026#else
2027 return 1L << folio->_folio_order;
2028#endif
2029}
2030
2031/**
2032 * thp_nr_pages - The number of regular pages in this huge page.
2033 * @page: The head page of a huge page.
2034 */
2035static inline int thp_nr_pages(struct page *page)
2036{
2037 return folio_nr_pages((struct folio *)page);
2038}
2039
7b230db3
MWO
2040/**
2041 * folio_next - Move to the next physical folio.
2042 * @folio: The folio we're currently operating on.
2043 *
2044 * If you have physically contiguous memory which may span more than
2045 * one folio (eg a &struct bio_vec), use this function to move from one
2046 * folio to the next. Do not use it if the memory is only virtually
2047 * contiguous as the folios are almost certainly not adjacent to each
2048 * other. This is the folio equivalent to writing ``page++``.
2049 *
2050 * Context: We assume that the folios are refcounted and/or locked at a
2051 * higher level and do not adjust the reference counts.
2052 * Return: The next struct folio.
2053 */
2054static inline struct folio *folio_next(struct folio *folio)
2055{
2056 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2057}
2058
2059/**
2060 * folio_shift - The size of the memory described by this folio.
2061 * @folio: The folio.
2062 *
2063 * A folio represents a number of bytes which is a power-of-two in size.
2064 * This function tells you which power-of-two the folio is. See also
2065 * folio_size() and folio_order().
2066 *
2067 * Context: The caller should have a reference on the folio to prevent
2068 * it from being split. It is not necessary for the folio to be locked.
2069 * Return: The base-2 logarithm of the size of this folio.
2070 */
2071static inline unsigned int folio_shift(struct folio *folio)
2072{
2073 return PAGE_SHIFT + folio_order(folio);
2074}
2075
2076/**
2077 * folio_size - The number of bytes in a folio.
2078 * @folio: The folio.
2079 *
2080 * Context: The caller should have a reference on the folio to prevent
2081 * it from being split. It is not necessary for the folio to be locked.
2082 * Return: The number of bytes in this folio.
2083 */
2084static inline size_t folio_size(struct folio *folio)
2085{
2086 return PAGE_SIZE << folio_order(folio);
2087}
2088
fa4e3f5f
VMO
2089/**
2090 * folio_estimated_sharers - Estimate the number of sharers of a folio.
2091 * @folio: The folio.
2092 *
2093 * folio_estimated_sharers() aims to serve as a function to efficiently
2094 * estimate the number of processes sharing a folio. This is done by
2095 * looking at the precise mapcount of the first subpage in the folio, and
2096 * assuming the other subpages are the same. This may not be true for large
2097 * folios. If you want exact mapcounts for exact calculations, look at
2098 * page_mapcount() or folio_total_mapcount().
2099 *
2100 * Return: The estimated number of processes sharing a folio.
2101 */
2102static inline int folio_estimated_sharers(struct folio *folio)
2103{
2104 return page_mapcount(folio_page(folio, 0));
2105}
2106
b424de33
MWO
2107#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2108static inline int arch_make_page_accessible(struct page *page)
2109{
2110 return 0;
2111}
2112#endif
2113
2114#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2115static inline int arch_make_folio_accessible(struct folio *folio)
2116{
2117 int ret;
2118 long i, nr = folio_nr_pages(folio);
2119
2120 for (i = 0; i < nr; i++) {
2121 ret = arch_make_page_accessible(folio_page(folio, i));
2122 if (ret)
2123 break;
2124 }
2125
2126 return ret;
2127}
2128#endif
2129
f6ac2354
CL
2130/*
2131 * Some inline functions in vmstat.h depend on page_zone()
2132 */
2133#include <linux/vmstat.h>
2134
33dd4e0e 2135static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 2136{
1dff8083 2137 return page_to_virt(page);
1da177e4
LT
2138}
2139
2140#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2141#define HASHED_PAGE_VIRTUAL
2142#endif
2143
2144#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
2145static inline void *page_address(const struct page *page)
2146{
2147 return page->virtual;
2148}
2149static inline void set_page_address(struct page *page, void *address)
2150{
2151 page->virtual = address;
2152}
1da177e4
LT
2153#define page_address_init() do { } while(0)
2154#endif
2155
2156#if defined(HASHED_PAGE_VIRTUAL)
f9918794 2157void *page_address(const struct page *page);
1da177e4
LT
2158void set_page_address(struct page *page, void *virtual);
2159void page_address_init(void);
2160#endif
2161
2162#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2163#define page_address(page) lowmem_page_address(page)
2164#define set_page_address(page, address) do { } while(0)
2165#define page_address_init() do { } while(0)
2166#endif
2167
7d4203c1
VB
2168static inline void *folio_address(const struct folio *folio)
2169{
2170 return page_address(&folio->page);
2171}
2172
e39155ea 2173extern void *page_rmapping(struct page *page);
f6ab1f7f
HY
2174extern pgoff_t __page_file_index(struct page *page);
2175
1da177e4
LT
2176/*
2177 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 2178 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
2179 */
2180static inline pgoff_t page_index(struct page *page)
2181{
2182 if (unlikely(PageSwapCache(page)))
f6ab1f7f 2183 return __page_file_index(page);
1da177e4
LT
2184 return page->index;
2185}
2186
2f064f34
MH
2187/*
2188 * Return true only if the page has been allocated with
2189 * ALLOC_NO_WATERMARKS and the low watermark was not
2190 * met implying that the system is under some pressure.
2191 */
1d7bab6a 2192static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
2193{
2194 /*
c07aea3e
MC
2195 * lru.next has bit 1 set if the page is allocated from the
2196 * pfmemalloc reserves. Callers may simply overwrite it if
2197 * they do not need to preserve that information.
2f064f34 2198 */
c07aea3e 2199 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
2200}
2201
02d65d6f
SK
2202/*
2203 * Return true only if the folio has been allocated with
2204 * ALLOC_NO_WATERMARKS and the low watermark was not
2205 * met implying that the system is under some pressure.
2206 */
2207static inline bool folio_is_pfmemalloc(const struct folio *folio)
2208{
2209 /*
2210 * lru.next has bit 1 set if the page is allocated from the
2211 * pfmemalloc reserves. Callers may simply overwrite it if
2212 * they do not need to preserve that information.
2213 */
2214 return (uintptr_t)folio->lru.next & BIT(1);
2215}
2216
2f064f34
MH
2217/*
2218 * Only to be called by the page allocator on a freshly allocated
2219 * page.
2220 */
2221static inline void set_page_pfmemalloc(struct page *page)
2222{
c07aea3e 2223 page->lru.next = (void *)BIT(1);
2f064f34
MH
2224}
2225
2226static inline void clear_page_pfmemalloc(struct page *page)
2227{
c07aea3e 2228 page->lru.next = NULL;
2f064f34
MH
2229}
2230
1c0fe6e3
NP
2231/*
2232 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2233 */
2234extern void pagefault_out_of_memory(void);
2235
1da177e4 2236#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 2237#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 2238#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 2239
ddd588b5 2240/*
7bf02ea2 2241 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
2242 * various contexts.
2243 */
4b59e6c4 2244#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 2245
974f4367
MH
2246extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2247static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
2248{
2249 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
2250}
1da177e4 2251
21b85b09
MK
2252/*
2253 * Parameter block passed down to zap_pte_range in exceptional cases.
2254 */
2255struct zap_details {
2256 struct folio *single_folio; /* Locked folio to be unmapped */
2257 bool even_cows; /* Zap COWed private pages too? */
2258 zap_flags_t zap_flags; /* Extra flags for zapping */
2259};
2260
2261/*
2262 * Whether to drop the pte markers, for example, the uffd-wp information for
2263 * file-backed memory. This should only be specified when we will completely
2264 * drop the page in the mm, either by truncation or unmapping of the vma. By
2265 * default, the flag is not set.
2266 */
2267#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
04ada095
MK
2268/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2269#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
21b85b09 2270
af7f588d
MD
2271#ifdef CONFIG_SCHED_MM_CID
2272void sched_mm_cid_before_execve(struct task_struct *t);
2273void sched_mm_cid_after_execve(struct task_struct *t);
2274void sched_mm_cid_fork(struct task_struct *t);
2275void sched_mm_cid_exit_signals(struct task_struct *t);
2276static inline int task_mm_cid(struct task_struct *t)
2277{
2278 return t->mm_cid;
2279}
2280#else
2281static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2282static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2283static inline void sched_mm_cid_fork(struct task_struct *t) { }
2284static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2285static inline int task_mm_cid(struct task_struct *t)
2286{
2287 /*
2288 * Use the processor id as a fall-back when the mm cid feature is
2289 * disabled. This provides functional per-cpu data structure accesses
2290 * in user-space, althrough it won't provide the memory usage benefits.
2291 */
2292 return raw_smp_processor_id();
2293}
2294#endif
2295
710ec38b 2296#ifdef CONFIG_MMU
7f43add4 2297extern bool can_do_mlock(void);
710ec38b
AB
2298#else
2299static inline bool can_do_mlock(void) { return false; }
2300#endif
d7c9e99a
AG
2301extern int user_shm_lock(size_t, struct ucounts *);
2302extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 2303
318e9342
VMO
2304struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2305 pte_t pte);
25b2995a
CH
2306struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2307 pte_t pte);
28093f9f
GS
2308struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2309 pmd_t pmd);
7e675137 2310
27d036e3
LR
2311void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2312 unsigned long size);
21b85b09
MK
2313void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2314 unsigned long size, struct zap_details *details);
e9adcfec
MK
2315static inline void zap_vma_pages(struct vm_area_struct *vma)
2316{
2317 zap_page_range_single(vma, vma->vm_start,
2318 vma->vm_end - vma->vm_start, NULL);
2319}
763ecb03
LH
2320void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2321 struct vm_area_struct *start_vma, unsigned long start,
68f48381 2322 unsigned long end, bool mm_wr_locked);
e6473092 2323
ac46d4f3
JG
2324struct mmu_notifier_range;
2325
42b77728 2326void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 2327 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
2328int
2329copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed 2330int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 2331 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
2332int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2333 unsigned long *pfn);
d87fe660 2334int follow_phys(struct vm_area_struct *vma, unsigned long address,
2335 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
2336int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2337 void *buf, int len, int write);
1da177e4 2338
7caef267 2339extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 2340extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 2341void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 2342void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 2343int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668 2344
d85a143b
LT
2345struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2346 unsigned long address, struct pt_regs *regs);
2347
7ee1dd3f 2348#ifdef CONFIG_MMU
2b740303 2349extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2350 unsigned long address, unsigned int flags,
2351 struct pt_regs *regs);
64019a2e 2352extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
2353 unsigned long address, unsigned int fault_flags,
2354 bool *unlocked);
977fbdcd
MW
2355void unmap_mapping_pages(struct address_space *mapping,
2356 pgoff_t start, pgoff_t nr, bool even_cows);
2357void unmap_mapping_range(struct address_space *mapping,
2358 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 2359#else
2b740303 2360static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2361 unsigned long address, unsigned int flags,
2362 struct pt_regs *regs)
7ee1dd3f
DH
2363{
2364 /* should never happen if there's no MMU */
2365 BUG();
2366 return VM_FAULT_SIGBUS;
2367}
64019a2e 2368static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 2369 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
2370{
2371 /* should never happen if there's no MMU */
2372 BUG();
2373 return -EFAULT;
2374}
977fbdcd
MW
2375static inline void unmap_mapping_pages(struct address_space *mapping,
2376 pgoff_t start, pgoff_t nr, bool even_cows) { }
2377static inline void unmap_mapping_range(struct address_space *mapping,
2378 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 2379#endif
f33ea7f4 2380
977fbdcd
MW
2381static inline void unmap_shared_mapping_range(struct address_space *mapping,
2382 loff_t const holebegin, loff_t const holelen)
2383{
2384 unmap_mapping_range(mapping, holebegin, holelen, 0);
2385}
2386
ca5e8632
LS
2387static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2388 unsigned long addr);
2389
977fbdcd
MW
2390extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2391 void *buf, int len, unsigned int gup_flags);
5ddd36b9 2392extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 2393 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
2394extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2395 void *buf, int len, unsigned int gup_flags);
1da177e4 2396
64019a2e 2397long get_user_pages_remote(struct mm_struct *mm,
ca5e8632
LS
2398 unsigned long start, unsigned long nr_pages,
2399 unsigned int gup_flags, struct page **pages,
2400 int *locked);
64019a2e 2401long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2402 unsigned long start, unsigned long nr_pages,
2403 unsigned int gup_flags, struct page **pages,
0b295316 2404 int *locked);
ca5e8632
LS
2405
2406static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2407 unsigned long addr,
2408 int gup_flags,
2409 struct vm_area_struct **vmap)
2410{
2411 struct page *page;
2412 struct vm_area_struct *vma;
2413 int got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2414
2415 if (got < 0)
2416 return ERR_PTR(got);
2417 if (got == 0)
2418 return NULL;
2419
2420 vma = vma_lookup(mm, addr);
2421 if (WARN_ON_ONCE(!vma)) {
2422 put_page(page);
2423 return ERR_PTR(-EINVAL);
2424 }
2425
2426 *vmap = vma;
2427 return page;
2428}
2429
c12d2da5 2430long get_user_pages(unsigned long start, unsigned long nr_pages,
54d02069 2431 unsigned int gup_flags, struct page **pages);
eddb1c22 2432long pin_user_pages(unsigned long start, unsigned long nr_pages,
4c630f30 2433 unsigned int gup_flags, struct page **pages);
c12d2da5 2434long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 2435 struct page **pages, unsigned int gup_flags);
91429023
JH
2436long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2437 struct page **pages, unsigned int gup_flags);
9a4e9f3b 2438
73b0140b
IW
2439int get_user_pages_fast(unsigned long start, int nr_pages,
2440 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
2441int pin_user_pages_fast(unsigned long start, int nr_pages,
2442 unsigned int gup_flags, struct page **pages);
1101fb8f 2443void folio_add_pin(struct folio *folio);
8025e5dd 2444
79eb597c
DJ
2445int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2446int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2447 struct task_struct *task, bool bypass_rlim);
2448
18022c5d 2449struct kvec;
f3e8fccd 2450struct page *get_dump_page(unsigned long addr);
1da177e4 2451
b5e84594
MWO
2452bool folio_mark_dirty(struct folio *folio);
2453bool set_page_dirty(struct page *page);
1da177e4 2454int set_page_dirty_lock(struct page *page);
b9ea2515 2455
a9090253 2456int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 2457
b6a2fea3
OW
2458extern unsigned long move_page_tables(struct vm_area_struct *vma,
2459 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
2460 unsigned long new_addr, unsigned long len,
2461 bool need_rmap_locks);
58705444
PX
2462
2463/*
2464 * Flags used by change_protection(). For now we make it a bitmap so
2465 * that we can pass in multiple flags just like parameters. However
2466 * for now all the callers are only use one of the flags at the same
2467 * time.
2468 */
64fe24a3
DH
2469/*
2470 * Whether we should manually check if we can map individual PTEs writable,
2471 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2472 * PTEs automatically in a writable mapping.
2473 */
2474#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
58705444
PX
2475/* Whether this protection change is for NUMA hints */
2476#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
2477/* Whether this change is for write protecting */
2478#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2479#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2480#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2481 MM_CP_UFFD_WP_RESOLVE)
58705444 2482
54cbbbf3 2483bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
eb309ec8
DH
2484int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2485static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2486{
2487 /*
2488 * We want to check manually if we can change individual PTEs writable
2489 * if we can't do that automatically for all PTEs in a mapping. For
2490 * private mappings, that's always the case when we have write
2491 * permissions as we properly have to handle COW.
2492 */
2493 if (vma->vm_flags & VM_SHARED)
2494 return vma_wants_writenotify(vma, vma->vm_page_prot);
2495 return !!(vma->vm_flags & VM_WRITE);
2496
2497}
6a56ccbc
DH
2498bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2499 pte_t pte);
a79390f5 2500extern long change_protection(struct mmu_gather *tlb,
4a18419f 2501 struct vm_area_struct *vma, unsigned long start,
1ef488ed 2502 unsigned long end, unsigned long cp_flags);
2286a691
LH
2503extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2504 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2505 unsigned long start, unsigned long end, unsigned long newflags);
1da177e4 2506
465a454f
PZ
2507/*
2508 * doesn't attempt to fault and will return short.
2509 */
dadbb612
SJ
2510int get_user_pages_fast_only(unsigned long start, int nr_pages,
2511 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
2512
2513static inline bool get_user_page_fast_only(unsigned long addr,
2514 unsigned int gup_flags, struct page **pagep)
2515{
2516 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2517}
d559db08
KH
2518/*
2519 * per-process(per-mm_struct) statistics.
2520 */
d559db08
KH
2521static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2522{
f1a79412 2523 return percpu_counter_read_positive(&mm->rss_stat[member]);
69c97823 2524}
d559db08 2525
f1a79412 2526void mm_trace_rss_stat(struct mm_struct *mm, int member);
b3d1411b 2527
d559db08
KH
2528static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2529{
f1a79412 2530 percpu_counter_add(&mm->rss_stat[member], value);
b3d1411b 2531
f1a79412 2532 mm_trace_rss_stat(mm, member);
d559db08
KH
2533}
2534
2535static inline void inc_mm_counter(struct mm_struct *mm, int member)
2536{
f1a79412 2537 percpu_counter_inc(&mm->rss_stat[member]);
b3d1411b 2538
f1a79412 2539 mm_trace_rss_stat(mm, member);
d559db08
KH
2540}
2541
2542static inline void dec_mm_counter(struct mm_struct *mm, int member)
2543{
f1a79412 2544 percpu_counter_dec(&mm->rss_stat[member]);
b3d1411b 2545
f1a79412 2546 mm_trace_rss_stat(mm, member);
d559db08
KH
2547}
2548
eca56ff9
JM
2549/* Optimized variant when page is already known not to be PageAnon */
2550static inline int mm_counter_file(struct page *page)
2551{
2552 if (PageSwapBacked(page))
2553 return MM_SHMEMPAGES;
2554 return MM_FILEPAGES;
2555}
2556
2557static inline int mm_counter(struct page *page)
2558{
2559 if (PageAnon(page))
2560 return MM_ANONPAGES;
2561 return mm_counter_file(page);
2562}
2563
d559db08
KH
2564static inline unsigned long get_mm_rss(struct mm_struct *mm)
2565{
2566 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2567 get_mm_counter(mm, MM_ANONPAGES) +
2568 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2569}
2570
2571static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2572{
2573 return max(mm->hiwater_rss, get_mm_rss(mm));
2574}
2575
2576static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2577{
2578 return max(mm->hiwater_vm, mm->total_vm);
2579}
2580
2581static inline void update_hiwater_rss(struct mm_struct *mm)
2582{
2583 unsigned long _rss = get_mm_rss(mm);
2584
2585 if ((mm)->hiwater_rss < _rss)
2586 (mm)->hiwater_rss = _rss;
2587}
2588
2589static inline void update_hiwater_vm(struct mm_struct *mm)
2590{
2591 if (mm->hiwater_vm < mm->total_vm)
2592 mm->hiwater_vm = mm->total_vm;
2593}
2594
695f0559
PC
2595static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2596{
2597 mm->hiwater_rss = get_mm_rss(mm);
2598}
2599
d559db08
KH
2600static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2601 struct mm_struct *mm)
2602{
2603 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2604
2605 if (*maxrss < hiwater_rss)
2606 *maxrss = hiwater_rss;
2607}
2608
53bddb4e 2609#if defined(SPLIT_RSS_COUNTING)
05af2e10 2610void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2611#else
05af2e10 2612static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2613{
2614}
2615#endif
465a454f 2616
78e7c5af
AK
2617#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2618static inline int pte_special(pte_t pte)
2619{
2620 return 0;
2621}
2622
2623static inline pte_t pte_mkspecial(pte_t pte)
2624{
2625 return pte;
2626}
2627#endif
2628
17596731 2629#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2630static inline int pte_devmap(pte_t pte)
2631{
2632 return 0;
2633}
2634#endif
2635
25ca1d6c
NK
2636extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2637 spinlock_t **ptl);
2638static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2639 spinlock_t **ptl)
2640{
2641 pte_t *ptep;
2642 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2643 return ptep;
2644}
c9cfcddf 2645
c2febafc
KS
2646#ifdef __PAGETABLE_P4D_FOLDED
2647static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2648 unsigned long address)
2649{
2650 return 0;
2651}
2652#else
2653int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2654#endif
2655
b4e98d9a 2656#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2657static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2658 unsigned long address)
2659{
2660 return 0;
2661}
b4e98d9a
KS
2662static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2663static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2664
5f22df00 2665#else
c2febafc 2666int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2667
b4e98d9a
KS
2668static inline void mm_inc_nr_puds(struct mm_struct *mm)
2669{
6d212db1
MS
2670 if (mm_pud_folded(mm))
2671 return;
af5b0f6a 2672 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2673}
2674
2675static inline void mm_dec_nr_puds(struct mm_struct *mm)
2676{
6d212db1
MS
2677 if (mm_pud_folded(mm))
2678 return;
af5b0f6a 2679 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2680}
5f22df00
NP
2681#endif
2682
2d2f5119 2683#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2684static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2685 unsigned long address)
2686{
2687 return 0;
2688}
dc6c9a35 2689
dc6c9a35
KS
2690static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2691static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2692
5f22df00 2693#else
1bb3630e 2694int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2695
dc6c9a35
KS
2696static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2697{
6d212db1
MS
2698 if (mm_pmd_folded(mm))
2699 return;
af5b0f6a 2700 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2701}
2702
2703static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2704{
6d212db1
MS
2705 if (mm_pmd_folded(mm))
2706 return;
af5b0f6a 2707 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2708}
5f22df00
NP
2709#endif
2710
c4812909 2711#ifdef CONFIG_MMU
af5b0f6a 2712static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2713{
af5b0f6a 2714 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2715}
2716
af5b0f6a 2717static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2718{
af5b0f6a 2719 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2720}
2721
2722static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2723{
af5b0f6a 2724 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2725}
2726
2727static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2728{
af5b0f6a 2729 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2730}
2731#else
c4812909 2732
af5b0f6a
KS
2733static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2734static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2735{
2736 return 0;
2737}
2738
2739static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2740static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2741#endif
2742
4cf58924
JFG
2743int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2744int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2745
f949286c
MR
2746#if defined(CONFIG_MMU)
2747
c2febafc
KS
2748static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2749 unsigned long address)
2750{
2751 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2752 NULL : p4d_offset(pgd, address);
2753}
2754
2755static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2756 unsigned long address)
1da177e4 2757{
c2febafc
KS
2758 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2759 NULL : pud_offset(p4d, address);
1da177e4 2760}
d8626138 2761
1da177e4
LT
2762static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2763{
1bb3630e
HD
2764 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2765 NULL: pmd_offset(pud, address);
1da177e4 2766}
f949286c 2767#endif /* CONFIG_MMU */
1bb3630e 2768
57c1ffce 2769#if USE_SPLIT_PTE_PTLOCKS
597d795a 2770#if ALLOC_SPLIT_PTLOCKS
b35f1819 2771void __init ptlock_cache_init(void);
539edb58
PZ
2772extern bool ptlock_alloc(struct page *page);
2773extern void ptlock_free(struct page *page);
2774
2775static inline spinlock_t *ptlock_ptr(struct page *page)
2776{
2777 return page->ptl;
2778}
597d795a 2779#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2780static inline void ptlock_cache_init(void)
2781{
2782}
2783
49076ec2
KS
2784static inline bool ptlock_alloc(struct page *page)
2785{
49076ec2
KS
2786 return true;
2787}
539edb58 2788
49076ec2
KS
2789static inline void ptlock_free(struct page *page)
2790{
49076ec2
KS
2791}
2792
2793static inline spinlock_t *ptlock_ptr(struct page *page)
2794{
539edb58 2795 return &page->ptl;
49076ec2 2796}
597d795a 2797#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2798
2799static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2800{
2801 return ptlock_ptr(pmd_page(*pmd));
2802}
2803
2804static inline bool ptlock_init(struct page *page)
2805{
2806 /*
2807 * prep_new_page() initialize page->private (and therefore page->ptl)
2808 * with 0. Make sure nobody took it in use in between.
2809 *
2810 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2811 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2812 */
309381fe 2813 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2814 if (!ptlock_alloc(page))
2815 return false;
2816 spin_lock_init(ptlock_ptr(page));
2817 return true;
2818}
2819
57c1ffce 2820#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2821/*
2822 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2823 */
49076ec2
KS
2824static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2825{
2826 return &mm->page_table_lock;
2827}
b35f1819 2828static inline void ptlock_cache_init(void) {}
49076ec2 2829static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2830static inline void ptlock_free(struct page *page) {}
57c1ffce 2831#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2832
b4ed71f5 2833static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2834{
706874e9
VD
2835 if (!ptlock_init(page))
2836 return false;
1d40a5ea 2837 __SetPageTable(page);
f0c0c115 2838 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2839 return true;
2f569afd
MS
2840}
2841
b4ed71f5 2842static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2843{
9e247bab 2844 ptlock_free(page);
1d40a5ea 2845 __ClearPageTable(page);
f0c0c115 2846 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2847}
2848
0d940a9b
HD
2849pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2850static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2851{
2852 return __pte_offset_map(pmd, addr, NULL);
2853}
2854
2855pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2856 unsigned long addr, spinlock_t **ptlp);
2857static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2858 unsigned long addr, spinlock_t **ptlp)
2859{
2860 pte_t *pte;
2861
2862 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2863 return pte;
2864}
2865
2866pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2867 unsigned long addr, spinlock_t **ptlp);
c74df32c
HD
2868
2869#define pte_unmap_unlock(pte, ptl) do { \
2870 spin_unlock(ptl); \
2871 pte_unmap(pte); \
2872} while (0)
2873
4cf58924 2874#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2875
2876#define pte_alloc_map(mm, pmd, address) \
4cf58924 2877 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2878
c74df32c 2879#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2880 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2881 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2882
1bb3630e 2883#define pte_alloc_kernel(pmd, address) \
4cf58924 2884 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2885 NULL: pte_offset_kernel(pmd, address))
1da177e4 2886
e009bb30
KS
2887#if USE_SPLIT_PMD_PTLOCKS
2888
7e25de77 2889static inline struct page *pmd_pgtable_page(pmd_t *pmd)
634391ac
MS
2890{
2891 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2892 return virt_to_page((void *)((unsigned long) pmd & mask));
2893}
2894
e009bb30
KS
2895static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2896{
373dfda2 2897 return ptlock_ptr(pmd_pgtable_page(pmd));
e009bb30
KS
2898}
2899
b2b29d6d 2900static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2901{
e009bb30
KS
2902#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2903 page->pmd_huge_pte = NULL;
2904#endif
49076ec2 2905 return ptlock_init(page);
e009bb30
KS
2906}
2907
b2b29d6d 2908static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2909{
2910#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2911 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2912#endif
49076ec2 2913 ptlock_free(page);
e009bb30
KS
2914}
2915
373dfda2 2916#define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
e009bb30
KS
2917
2918#else
2919
9a86cb7b
KS
2920static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2921{
2922 return &mm->page_table_lock;
2923}
2924
b2b29d6d
MW
2925static inline bool pmd_ptlock_init(struct page *page) { return true; }
2926static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2927
c389a250 2928#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2929
e009bb30
KS
2930#endif
2931
9a86cb7b
KS
2932static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2933{
2934 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2935 spin_lock(ptl);
2936 return ptl;
2937}
2938
b2b29d6d
MW
2939static inline bool pgtable_pmd_page_ctor(struct page *page)
2940{
2941 if (!pmd_ptlock_init(page))
2942 return false;
2943 __SetPageTable(page);
f0c0c115 2944 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2945 return true;
2946}
2947
2948static inline void pgtable_pmd_page_dtor(struct page *page)
2949{
2950 pmd_ptlock_free(page);
2951 __ClearPageTable(page);
f0c0c115 2952 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2953}
2954
a00cc7d9
MW
2955/*
2956 * No scalability reason to split PUD locks yet, but follow the same pattern
2957 * as the PMD locks to make it easier if we decide to. The VM should not be
2958 * considered ready to switch to split PUD locks yet; there may be places
2959 * which need to be converted from page_table_lock.
2960 */
2961static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2962{
2963 return &mm->page_table_lock;
2964}
2965
2966static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2967{
2968 spinlock_t *ptl = pud_lockptr(mm, pud);
2969
2970 spin_lock(ptl);
2971 return ptl;
2972}
62906027 2973
a00cc7d9 2974extern void __init pagecache_init(void);
49a7f04a
DH
2975extern void free_initmem(void);
2976
69afade7
JL
2977/*
2978 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2979 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2980 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2981 * Return pages freed into the buddy system.
2982 */
11199692 2983extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2984 int poison, const char *s);
c3d5f5f0 2985
c3d5f5f0 2986extern void adjust_managed_page_count(struct page *page, long count);
69afade7 2987
61167ad5
YD
2988extern void reserve_bootmem_region(phys_addr_t start,
2989 phys_addr_t end, int nid);
92923ca3 2990
69afade7 2991/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2992static inline void free_reserved_page(struct page *page)
69afade7
JL
2993{
2994 ClearPageReserved(page);
2995 init_page_count(page);
2996 __free_page(page);
69afade7
JL
2997 adjust_managed_page_count(page, 1);
2998}
a0cd7a7c 2999#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
3000
3001static inline void mark_page_reserved(struct page *page)
3002{
3003 SetPageReserved(page);
3004 adjust_managed_page_count(page, -1);
3005}
3006
3007/*
3008 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
3009 * The freed pages will be poisoned with pattern "poison" if it's within
3010 * range [0, UCHAR_MAX].
3011 * Return pages freed into the buddy system.
69afade7
JL
3012 */
3013static inline unsigned long free_initmem_default(int poison)
3014{
3015 extern char __init_begin[], __init_end[];
3016
11199692 3017 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 3018 poison, "unused kernel image (initmem)");
69afade7
JL
3019}
3020
7ee3d4e8
JL
3021static inline unsigned long get_num_physpages(void)
3022{
3023 int nid;
3024 unsigned long phys_pages = 0;
3025
3026 for_each_online_node(nid)
3027 phys_pages += node_present_pages(nid);
3028
3029 return phys_pages;
3030}
3031
c713216d 3032/*
3f08a302 3033 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
3034 * zones, allocate the backing mem_map and account for memory holes in an
3035 * architecture independent manner.
c713216d
MG
3036 *
3037 * An architecture is expected to register range of page frames backed by
0ee332c1 3038 * physical memory with memblock_add[_node]() before calling
9691a071 3039 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
3040 * usage, an architecture is expected to do something like
3041 *
3042 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3043 * max_highmem_pfn};
3044 * for_each_valid_physical_page_range()
952eea9b 3045 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 3046 * free_area_init(max_zone_pfns);
c713216d 3047 */
9691a071 3048void free_area_init(unsigned long *max_zone_pfn);
1e01979c 3049unsigned long node_map_pfn_alignment(void);
32996250
YL
3050unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3051 unsigned long end_pfn);
c713216d
MG
3052extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3053 unsigned long end_pfn);
3054extern void get_pfn_range_for_nid(unsigned int nid,
3055 unsigned long *start_pfn, unsigned long *end_pfn);
f2dbcfa7 3056
a9ee6cf5 3057#ifndef CONFIG_NUMA
6f24fbd3 3058static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
3059{
3060 return 0;
3061}
3062#else
3063/* please see mm/page_alloc.c */
3064extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
3065#endif
3066
0e0b864e 3067extern void set_dma_reserve(unsigned long new_dma_reserve);
1da177e4 3068extern void mem_init(void);
8feae131 3069extern void __init mmap_init(void);
974f4367
MH
3070
3071extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3072static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
3073{
3074 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
3075}
d02bd27b 3076extern long si_mem_available(void);
1da177e4
LT
3077extern void si_meminfo(struct sysinfo * val);
3078extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
3079#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3080extern unsigned long arch_reserved_kernel_pages(void);
3081#endif
1da177e4 3082
a8e99259
MH
3083extern __printf(3, 4)
3084void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 3085
e7c8d5c9 3086extern void setup_per_cpu_pageset(void);
e7c8d5c9 3087
8feae131 3088/* nommu.c */
33e5d769 3089extern atomic_long_t mmap_pages_allocated;
7e660872 3090extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 3091
6b2dbba8 3092/* interval_tree.c */
6b2dbba8 3093void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 3094 struct rb_root_cached *root);
9826a516
ML
3095void vma_interval_tree_insert_after(struct vm_area_struct *node,
3096 struct vm_area_struct *prev,
f808c13f 3097 struct rb_root_cached *root);
6b2dbba8 3098void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
3099 struct rb_root_cached *root);
3100struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
3101 unsigned long start, unsigned long last);
3102struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3103 unsigned long start, unsigned long last);
3104
3105#define vma_interval_tree_foreach(vma, root, start, last) \
3106 for (vma = vma_interval_tree_iter_first(root, start, last); \
3107 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 3108
bf181b9f 3109void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 3110 struct rb_root_cached *root);
bf181b9f 3111void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
3112 struct rb_root_cached *root);
3113struct anon_vma_chain *
3114anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3115 unsigned long start, unsigned long last);
bf181b9f
ML
3116struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3117 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
3118#ifdef CONFIG_DEBUG_VM_RB
3119void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3120#endif
bf181b9f
ML
3121
3122#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3123 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3124 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3125
1da177e4 3126/* mmap.c */
34b4e4aa 3127extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
7c9813e8
LH
3128extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3129 unsigned long start, unsigned long end, pgoff_t pgoff,
3130 struct vm_area_struct *next);
cf51e86d
LH
3131extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3132 unsigned long start, unsigned long end, pgoff_t pgoff);
9760ebff 3133extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
f2ebfe43
LH
3134 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
3135 unsigned long end, unsigned long vm_flags, struct anon_vma *,
3136 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
3137 struct anon_vma_name *);
1da177e4 3138extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
9760ebff
LH
3139extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3140 unsigned long addr, int new_below);
3141extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3142 unsigned long addr, int new_below);
1da177e4 3143extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
a8fb5618 3144extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 3145extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
3146 unsigned long addr, unsigned long len, pgoff_t pgoff,
3147 bool *need_rmap_locks);
1da177e4 3148extern void exit_mmap(struct mm_struct *);
925d1c40 3149
9c599024
CG
3150static inline int check_data_rlimit(unsigned long rlim,
3151 unsigned long new,
3152 unsigned long start,
3153 unsigned long end_data,
3154 unsigned long start_data)
3155{
3156 if (rlim < RLIM_INFINITY) {
3157 if (((new - start) + (end_data - start_data)) > rlim)
3158 return -ENOSPC;
3159 }
3160
3161 return 0;
3162}
3163
7906d00c
AA
3164extern int mm_take_all_locks(struct mm_struct *mm);
3165extern void mm_drop_all_locks(struct mm_struct *mm);
3166
fe69d560 3167extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 3168extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 3169extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 3170extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 3171
84638335
KK
3172extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3173extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3174
2eefd878
DS
3175extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3176 const struct vm_special_mapping *sm);
3935ed6a
SS
3177extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3178 unsigned long addr, unsigned long len,
a62c34bd
AL
3179 unsigned long flags,
3180 const struct vm_special_mapping *spec);
3181/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
3182extern int install_special_mapping(struct mm_struct *mm,
3183 unsigned long addr, unsigned long len,
3184 unsigned long flags, struct page **pages);
1da177e4 3185
649775be 3186unsigned long randomize_stack_top(unsigned long stack_top);
5ad7dd88 3187unsigned long randomize_page(unsigned long start, unsigned long range);
649775be 3188
1da177e4
LT
3189extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3190
0165ab44 3191extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
3192 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3193 struct list_head *uf);
1fcfd8db 3194extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 3195 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 3196 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
183654ce 3197extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
11f9a21a 3198 unsigned long start, size_t len, struct list_head *uf,
408579cd 3199 bool unlock);
897ab3e0
MR
3200extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3201 struct list_head *uf);
0726b01e 3202extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 3203
bebeb3d6 3204#ifdef CONFIG_MMU
27b26701
LH
3205extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3206 unsigned long start, unsigned long end,
408579cd 3207 struct list_head *uf, bool unlock);
bebeb3d6
ML
3208extern int __mm_populate(unsigned long addr, unsigned long len,
3209 int ignore_errors);
3210static inline void mm_populate(unsigned long addr, unsigned long len)
3211{
3212 /* Ignore errors */
3213 (void) __mm_populate(addr, len, 1);
3214}
3215#else
3216static inline void mm_populate(unsigned long addr, unsigned long len) {}
3217#endif
3218
e4eb1ff6 3219/* These take the mm semaphore themselves */
5d22fc25 3220extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 3221extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 3222extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 3223extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
3224 unsigned long, unsigned long,
3225 unsigned long, unsigned long);
1da177e4 3226
db4fbfb9
ML
3227struct vm_unmapped_area_info {
3228#define VM_UNMAPPED_AREA_TOPDOWN 1
3229 unsigned long flags;
3230 unsigned long length;
3231 unsigned long low_limit;
3232 unsigned long high_limit;
3233 unsigned long align_mask;
3234 unsigned long align_offset;
3235};
3236
baceaf1c 3237extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 3238
85821aab 3239/* truncate.c */
1da177e4 3240extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
3241extern void truncate_inode_pages_range(struct address_space *,
3242 loff_t lstart, loff_t lend);
91b0abe3 3243extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
3244
3245/* generic vm_area_ops exported for stackable file systems */
2bcd6454 3246extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 3247extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 3248 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 3249extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 3250
1be7107f 3251extern unsigned long stack_guard_gap;
d05f3169 3252/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
8d7071af
LT
3253int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3254struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
d05f3169 3255
11192337 3256/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
8d7071af 3257int expand_downwards(struct vm_area_struct *vma, unsigned long address);
1da177e4
LT
3258
3259/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3260extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3261extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3262 struct vm_area_struct **pprev);
3263
abdba2dd
LH
3264/*
3265 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3266 * NULL if none. Assume start_addr < end_addr.
ce6d42f2 3267 */
ce6d42f2 3268struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
abdba2dd 3269 unsigned long start_addr, unsigned long end_addr);
1da177e4 3270
ce6d42f2
LH
3271/**
3272 * vma_lookup() - Find a VMA at a specific address
3273 * @mm: The process address space.
3274 * @addr: The user address.
3275 *
3276 * Return: The vm_area_struct at the given address, %NULL otherwise.
3277 */
3278static inline
3279struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3280{
d7c62295 3281 return mtree_load(&mm->mm_mt, addr);
ce6d42f2
LH
3282}
3283
1be7107f
HD
3284static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3285{
3286 unsigned long vm_start = vma->vm_start;
3287
3288 if (vma->vm_flags & VM_GROWSDOWN) {
3289 vm_start -= stack_guard_gap;
3290 if (vm_start > vma->vm_start)
3291 vm_start = 0;
3292 }
3293 return vm_start;
3294}
3295
3296static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3297{
3298 unsigned long vm_end = vma->vm_end;
3299
3300 if (vma->vm_flags & VM_GROWSUP) {
3301 vm_end += stack_guard_gap;
3302 if (vm_end < vma->vm_end)
3303 vm_end = -PAGE_SIZE;
3304 }
3305 return vm_end;
3306}
3307
1da177e4
LT
3308static inline unsigned long vma_pages(struct vm_area_struct *vma)
3309{
3310 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3311}
3312
640708a2
PE
3313/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3314static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3315 unsigned long vm_start, unsigned long vm_end)
3316{
dc8635b2 3317 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
640708a2
PE
3318
3319 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3320 vma = NULL;
3321
3322 return vma;
3323}
3324
017b1660
MK
3325static inline bool range_in_vma(struct vm_area_struct *vma,
3326 unsigned long start, unsigned long end)
3327{
3328 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3329}
3330
bad849b3 3331#ifdef CONFIG_MMU
804af2cf 3332pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 3333void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
3334#else
3335static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3336{
3337 return __pgprot(0);
3338}
64e45507
PF
3339static inline void vma_set_page_prot(struct vm_area_struct *vma)
3340{
3341 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3342}
bad849b3
DH
3343#endif
3344
295992fb
CK
3345void vma_set_file(struct vm_area_struct *vma, struct file *file);
3346
5877231f 3347#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 3348unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
3349 unsigned long start, unsigned long end);
3350#endif
3351
f440fa1a 3352struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
8d7071af 3353 unsigned long addr);
deceb6cd
HD
3354int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3355 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
3356int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3357 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 3358int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
3359int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3360 struct page **pages, unsigned long *num);
a667d745
SJ
3361int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3362 unsigned long num);
3363int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3364 unsigned long num);
ae2b01f3 3365vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 3366 unsigned long pfn);
f5e6d1d5
MW
3367vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3368 unsigned long pfn, pgprot_t pgprot);
5d747637 3369vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 3370 pfn_t pfn);
ab77dab4
SJ
3371vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3372 unsigned long addr, pfn_t pfn);
b4cbb197
LT
3373int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3374
1c8f4220
SJ
3375static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3376 unsigned long addr, struct page *page)
3377{
3378 int err = vm_insert_page(vma, addr, page);
3379
3380 if (err == -ENOMEM)
3381 return VM_FAULT_OOM;
3382 if (err < 0 && err != -EBUSY)
3383 return VM_FAULT_SIGBUS;
3384
3385 return VM_FAULT_NOPAGE;
3386}
3387
f8f6ae5d
JG
3388#ifndef io_remap_pfn_range
3389static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3390 unsigned long addr, unsigned long pfn,
3391 unsigned long size, pgprot_t prot)
3392{
3393 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3394}
3395#endif
3396
d97baf94
SJ
3397static inline vm_fault_t vmf_error(int err)
3398{
3399 if (err == -ENOMEM)
3400 return VM_FAULT_OOM;
1ea7ca1b
JC
3401 else if (err == -EHWPOISON)
3402 return VM_FAULT_HWPOISON;
d97baf94
SJ
3403 return VM_FAULT_SIGBUS;
3404}
3405
df06b37f
KB
3406struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3407 unsigned int foll_flags);
240aadee 3408
2b740303 3409static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3410{
3411 if (vm_fault & VM_FAULT_OOM)
3412 return -ENOMEM;
3413 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3414 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3415 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3416 return -EFAULT;
3417 return 0;
3418}
3419
474098ed
DH
3420/*
3421 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3422 * a (NUMA hinting) fault is required.
3423 */
3424static inline bool gup_can_follow_protnone(unsigned int flags)
3425{
3426 /*
3427 * FOLL_FORCE has to be able to make progress even if the VMA is
3428 * inaccessible. Further, FOLL_FORCE access usually does not represent
3429 * application behaviour and we should avoid triggering NUMA hinting
3430 * faults.
3431 */
3432 return flags & FOLL_FORCE;
3433}
3434
8b1e0f81 3435typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3436extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3437 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3438extern int apply_to_existing_page_range(struct mm_struct *mm,
3439 unsigned long address, unsigned long size,
3440 pte_fn_t fn, void *data);
aee16b3c 3441
8823b1db 3442#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3443extern void __kernel_poison_pages(struct page *page, int numpages);
3444extern void __kernel_unpoison_pages(struct page *page, int numpages);
3445extern bool _page_poisoning_enabled_early;
3446DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3447static inline bool page_poisoning_enabled(void)
3448{
3449 return _page_poisoning_enabled_early;
3450}
3451/*
3452 * For use in fast paths after init_mem_debugging() has run, or when a
3453 * false negative result is not harmful when called too early.
3454 */
3455static inline bool page_poisoning_enabled_static(void)
3456{
3457 return static_branch_unlikely(&_page_poisoning_enabled);
3458}
3459static inline void kernel_poison_pages(struct page *page, int numpages)
3460{
3461 if (page_poisoning_enabled_static())
3462 __kernel_poison_pages(page, numpages);
3463}
3464static inline void kernel_unpoison_pages(struct page *page, int numpages)
3465{
3466 if (page_poisoning_enabled_static())
3467 __kernel_unpoison_pages(page, numpages);
3468}
8823b1db
LA
3469#else
3470static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3471static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3472static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3473static inline void kernel_poison_pages(struct page *page, int numpages) { }
3474static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3475#endif
3476
51cba1eb 3477DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3478static inline bool want_init_on_alloc(gfp_t flags)
3479{
51cba1eb
KC
3480 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3481 &init_on_alloc))
6471384a
AP
3482 return true;
3483 return flags & __GFP_ZERO;
3484}
3485
51cba1eb 3486DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3487static inline bool want_init_on_free(void)
3488{
51cba1eb
KC
3489 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3490 &init_on_free);
6471384a
AP
3491}
3492
8e57f8ac
VB
3493extern bool _debug_pagealloc_enabled_early;
3494DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3495
3496static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3497{
3498 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3499 _debug_pagealloc_enabled_early;
3500}
3501
3502/*
3503 * For use in fast paths after init_debug_pagealloc() has run, or when a
3504 * false negative result is not harmful when called too early.
3505 */
3506static inline bool debug_pagealloc_enabled_static(void)
031bc574 3507{
96a2b03f
VB
3508 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3509 return false;
3510
3511 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3512}
3513
c87cbc1f 3514/*
5d6ad668
MR
3515 * To support DEBUG_PAGEALLOC architecture must ensure that
3516 * __kernel_map_pages() never fails
c87cbc1f 3517 */
d6332692 3518extern void __kernel_map_pages(struct page *page, int numpages, int enable);
8f14a963 3519#ifdef CONFIG_DEBUG_PAGEALLOC
77bc7fd6
MR
3520static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3521{
3522 if (debug_pagealloc_enabled_static())
3523 __kernel_map_pages(page, numpages, 1);
3524}
3525
3526static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3527{
3528 if (debug_pagealloc_enabled_static())
3529 __kernel_map_pages(page, numpages, 0);
3530}
884c175f
KW
3531
3532extern unsigned int _debug_guardpage_minorder;
3533DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3534
3535static inline unsigned int debug_guardpage_minorder(void)
3536{
3537 return _debug_guardpage_minorder;
3538}
3539
3540static inline bool debug_guardpage_enabled(void)
3541{
3542 return static_branch_unlikely(&_debug_guardpage_enabled);
3543}
3544
3545static inline bool page_is_guard(struct page *page)
3546{
3547 if (!debug_guardpage_enabled())
3548 return false;
3549
3550 return PageGuard(page);
3551}
3552
3553bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
3554 int migratetype);
3555static inline bool set_page_guard(struct zone *zone, struct page *page,
3556 unsigned int order, int migratetype)
3557{
3558 if (!debug_guardpage_enabled())
3559 return false;
3560 return __set_page_guard(zone, page, order, migratetype);
3561}
3562
3563void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
3564 int migratetype);
3565static inline void clear_page_guard(struct zone *zone, struct page *page,
3566 unsigned int order, int migratetype)
3567{
3568 if (!debug_guardpage_enabled())
3569 return;
3570 __clear_page_guard(zone, page, order, migratetype);
3571}
3572
5d6ad668 3573#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3574static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3575static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
884c175f
KW
3576static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3577static inline bool debug_guardpage_enabled(void) { return false; }
3578static inline bool page_is_guard(struct page *page) { return false; }
3579static inline bool set_page_guard(struct zone *zone, struct page *page,
3580 unsigned int order, int migratetype) { return false; }
3581static inline void clear_page_guard(struct zone *zone, struct page *page,
3582 unsigned int order, int migratetype) {}
5d6ad668 3583#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3584
a6c19dfe 3585#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3586extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3587extern int in_gate_area_no_mm(unsigned long addr);
3588extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3589#else
a6c19dfe
AL
3590static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3591{
3592 return NULL;
3593}
3594static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3595static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3596{
3597 return 0;
3598}
1da177e4
LT
3599#endif /* __HAVE_ARCH_GATE_AREA */
3600
44a70ade
MH
3601extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3602
146732ce
JT
3603#ifdef CONFIG_SYSCTL
3604extern int sysctl_drop_caches;
32927393
CH
3605int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3606 loff_t *);
146732ce
JT
3607#endif
3608
cb731d6c 3609void drop_slab(void);
9d0243bc 3610
7a9166e3
LY
3611#ifndef CONFIG_MMU
3612#define randomize_va_space 0
3613#else
a62eaf15 3614extern int randomize_va_space;
7a9166e3 3615#endif
a62eaf15 3616
045e72ac 3617const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3618#ifdef CONFIG_MMU
03252919 3619void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3620#else
3621static inline void print_vma_addr(char *prefix, unsigned long rip)
3622{
3623}
3624#endif
e6e5494c 3625
35fd1eb1 3626void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0 3627struct page * __populate_section_memmap(unsigned long pfn,
e3246d8f
JM
3628 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3629 struct dev_pagemap *pgmap);
7b09f5af
FC
3630void pmd_init(void *addr);
3631void pud_init(void *addr);
29c71111 3632pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3633p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3634pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3635pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7 3636pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4917f55b 3637 struct vmem_altmap *altmap, struct page *reuse);
8f6aac41 3638void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3639struct vmem_altmap;
56993b4e
AK
3640void *vmemmap_alloc_block_buf(unsigned long size, int node,
3641 struct vmem_altmap *altmap);
8f6aac41 3642void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2045a3b8
FC
3643void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3644 unsigned long addr, unsigned long next);
3645int vmemmap_check_pmd(pmd_t *pmd, int node,
3646 unsigned long addr, unsigned long next);
0aad818b 3647int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3648 int node, struct vmem_altmap *altmap);
2045a3b8
FC
3649int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3650 int node, struct vmem_altmap *altmap);
7b73d978
CH
3651int vmemmap_populate(unsigned long start, unsigned long end, int node,
3652 struct vmem_altmap *altmap);
c2b91e2e 3653void vmemmap_populate_print_last(void);
0197518c 3654#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3655void vmemmap_free(unsigned long start, unsigned long end,
3656 struct vmem_altmap *altmap);
0197518c 3657#endif
87a7ae75 3658
0b376f1e 3659#ifdef CONFIG_ARCH_WANT_OPTIMIZE_VMEMMAP
87a7ae75
AK
3660static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3661 struct dev_pagemap *pgmap)
3662{
3663 return is_power_of_2(sizeof(struct page)) &&
3664 pgmap && (pgmap_vmemmap_nr(pgmap) > 1) && !altmap;
3665}
3666#else
3667static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3668 struct dev_pagemap *pgmap)
3669{
3670 return false;
3671}
3672#endif
3673
46723bfa 3674void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3675 unsigned long nr_pages);
6a46079c 3676
82ba011b
AK
3677enum mf_flags {
3678 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3679 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3680 MF_MUST_KILL = 1 << 2,
cf870c70 3681 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3682 MF_UNPOISON = 1 << 4,
67f22ba7 3683 MF_SW_SIMULATED = 1 << 5,
38f6d293 3684 MF_NO_RETRY = 1 << 6,
82ba011b 3685};
c36e2024
SR
3686int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3687 unsigned long count, int mf_flags);
83b57531 3688extern int memory_failure(unsigned long pfn, int flags);
06202231 3689extern void memory_failure_queue_kick(int cpu);
847ce401 3690extern int unpoison_memory(unsigned long pfn);
d0505e9f 3691extern void shake_page(struct page *p);
5844a486 3692extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3693extern int soft_offline_page(unsigned long pfn, int flags);
405ce051 3694#ifdef CONFIG_MEMORY_FAILURE
870388db
KW
3695/*
3696 * Sysfs entries for memory failure handling statistics.
3697 */
3698extern const struct attribute_group memory_failure_attr_group;
d302c239 3699extern void memory_failure_queue(unsigned long pfn, int flags);
e591ef7d
NH
3700extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3701 bool *migratable_cleared);
5033091d
NH
3702void num_poisoned_pages_inc(unsigned long pfn);
3703void num_poisoned_pages_sub(unsigned long pfn, long i);
4248d008 3704struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
405ce051 3705#else
d302c239
TL
3706static inline void memory_failure_queue(unsigned long pfn, int flags)
3707{
3708}
3709
e591ef7d
NH
3710static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3711 bool *migratable_cleared)
405ce051
NH
3712{
3713 return 0;
3714}
d027122d 3715
a46c9304 3716static inline void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
3717{
3718}
5033091d
NH
3719
3720static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3721{
3722}
3723#endif
3724
4248d008
LX
3725#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
3726void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
3727 struct vm_area_struct *vma, struct list_head *to_kill,
3728 unsigned long ksm_addr);
3729#endif
3730
5033091d
NH
3731#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3732extern void memblk_nr_poison_inc(unsigned long pfn);
3733extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3734#else
3735static inline void memblk_nr_poison_inc(unsigned long pfn)
3736{
3737}
3738
3739static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3740{
3741}
405ce051 3742#endif
6a46079c 3743
03b122da
TL
3744#ifndef arch_memory_failure
3745static inline int arch_memory_failure(unsigned long pfn, int flags)
3746{
3747 return -ENXIO;
3748}
3749#endif
3750
3751#ifndef arch_is_platform_page
3752static inline bool arch_is_platform_page(u64 paddr)
3753{
3754 return false;
3755}
3756#endif
cc637b17
XX
3757
3758/*
3759 * Error handlers for various types of pages.
3760 */
cc3e2af4 3761enum mf_result {
cc637b17
XX
3762 MF_IGNORED, /* Error: cannot be handled */
3763 MF_FAILED, /* Error: handling failed */
3764 MF_DELAYED, /* Will be handled later */
3765 MF_RECOVERED, /* Successfully recovered */
3766};
3767
3768enum mf_action_page_type {
3769 MF_MSG_KERNEL,
3770 MF_MSG_KERNEL_HIGH_ORDER,
3771 MF_MSG_SLAB,
3772 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3773 MF_MSG_HUGE,
3774 MF_MSG_FREE_HUGE,
3775 MF_MSG_UNMAP_FAILED,
3776 MF_MSG_DIRTY_SWAPCACHE,
3777 MF_MSG_CLEAN_SWAPCACHE,
3778 MF_MSG_DIRTY_MLOCKED_LRU,
3779 MF_MSG_CLEAN_MLOCKED_LRU,
3780 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3781 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3782 MF_MSG_DIRTY_LRU,
3783 MF_MSG_CLEAN_LRU,
3784 MF_MSG_TRUNCATED_LRU,
3785 MF_MSG_BUDDY,
6100e34b 3786 MF_MSG_DAX,
5d1fd5dc 3787 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3788 MF_MSG_UNKNOWN,
3789};
3790
47ad8475
AA
3791#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3792extern void clear_huge_page(struct page *page,
c79b57e4 3793 unsigned long addr_hint,
47ad8475 3794 unsigned int pages_per_huge_page);
1cb9dc4b
LS
3795int copy_user_large_folio(struct folio *dst, struct folio *src,
3796 unsigned long addr_hint,
3797 struct vm_area_struct *vma);
e87340ca
Z
3798long copy_folio_from_user(struct folio *dst_folio,
3799 const void __user *usr_src,
3800 bool allow_pagefault);
2484ca9b
THV
3801
3802/**
3803 * vma_is_special_huge - Are transhuge page-table entries considered special?
3804 * @vma: Pointer to the struct vm_area_struct to consider
3805 *
3806 * Whether transhuge page-table entries are considered "special" following
3807 * the definition in vm_normal_page().
3808 *
3809 * Return: true if transhuge page-table entries should be considered special,
3810 * false otherwise.
3811 */
3812static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3813{
3814 return vma_is_dax(vma) || (vma->vm_file &&
3815 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3816}
3817
47ad8475
AA
3818#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3819
f9872caf
CS
3820#if MAX_NUMNODES > 1
3821void __init setup_nr_node_ids(void);
3822#else
3823static inline void setup_nr_node_ids(void) {}
3824#endif
3825
010c164a
SL
3826extern int memcmp_pages(struct page *page1, struct page *page2);
3827
3828static inline int pages_identical(struct page *page1, struct page *page2)
3829{
3830 return !memcmp_pages(page1, page2);
3831}
3832
c5acad84
TH
3833#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3834unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3835 pgoff_t first_index, pgoff_t nr,
3836 pgoff_t bitmap_pgoff,
3837 unsigned long *bitmap,
3838 pgoff_t *start,
3839 pgoff_t *end);
3840
3841unsigned long wp_shared_mapping_range(struct address_space *mapping,
3842 pgoff_t first_index, pgoff_t nr);
3843#endif
3844
2374c09b
CH
3845extern int sysctl_nr_trim_pages;
3846
5bb1bb35 3847#ifdef CONFIG_PRINTK
8e7f37f2 3848void mem_dump_obj(void *object);
5bb1bb35
PM
3849#else
3850static inline void mem_dump_obj(void *object) {}
3851#endif
8e7f37f2 3852
22247efd
PX
3853/**
3854 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3855 * @seals: the seals to check
3856 * @vma: the vma to operate on
3857 *
3858 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3859 * the vma flags. Return 0 if check pass, or <0 for errors.
3860 */
3861static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3862{
3863 if (seals & F_SEAL_FUTURE_WRITE) {
3864 /*
3865 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3866 * "future write" seal active.
3867 */
3868 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3869 return -EPERM;
3870
3871 /*
3872 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3873 * MAP_SHARED and read-only, take care to not allow mprotect to
3874 * revert protections on such mappings. Do this only for shared
3875 * mappings. For private mappings, don't need to mask
3876 * VM_MAYWRITE as we still want them to be COW-writable.
3877 */
3878 if (vma->vm_flags & VM_SHARED)
1c71222e 3879 vm_flags_clear(vma, VM_MAYWRITE);
22247efd
PX
3880 }
3881
3882 return 0;
3883}
3884
9a10064f
CC
3885#ifdef CONFIG_ANON_VMA_NAME
3886int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac
SB
3887 unsigned long len_in,
3888 struct anon_vma_name *anon_name);
9a10064f
CC
3889#else
3890static inline int
3891madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac 3892 unsigned long len_in, struct anon_vma_name *anon_name) {
9a10064f
CC
3893 return 0;
3894}
3895#endif
3896
dcdfdd40
KS
3897#ifdef CONFIG_UNACCEPTED_MEMORY
3898
3899bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
3900void accept_memory(phys_addr_t start, phys_addr_t end);
3901
3902#else
3903
3904static inline bool range_contains_unaccepted_memory(phys_addr_t start,
3905 phys_addr_t end)
3906{
3907 return false;
3908}
3909
3910static inline void accept_memory(phys_addr_t start, phys_addr_t end)
3911{
3912}
3913
3914#endif
3915
1da177e4 3916#endif /* _LINUX_MM_H */